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Abstract

The expansion of distributed energy resources (DER), demand response (DR), and virtual

bidding in many power systems and energy markets are creating new challenges for unit

commitment (UC) and economic dispatch (ED) techniques. Instead of a small number of

traditionally large generators, the power system resource mix is moving to one with a high

percentage of a large number of small units. These can increase the number of similar

or identical units, leading to chattering (switching back and forth among committed units

between iterations). This research investigates alternative and scalable ways of increasing

the high penetration of these resources.

First, the mathematical formulations for UC and ED models are reviewed. Then a

new heuristic is proposed that takes advantage of the incremental nature of Lagrangian

relaxation (LR). The heuristic linearizes and distributes the network transmission losses to

appropriately penalize line flow and mitigate losses.

Second, a mixed integer programming (MIP) is used as a benchmark for the proposed LR

formulation. The impact of similar and identical units on the solution quality and simulation

run time of UC and ED was investigated using the proposed formulation.

Third, a system flexibility study is done using DR and a load demand pattern with a

high penetration of renewables, creating a high daily ramp rate requirement. This work

investigates the impact of available DR on spikes in locational marginal pricing (LMP).

Fourth, two studies are done on improving LR computational efficiency. The first

proposes a heuristic that focuses on trade-offs between solution quality and simulation run

time. The heuristic iterates over lambda and energy marginal price while the convergence

issue is handled using Augmented LR (ALR). The second study proposes a heuristic that

penalizes transmission lines with binding line limits. The proposed method can reduce

v



power flow in the transmission lines of interest, and considerably reduce the simulation time

in optimization problems with a high number of transmission constraints.

Finally, the effect of a large number of similar and identical units on simulation run time

is considered. The proposed formulation scales linearly with the increase in system size.
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Chapter 1

Introduction

This work is motivated by the impact of a high penetration of Distributed Energy Resources

(DER) on the North American (NA) grid, and how this affects the existing unit scheduling

techniques in the electrical power markets. The integration of a large number of non-

conventional energy resources such as DER, virtual trading, and Demand Response (DR)

implies that many more units will be scheduled for the grid. This would lead to a very large

increase in the number of similar or identical units, which makes solving Unit Commitment

(UC) problems even more difficult. New scalable and efficient UC algorithms will be

required to handle the increasing number of resources and issues with similar and identical

units respectively. This research focuses on formulating scalable and efficient optimization

techniques, and frameworks that can handle the ever-increasing distributed grid resources

with quality solutions within acceptable solution time for the markets.

1.1 Background

1.1.1 Renewable Based Distributed Energy Resources

Several countries, including Germany, Denmark, Japan, and the USA, have led innovations

in renewable-based DER. These countries see a potential for lowering the overall cost of

energy and becoming energy independent [10]. As the awareness of the benefits of renewable

energy resources increases, so does the number of interested countries. Renewable-based
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DER are also of interest because they can help decrease CO2 emissions, decrease resistive

transmission losses and improve system reliability [1]. Today, many renewable-based DER

have reached a level of maturity, with solar and wind prices competitive with conventional

technologies, such as coal. From a U.S. Energy Information Administration (EIA) report of

Feb 2020, the overall energy generated from wind surpassed that of hydro in the year 2019

as shown in Figure 1.1a [27]. Similarly, the predicted ’duck curve’ in the CAISO market

due to solar resources has begun to manifest itself, requiring an average of 13GW upward

ramping in the 3 hours preceding sunset as shown in Figure 1.1b [25]. In 2021, the solar PV

global capacity and wind power global capacity reached 942 and 845 gigawatts respectively,

as shown in Figures 1.2a and 1.2b [63].

Considering the current trend of renewable energy capacity increase, deliberate steps

have to be taken to ensure a secure and reliable integration of renewable-based DER into

the power grid. It is worth noting that the benefits associated with renewable-based DER

are not without drawbacks. The intermittent nature of the two fastest-growing renewable

energy resources has introduced various operational challenges. Engineers and researchers

have proposed numerous new control approaches to maintain grid frequency and voltage

performance [1, 10, 12, 66]. A passive addition of DER and distributed generators (DG) to

the grid creates security and reliability issues. The installation of renewable-based DER on

the transmission side of the grid can create problems with over-generation and reduce system

reliability. On the medium voltage (MV) level of the grid, DER integration could be limited

by the size of the transformers and the lack of visibility to the Distribution System Operators

(DSO). While at the low voltage (LV) level, a passive integration of a large amount of DER

could create issues with power quality, voltage, system stability, and protection. In all cases,

there will be a need for grid expansion at the high volt (HV), MV, and LV levels of the grid

[30].

1.1.2 Virtual Power Plants

The concept of a virtual power plant (VPP) is the aggregation of distributed generators

(including renewable energy resources), flexible or controllable loads, and energy storage

systems (ESS) in order to monitor and control them as a single power plant. The aggregated
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(a) Wind Surpasses Hydro [27] (b) 13GW ramping in 3hrs CAISO [25]

Figure 1.1: Wind and solar energy trends

(a) Global Solar Capacity (b) Global Wind Capacity

Figure 1.2: Global Solar and Wind Capacity [63]
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resources could be distributed across a load center or as part of a microgrid. A central

control unit known as the energy management system (EMS) coordinates the resources in

the VPP and communicates with the ISO or RTO to provide an acceptable level of visibility

on the power grid [19, 80].

VPPs have been proposed as an active pathway for grid integration of DER. A VPP can

reduce variability and uncertainties on the power grid, driving down the reserve capacity

needed for grid security and reliability. Today, many countries no longer struggle with a

low supply of renewable energy resources, instead, they have to deal with over-generation

and negative electric market prices. Figure 1.3a shows a typical system with different

voltage levels (LV, MV, HV), while Figure 1.3b shows a typical VPP with bidirectional

communication. In addition to the uncertainties in the load forecast, TSO/ISO has to deal

with additional uncertainties in the energy generation at the LV, MV, and HV levels of the

power system network. Even if additional renewable power injection is not permitted at

the LV level, behind the meter installation of DER by consumers can make load suddenly

disappear or appear on the grid. To make the best use of the resources and technologies

available to us today, a VPP can help coordinate resources like controllable and interruptible

loads with demand response for mitigating the effect of sudden step load changes [20].

1.1.3 Demand Response

Demand response (DR) is the change in customer’s energy usage in response to either

varying electricity price or incentive payments in order to lower the usage of electricity

in times of high demand or to help with system stability. As part of DER, DR can act as a

controllable or interruptible load for grid stability. From [2], customers can respond to DR

by reducing their electricity usage when the price is high, shifting peak operations to off-peak

periods, or use onsite generators to meet the required load. DR programs can be categorized

into two main types, incentive-based programs (IBP) and price-based programs (PBP). For

example, the NYISO DR programs are designed for either reliability or economic purposes.

The reliability programs are Emergency Demand Response Program (EDRP) and Installed

Capacity-Special Case Resource (ICAP/SCR) program. They are implemented either by

reducing load or applying qualified generators as resources to shave load peaks during system
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(a) DER not visible to ISO/RTO

(b) DER visible to ISO/RTO

Figure 1.3: Visibility of behind-the-meter resources to ISO/RTO [80]
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emergencies. The economic DR programs are the Day-Ahead Demand Response Program

(DADRP) for the Energy market and the Demand-Side Ancillary Services Program (DSASP)

for the Ancillary Service market. The economic programs encourage more flexible load to

bid into the market, offer participants the opportunity to curtail their load, and drive down

energy prices [36]. Figure 1.4 shows the historical enrollment of the NYISO DR programs.

Limitations and Challenges of Demand Response

As mentioned above, even though DR has a number of benefits, it is not without drawbacks

and has been only slowly adopted by customers. For example, it can be seen from Figure

1.5 that enrolling and retaining customers in the PJM DR program has been challenging.

Research has not been able to understand and categorize customers’ behavior in a way that

would directly translate into increasing and sustaining customers’ participation. Some known

limitations to customers’ participation include technology cost and financing, opportunity

cost and potential savings, and response fatigue [44]. More important to this research is the

difficulty of existing UC and ED optimization techniques to handle a high influx of small grid

resources such as DR and virtual trading. An influx of grid resources as these will increase

the number of optimization variables required for solving the UC and ED. In addition, it is

difficult to know if customers will respond and what percent of the available capacity. The

latter adds a unique type of uncertainty to the optimization problem.

1.1.4 Grid Flexibility

Traditionally, the electric power system was designed to track in real-time, the known changes

and uncertainty in load by adjusting the generation. The typical base-load generators like

nuclear and coal are not nimble enough to track the variation in load. Faster responding

units, such as natural gas and hydro, provided much of the tracking. Pumped hydro plays

a big role in grid flexibility where available as can be seen from the correlation of nuclear

and pumped hydro installation Figure 1.6 [24]. In 2019 hydropower accounted for about

93% of utility-scale storage power in GW and 99% of electrical energy storage in GWh [93].

Figure 1.7 compares different electrical energy storage resources by technology type in the
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Figure 1.4: NYISO reliability program and historical enrollment data [36]

Figure 1.5: PJM Economic DR Capability in Energy Market in MW (3/1/2006-4/2/2021)
[61]
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Figure 1.6: Correlation between installed capacity of Pumped Hydro and Nuclear [24]
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Figure 1.7: Electrical energy storage capacity by technology type in the U.S. (2019) [93]
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year 2019.

With the influx of renewable-based DER and wind surpassing hydro as the most-used

renewable energy in 2019 (see Figure 1.1a above ) [27], power system engineers are now

re-thinking grid flexibility. Generation alone might not be the best way to track variation

in load, since renewable energy sources are now adding an additional layer of uncertainty

and in some cases, increasing the required ramp-rate capacity for the system. The power

system grid flexibility is now being considered as not just the ability for power generation to

match load at all times but a case where the system can respond rapidly to large variations

in both demand and generation. The requirement for grid flexibility depends on evolving

new market structures, system operation, grid software and hardware, and legislation [35].

For example, the legislation around the reduction in CO2 emission would need a great deal

of change in the traditional flexibility requirement.

1.1.5 Unit Commitment and Economic Dispatch

Unlike most commodities and products, electricity cannot be stored economically for future

use and requires a physically connected link at all times for its transportation [94]. For the

above-mentioned reasons, electricity markets do not just determine the required capacity

but also schedule which generators provide power and the amount of generation needed from

each unit per time. The complexity of keeping generation as close as possible to demand

requires committing the right units and dispatching the right amount of electricity at all

times. Most ISOs and RTOs schedule their power system resources across multiple time

horizons. The day-ahead (DA) unit commitment (UC) aims for the most economic resource

combination while considering limits and possible uncertainties. In the DA time horizon,

less flexible resources like the base-load units are committed earlier to provide sufficient time

for them to respond. The hour-ahead (HA) scheduling takes care of excesses or deficiencies

in the committed units. This is implemented by rescheduling units that are flexible enough

within the HA time frame or committing additional units that are fast enough to start up

in that time frame [55]. With the increase of non-dispatchable units in the power grid,

the 15-minute and 5-minute time horizon for UC and economic dispatch (ED) is becoming

popular in many electricity markets. Midcontinent Independent System Operator (MISO) is
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now able to dispatch and make payment at the 5-minute horizon [72]. Finally, the real-time

(RT) scheduling responds to variations occurring during the actual dispatch time.

The state-of-the-art UC and ED software uses a mixed-integer programming (MIP)

technique. MIP guarantees a global optimum solution especially when the number of

variables (units) is small. As the percentage of DER increases in the power grid, the number

of dispatchable and non-dispatchable resources increases, making the solution run-time larger

than acceptable [98]. In recent times, power system researchers have intensified efforts to

find scalable optimization techniques. Much of the focus has been on scaling up the MIP

technique by decentralizing large power system networks, using tie-lines or virtual tie-lines

as links between areas [41].

1.2 Motivation

The future of the electrical power grid is trending towards one with a high penetration of

DER. Some drivers of the changing landscape are state and regional clean energy targets,

environmental activism, better technologies, and changing marketplace (smaller customers

are interested in grid participation). Also, since electric power consumers are now more

informed about the benefits of clean energy to the environment, they are becoming more

interested in the source of the energy they consume. The current increase in DER, especially

with many small resources will further exacerbate the existing difficulties in power systems

scheduling. These challenges include an increasing number of similar units, high volume of

transmission constraints, increasing uncertainty in unit capacities (intermittent resources),

lack of resource visibility to ISOs and RTOs, poor power quality, over-generation of power,

over-committing of reserves, low system inertial, voltage issues, and a host of other stability

problems. Dealing with the effect of high penetration of DER will definitely require a

significant amount of grid flexibility. This dissertation will investigate methods of achieving

quick and efficient ways of allocating resources to reduce the effect of uncertainty, similar

and identical units, and transmission constraints on the power system stability using scalable

optimization techniques.
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As power system resources shift away from the typical large but few units to the

distributed unit types, scalability becomes an issue when solving UC and ED problems.

The volume of transmission constraints can quickly increase which would in turn increase

the number of iterations for clearing out all violations in the UC and ED solution [15]. An

important tool for solving the optimization problem is MIP. MIP guarantees an optimum

solution but does not scale well. MIP is in the class of non-deterministic polynomial-time

complete (NP-complete) problems. This means that MIP problems cannot be solved in a

quick deterministic algorithm time frame. Although NP-complete problems are solvable for

some large problems, the running time for such problems quickly becomes unacceptably slow

for large systems [98]. To mitigate this challenge, research has focused on re-formulating

MIP into sub-problems. Partitioning a larger problem into multiple sub-problems will

end up creating more shared variables as each sub-problem needs to coordinate and share

information with other sub-problems for optimality. Lagrangian relaxation (LR) technique

on the other hand is intuitive and scales well with increasing variables and, hence, is a good

candidate for solving UC and ED problems of the future grid.

Although several researchers have used the LR in a hybrid format and have also focused on

methods of updating lambda, solving the problem of similar generators while iterating over

price (lambda) remains an important challenge. In addition, improving UC and ED solutions

as the system size and resources grow without adversely impacting the simulation run time

remains a problem. This trade-off between UC and ED solution quality and simulation run

time remains a challenge. In this dissertation, we formulate, design, and investigate LR

techniques that allow a high penetration of Distributed Energy Resources (DER) that can

maintain an acceptable simulation run time.

1.3 Dissertation Outline

The chapters of the dissertation are as follows:

Chapter 2 briefly reviews literature that is relevant to UC and ED.
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Chapter 3 formulates a UC model that estimates the line losses from the transmission

network data. The model uses a heuristic that includes the estimated line losses

and electrical distance of generation centers from load centers to differentiate between

similar and identical generators. The proposed formulation can distinguish between

similar and identical units when they are the marginal units, using their electrical

distances from the load center. The solution quality can also be improved when

compared to the classical LR formulation.

Chapter 4 benchmarks the formulation from Chapter 3 using Egret. First, the solution

quality was investigated via a modified PJM 5 bus system. The system scalability

is then investigated using the RTS-GMLC 73 bus system. The RTS-GMLC 73 bus

system is modified to include identical units and then benchmarked with Egret.

Chapter 5 studies the computational efficiency of different LR formulations. First, the

WECC 240 bus system data was formatted and a base UC model was designed. Then

the impact of DR on system flexibility, peak load, market price, and LMP is considered.

Third, the computational efficiency of the proposed formulation is considered using

ALR. Fourth, a line flow penalty for transmission limit is proposed and implemented.

The penalty is aimed at speeding up simulation run time and reducing the number of

iterations in solving SCUC. Finally, the effect of a large volume of similar and identical

units on the proposed formulation is considered.

1.4 Contributions

This work proposes a new model with a heuristic that takes advantage of estimated line losses

for UC and ED. The estimated line losses act as additional cost penalties that distinguish

between similar and identical units when they are not co-located. When compared to using

the actual line loss calculation, the proposed algorithm is much faster. Units are also selected

in a way that improves the OPF solution when compared with a lossless UC formulation.

Numerical solutions show that the proposed algorithm compares well to the MIP solution
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in small and large systems and scales linearly as the number of optimization intervals and

system size increases.

A new algorithm that takes advantage of the incremental nature of LR is proposed. The

algorithm incorporates further iteration over λ and offers a good trade-off between solution

quality and scalability for large optimization problems.

A new line flow penalty is proposed to reduce the number of iterations and simulation

run time. The line flow penalty is an extension of the line loss estimate and is localized

at transmission lines with binding limits. Apart from the improvement in solution time, it

is easy to select a penalty value for the system as there are little or no effects on solution

quality for a wide range of penalty values.
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Chapter 2

Literature Review

2.1 Unit Commitment and Economic Dispatch

The goal of performing UC and ED is to operate the system at the lowest cost possible at all

times by committing the appropriate units and dispatching the proper amount of resources

from each unit [89] while maintaining system security. In recent times, the committed units

also have to track more significant uncertainties in the load, while concepts, such as DR can

help dispatch load for frequency regulation. The effect of high penetration of DER on the

power grid cannot be fully understood without fully understanding the additional layer of

complexity this integration adds to UC and ED processes.

2.1.1 Unit Commitment

A generalized UC formulation was proposed by Baldick [6] for both hydro and thermal units.

The objective function and system constraints are as follows [6, 55]

min
pit,uit,Rit

{
NT∑
t=1

NG∑
i=1

[Ci(Pit, uit) + Si(uit) + qitRit]} (2.1)

NG∑
i=1

Pit =
ND∑
j=1

Djt ∀t (2.2)

Pmin
i uit ≤ Pit ≤ Pmax

i uit ∀i, ∀t (2.3)
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Pit +Rit ≤ Pmax
i ∀i, ∀t (2.4)

0 ≤ Rit ≤ uit(RUiτ ) ∀i, ∀t (2.5)

NG∑
i=1

Rit ≥ Rmin
t ∀t (2.6)

Pit − Pi,t−1 ≤ RUiui,t−1 +Rstart
i (uit − ui,t−1) ∀i, ∀t (2.7)

Pit − Pi,t−1 ≥ −RDiuit −Rshut
i (ui,t−1 − uit) ∀i, ∀t (2.8)

Rstart
i = maxRUi, P

min
i ∀i (2.9)

Rshut
i = maxRDi, P

min
i ∀i (2.10)

NG∑
i=1

GSFkiPit −
ND∑
j=1

GSFkjDjt ≤ Fmax
k ∀k, ∀t (2.11)

Equation (2.1) seeks to minimize the overall cost of generation by selecting the right

combination of units. C is the cost of generation of unit Pi excluding the start-up/shut-

down cost and reserve cost. P is the power output while i and t represent the unit and the

time respectively. S is the unit start-up cost, R is the committed reserve, u indicates if a

unit is committed or not (u = 0/1) and q is the capacity cost of the reserve. Constraint (2.2)

guarantees that the demand is met at all times while (2.3) and (2.4) caps the unit’s lower and

upper limits and available reserve, respectively. Constraint (2.5) puts a cap on the maximum

spinning reserve capacity while (2.6) indicates the minimum allowable reserve at a particular

time. Constraints (2.7) and (2.8) reflect the ramp-up and ramp-down capabilities of each unit

respectively. Constraints (2.9) and (2.10) ensure that the start-up reserve and shut-down

reserve do not violate the minimum operational level of the unit (Pmin
i ). Transmission limits

are ensured by (2.11) using a DC load flow. The Generation Shift Factor (GSF) reflects a DC

load flow approximation. Security constraints are considered implicit in the flow constraints.

2.1.2 Security Constrained Economic Dispatch

While UC determines which units and resources get committed, security constrained ED

(SCED) optimally dispatches the committed resources to minimize the cost of operation,
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considering the reliability and operational limits. Hence, the SCED formulations would not

require constraints parameters like uit and Si which help decide what units or resources are

committed. A formulation of SCED is as follows [6, 23, 55].

min
pit,Rit

{
NT∑
t=1

NG∑
i=1

[Ci(Pit) + qitRit]} (2.12)

NG∑
i=1

Pit =
ND∑
j=1

Djt ∀t (2.13)

Pmin
i ≤ Pit ≤ Pmax

i ∀i, ∀t (2.14)

Pit +Rit ≤ Pmax
i ∀i, ∀t (2.15)

0 ≤ Rit ≤ RUiτ ∀i, ∀t (2.16)

NG∑
i=1

Rit ≥ Rmin
t ∀t (2.17)

−RDi∆t ≤ Pit − Pi,t−1 ≤ RUi∆t ∀i, ∀t (2.18)

NG∑
i=1

GSFkiPit −
ND∑
j=1

GSFkjDjt ≤ Fmax
k ∀k, ∀t (2.19)

The objective function in equation (2.12) is to minimize the overall cost of operation

by determining the outputs of the already committed units. Constraint (2.13) balances

the demand and supply, while constraints (2.14) and (2.15) cap the unit output and the

spinning reserve respectively. Constraint (2.16) limits the reserve of a unit and (2.17) fixes

the minimum required reserve by the system at time t. Constraint (2.18) limits the ramping

rates of each unit and the transmission line flows are limited by constraint (2.19). Note

ED must be solved as a part of the UC, although for computational efficiency it may be

approximated.

2.2 Unit Commitment Formulations

Saravanan et al. [82] grouped UC formulations into three techniques, namely; conventional,

non-conventional, and hybrid problem formulations. Exhaustive enumeration, branch
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and bound, dynamic programming (DP), simulated annealing (SA), Mixed Integer Linear

Programming (MILP), Lagrangian Relaxation (LR), Benders Decomposition, and Tabu

search are some of the classified methods under conventional techniques. Land and Doig

[50] proposed the branch and bound method for optimizing problems where some or all the

variables are only allowed to exist as discrete values. Like the branch and bound method,

the exhaustive enumeration method also deals with discrete variables. It is the easiest

method to implement and it enumerates all possible combinations of the discrete variables,

guaranteeing global minimum at the expense of computational time and resources [82]. The

basic DP is similar to the exhaustive enumeration method in that it checks through all

possible states at every interval. This method drops off infeasible states but still has to deal

with a large number of feasible states. A large amount of memory, as well as computational

time and resources, are required for obtaining a global optimum and hence, DP is generally

not appropriate for solving large problems [81, 85]. The MIP technique is an improvement of

the integer programming technique that allows for non-integer functions in the optimization

problem. MIP improvements have led to the ability to solve large problems with a good level

of accuracy. This is however possible at the expense of computational time and resources,

[81]. The Benders Decomposition method solves the optimization problem in two stages.

A master problem commits the units, which forms the second step sub-problems for ED.

A shortcoming of the Benders Decomposition method is the difficulty in solving the master

problem [81, 59]. The LR method is unique for its ability to relax and separate each unit

from the coupling constraints that make solving UC problems difficult [13]. Unlike most

optimization techniques, LR is intuitive, making it possible to track the progress of the

solution at all times. The dual problem makes it possible to break the problem into smaller

parts and units are committed by iteration over price. A major challenge for the fundamental

LR technique is that there exists a duality gap (the difference between the optimal solution

and the dual problem-solution). A second problem arises if there are many similar units

in the system. Multiple solutions could have about the same cost (flat bottom) and many

combinations of units give the same result. This could also lead to chattering from similar

units that get committed or de-committed together when they are the marginal units [81, 82].
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2.3 Unit Commitment and Identical Units

The impact of similar and identical units on the solution quality and simulation time has

continued to garner the attention of researchers. Qiaozhu et al. [76] studied the impact

of identical units on LR based methods. The duality gap and solution oscillations increase

considerably, leading to poor solutions and extended simulation time. They applied ALR and

a surrogate subgradient to the problem while solving subproblems in a successive manner.

They observed considerable improvements in the solution quality when compared to the

classical LR method. Nikolaidis et al. [64] approached the identical units issue in UC, using

a double decomposition method. They considered a situation where the simulation time is

prioritized over solution quality. The proposed approach greatly improved the simulation

time.

When UC problems are solved with MIP, symmetries are observed within the solutions

[17, 47, 54, 60, 68]. Symmetries in optimization problems occur when multiple combinations

of units with the same objective (or almost equal objective depending on the MIP gap

tolerance) are observed. The addition of identical units into the UC problems makes it

even harder to solve. Schrock in [83] considered the effect of identical and nearly identical

generators on UC solution and simulation time, using symmetry-exploiting techniques. The

research concluded that the symmetry-exploiting techniques can be used as a backup for

standard models especially when time is of the essence. Knueven et al. in [45] reformulated

the MILP by aggregating units with identical properties. They reported that the redundancy

associated with symmetry solutions is greatly reduced, thereby reducing the associated

computational difficulty.

2.4 Unit Commitment and Simulation Time

The simulation time for SCUC continues to be a challenge for ISOs as the number of small

units continues to grow in the power system. Researchers have continued to focus on ways of

reducing the simulation run time with minimal or no impact on solution quality. This need
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is part of the reason for the introduction of the Grid Optimization (GO) Competition by the

Advanced Research Projects Agency-Energy (ARPA-E) (https://gocompetition.energy.gov).

Ostrowski et al. proposed tight MILP formulations that can considerably improve

simulation time. They introduced new constraints which are incorporated into the operating

region of the generators [67]. Several researchers have also focused on aggregating generators

to reduce the number of decision variables. Langrene et al. considered the effect of the

increasing number of constraints with the increasing number of units. They proposed a

dynamic way of implementing the constraints in the aggregated units. The problem size

can be considerably reduced. A clustered UC approach was proposed by Poncelet et al.

for system and resource planning [74]. Based on the difficulty of solving UC problems for

time periods beyond one week, they grouped units based on the technology type and year of

investment. The proposed model has a large impact on the simulation time and does have the

potential for integration into current power system models. The research by Palmintier et al.

[69] focuses on reducing the computational time by aggregating similar (not identical) units.

The idea here is to replace binary variables with integer variables with the ability to commit

each unit independently. By reducing the overall decision variables, they reported that the

proposed model can speed up the simulation time with solution errors of up to 1.8%. Meus

et al. in [62] considered the benefits of clustering similar or identical units. They highlighted

the possible solution errors that can occur from aggregating nonidentical units. Finally, they

combined a clustered UC with a traditional UC which can reduce computational time while

guaranteeing an acceptable solution.

2.5 Unit Commitment and Transmission Flow Con-

straints

Solving non-convex optimization problems can be difficult even for a relatively small system.

A type of constraint that could make the already difficult non-convex problem even much

harder is transmission flow constraints. Hence, a lot of research efforts have gone into

reducing the impact of this constraint on UC solution quality and simulation time. In order
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to ensure the feasibility of SCED, Ma et al. in [59] proposed a Benders decomposition UC

approach. The master problem solves a relaxed UC problem (no transmission constraints)

using ALR while subproblems are solved by adjusting the output of the committed units.

In a different study [58], they integrated voltage constraints into the transmission constraint

problem. Here, the subproblem is further broken into two subproblems for active and

reactive power flows respectively. They reported that the iterative process can minimize

the generation production cost. Zhao and Yamashiro in [102] proposed a successive de-

commitment UC technique while tracking transmission losses and flow limits. The method

outperformed the dynamic programming method (DP) which was widely used during the

early days of power system deregulation. An integrated SCUC approach was proposed by

Cong et al. where transmission line and natural gas transmission constraints are considered

[22]. A decomposition method was used, creating different subproblems for electrical

transmission lines and gas transmission. This is an iterative process where the constraint

data is updated for new transmission violations and this is reintroduced into the master

problem. Lotfjou et al. also did a study that considers the economic benefits of integrating

DC transmission lines into the SCUC problem [57]. A master problem solves the UC problem

while the subproblems take care of the hourly transmission constraints. They reported

an improvement from the simplified DC method but noted that replacing AC lines with

DC lines can negatively impact solution convergence. A transmission switching approach

was introduced into the SCUC by Khodaei and Shahidehpour to mitigate transmission

violation and improve solution quality [43]. Like most of the previous studies, they used

a decomposition method where the subproblem takes care of the transmission constraints

and violations. If the subproblem is unable to mitigate all violations, the required changes

are included in the master problem for the next iteration. Pandzic et al. in [70] proposed

a 3 binary variable approach (which includes the power generation, start-up, and shut-

down cost) instead of the commonly used single binary variables. They reported that the

improvement in the proposed method is a result of the depth of the cut. A cut that

leads to a small duality gap reduces the solution search space and hence, improves the

computational performance. Lee et al. in [51] proposed a multi-stage robust UC with

transmission constraints. Using the cutting plan and column generation methods, they
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reported a great reduction in solution time. Rabbuni and Guru in [77] considered improving

the computational time for UC with transmission constraints by solving the problem via

a piecewise linear cost function instead of a quadratic cost function. They observed that

the improvement in computational time comes at a cost in the solution quality. Dvorkin

et al. [26] investigated a transmission-constrained UC, using stochastic optimization for

initial solutions and switching to interval optimization depending on system conditions.

The hybrid optimization method is computationally intensive but outperforms the classical

stochastic UC method. Papavasiliou et al. studied a transmission-constrained UC using

parallel computing [71]. The uncertainty in the system is considered using LR for stochastic

UC. The simulation run time is validated using well-studied UC scenarios. Li et al. [53]

studied the effect of transmission constraints on UC using a combined heat and power

(CHP) model. They highlighted the difficulty associated with wind energy integration in

a CHP model. For a well-managed system, They showed some possible benefits of wind

integration using the proposed model. The studies in [33, 56] considered the effect of UC

with transmission constraints in AC models. A data-driven UC approach was proposed

by Pineda et al. [73]. Using historical data, transmission lines that are unlikely to reach

or exceed their flow limits are identified and are removed from the model. They reported

a considerable improvement in simulation with minimal or no impact on solution quality.

Chen et al. [15] proposed an incremental approach to increasing the number of transmission

constraints in the SCUC DA problem. Identified transmission lines with binding transmission

limits are added to the optimization problem in batches and the iteration process continues

until no more violations are found.

2.6 Unit Commitment and Distributed Algorithms

To achieve global optimums instead of local solutions, UC and ED algorithms are usually

modeled as centralized algorithms. The concept of centralized optimization algorithms is

however being disrupted by the steady growth of DER and reductions of thermal units like

coal in the energy mix. To replace the capacity of a decommissioned coal plant reliably,

several DER units will be required. The replacement of capacity is needed because the
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increase in annual energy consumption is slowing and in some years negative. Figure 2.1

shows the trend in annual U.S. energy consumption [28]. With energy consumption staying

relatively flat and a high level of DER penetration, the number of variables and constraints

required to solve a typical UC and ED problem will be beyond the capability of most

centralized MIP formulations.

MIP is a state-of-the-art optimization technique but does not scale well with the increase

in the number of discrete variables and constraints. In order to deal with the effect of

the steady increase in DER on the electric power grid, many researchers are focused on

distributed optimization algorithms. Kargarian and Fu [40] proposed a hierarchical model of

systems of systems (SoS) for SCUC. While considering an active distribution grid (ADG) that

can be independently controlled by a distribution company (DISCO). They also accounted

for the transmission grid that is controlled by the ISO. To avoid the bottleneck associated

with MIP for problems of this nature, they decoupled the SCUC problem into an SoS and

introduced a decentralized decision-making solution to model the interaction between the

SoS. The studies only account for the integration of dispatchable DGs like diesel generators

and gas turbines. Further studies incorporating non-dispatchable DGs, such as wind and

solar are needed for a robust and generalized conclusion. Feizollahi et al. [32] worked on

improving scalability and computational speed by focusing on a large-scale decentralized

optimization model. Their formulation improves on the alternating direction method

of multiplier (ADMM) by applying heuristics. In a self-commitment setting, generation

companies’ sensitive information, as well as market participants’ cost data are protected

since only phase angle data from boundary buses are exchanged. In general, their work

favors a decentralized system of a large number of small regions over a few large regions. It

should be noted that their work was based on an hourly time horizon which does not capture

the true cost of uncertainties.

In Kargarian et al. [42], the proposed optimization technique focused on reducing the

decision variables at all times. Sub-problems are connected by tie-lines, using auxiliary

variables instead of the actual variable that couples the zones. The proposed method also

takes advantage of LR for inter-regional calculations and MIP method for local calculations

of each sub-problems. Similar to previous decentralized optimization techniques, their
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Figure 2.1: Major energy sources in the U.S. 1950-2020 [28]
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algorithm is synchronous. This means that all shared decision variables can only be updated

when all sub-problems are completely solved. Although this is an improvement from the

centralized optimization method, the acceleration in generation scheduling time is limited

by the slowest sub-problem solving time. The asynchronous decentralized optimization

techniques is considered a solution to the above mentioned challenge. Bragin and Luh

in [11] addressed the unacceptable optimization CPU time by introducing asynchronism

into the existing decentralized optimization formulations. The decentralized sub-problems

are calculated individually but shared variables are updated at predefined time intervals.

Heuristics like shrinking step sizes as the optimization computation progresses helps avoid

chattering around the optimum solution. Because the alternate direction method of

multipliers (ADMM) is only appropriate for convex problems and cannot be easily applied

to MILP, the surrogate Lagrangian relaxation (SLR) method is introduced. They reported

that the proposed method is robust and has a fast convergence rate. A further study will be

needed with the system transmission constraints included to better understand the scalability

of the proposed method. Ramanan et al. [78] proposed an asynchronous decentralized

optimization algorithm that extends on some recent results of ADMM formulations. An

IEEE 118 bus system was zoned into 10 sub-regions and a comparison of synchronous and

asynchronous algorithms was made. Figure 2.2 shows the percentage of resources allocated

to computation, inter-regional communication, and system idle time while Figure 2.3 shows

the actual computation and communication time.

Wang et al. [97] proposed a decentralized network constrained UC (NCUC) where

the power flow data across the tie-lines are coupling variables instead of the typical bus

voltage angles. They reported an improved convergence when compared to the bus voltage

angle method of coupling. To guarantee convergence of the non-convex problem, several

heuristics were applied to the ADMM based algorithm. The algorithm was then changed

from synchronous to asynchronous for further studies. They found that the asynchronous

algorithm helps with the computation time but does not necessarily guarantee convergence.

Apart from changing decentralized UC algorithms from synchronous to asynchronous,

researchers also proposed cases where generation companies can react to signals from the
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(a)

(b)

Figure 2.2: Percentage time allocation for Asynchronous and Synchronous Algorithms [78]
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(a)

(b)

Figure 2.3: Actual aggregate Computation and Communication time for Asynchronous and
Synchronous Algorithms [78]
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ISO/RTO by self-commit their resources. This idea was well studied at the peak of the

electrical power market deregulation movement [32].

2.7 Unit Commitment and Flexibility Requirements

As the percentage capacity of DER continues to increase in the power grid, many UC

studies have focused on the new flexibility requirements of the grid. The research performed

by Shuai et al. [84] centers on mitigating negative environmental effects while improving

the economics and the reliability of the power grid by taking into account the effect of

unit flexibility requirements and environmental constraints. The environmental constraints

here are ecological regulations for hydro units and emission limits for high CO2 emitting

units. A formal definition of system flexibility was proposed by Tongxin et al. [91]. System

flexibility was classified into four major factors namely: system response time, additional

cost thresholds, available system control action, and maximum allowed system deviation.

A bi-level mathematical formulation of security constraint unit commitment (SCUC) with

gas transmission flexibility was investigated by Badakhshan et al. [5]. The uncertainty in

gas supply was modeled using fuzzy logic while the nonlinearity in gas transmission was

addressed via a genetic algorithm. Numerical results indicate an improvement in the cost

of scheduling and mitigation to the non-feasible solutions that may arise if gas transmission

limitations are not considered.

Gonzalez et al. [34] also investigated the power systems’ flexibility benefits that can

be derived by considering a network constraint Combined Heat and Power (CHP) UC of a

24-hours time horizon. The studies in [95] proposed a model that ties the flexibility of DR

resources with a high level of wind integration. The work utilizes a two-stage stochastic UC

formulation that considers a day-ahead and an intra-day time horizon that offset the effect of

variation of wind resource, taking advantage of DR. It was concluded that associated cost to

response time is the most valuable indicator for flexible DR scheduling. Zhang et al. in [101]

investigated a unified UC formulation framework for continuous evaluation of a flexible and

sustainable power system. Their work focused on creating a backbone on which simulations

can be performed in the planning of the future power system. A fast linear programming
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(LP) model was formulated to incorporate the complexities that arise from the integration of

a large share of DER and multiple time scales. They concluded that the proposed model is

more suitable for flexibility studies when compared with binary unit commitment (BUC) and

MILP. An improved Clustered Unit Commitment (CUC) model was proposed by Germán

et al. [65], for proper classification of power system flexibility requirements. By taking

advantage of unit constraints, such as ramp-rate limits and startup/shutdown, they were

able to show a more precise representation of the hidden flexibility of CUC. Jain et al. [37]

investigated a framework of seasonal SCUC to better understand the power system flexibility

capacity that is required for a high level integration of DER. They considered thermal units,

such as nuclear plants, and expensive resources, e.g., Energy Storage Systems (ESS). It

was concluded that a day-ahead SCUC does not give an accurate account of the necessary

curtailments, as well as flexibility requirements for system stability. At a low level of DER

integration, it is economical to improve the operational flexibility of existing resources while

investing in flexible energy storage resources will help with a high level of DER penetration.

2.8 Unit Commitment and Industry Practices

In 2002, PJM actively worked on switching from the LR to MIP optimization technique.

Although the LR technique was sufficient for solving the size of the problem at that time,

PJM engineers had to consider that market deregulation was going to more than double the

current size as well as raise new concerns of market fairness with the UC solution. Research

has shown that when compared to LR, MIP guarantees global optimality, improved capability

for modeling complex constraints, and is more user-friendly [86]. Developers, however, found

that as the size of the problem increases, the required memory size and run time increases

exponentially with MIP while LR increases linearly as seen in Figure 2.4. This complexity

makes solving the PJM Reliability Analysis problem, which normally spans a 3-7 day horizon,

difficult. To solve this problem for a 7-day horizon, the first 2 days were modeled with a

1-hour time period, the next two days are modeled as a 2-hour time period while the last

3 days are modeled as a 4-hour time period. This reduces the size of the problem while

sacrificing some accuracy in the solution.
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Figure 2.4: Run Time vs Number of Periods for LR and MIP [86]

30



In recent times, MISO has reported that even a Day-Ahead problem could be difficult

to solve as the size and complexity of the power market continues to grow. The increase

in virtual trading volume combined with transmission constraints can greatly increase the

density of the matrix of the MIP optimization model [15]. A dense system in this case refers

to a matrix with a large number of non-zeros in the constraint matrix of the optimization

model. At the time of this study in late 2016, MISO only observed a few cases of undesirable

performance, which can be improved by increasing the acceptable solution time. The

frequency of this occurrence is expected to increase with the rise in the volume of virtual

trading and development in the electric power market. All of the above has led to an ongoing

interest in this area of research.

The maximum allowed time for solving a day-ahead problem in the MISO market is 4

hours. A typical day in the MISO electric market includes solving the day-ahead SCUC

problem, verifying the result for uncommitted units or units dispatched at losses, and then,

fixing issues by repeating the initial steps or manually adjusting input data if they run

out of the allotted 4 hours time limit. Market participants match the clearing price with

their expected profits and may dispute the market solution, hence, the need for solution

verification. The above challenges underline the importance of solving the SCUC problem

incrementally. Incremental problem solving is an edge the LR has over MIP. One of MISO’s

approaches to solving this problem was collaborating with IBM to integrate incremental

heuristics into their commercial solver. The solver is designed to solve optimization problems

using LR on transmission constraints and it is called IBM LR.
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Chapter 3

Unit Commitment Formulation for

Scalable Scheduling

In this chapter, we propose a deterministic unit commitment (UC) and economic dispatch

(ED) model that takes advantage of the incremental and intuitive nature of Lagrangian

Relaxation (LR) to differentiate between similar units, reduce over-generation, and minimize

the duality gap that is associated with non-convex optimization problems.

3.1 Model and Formulation of Unit Commitment and

Economic Dispatch

As indicated in Section 2.8, the fundamental MIP algorithm approach can determine the

best combination of units during the UC process. For a large system with many units,

there are usually multiple optimal combinations resulting in multiple optimal solutions. The

selected optimal solution might be arbitrary, leaving out some units that could have been

profitable at the market price. Such units are termed “out-of-money” for that schedule [15].

Market participants who are owners of “out-of-money” resources often dispute such market

solutions. In some cases, units are out-of-money for system security reasons while some

other cases are associated with bad solutions. ISOs and researchers in this field are therefore
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interested in optimization algorithms that reduce the solution verification time and avoid

unnecessary solution disputes.

While the LR algorithm solves optimization problems incrementally, the fundamental

MIP algorithm does not necessarily solve optimization problems by prioritizing the cheaper

units. Figure 3.1 shows an ideal bidding market where only bids that are equal to or below

the market price are accepted (bids in the lower left corner). In the MISO market, for

example, engineers are considering using the LR technique because units are not committed

in an incremental manner under the MIP technique.

3.1.1 Over-Generation Resulting from Similar and Identical Units

A common issue associated with the LR optimization technique is the problem of over-

generation. When units with similar characteristics are present within a power system and

they are the marginal units at that point in time, then, chattering (switching back and forth

among committed units between iterations) and over-generation can occur. A second reason

for over-generation is the high penetration and injection of renewable energy resources in the

power grid at times of low demand can lead to curtailment [100]. In this chapter, the focus is

only on the over-generation problems that are related to similar units. To take full advantage

of the incremental nature of the LR technique without increasing the simulation run time, we

formulate some heuristics that penalizes line losses to mitigate the over-generation problem

by differentiating between similar units.

3.2 Non-Convex Optimization

The optimum solutions of convex and bounded optimization problems are always guaranteed.

In reality, most optimization problems are non-convex in nature and the optimum solutions

are not guaranteed. The cost functions of non-convex optimization problems are usually

non-continuous and more complex in nature. In addition to the cost function, some of the

variables are constrained to be binary (1 or 0) and/or integers.
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Figure 3.1: Power market bids and actual market price
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3.2.1 Lagrangian Multiplier and the Dual Variable

When solving convex optimization problems with the Lagrange method, the Lagrange

multiplier and the primal can be obtained directly by eliminating the problem variables.

The problems can also be solved with optimum solution guaranteed by directly solving for

the Lagrange multiplier. In this case, the Lagrange multiplier is termed a dual variable, and

solving UC problems by using the dual variable is termed Lagrange Relaxation [99].

When LR is applied to non-convex problems, the primal and the dual value are not equal

and the difference is termed a duality gap. The degree of accuracy can be measured by the

duality gap. The duality gap is the ratio of the difference between the primal (J∗) and dual

value (q∗) to the dual value [21], and it is expressed as

ϵ =
J∗ − q∗

q∗
(3.1)

The closer to zero a duality gap is, the closer the solution to the optimum. For this reason,

most LR research has focused on ways of reducing the duality gap without increasing the

computational time and burden. The typical approach to this problem is by improving or

searching for a superior method of updating the value of lambda during the iteration process

[88]. In this work, the duality gap and generation production cost are reduced by penalizing

an approximation of the line losses. Using the generation shift factor (GSF), the distributed

effect of the line-flow arising from the power injection from each bus is approximated and

applied to penalize the power injection at that bus.

3.2.2 Lagrangian Relaxation

From subsection 2.1.1 of page 15, the Lagrangian for the UC formulation can be re-written

as

L(P,U, λ) =
T∑
t=1

NG∑
i=1

(ai + biPi + ciP
2
i )Uit +

T∑
t=1

λt

(
P t
load −

NG∑
i=1

PiUit

)
(3.2)
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the coupling constraint (P t
load −

∑NG
i=1 PiUit) in the second term of the Lagrangian equation

makes the problem more difficult to solve. To simplify the problem using LR, the coupling

constraint is relaxed [99]. The dual value can be expressed as

q∗(λ) = max
λt

q(λ) (3.3)

this is the maximization of the Lagrangian function with respect to λ and the relationship

between the primal and the dual is expressed as

q(λ) = min
P t
i ,U

t
i

L(P,U, λ) (3.4)

since the dual variable (λ) cannot be expressed explicitly, a good initial value is chosen

and fixed for minimizing L(P,U, λ) in equation 3.4 with respect to P t
i and U t

i . Using the

new values of P t
i and U t

i , the value of λt is updated and equation 3.3 is then maximized

with respect to λt. The process is repeated until the relative duality gap (ϵ) from equation

3.1 reaches an acceptable tolerance. If the Lagrangian function is differentiable, λt can be

updated by the gradient method and can be expressed as

λk+1 = λk +

[
∂

∂λ
q(λ)

]
α (3.5)

where λk is the λ at iteration k, and the partial derivative of equation 3.2 with respect to λ

gives

∂

∂λ
q(λ) =

T∑
t=1

(
P t
load −

NG∑
i=1

PiUit

)
(3.6)

To enhance convergence, the value of α is dependent on the sign of the gradient (equation

3.6). Hence, the step size in one direction is greater than the step size in the other direction

and it is mathematically expressed as

α = m for
∂

∂λ
q(λ) > 0 (3.7)
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α = n for
∂

∂λ
q(λ) < 0 (3.8)

where m > n. Assuming that the value of λt is fixed, then equation 3.2 can be rewritten as

L(P,U, λt) =
T∑
t=1

NG∑
i=1

(ai + biPi + ciP
2
i )Uit +

T∑
t=1

λtP t
load −

T∑
t=1

NG∑
i=1

λtPiUit (3.9)

where the term λtP t
load is a constant and can be eliminated. The resulting equation is

L(P,U, λt) =
NG∑
i=1

[
T∑
t=1

{
(ai + biPi + ciP

2
i )Uit − λtPiUit

}]
(3.10)

it can be seen from equation 3.10 that each generator unit i can be separated as

L(P,U, λt) =
T∑
t=1

{
(ai + biPi + ciP

2
i )Uit − λtPiUit

}
(3.11)

and can be minimized independently as

min L(P,U, λt) = min
T∑
t=1

{
(ai + biPi + ciP

2
i )Uit − λtPiUit

}
(3.12)

since a unit is online when Uit = 1 and offline when Uit = 0. The solution of equation 3.11

can only be less than 0 when Uit = 1 and the combination of Pi and λt gives a negative value

as expressed below

{
(ai + biPi + ciP

2
i )Uit − λtPiUit

}
< 0 (3.13)

The generation output value (Pi) is updated as shown below

Pi = [
(λ− bi)

2ci
] (3.14)

while the value of λ is updated as seen in equations 3.5 to 3.8.
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3.2.3 Unit Commitment with Line Losses

Most simplified UC and ED problems are generally formulated without the network limits

and losses. In reality, network limits and losses need to be accounted for, especially during

or after solving the ED problem [14, 38, 48]. The energy balance equations (2.2 and

2.13) in Section 2.1 hold for lossless systems. A system with losses accounted for can be

mathematically represented as

NG∑
i=1

Pi = Pload + PLoss (3.15)

The marginal loss price is a function of the delivery factor (DF ) [52] and can be expressed

as

DF i = 1− LF i = 1− ∂(PLoss)

∂Pi

(3.16)

where

DFi = delivery factor at bus i;

LFi = loss factor at bus i;

PLoss = total system loss;

Pi = injected power at bus i;

∂(PLoss)
∂Pi

= incremental transmission loss

In this work, we formulate PLoss as a function of line flow as will be seen in the next

section.

3.3 Heuristic Formulation for Line-Losses

Start with the general Lagrangian formulation for UC as seen below

L(P,U, λ) =
T∑
t=1

NG∑
i=1

(ai + biPi + ciP
2
i )Uit +

T∑
t=1

λt(P t
load −

NG∑
i=1

PiUit) (3.17)

Note that the start-up and shutdown costs are not considered in this chapter. Instead of

using the actual AC line-loss formulation, a heuristic is formulated to penalize the line flow.
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If a generator is far away from a load center, a closer generator might be committed even if

it is a more expensive generator. In equation 3.18 the term (Lt
flow(Pi))

2Rk is added to the

load (P t
load) to estimate the line losses.

L(P,U, λ) =
T∑
t=1

NG∑
i=1

(ai+biPi+ciP
2
i )Uit+

T∑
t=1

λt(P t
load+

NK∑
k=1

(Lt
flow(Pi))

2Rk−
NG∑
i=1

PiUit) (3.18)

where

NK = the total number of lines that are online in a time period

Rk = the line resistance for line k

The term (Lt
flow(Pi))

2Rk is proportional to the square of the generation shift factor (GSF)

multiplied by the resistance (Rk) and can be expressed as

NK∑
k=1

(Lt
flow(Pi))

2Rk ∝
NG∑
i=1

GSFk−i(Pi −Di) ·Rk ·
NG∑
i=1

GSFk−i(Pi −Di) (3.19)

where

Di = the load at bus i

Pi −Di = the injected power at bus i

Pinj = P −D is the vector of the net injected power at each bus

The loss term from equation 3.19 can be generalized as

NK∑
k=1

(Lt
flow(Pi))

2Rk ∝ P T
inj ·W · Pinj (3.20)

where W is a weighting factor and it is a symmetric matrix that is derived by multiplying

a diagonal matrix of the resistance R on both sides by the GSF as shown below

W = GSF T ·R ·GSF (3.21)

The new Lagrangian function is then approximated as shown below
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L(P,U, λ) =
T∑
t=1

NG∑
i=1

(ai + biPi + ciP
2
i )Uit +

T∑
t=1

λt(P t
load +P T

inj ·W ·Pinj −
NG∑
i=1

PiUit) (3.22)

Decoupling equation 3.22 and taking the partial derivatives with respect to Pi and λt,

we have the following expressions

∂L(P,U, λ)
∂Pi

= [bi + 2ciPi + 2λt(P T
inj ·W · ∂Pinj

∂Pi

)− λt]Uit (3.23)

∂L(P,U, λ)
∂λ

= P t
load + P T

inj ·W · Pinj −
NG∑
i=1

PiUit (3.24)

From equation 3.23 the term
∂Pinj

∂Pi
will be a vector with all zeros except at the location

i where the value is 1. Although the generators are not decoupled from each other since the

term P T
inj couples all the generators, the problem in equation 3.23 is simplified and linear.

Pi can be expresses as a linear combination of the coordination equation (CE) [79] and the

heuristic (h) as shown in equation 3.26 and equation 3.27 respectively.

Pi = [
(λ− bi)

2ci
]− [

λ

ci
· P T

inj ·W · ∂Pinj

∂Pi

] (3.25)

CE = [
(λ− bi)

2ci
] (3.26)

h = [
λ

ci
· P T

inj ·W · ∂Pinj

∂Pi

] (3.27)

The power of the heuristic from equation 3.27 is seen when it is scaled appropriately to

the system. One method of scaling the heuristic is by normalizing it such that the maximum

penalty is less than the capacity of the smallest unit during iterations. A second approach

is to multiply directly by a carefully chosen scaling factor.
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3.3.1 Formulation and Code Implementation

Figure 3.2 shows the general concept of the LR algorithm. During the data-loading

process, the PTDF is generated from the network data using the makePTDF command

in MATPOWER [103]. At the initialization stage, all starting values are set including

λ(s) and the step sizes. Parameters, such as, ramp-up, ramp-down, minimum-up time, and

maximum-down time, are set using the generation output values from the previous period.

With all constants in place, the UC (Ui) and the generator output values (Pi) are initially

updated by equation 3.14. The estimated Pi values and the bus load Di are combined to

calculate the injected power at each bus. The modified line flow is then updated as seen in

equations 3.19 to 3.21. Using the above values a final Pi estimate for the iteration process is

obtained as seen in equation 3.25. The dual value q∗ is calculated from the values of Pi and

the commitment Ui. The ED is solved using quadratic programming function in MATLAB

[90]. The required parameters for solving the ED are the UC values (Ui), minimum output

limits (Pmin
i ), maximum output limits (Pmax

i ), ramp-up limits, ramp-down limits, minimum-

up time, and maximum-down time. The duality gap is calculated during each iteration using

the objective (J∗) of the ED and the dual value (q∗) as seen in equation 3.1. If the relative

duality gap meets the acceptable tolerance or the maximum number of iterations is reached,

the iteration process is terminated.

3.3.2 Modified PJM 5 Bus System

A modified PJM 5 bus system is used for testing the above UC formulation [31, 52]. In this

case, there are 4 generators instead of 5 generators and for simplicity only one generator

is connected to bus 1 as shown in Figure 3.3. To understand how generators with similar

parameters contribute to over commitment as well as over generation, generator 1 and 3 are

made similar generators with all parameters identical except that the maximum capacity of

generator 1 is 170 MW while that of generator 3 is 200 MW. Parameters of generators 2 and

4 are similar and they are the cheaper generators as shown in Table 3.1. Generators 2 and 3

are closer to the load center while generators 1 and 4 are further away from the load center.
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Figure 3.2: Lagrangian Relaxation Optimization Approach
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Figure 3.3: Modified PJM 5-bus system

Table 3.1: Generator parameters

Gen \Parameter Gen-1 Gen-2 Gen-3 Gen-4

a 150 500 150 500
b 9 7 9 7
c 0.0045 0.005 0.0045 0.005

Max (MW) 170 520 200 520
Min (MW) 50 150 70 150

Ramp-up (MW/hr) 150 45 150 45
Ramp-down (MW) -150 -45 -150 -45
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The relationship between the impedance and the resistance, and the load data are shown

in Table 3.2 and Table 3.3 respectively. For further simplification, all lines have unlimited flow

capacity. A PJM 5 bus base case system is implemented with generator capacity and ramp

rate limits. The formulation uses the heuristic from equation 3.27 added to the coordination

equation and Pi is estimated at every stage of iteration by equation 3.25.

3.3.3 Test Result for the Base Case and Heuristic Formulation

The base case system is a modified PJM 5 bus system. It checks for generator ramp-rate

limits without considering the network in any way. For the base case which is a lossless

system, similar generators would have similar dispatch at all times except when the ramp-

rate limit or the generator capacity limit is binding. To highlight the effect of the ramp-rate

limit, two similar units, unit 2 and unit 4, have different initial commitments, 1 and 0

respectively as seen in Table 3.4.

The new Lagrangian formulation applies the heuristic as shown in equation 3.22. The

modified Pi is updated during each step of iteration by equation 3.25. When solving the

UC problem, the DC load flow is used for estimating the real power flow only. The reactive

power is not considered during this process.

The simulation for both cases was performed for a 12-hour time horizon, using the load

data from Table 3.3. After scheduling the units, the ED is solved for the real power output

only, using the quadratic programming. This does not consider bus voltages or reactive

power limits.

From Figure 3.4a below, it can be seen that unit 1 (blue) overlaps very well with unit

3 (yellow) except when unit 1 reached its maximum at 170 MW. Similarly, unit 2 (red)

and unit 4 (purple) have equal values except during the periods when unit 4 is limited by

the ramp rate. By penalizing the line flow, using the GSF, Figure 3.4b shows that the

commitments at unit 1 differ from unit 3 at hours 2,5, and 10. Hence, the proposed UC

formulation can differentiate between similar units when they are the marginal generators,

selecting the unit with a shorter electrical distance from the load center. Unit 2 and unit

4 have outputs similar to Figure 3.4a because they are not the marginal generators in this

scenario.
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Table 3.2: Network parameters

Line \Parameter 1-2 1-4 1-5 2-3 3-4 4-5

R 0.00281 0.00304 0.00064 0.00108 0.00297 0.00297
X 0.0281 0.0304 0.0064 0.0108 0.0297 0.0297

Line 999 999 999 999 999 999

Table 3.3: System bus load for a 12-hour period

Period \Bus Number Bus-1 Bus-2 Bus-3 Bus-4 Bus-5

Hour-1 0 50 150 200 0
Hour-2 0 100 200 250 0
Hour-3 0 150 250 300 0
Hour-4 0 90 190 250 0
Hour-5 0 150 230 290 0
Hour-6 0 200 290 340 0
Hour-7 0 250 340 400 0
Hour-8 0 300 360 450 0
Hour-9 0 300 350 400 0
Hour-10 0 250 320 350 0
Hour-11 0 200 280 300 0
Hour-12 0 160 250 300 0
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Table 3.4: Generator and load data at Hour zero (Hour-0)

Hour-0 \Bus Number Bus-1 Bus-2 Bus-3 Bus-4 Bus-5

Initial-Load 0 100 175 140 0

Initial-Commitment 0 0 1 0 0

Initial Gen-Output 0 0 415 0 0

Gen-Max-Capacity 170 0 520 200 520

Gen-Min-Capacity 50 0 150 70 150

Ramp-up-limit 150 0 45 150 45

Ramp-down-limit -150 0 -45 -150 -45
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(a) Base case system

(b) System with heuristic

Figure 3.4: Comparing the base case system with the heuristic case for a 12-hour time
horizon
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The security constraint and convergence of the UC and ED result are verified by solving

the Optimal Power Flow (OPF) using the runopf command in MATPOWER [103]. The

hourly maximum generator limit (Pmax) and minimum generator limit (Pmin) for each unit

as well as the hourly bus load (P t
load) data are updated in the MATPOWER case data (case5

in this scenario). The unit status (1 or 0) in the case data is also updated periodically via

the commitment parameter Uit from equation 3.22. All other bus, branch, and generator

cost (gencost) data remain fixed. Figure 3.5a compares the hourly cost of the base case and

heuristic without running the OPF. Figure 3.5b compares the hourly cost of the base case

and heuristic after solving the OPF. In both cases, the heuristic resulted in a lower cost

of generation as can be seen in hours 5 and 11. During hours 2 and 3 when the heuristic

seems to underperform, the differences are minor. In Figure 3.6, the additional power output

after compensating for losses is compared. The heuristic also performed better as the overall

additional power required is less than that of the base case. At hour 12, the loss compensation

for the heuristic is higher but the overall hourly cost is cheaper. The algorithm chose the

farther but cheaper unit (unit 4) over the closer but expensive one (unit 3). The real and

reactive losses were compared for each time period in Figures 3.7a and 3.7b and the results

show that the heuristic is superior.

3.3.4 Discussion of Simulation Results

A. The effect of heuristic on the marginal units

As shown from Figure 3.4a (base case), generator 4 is the marginal unit at hour 2 while

generators 1 and 3 are the marginal units at hours 3 and 5. The simulation selected unit 4

which is less expensive over units 1 and 3 as expected. One can also observe that units 1 and

3 are not distinguishable when they are the marginal units for the base case. Figure 3.4b

on the other hand shows the effect of the heuristic on the UC process, when the generation

costs of the marginal units are about the same or equal. At hour 2, generator 3 was selected

ahead of generator 4 even though the former is more expensive. Since unit 4 is farther away

from the load center, unit 3 which is closer to the load center is preferred. The identical

units 1 and 3 are the marginal units at hours 5 and 10. The proposed formulation selected

unit 3 ahead of unit 1 at hour 5 and de-selected the latter at hour 10. This helps mitigate
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(a) Total cost without considering losses (no OPF solved)

(b) Total cost with losses compensated for (OPF solved)

Figure 3.5: Losses are calculated by solving OPF using MATPOWER
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Figure 3.6: Additional power output obtained from solving OPF using MATPOWER

50



(a) Real losses calculated from OPF

(b) Reactive losses calculated from OPF

Figure 3.7: Real and reactive losses obtained from solving OPF using MATPOWER
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the over-commitment problem normally associated with LR when similar or identical units

are present.

The formulation with the heuristic is able to differentiate between similar generators by

taking advantage of the transmission network. The formulation can also commit a more

expensive generator over a cheaper one when the cheaper generator is far away from the

load center. The algorithm incorporates the effect of losses in the UC process and improves

the overall simulation result as expected.

B. The effect of heuristic on the solution and objective

The UC solutions from Figures 3.4a and 3.4b are considerably different. The base case

does not consider the system network and solves the optimization problem as a single bus.

On the other hand, the heuristic considers the system network to some extent. The latter

adds an additional cost to the nodal injection as a function of the electrical distances from

the load center. For example, at hour 2, the overall cost of committing unit 4 exceeds that

of unit 3 even though unit 3 is more expensive. This also has some impact on the method

of distinguishing between the identical units 1 and 3. The hourly cost of commitments in

case 1 and case 2 after solving the ED and OPF is shown in Table 3.5. Figure 3.5a compares

the primal for the base case and that of the heuristic after solving the ED. Figure 3.5b

compares the primal for both the base case and the heuristic after solving the OPF. The

base case performed better for hours 2,3 and 4 as can be seen by the negative signs, while

the heuristic performed better at hours 5,10,11, and 12. When considering the differences

resulting from the ED and OPF, one can observe that the hourly differences from the OPF

solution are smaller when the base case does better. Table 3.6 further highlights the effect

of losses on the hourly costs. Since the heuristic is an approximation, the algorithm could

sometimes overestimate the losses at the expense of cost. This can lead to higher costs but

lesser losses as seen in hours 2,3 and 4 and vice versa for hours 11 and 12. Improvements

to the overestimation issue will be further discussed in Section 5.3.2. Table 3.7 shows that

the heuristic performed better overall with reduced losses and lower objective cost. MIP

optimization technique will be used to benchmark the solution quality and the simulation

time of the proposed formulation in the next chapter.
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Table 3.5: Hourly Generation Cost Difference for ED and OPF solutions

(a) Solution for ED

Primal Primal. Diff.

(Base) (Heuristic) (ED)

4,100 4,100 0

5,670.3 5,690.1 -19.9

7,319.1 7,349.4 -30.3

5,412.3 5,418.5 -6.3

7,016.3 6,897.2 119.1

8,589 8,589 0

10,222.2 10,222.2 0

11,488.7 11,488.7 0

10,850.3 10,850.3 0

9,500.2 9,464.6 35.6

8,091 7,981 110

7,403.8 7,230.3 173.6

(b) Solution for OPF

Primal Primal Diff.

(Base) (Heuristic) (OPF)

4,108.7 4,108.7 0

5,677.7 5,692.8 -15.2

7,329 7,357.7 -28.7

5,420.5 5,426.1 -5.7

7,027 6,906.3 120.6

8,605.5 8,605.5 0

1.0,246.6 10,246.6 0

11,519.6 11,519.6 0

10,879.2 10,879.2 0

9,521.6 9,482.2 39.5

8,105.9 7,999.5 106.4

7,415.7 7,245.4 170.3
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Table 3.6: Hourly Generation Cost Difference and P loss Difference

Primal Base Case Primal with Heuristic Cost diff. ($) P loss diff. (MW)

($) ($) (Base - Heu.) (Base - Heu.)

4,108.7 4,108.7 0 0

5,677.7 5,692.8 -15.2 0.4506

7,329 7,357.7 -28.7 0.1661

5,420.5 5,426.2 -5.7 0.0805

7,027 6,906.3 120.6 0.1765

8,605.5 8,605.5 0 0

10,246.6 10,246.6 0 0

11,519.6 11,519.6 0 0

10,879.2 10,879.2 0 0

9,521.6 9,482.2 39.5 0.4478

8,105.9 7,999.5 106.4 -0.1943

7,415.7 7,245.4 170.3 -0.2138

Table 3.7: Total Cost and Losses

Base-Case Heuristic

Gen. Cost ($) (Lossless) 95,663.2 95,281.3

Gen. Cost ($) (With Losses) 95,856.8 95,469.5

Cost of Added Power ($) 193.6 188.2

Total P-Losses (MW) 18.8 17.9

Total Q-Losses (MW) 188.3 179.2
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C. Impact of heuristic weighting factor on losses

To compare with the simulation result from Figure 3.4, a smaller heuristic was applied

by scaling down the weighting factor W in equation 3.27 (reduced 1
2
for this example). In

this scenario, the UC only differs in two time periods (hours 5 and 12). In both cases, the

heuristic performed better than the base case as seen in Table 3.8. Unlike the original case,

the hourly generation cost of the new weighting factor never exceeds the hourly cost of the

base case. Still, it can be seen that the aggressive weighting factor performs better in the

overall cost of production as seen in Table 3.9.

D. Over-generation and duality gap

One known challenge of LR optimization is that the algorithm over-commits units when

similar units are present, leading to over-generation. The proposed formulation is able to

select one of two similar units when they are the marginal generators. A marginal unit is

usually more expensive than the already committed units when the load is increasing. When

the sum of the lower limits of the selected (similar) units exceeds the needed additional

power, the marginal units will be running at their lower limits, leading to over-commitment.

Every time the algorithm chooses between similar units, we can observe the positive effect

on the overall generation cost. The reduction in the generation cost is directly related to the

reduction in the duality gap.

3.3.5 Impact of 24-hour Horizon at 5-minute intervals

The modified PJM 5 bus system from Figure 3.3 was used to simulate a 5-minute time

period for a 24-hour horizon. Hourly load data with a minimum of 593 MW and a maximum

of 781 MW is distributed across buses 2,3,4, and 5. For a 5-minute period, the ramp-up

limits of generators 2 and 4 which are the cheaper generators are reduced to 7 MW and

5 MW respectively. Generator 3 which is more expensive and a faster generator can ramp

up to a maximum of 75% of its maximum capacity in 5 minutes. The most expensive unit,

which is generator 1 can ramp up to its maximum capacity in 5 minutes. The load pattern

includes some initial downward ramping and two peaks to strain the ramping capability of
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Table 3.8: Effect of the conservative weighting factor on generation cost and losses

Primal Base Case Primal with Heuristic Cost diff. ($) P loss diff. (MW)

($) ($) (Base - Heu.) (Base - Heu.)

4,108.7 4,108.7 0 0

5,677.7 5,677.7 0 0

7,329 7,329 0 0

5,420.5 5,420.5 0 0

7,027 6,906.3 120.6 0.1660

8,605.5 8,605.5 0 0

10,246.6 10,246.6 0 0

11,519.6 11,519.6 0 0

10,879.2 10,879.2 0 0

9,521.6 9,521.6 0 0

8,105.9 8,1058.7 0 0

7,415.7 7,3045.8 111.1 0.2051

Table 3.9: Original and reduced weighting factors considered

1
2
Weight Full Weight

(Reduced) (Orginal)

Gen. Cost ($) (No OPF) 95,434.7 95,281.3

Gen. Cost ($) (with OPF) 95,625.1 95,469.5

Cost of Added Power ($) 190.4 188.2

P-Compensation (MW) 18.5 17.9

Total P-Losses (MW) 18.5 17.9

Total Q-Losses (MW) 184.6 179.2
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the generators and the algorithm. The simulation is implemented with the heuristic from

Section 3.3. The generation output plot is shown in Figure 3.8.

Comparing the simulation time of Figure 3.4, which is simulated for a 12-hour horizon

and 12-time steps to Figure 3.8 which is simulated for a 24-hour horizon and 288-time steps,

we see that our formulation scales well. Table 3.10 shows that the computation time increases

approximately linearly with the number of scheduling intervals (at an approximate rate of

1.9 seconds per interval).

3.4 Discussion

The proposed formulation differentiates between similar units by selecting units with the aim

of reducing line losses. A line-flow penalty is added to equation 3.26, thereby, discouraging

large power injections from buses that are far away from load centers. The penalty slightly

increases the generation cost for a unit that is far away from the load center. Hence, the

algorithm treats similar units at different buses differently depending on their electrical

distances from the load center. The algorithm only has an impact when the similar units

in question are the marginal units. Note that selecting an appropriate weighting factor can

play a crucial role in the overall energy production cost. As seen in Table 3.6 and Table

3.8, using a conservative weighting factor may reduce the effectiveness of the heuristic but

it certainly improves the overall performance when compared to the base case. Simulations

show that the weighting factor will be system specific and should be carefully selected. It

should be noted that this chapter does not focus on methods of updating lambda (λ) between

iterations.

In this chapter, we started by formulating a new linear loss factor that differentiates

similar units during UC and scales linearly for an increasing time horizon. The effect of

the losses is distributed evenly using the Generation Shift Factor (GSF). We used a small

test case with a 12-hour horizon to show that the algorithm can identify and differentiate

between similar units and commit or de-commit them depending on distances from the

load center. The effect of losses and generation production cost were compared when

considering committing or de-committing certain units from their similar counterparts. The
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Figure 3.8: A Day-Ahead UC and ED with 5-minute interval and 288 time periods

Table 3.10: Scalability test for hourly vs 5-minute time periods and 288 time periods

12-periods 288-periods

Ave. Run Time 0.23 s 5.41 s
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approach reduced the overall line losses and the overall cost of generation without increasing

simulation time. Finally, using a longer time horizon with 288-time steps, we showed that

the formulation scales linearly with increasing time horizon.
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Chapter 4

LR Algorithm and Implementation

The proposed work here is to formulate and implement optimization techniques using

Lagrangian Relaxation (LR) and heuristics to enhance a high penetration of distributed

energy resources (DER). In continuation of the work from Chapter 3, the solution quality

and simulation time are studied, using MIP as a benchmark.

4.1 Formulate a Benchmark for Solution Quality using

MIP

MIP is a state-of-the-art optimization program that guarantees optimal solutions (with some

caveats) and, hence, a good tool for a benchmark on the solution quality. We verified the

quality against a MIP solution using Egret, an open-source software which is a Python-based

optimization tool [46]. The tool is built on the Pyomo optimization modeling language for the

power grid. The PJM 5 bus system from subsection 3.3.2 was modified and the benchmark

was performed for a day ahead UC and ED. For simplicity, constraints such as start-up

and shutdown costs, and minimum up and down time were not added. Two test cases with

identical units are considered below.

60



4.1.1 Case 1

The two identical generators are unit 1 and unit 3. Unit 2 is less expensive than the

identical units while unit 4 is the most expensive. The system is lightly loaded with the

load distributed at buses 3, 4, and 5. The LR algorithm commits the profitable units for

each period and then solves the ED using quadratic programming function in MATLAB

[90]. A DC power flow model is used. This can be observed in the solution as the power

output of unit 1 and unit 3 are always equal whenever they both get selected. Table 4.1

compares the UC and ED results for both optimization methods. It can be seen that the LR

formulation tends to select unit 3 over unit 1 most of the time even though they are identical

units. The formulation does this by distributing the effect of the penalties as a function of

the individual electrical distance of each generator from the load center. The MIP algorithm

also does a good job of selecting only one of the identical units when necessary. However,

since the algorithm does not consider the effect of line losses, the selection of either identical

unit is arbitrary. This can be observed as the farther unit 1 does get selected over the closer

unit 3 during periods 2 through 8.

In order to see the effect of line losses on the overall objective function, using the

UC solutions of both LR and MIP, the Optimal Power Flow (OPF) was solved by

MATPOWER. Figure 4.1 compares the solutions of the OPF for both LR and Egret.

The OPF tends to prioritize the identical unit (unit 3) with the shorter electrical distance

from the load center, even when both units get selected as it is in periods 1 and 9 through

24. This is in line with the LR algorithm and hence, the output from unit 3 is always greater

than or equal to the output of unit 1. The MIP solution on the other hand could be arbitrary

in the UC process which could be due to the occurrence of multiple optimal solutions (flat

bottom). Hence, the generation output of unit 3 is not always prioritized as it is the case in

the LR algorithm. Table 4.2 shows the periodic cost of generation for both algorithms while

Table 4.3 shows the total costs of production after solving with DC and AC Power Flow. For

both the DC and AC load flow solutions, there are insignificant differences between LR and

Egret solutions. It should be noted that the quadratic cost function was used in both LR and

MIP formulation. The MIP algorithm converts the cost functions into piecewise linear cost
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Table 4.1: Comparing UC and ED results for LR with Heuristic and Egret Case 1

(a) LR with Heuristic Case 1

Gen 1 Gen 2 Gen 3 Gen 4

1 83.64 452.5 83.64 0

2 0 455 112.41 0

3 0 455 86.22 0

4 0 455 68.76 0

5 0 455 51.30 0

6 0 455 51.30 0

7 0 455 68.76 0

8 0 455 103.68 0

9 91.12 455 91.12 0

10 121.68 455 121.68 0

11 130.41 455 130.41 0

12 134.77 455 134.77 0

13 130.41 452.5 130.41 0

14 121.68 455 121.68 0

15 117.31 455 117.31 0

16 117.31 455 117.31 0

17 134.77 455 134.77 0

18 169.69 455 169.69 0

19 165.32 455 165.32 0

20 156.59 455 156.59 0

21 145.50 455 145.50 0

22 139.13 455 139.13 0

23 117.31 455 117.31 0

24 95.49 455 95.49 0

(b) Egret Case 1

Gen 1 Gen 2 Gen 3 Gen 4

1 72.29 452.5 95 0

2 112.41 455 0 0

3 86.22 455 0 0

4 68.76 455 0 0

5 51.30 455 0 0

6 51.30 455 0 0

7 68.76 455 0 0

8 103.68 455 0 0

9 87.25 455 95 0

10 148.35 455 95 0

11 95 455 165.81 0

12 170 455 99.54 0

13 95 452.5 165.81 0

14 95 455 148.35 0

15 139.62 455 95 0

16 95 455 139.62 0

17 170 455 99.54 0

18 170 455 169.37 0

19 160.64 455 170 0

20 143.19 455 170 0

21 117.00 455 170 0

22 108.27 455 170 0

23 95 455 139.62 0

24 95 455 95.97 0
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(a) LR with Heuristic plot for Case 1

(b) Egret plot for Case 1

Figure 4.1: Plots of UC and ED results for LR with Heuristic and Egret for Case 1
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Table 4.2: Periodic cost of production for Case 1

Period Cost for LR ($) Cost for Egret ($)

1 12128.15 12128.34

2 10642.16 10642.16

3 9937.14 9937.14

4 9467.67 9467.67

5 8998.63 8998.63

6 8998.63 8998.63

7 9467.67 9467.67

8 10407.05 10407.05

9 12572.17 12572.19

10 14217.84 14218.86

11 14688.52 14690.31

12 14923.94 14925.71

13 14688.52 14690.31

14 14217.84 14218.86

15 13982.58 13983.29

16 13982.58 13983.29

17 14923.94 14925.71

18 16809.26 16809.26

19 16573.41 16573.44

20 16101.86 16102.12

21 15394.95 15395.95

22 15159.42 15160.77

23 13982.58 13983.29

24 12807.11 12807.11

Table 4.3: Total cost of production for Case 1

Power Flow Method Total Cost for LR ($) Total Cost for Egret ($)

DC Power Flow 315,073.6 315,087.7

AC Power Flow 315,451.4 315,451.5
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functions (approximation) which slightly affect the solution quality when compared with the

LR solution.

4.1.2 Case 2

In Case 2, the identical generators are units 1 and unit 3, and they are both more expensive

than unit 2 and unit 4. As in Case 1, unit 2 remains the most economical unit. The system

is heavily loaded when compared to Case 1 with the load distributed at buses 3, 4, and 5.

The UC and ED results for the scenario in Case 2 are shown in Table 4.4. One can see that

both methods committed the same number of units during each period. It should be noted

that whenever the identical units are the marginal units, the LR algorithm tends towards

selecting the unit with the shortest electrical distance from the load center as determined by

the system network. Hence, unit 3 is preferred to unit 1 most of the time. Figures 4.2a and

4.2b show the degree of the differences in output between the identical units. It can be seen

that the MIP algorithm is also able to differentiate between identical units but the choice of

selection can be arbitrary.

The effect of selecting unit 3 can be easily seen in Table 4.5 when comparing the DC power

flow and AC power flow. It should be noted that the algorithm is designed to reduce over-

commitment that is associated with LR when solving problems with similar and identical

units. When considering all other constraints, MIP is expected to outperform in the quality

of the solution.

4.2 Implementation of Network Constraints, System

Reserve and LMP

Additional system characteristics, including system reserves, transmission line limits, and

Locational Marginal Pricing (LMP) are investigated in this section using the proposed

formulation. A varying load pattern with two peaks is considered for testing the approach

for flexibility and robustness. The load distribution is set up in a way to activate at least

one of the two reserve units. Line 1, which is the line from bus 1 to bus 2 requires the most
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Table 4.4: Comparing UC and ED results for LR with Heuristic and Egret Case 2

(a) LR with Heuristic Case 2

Gen 1 Gen 2 Gen 3 Gen 4

1 0 452.5 20 436.46

2 0 455 0 377.14

3 0 455 0 338.74

4 0 455 0 313.13

5 0 455 0 287.53

6 0 455 0 287.53

7 0 455 0 313.13

8 0 455 0 364.34

9 0 455 24.56 455

10 0 455 114.18 455

11 0 455 139.78 455

12 0 455 152.58 455

13 0 452.5 139.78 455

14 0 455 114.18 455

15 0 455 101.37 455

16 0 455 101.37 455

17 0 455 152.58 455

18 120 455 135 455

19 121.10 455 121.10 455

20 108.30 455 108.30 455

21 89.10 455 89.10 455

22 0 455 165.38 455

23 0 455 101.37 455

24 0 455 37.36 455

(b) Egret Case 2

Gen 1 Gen 2 Gen 3 Gen 4

1 0 452.5 20 436.46

2 0 455 0 377.14

3 0 455 0 338.74

4 0 455 0 313.13

5 0 455 0 287.53

6 0 455 0 287.53

7 0 455 0 313.13

8 0 455 0 364.34

9 0 455 24.56 455

10 114.18 455 0 455

11 139.78 455 0 455

12 152.58 455 0 455

13 139.78 452.5 0 455

14 114.18 455 0 455

15 101.37 455 0 455

16 101.37 455 0 455

17 152.58 455 0 455

18 95 455 160 455

19 147.20 455 95 455

20 121.60 455 95 455

21 83.19 455 95 455

22 0 455 165.38 455

23 0 455 101.37 455

24 0 455 37.36 455
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(a) LR with Heuristic plot for Case 2

(b) Egret plot for Case 2

Figure 4.2: Plots of UC and ED results for LR with Heuristic and Egret for Case 2

Table 4.5: Total cost of production for Case 2

Total Cost for LR ($) Total Cost for Egret ($)

DC Power Flow 446,407.7 446,410.4

AC Power Flow 447,929.7 448,056.4
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power flow since it is connecting the distant generators 1 and 5 to the load center. A 200

MW line flow limit is imposed on line 1 as shown in Figure 4.3. Generators 5 and 6 are

dedicated reserve units and are connected to buses 3 and 4 respectively. Since the estimated

power output and the heuristic only capture the effect of losses, the algorithm is set up to

track the line flows and activate the appropriate reserve unit. The iterative optimization

scheme for the system setup is shown in Figure 4.4.

The modified PJM 5 bus system has 3 pairs of similar generators. These are generators

1 and 3, 2 and 4, and 5 and 6. Two simulation cases are considered for this study. The base

case is a classical LR algorithm and the generation MW output over a 12-hour time period is

seen in Figure 4.5. It can be observed that the outputs of similar units 1 and 3 and 2 and 4

differs from period 7. This is a result of line flow violation prevention. The power outputs of

the farther units 1 and 4 are reduced when compared to their similar counterparts. A reserve

unit (unit 5) is activated at hour 8 where the spinning reserve capacity is not sufficient to

prevent the line flow violation in line 1.

A second test case is implemented with the proposed heuristic from Chapter 3. Figure

4.6 shows the generation MW output over a 12-hour time period. When comparing the UC

for both cases, it can be observed that the similar units are mostly indistinguishable in case

1. The only time unit 3 got committed over unit 1 is due to the difference in their maximum

capacities (170 MW and 200 MW respectively). The heuristic case on the other hand is

able to distinguish between similar units. The difference in outputs of similar units 1 and

3 in period 5 is a result of their electrical distances from the load center. As expected, the

heuristic case performed better with a lower cost of production. The increase in the number

and type of constraints impacts how the heuristic affects the UC solutions. One advantage

of the proposed formulation is that it is only meant to be in effect for similar or identical

units when they are the marginal units, thus, the additional computational burden is minor.

The LMP of the buses can be seen in Figures 4.7 and 4.8. As expected, bus 2 has the

highest LMP followed by bus 3 where the reserve unit (generator 5) is committed.
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Figure 4.3: Modified PJM 5 bus system with 4 main units and 2 reserve units
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Figure 4.4: Iterative Optimization Approach
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Figure 4.5: Network constraint UC considering reserves and LMP
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Figure 4.6: Network constraint UC considering reserves and LMP with heuristic
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Figure 4.7: Modified PJM 5 bus LMP result considering line limit and reserve (3D)
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Figure 4.8: Modified PJM 5 bus LMP result considering line limit and reserve (2D)
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4.3 LR and Scalabilty

The classic LR formulation scales linearly while the simulation time for MIP increases

exponentially with increasing problem size as seen in Figure 2.4. This section focuses on

the impact of the problem size on the simulation time and solution quality.

4.3.1 Modified RTS-GMLC 73 Bus System

Following the formulation and solution quality verification from Chapter 3 and Chapter 4

respectively, we study a more interesting system for scalability. The well-studied Reliability

Test System (RTS) was originally created in 1979 and has been a useful tool for studying UC

and ED [87]. Table 4.6 shows the energy mix for the RTS. Over the years, as power systems

continue to modernize, some important updates have been made to the RTS in order to

keep up with the challenges that come up with the modernization. In 2019, Barrows et al.

made several updates to the RTS and they called the new model RTS-Grid Modernization

Laboratory Consortium (RTS-GMLC) [7]. The system is a 73-bus system and is designed

to be complicated enough to show the effect of changes in power systems modernization and

small enough to enhance research in the area of UC and ED. Some examples of the updates

include replacing several conventional units with gas units, adding renewable resources, and

changing bus load capacity to create congestion on transmission lines. In this work, a

modified RTS-GMLC 73 bus system is analyzed for different time horizons. The solution

from the proposed formulation is compared with that of Egret for solution quality and

computational time.

The RTS-GMLC bus data, shunt data, and branch data are unaltered for this inves-

tigation. To include identical units, generators 101 CT 1, 115 STEAM 1, 123 STEAM 2,

201 STEAM 3, 216 STEAM 1, 223 STEAM 1, 316 STEAM 1, and 323 CC 1 were all

replaced with the parameters of generator 113 CT 1. The first 3-digit number in the

generator name points to the bus location while the last digit indicates the position of the unit

on the bus. To increase the chance of committing the somewhat expensive identical units,

the cheap renewable resources and the only Nuclear plant were removed. Other modifications
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Table 4.6: RTS-79 Generation Mix

Prime Mover Fuel Capacity-MW (%)

(MW)

Steam Fossil-Oil 951 28

Steam Fossil-Coal 1,274 37

Steam Nuclear 800 24

Combustion Turbine Fossil-Oil 80 2

Hydro Hydro 300 9

Total 3,405 100
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include removing of the reserves resources and system requirements like flexible ramp up and

down requirements, and regulation up and down requirements.

4.3.2 Benchmark for Simulation Time using MIP

The study is done by running simulations for 3 cases with different time horizons. The

simulation time horizons are 48 hours, 168 hours (1 week), and 336 hours (2 weeks) for Case

1, Case 2, and Case 3, respectively. Constraints such as generator minimum and maximum

limits, ramp up and down limits, and minimum up time and down time limits are considered

during the simulation. For each time horizon, three sets of simulations are performed using

three formulations. These formulations are (1) Egret, (2) Heuristic only (Heuristic-1), and

(3) Heuristic with iteration over lambda (Heuristic-2).

4.3.3 Test Result for Case 1

The RTS-GMLC 48 hours load data for Case 1 is time stamped ”2020-02-04 00:00:00”,”2020-

02-06 00:00:00”, and can be found in the SourceData folder. This time stamp points to the

time periods from February 4, 2020, at 12:00 AM to February 6, 2020, at 12:00 AM. Table

4.7 clearly shows that the Egret formulation has the best solution but not the best run time.

Comparing the other two solutions (Heuristic-1 and Heuristic-2), it can be observed that

further iteration over price can improve the solution quality but at the expense of run time.

The improvement in the solution quality is well highlighted in Table 4.8. The percentage

difference was reduced from 0.7% to 0.01% when compared to Egret. Figures 4.9a and 4.9b

compare the hourly cost of Egret to Heuristic-1 and Heuristic-2 respectively. The hourly cost

of Heuristic-2 closely follows that of Egret when compared to Heuristic-1. It is important

to note that even though Egret outperformed overall, it does underperform during certain

periods. Figure 4.10 shows the hourly performance of Heuristic-2 and Egret by plotting the

hourly cost difference. A positive relative cost difference implies that Egret has a cheaper

cost (superior) of production and a negative value means that it has a higher production

cost (performs poorly). A general trend here is that Egret performs better (positive relative

cost) when the hourly load increases and the reverse when the hourly demand decreases.
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Table 4.7: Production cost for Case 1

Egret Heuristic-1 Heuristic-2

Total Cost $ 4,642,377.36 $ 4,676,697.22 $ 4,642,938.77

Run Time 2.32 sec. 0.64 sec. 1.17 sec.

Table 4.8: Cost Benchmark w.r.t Egret for Case 1

Difference Ratio % difference

Heuristic-1 $ 34,319.9 0.007 0.7

Heuristic-2 $ 561.41 0.0001 0.01
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(a) A benchmark of the hourly cost of the heuristic only using Egret

(b) A benchmark of the hourly cost of the heuristic with iteration using
Egret

Figure 4.9: Solution benchmark for Case 1
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Figure 4.10: Hourly cost difference between Heu-iter and Egret for Case 1
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Larger spikes in hourly cost difference can be seen at periods when Egret performs better.

The largest spike in hourly cost is positive $820.89. There are smaller but many more spikes

when Heuristic-2 performs better (negative relative cost).

LR compares the hourly demand with the committed resources during each iteration and

modifies λ (estimated price) as needed for the next iteration. Once enough energy capacity

is committed, the UC process stops and the ED is solved. The number of units committed

might not be the optimum number of units for the demand. This is where iterating over price

could be helpful. Committing too few resources could result in some generators running at

or close to their maximum capacities. In contrast, committing too many units could result in

expensive units running at their minimum capacities. It is economically appealing for units

with quadratic cost functions to run at optimum capacities rather than at the minimum or

maximum capacities.

During the λ iteration process, two fixed δ values are selected. δ1 is the maximum allowed

difference between the estimated price (lambda) and the actual price after solving the ED.

δ2 is the maximum allowed number of iterations. The smaller the value of δ1 and the larger

the value of δ2, the better the solution quality. The above δ combinations, however, could

lead to a longer simulation time. Hence, the values of δ1 and δ2 should be selected in such a

way that the result is improved in a meaningful way and the simulation time is not seriously

impacted. For this system, the acceptable range of δ1 is found to be between 2.5 and 3 while

the acceptable range of δ2 is between 2 and 4.

4.3.4 Test Result for Case 2

In Case 2, the simulation time horizon is set to 168 hours (1 week). The RTS-GMLC load

data is time-stamped ”2020-02-01 00:00:00”,”2020-02-8 00:00:00”, and can be found in the

SourceData folder. This time stamp points to the time periods from February 1, 2020, at

12:00 AM to February 8, 2020, at 12:00 AM. As seen in Case 1, MIP has the best solution but

the largest run time (Table 4.9). Heuristic-1 has the best simulation run time but the worst

solution. Although the solution quality for Heuristic-2 is of lower quality when compared to

Egret, it is a significant improvement over Heuristic-1.
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Table 4.9: Production cost for Case 2

Egret Heuristic-1 Heuristic-2

Total Cost $ 15,633,093.6 $ 15,723,283.5 $ 15,636,502.7

Run Time 5.42 sec. 2.16 sec. 3.63 sec.
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Performing extra iteration over price as in Case 1 above improved the solution quality

with some additional increase in simulation run time. Using Eret as a benchmark, the

improvement in the solution quality from Heuristic-1 to Heuristic-2 is seen in Table 4.10.

The percentage difference from Heuristic-1 to Heuristic-2 was reduced from 0.5% to 0.02%.

The spikes in hourly cost difference are observed in Figure 4.11. Unlike Case 1, the larger

spikes in prices occurred at periods when Egret performed poorly (negative relative cost)

and the largest price spike of −$778.62 is seen at hour 95.

4.3.5 Test Result for Case 3

In Case 3, the simulation time horizon is set to 336 hours (2 weeks). The RTS-GMLC load

data is time-stamped ”2020-02-01 00:00:00”,”2020-02-15 00:00:00”, and can be found in the

SourceData folder. This time stamp points to the time periods from February 1, 2020, at

12:00 AM to February 15, 2020, at 12:00 AM. In line with the results from Case 1 and

Case 2, the MIP solution quality is superior to LR as seen in Table 4.11. Iteration over

price improved the solution quality of the heuristic formulation (Heuristic-1 to Heuristic-

2) from a percentage difference of 0.5% to 0.05% as seen in Table 4.12. It is also worth

noting that as scalability is being considered, increasing the problem time horizon directly

increases the solution run time for all 3 formulations as seen in Tables 4.7, 4.9, and 4.11. The

system scalability will be further discussed in the following sections. A large positive cost

difference of $2, 168.99 is observed in favor of Egret while the largest negative cost difference

observed in favor of the LR formulation is −$1, 100.14 (Figure 4.12). A further investigation

of the hourly cost difference can give a good insight into new methods of solution quality

improvements in LR formulations.

4.3.6 Scalability Considering System Size

In the previous subsections, the system scalability was studied by increasing the time horizon

of the optimization problem. Another way of understanding system scalability and solution

run time is by increasing the number of decision variables in the optimization problem. The

system size is scaled up by increasing the number of units (binary variables) and load by
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Table 4.10: Cost Benchmark w.r.t Egret for Case 2

Difference Ratio % difference

Heuristic-1 $ 90189.9 0.005 0.5

Heuristic-2 $ 3409.1 0.0002 0.02

Figure 4.11: Hourly cost difference between Heu-iter and Egret for Case 2

Table 4.11: Production cost for Case 3

Egret Heuristic-1 Heuristic-2

Total Cost $ 31,292,617.3 $ 31,464,022.7 $ 31,307,552.0

Run Time 12.89 sec. 4.36 sec. 7.63 sec.
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Table 4.12: Cost Benchmark w.r.t Egret for Case 3

Difference Ratio % difference

Heuristic-1 $ 171,405.318 0.005 0.5

Heuristic-2 $ 14,934.6 0.0005 0.05

Figure 4.12: Hourly cost difference between Heu-iter and Egret for Case 3

85



factors of 2, 3, and 4, making 144, 216, and 288 units respectively. The demand is increased

to match the increase in the number of units for each scenario. The increase in the total

load size and the number of units per problem is shown in Figure 4.13. Investigating this

setup by using the above Heuristic-2 model only, 3 sets of simulations are performed for 48,

168, and 336 hours. It can be seen that the cost of production is linearly proportional to the

increase in the number of units and demand size ( Figure 4.14).

4.3.7 Discussion

This research considered 3 simulation cases with different time horizons (48 hours, 168 hours,

and 336 hours). In order to find a balance between solution quality and scalability, 2 heuristic

formulations were modeled (Heuristic-1 and Heuristic-2). Heuristic-2 requires additional

iteration over λ in order to minimize the gap between lambda and the actual price. Using

Egret as a benchmark for both models, a trade-off between solution quality and simulation

run time can be determined. From all 3 cases, it can be easily observed that Heuristic-1

scales very well when compared with Egret but the solution quality might be too poor for

real-world applications. A good trade-off between the highly scalable Heuristic-1 model and

Egret is the Heuristic-2 model with λ and price iteration. The solution quality is improved in

all 3 cases as seen in Tables 4.8, 4.10, and 4.12. The simulation run time does increase with

this formulation but remains linear as seen in Figure 4.15. As expected, Egret’s simulation

run time increases exponentially.

An important aspect of this research is the spikes in the hourly cost differences between

Egret and the proposed formulation. Depending on peak demand, very high hourly costs

difference could be observed as seen in Figure 4.12 where the maximum difference is $2168.99.

These spikes in cost difference point to the difference in the committed unit combinations

and the number of selected units per time. Figures 4.16 shows the difference in the hourly

number of units committed for Egret and Heuristic-2 as well as the load demand pattern.

When load demand is low, Egret commits more units than LR, making the hourly cost of

generation of the former larger. In contrast, Egret commits fewer units than LR at periods

with high demands, making the hourly cost of generation for the latter larger. It can be seen

that at hours 19 and 43 where the hourly demands are high, LR committed 22 units while
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Figure 4.13: Linear increase in total load size and number of units

Figure 4.14: Increase in the total cost of production with increase in problem size
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Figure 4.15: Plot of simulation run time for all 3 formulations and all 3 cases
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Figure 4.16: Total number of units committed per period
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Egret committed 20 units. In contrast at hours 2 and 26 where the hourly demands are

very low, LR committed 16 units while Egret committed 17 units. Heuristics can be formed

around this pattern of UC to further improve the solution quality of LR in future research.

Following the above results, a second study involving increasing load size and the number

of units (binary variables) was performed for 3 different time horizons (48hrs, 168hrs, and

336hrs). This investigation only focuses on the proposed Heuristic-2 as seen in Figures 4.13

and 4.14. It can be easily seen from Figure 4.17 that the solution run times for the proposed

formulation and for all 3-time horizons are linear with the scaling of the decision variables

and problem size. Overall, the proposed formulation scales considerably well and the solution

quality is in an acceptable range when compared to MIP.

4.4 Scalability for DA UC with Different Time Inter-

vals

The importance of the DA SCUC problem cannot be overemphasized in the optimum

scheduling of resources and for reliably operating the power grid. Apart from solving the

DA SCUC problem as a 1-hour interval problem, modern markets solve the same problem

over smaller intervals in good time considering the increase of non-dispatchable resources

in the power grid. Optimization solutions for 5-minute, 15-minute, and 30-minute time

intervals can better capture the effect of uncertainties and the frequent changes in demand

when compared to the 1-hour time interval. The solution quality and simulation run time

for these time intervals are considered using Egret, heuristic-1, and heuristic-2 formulations.

Each formulation is applied to solve the optimization problem in 1-hour, 30-minute, 15-

minute, and 5-minute time intervals which directly translates to 24, 48, 96, and 288 periods

respectively. Figure 4.18 compares the simulation run time for all 3 formulations and for

all time intervals. Heuristic-1 scales linearly with the increase in the number of periods.

Heuristic-2 and Egret have a considerable increase in the simulation times, especially for

the 5-minute interval. However, when considering the solution qualities, Egret outperforms,

while Heuristic-2 shows a good compromise between solution quality and simulation run
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Figure 4.17: Simulation run time for increasing load and number of units
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Figure 4.18: Simulation run time considering 1-hour, 30-minute, 15-minute, and 5-minute
time intervals
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time. Table 4.13 compares the solution quality of Heuristic-1 to Heuristic-2 for the 1-hour

and 5-minute time intervals, using Egret as a baseline. The solution quality of Heuristic-2

for the 5-minute interval is well improved but with a considerable increase in simulation run

time.

4.5 Conclusions

Following the formulations from the previous chapter, several benchmarks were performed

using Egret. The presence of similar and identical units in the UC and ED problem is

expected to have considerable impacts on the solution quality of the traditional LR technique.

This chapter investigates the benefits of the proposed formulation (with the additional

iteration of λ) on solution quality and simulation run time.

First, a study was performed on a small system to highlight the UC process and how

identical units are differentiated and prioritized. A modified PJM 5 bus system is studied and

Egret is used as a benchmark. The proposed algorithm can distinguish between similar and

identical units on different buses using an estimate of the line losses and the units’ electrical

distances from the load center. Units are also committed in a way that can improve the AC

power flow solution since line losses are considered in the UC process. The traditional LR

formulation cannot distinguish between similar or identical units, hence, underperforms in

solution quality.

Second, the solution quality and simulation run time of the proposed algorithm are

investigated using RTS-GMLC. Heuristic-2 with additional iteration over λ improves the

solution quality within a reasonable simulation run time when compared to Heuristic-1.

The formulation also scales well overall as the number of units and load size increase when

compared to Egret.

Third, an investigation is performed for a 24-hour model, using 4 different time intervals

(1 hour, 30 minutes, 15 minutes, and 5 minutes). This is of interest because solving

optimization problems with short time intervals can help track uncertainties and variabilities

in renewable resources and load.
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Table 4.13: Cost w.r.t Egret for 1-hour and 5-minute intervals

% difference % difference

1-hour Interval 5-minute Interval

Heuristic-1 0.52 0.54

Heuristic-2 0.042 0.067
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Heuristic-1 has a linear simulation run time with an increasing number of periods but

the solution quality might not be within an acceptable range. Heuristic-2 has a considerable

increase in simulation run time, especially for the 5-minute (288 periods) time interval. The

simulation run time is however reduced (about half) when compared to Egret. Finally, the

solution quality of Heuristic-2 is in an acceptable range when compared to Egret and hence,

can serve as a good alternative.

In conclusion, of the 3 formulations, Heuristic-1 is an improvement from the traditional

LR. The simulation run time is barely impacted and the solution quality is a lot better when

compared to the classic LR. Heuristic-2 could be a better trade-off between LR and Egret

because it could improve the solution quality of Heuristic-1 by a factor of 10 with some

limited impact on simulation run time.
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Chapter 5

Computational efficiency using LR

Formulations

MISO researchers have reported that the Day Ahead (DA) scheduling is the most challenging

optimization problem because about 98% of the market resources get committed during this

process. Since the start of the market in 2005, there have been continuous efforts on reducing

the simulation run time and improving the solution quality for the current and anticipated

challenges on the power grid. For example, system bottlenecks were observed during days

with a high volume of virtual trading (a large number of small virtual transactions) coupled

with a high volume of transmission constraints [15, 16, 18]. With further technological

advancements, it is reasonable for power systems researchers to anticipate future grid

challenges and prepare accordingly.

In this chapter, formulations and optimization techniques are further explored using

Lagrangian relaxation to determine if it is feasible to include DER and renewables in the unit

commitment. Considering the unique characteristics of the different generation resources,

the limitations and advantages of these resources are investigated. The goal is to enhance

market integration of Distributed Energy Resources (DER), Demand Response (DR), and

concepts, such as virtual bidding. The task will be a continuation of the work from Chapter

4.
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5.1 WECC 240 Bus System

In support of the effort for the bold target of renewable energy adoption by the California’s

administration, legislature and energy regulators, a reduced 240 bus model was created to

better understand the impact of a high penetration of these resources on the CAISO and

WECC regional markets [75]. The details of the reduced WECC system and network data

are given as follows:

• The system generation resources from the transmission expansion planning are roughly

for the 2015 to 2020 time frame.

• The renewable resources and base load (nuclear and coal plants) have the highest

priority during the dispatch process. All 3 resource types have a heat rate of 1 for

simplicity. The hydro resources are the next on the priority list with a heat rate of 5.

The gas fired plants are the least on the priority list.

• The gas fired plants are the main dispatchable resources with most of the system

flexibility. The cost functions are piecewise linear and are given in the form of

incremental heat rates (Heat Rate Increments) and MW output points (Heat Points)

for each gas fired plant. The minimum point of the MW output points is taken as the

generator’s minimum output limit for each unit. The ramp rate limits for the gas fired

plants are set to 60% of the maximum capacity to make the UC problem somewhat

more challenging.

• The coal units are set to run at 85% of their maximum capacity. This is easily enforced

since the heat rate is set to 1.

• The nuclear plants are set to run at the maximum capacity with a lower limit of 90%

of the maximum capacity.

• Hydro generation is limited by water availability (including seasonal changes), and

environmental limitations such as irrigation and recreation. The hourly ramp rate

limit is approximately 10% of the maximum capacity while the minimum output is set

to 20% of the maximum capacity.

97



• For further simplification, the fuel cost for all unit types is $5/GJ. This fuel cost is

modified to reflect the current marginal energy cost in CAISO and WECC markets for

this research.

Using the incremental heat rates and the MW output points the cost of generation

between each pair of break points is calculated as follows:

cm+1 = (hpm+1 − hpm)hrm + cm (5.1)

slm =
(cm+1 − cm)

(hpm+1 − hpm)
(5.2)

and the intercept to the x-axis (corresponding to slm) is given as,

intm = cm − (hpmslm) (5.3)

where

hpm = The power output at Heat Point m

cm = Cost when the power output is hpm

slm = The slope between hpm−1 and hpm

The general equation for each piecewise cost can be expressed as

cm ≥ slmhpm + intm (5.4)

The heat rate increases with power output so that the piecewise linear bidding functions

are convex and the economic dispatch (ED) can be solved using linear programming (LP).

Using equation 5.4, a plot of the cost functions of the first few gas fired plants shows that

the calculated cost functions are convex as can be seen in Figure 5.1. The cost functions for

hydro and renewable resources are given or calculated as a constant slope that is equal to

their heat rate increments (for simplicity).

A notable challenge with the 240 bus system data is that the conventional generators have

piecewise cost functions with varying numbers of breakpoints. As can be seen from Figure

5.1, unit 3 has 8 break points while unit 4 has none. The megawatts range between each
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Figure 5.1: Fuel cost function for gas fired plants
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pair of break points is also irregular both for individual units and when comparing between

different units. For example, Unit 5 has most of its breakpoints bunched together at the tail

end of the cost function. The maximum generator capacity could also vary considerably as

seen in unit 5 and unit 1 with a ratio of 4.5 to 1 respectively. In practice, the number of

breakpoints and the MW range between each pair are determined by market rules.

The data from the WECC system is processed for solving UC and ED, using LR. The

formulation and simulations performed in Chapter 3, Section 4.1, and Section 4.2 above

utilized a quadratic cost function for solving both the UC and ED problems. In Section

4.3, the quadratic cost function was calculated from the piecewise linear data and used for

solving the UC problem, while the ED is solved using the piecewise linear cost function.

The effect of the above conversion is minimal on the final solution because the Egret cost

data have evenly distributed MW output break points. In this chapter, the WECC data for

the piecewise cost functions are converted to quadratic cost functions for simplicity and to

reduce the effect of the irregularities in the piecewise cost functions (see Figure 5.1).

5.2 System Flexibility Requirement with DR

The influx of PV solar resources in the CAISO market has continued to create some

interesting load patterns. The Duck Curve trough continues to decrease, leading to an

increase in the system flexibility requirement. Traditional fossil fuel generators are typically

limited in their ability to ramp up and down as quickly as needed. A solution to this problem

is utilizing grid technologies such as DR and virtual trading as flexible resources that reduce

demand and allow slow units enough time to ramp up. These additional resources also

imply an additional number of binary variables when solving UC problems, which directly

translates to an increase in the solution computational time.

Considering a case where ISOs have access to a large number of small market resources

from market participants who are enrolled in the DR program. These resources can be

coordinated to reduce load during periods of high load demand or increase load during

low demand periods. In this research, we are considering Type-II DR. The Type-II DR is

of interest because of its flexibility and simplicity. While the Type-I DR can only supply
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or curtail a fixed amount of load, the Type-II DR can continuously adjust the generation

supply or load curtailment as needed. Hence, the Type-II DR can gradually reduce load

consumption, flattening the load peak to match available capacity and give slow generators

ample time to ramp to the needed levels. In this study, the Type-II DR is implemented by

incrementally shifting some percentage of the peak load (the participating DR) to periods

of low demand.

The WECC hourly load data from August 10, 2004, with a peak of 141,519.5 MW is

modified for this study. The CAISO renewable resources data from July 2, 2022, is scaled

and projected over the WECC load data to create a new load pattern with a high ramping

requirement and a new net load peak of 185,728.9 MW (See Appendix A).

5.2.1 Impact of Load Peak on Market Price and LMP

The California ISO 2022 Summer Market Performance Report [3] highlights the relationship

between daily load peaks and the daily average LMPs. The daily peak load data from August

1 to September 30, 2022, is considered for the report. Daily peak loads (including Operating

Reserves) over 50,000 MW were observed for September 1st, 5th, 6th, 7th, and 8th and with

the corresponding LMP spikes (see Appendix B). The average LMP for both months is less

than $100/MWh but the daily spikes in price on September 1st and 6th are $420/MWh

(4 times the average) and $600/MWh (6 times the average) respectively. These large LMP

spikes could even be more pronounced when individual buses are considered. In the next

session, the effect of DR on LMP spikes is investigated.

5.2.2 Case Study of System Flexibility and LMP Spikes using DR

A base case (case 1) with 143 units, 240 buses, and 448 branches is modeled for the

system flexibility requirement test. The load pattern for case 1 has a required ramping

of approximately 55 GW in 5 hours (see Figure A.3). A quadratic cost function is generated

for each unit, using the corresponding piecewise cost function. The renewable units (with

linear cost functions) have the constant and quadratic parts of their cost functions equal to

zero. The UC problem is solved using equation 3.17, with ai, bi, and ci as the constant,
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linear, and quadratic coefficients of the cost functions respectively. Once the committed

units are identified for the period, the ED problem is solved via the same quadratic cost

function for consistency. The ramp rate limits for the next period are updated for each unit,

using the result of the ED from the previous period.

From the studies in [4], a 5% shift and a 10% reduction in the total load are considered

good DR available capacities. For this investigation, a maximum of 4.5% shift in total load

is considered with no load reduction. It should be noted that in reality, all participating

customers might not respond to the request to reduce energy usage or to move activities to a

time of low energy demand. With this in mind, a total of 10 simulations were performed with

committed DR ranging from 0.0% to 4.5% of the daily peak load. The flexible load resources

(DR) shifted from the high demand periods (20, 21, and 22) are evenly distributed across

periods 8 to 15, thereby, keeping the total daily load constant. Figure 5.2 shows an inverse

relationship between available DR and the marginal energy cost as calculated from the ED.

As enrolled customers responded to the DR request by shift 0.0%, 1.5%, 3.0%, and 4.5% of

the load, the corresponding marginal energy costs at hour 21 are $75.6/MWh, $73.9/MWh,

$72.6/MWh, and $71.4/MWh respectively.

The network effect is investigated by solving the AC power flow MATPOWER. The

data for solving the hourly OPF is updated from the ED result. These data include the

hourly generator limits (as determined by the ramp rate limits) and the associated buses,

the unit outputs, the hourly load and the associated buses, and the unit commitment data

for updating the unit status. From the result of the AC Power Flow, the bus LMPs for hours

20, 21, and 22 are obtained and plotted as seen in Figure 5.3. As expected, the highest LMP

is observed at hour 21 where the daily peak load is observed. The LMP spike at bus 198

reduces as the percent capacity of the DR increases. The LMP spike could be a function of

committing a very expensive generator or due to system congestion.

5.2.3 Discussion

This chapter investigates the impact of peak load shaving via DR on UC solution, especially

the marginal energy costs and LMP spikes. Research has shown that it could be beneficial

to have 10% to 15% of the load available as DR resources. To understand the sensitivity of
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(a) 0% DR (b) 1.5% DR

(c) 3% DR (d) 4.5% DR

Figure 5.2: Modified demand and the effect on hourly marginal energy cost
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(a) 0% DR (b) 1.5% DR

(c) 3% DR (d) 4.5% DR

Figure 5.3: LMP spikes and available DR
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the shift in load usage to periods of low demand, the load shift is done in steps of 0.5% of the

daily peak load. To this effect, 10 simulations were performed to show a clear trend. Keeping

the total overall daily load constant at 3, 244, 868 MW, the highest daily peak of 185, 728.9

MW is observed at the base case (0.0% DR) while the lowest daily peak of 177, 371.1 MW

is observed for the case with 4.5% DR. As expected, the increase in the percentage of DR

resources (decrease in daily peak load) directly translates to a decrease in the number of units

committed (Figure 5.4a) and decrease in the total generation cost (Figure 5.4b). The above-

mentioned trends show that more expensive units do not get committed with increasing DR

capacities. The total cost of generation and the marginal energy cost reduce linearly with the

increase in the percentage of available DR. Figures 5.4d compares the available DR resources

to the maximum LMP spike at hour 21. It can be observed that the price spike on bus 198

settles down to approximately $100/MWh at 3% DR with minimal changes afterward.

In conclusion, a 3% availability of DR is able to reduce the cost of generation considerably.

Some major causes of the spike in bus prices are committing expensive units and system

congestion during high system loading periods. Studies of this kind can help with future

transmission planning and future unit locations.

5.3 Price Iteration Techniques using Augmented LR

In Chapter 4, the optimization objectives were improved by iterating over λ (estimated price)

and the actual price after solving the ED. Of course, the additional iteration over price (while

solving the ED during each iteration) leads to an increase in computational resources as well

as simulation run time. Hence, it is important to investigate methods of iteration over λ and

price in ways that will have minimal impact on computational resources and simulation run

time. Considering the challenges with LR convergence, Augmented LR (ALR) is considered.

5.3.1 Augmented LR and Coupling Constraints

LR is well known for its ability to decompose optimization problems by relaxing the system

constraints, using the Lagrangian multiplier (λ). The resulting subproblems are solved via

an iterative process by continually updating λ. If the updating process of λ is not done right,
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(a) Number of units w.r.t increasing % DR (b) Total cost w.r.t increasing % DR

(c) Marginal cost w.r.t increasing % DR (d) Max. LMP spike w.r.t increasing % DR

Figure 5.4: Effect of increasing % DR
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the solution convergence could be slow and unsteady [96, 9, 92]. The Augmented LR (ALR)

improves the solution convergence by adding a penalty term to the Lagrangian equation.

The penalty term is derived from the energy balance coupling constraint. Expanding on

equation 3.2, the ALR can be mathematically represented as

L(P,U, λ) =
T∑
t=1

NG∑
i=1

[Fi(Pit)]Uit +
T∑
t=1

λt

(
P t
load −

NG∑
i=1

PiUit

)
+

T∑
t=1

γ

2

(
P t
load −

NG∑
i=1

PiUit

)2

(5.5)

where

γ = the positive penalty coefficient of the system energy balance constraint.

Taking the partial derivatives of equation 5.5 with respect to Pi, we have the following

expression

∂L(P,U, λ)
∂Pi

= bi + 2ciPi − λ+ γ

(
NG∑
i=1

PiUi − Pload

)
(5.6)

It can be easily seen from the penalty term that the units (subproblems) are no longer

decoupled as observed in Section 3.2.2. Pi (power output for unit i) is given as

Pi =

λ− bi − γ

(∑NG
j=1
j ̸=i

PjUj − Pload

)
2ci + γ

(5.7)

It should be noted that summation in the term multiplying γ does not include Pi. λ is

updated as follows

λ = λ+ γ ∗

(
NG∑
i=1

PiUi − Pload

)
(5.8)

During the iteration process, the value of individual generator outputs (Pi) and λ are

updated using the Alternating Direction Method of Multipliers (ADMM).
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5.3.2 Test Results using WECC 240 Bus System

In this work, the ALR is implemented to investigate λ iteration techniques while focusing

on the solution quality and convergence of optimization problems using three simulation

cases. Case 1 (base case) with no additional iteration over λ or price is solved as a classical

ALR problem. The algorithm updates λ and commits units appropriately until the required

demand for the period is met and then solves the ED only once. Figure 5.5 shows the

flow chart of the classical ALR. Case 2 (Heurisitic-1) has an added heuristic that prevents

over-commitment of resources by attempting to commit the least possible number of units,

turning off the most expensive (marginal) units until just enough generation capacity is

online to meet the demand. As seen in Figure 5.6, once enough units have been committed

(generation capacity is greater than or equal to demand), the heuristic continues to decrease

the number of units by reducing the value of λ. This process is continued until a further

decrease in λ would make the committed resources less than the demand. Like the base

case, case 2 only solves the ED once. Case 3 (Heuristic-2) iterates over λ and price while

monitoring the improvement in the hourly generation cost. Like the previous cases, case 3

also runs an inner loop that commits enough units to meet the demand. The outer loop

implements the heuristic that iterates over λ and price as well as runs the ED multiple times

as seen in Figure 5.7. Case 3 is expected to have the best solution quality but with some

tradeoffs in the simulation run time since the ED is solved multiple times.

Both the solution and the simulation run times are compared for all 3 cases. This study

uses the WECC load data from August 11, 2004. The load data is modified by scaling by a

factor of 1.8, considering load growth over the years, and making the optimization problem

somewhat interesting.

Figure 5.8 compares the number of units committed for all 3 cases (base case, Heuristic-1,

and Heuristic-2). Case 2 attempts to avoid over-commitment at all costs, committing the

fewest number of units during most of the periods. Case 3 on the other hand committed

the most number of units, especially during periods of high system loading. It should be

noted that committing the same number of units does not directly imply committing the

same units with similar dispatch. This is because some units might have binding upward
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Figure 5.5: Base case flowchart

Figure 5.6: Heuristic for committing least number of units
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Figure 5.7: Heuristic for committing optimum number of units by iterating over λ
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Figure 5.8: Number of units committed for case 1, case 2, and case 3
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or downward ramping limits depending on their previous outputs. Figure 5.9 highlights the

effect of both heuristics on the hourly marginal energy prices. The hourly marginal energy

prices for case 3 are the lowest mostly during periods of high loading. During periods of

low or light system loading, the marginal energy prices in cases 1 and 3 are similar for the

most part. Figure 5.10 compares the hourly generation cost for all 3 cases, using case 1

as a reference. It can be easily seen that case 2 with the least number of committed units

performed the worst, ending up with the highest hourly marginal energy prices and hourly

generation costs. This shows that barely committing enough resources forces the algorithm

to schedule many units to run at or close to their maximum capacities. Even though there

is no occurrence of over-commitment in case 2, the classical ALR (case 1) can perform

better than case 2. As expected, case 3 outperformed in solution quality. The algorithm

tends to commit the optimum number of units during most periods, thereby scheduling most

generators to run at their optimum levels and not at their minimum or maximum capacities.

Committing the most number of units does not necessarily translate to the best solution as

this could lead to a case of over-commitment. This is consistent with energy pricing and

bidding as shown in Figure 3.1. This is also consistent with the fact that energy generation

cost is usually cheaper when a unit runs at the optimum point and not at minimum or

maximum capacity. In general, the classical ALR accepts the first instance of the UC result

without considering other unit combinations while Heuristic-2 (case 3) goes an extra step to

find other combinations.

Considering the simulation time, case 1 outperformed as expected while case 3 had the

worst performance. Even though case 2 has a better simulation time than case 3, it has

the worst solution overall. Table 5.1 shows a general summary of the results, highlighting

the total number of units committed, the sum of the maximum marginal energy prices, the

average simulation run time as well as the total generation cost for all 24-hour periods. The

performance for each category is rated as red, black, and blue, with red indicating the worst

and blue referring to the best performance.
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Figure 5.9: Hourly marginal energy price for case 1, case 2, and case 3
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Figure 5.10: Plot of the hourly cost of generation for case 1, case 2, and case 3
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Table 5.1: Summary of results

Case 1 Case 2 Case 3

Total Load (GW) 3,931.1 3,931.1 3,931.1

Number of units 2,913 2,798 3,083

Max. Marginal Price ($) 82.8 96.3 80

Average Run Time (sec.) 0.41 0.59 1.31

Total Gen. Cost ($) 108,212,168 111,198,902 107,796,718
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5.3.3 Discussion

Three cases, including a base case (classical ALR), a second case with a heuristic (Heuristic-

1) to minimize the number of units, and a third case with a heuristic (Heuristic-2) to optimize

the overall result by iterating over λ and price were compared. Heuristic-1 and Heuristic-2

were implemented to improve the solution quality in case 1 without considerably impacting

the simulation run time. Heuristic-1 (case 2) attempts to prevent the over-commitment of

units which is a well-known problem that is associated with LR and goes as far as committing

the fewest possible units. The heuristic compares the committed resources to the hourly

demand and turns off the most expensive unit(s) during every iteration process. This process

is continued until it is no longer possible to turn off any unit and still have the committed

resources equal to or greater than the demand. The advantage of Heuristic-1 is that it can

prevent over-commitment with much less impact on the simulation run time since it only

solves the ED once. However, since the ED is never solved during the iteration process, there

is no way to know what the effect of the reduction in commitment is during each iteration.

Hence, even though the impact on the solution run time is minimal, case 2 underperforms

in solution quality as seen in Table 5.1. Heuristic-2 (case 3) on the other hand can compare

the estimated price (λ) with the actual price from the ED, using the improvement in the

solution (cost) during each iteration as a good stopping criterion. This produces an improved

solution quality but with slightly more impact on the simulation run time when compared

to Heuristic-1. A good balance between the solution quality and simulation run time can be

implemented by adjusting the maximum number of times the ED can be solved in Heuristic-

2. A fewer number of iterations over λ and price would normally imply a solution with

slightly poorer quality and vice versa.

5.4 Effect of Transmission Limit on Optimization

As mentioned in section 5.3, solving optimization problems with a high volume of

transmission constraints could be very challenging [15]. For example, since the MISO system

requires monitoring a large number of transmission constraints, the complete network model

is not used in solving the SCUC problem. One approach is to pre-identify and create a list of
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transmission constraints using historical data and previous studies. This list of transmission

constraints is partitioned into groups of 200 and is added to the SCUC problem in batches.

The iteration process is continued until no new violations exist in the SCUC solution. This

approach reduces the size of the SCUC problem by solving only 200 transmission constraints

per time, instead of solving all identified constraints or the full network model [16].

5.4.1 Incremental Optimization

Studies have found that solving optimization problems incrementally can help speed up

market clearing time and reduce the time spent on schedule solution verification [15]. The

incremental problem solving in UC and ED is of great interest as the system increases in size

and the volume of virtual trading and resources such as DR increases in the optimization

problem. Researchers have implemented incremental optimization techniques as heuristics in

MIP for alleviating transmission bottlenecks. The main concept is adding the transmission

constraint to the problem incrementally and systematically checking for solution feasibility.

Another approach combines the LR method with MIP by solving for and identifying the

transmission constraint via LR. Significant progress was made when these incremental

concepts were implemented on some unusually difficult optimization problems.

By default, LR is an incremental optimization technique because it commits units by

iterating over price and schedules units starting from cheaper to more expensive ones.

This study aims at taking advantage of the intuitive and incremental nature of the LR

optimization technique. Both characteristics make tracking the progress of the solution

possible while iterating over price and can help reduce the solution dispute and verification

time. In addition, uncommitted units with costs lower than the MIP gap are easily identified

since LR commits units by evaluating the cost in an incremental way.

5.4.2 Effect of Line Flow Penalty on Transmission Limit

In this section, a line penalty approach is proposed to alleviate transmission constraints and

reduce excessive iterations that are associated with SCUC problems. The network model

here is represented by the LR formulation with heuristic from Section 3.3. The heuristic
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from Section 3.3 generally penalizes the branches and attempts to reduce the system line

losses. The proposed approach targets transmission lines with binding line flow limits by

scaling up the value of the reactance of the transmission line of interest. The idea is to

discourage and reduce power injection at buses (which directly reduces the power outputs

of generators) that directly contribute to flow increase on the specific line.

A modified WECC 240 bus system model is used to explore the effect of line penalty on

transmission line flow limits. Transmission lines 125 and 325 have flow limits of 2,000MW

and 2,500MW respectively. The base case from Figure 5.11 shows that the power flow in

line-125 violates the line flow limit for all 24-hour periods while line 325 only violates the

flow limit from periods 18 through 22. The UC for the base case was solved without the

network data and the line flow limit violations were checked after solving the ED. For the

proposed case, a penalty is added to lines with binding transmission limits by scaling up the

values of the reactance at the identified branches. Using the modified LR formulation from

equations 3.17 to 3.27, the new heuristic with penalty can be mathematically represented as

L(P,U, λ) =
T∑
t=1

NG∑
i=1

(ai + biPi + ciP
2
i )Uit +

T∑
t=1

λt(P t
load +

NK∑
k=1

(Lt
flow(Pi))

2RkPnk −
NG∑
i=1

PiUit)

(5.9)

where Pnk is the penalty factor for line k. The term (Lt
flow(Pi))

2RkPnk is proportional to

the square of the GSF multiplied by the resistance (Rk) and the penalty (Pnk) and can be

expressed as

NK∑
k=1

(Lt
flow(Pi))

2RkPnk ∝
NG∑
i=1

GSFk−i(Pi −Di) ·Rk · Pnk ·
NG∑
i=1

GSFk−i(Pi −Di) (5.10)

The loss term with penalty factor from equation 5.10 can be generalized as

NK∑
k=1

(Lt
flow(Pi))

2RkPnk ∝ P T
inj ·Wp · Pinj (5.11)

118



Figure 5.11: Base case with no line penalty
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where Wp is the new weighting factor and it is a matrix that is derived by multiplying a

diagonal matrix of the resistance R and a diagonal matrix of the penalty Pn on both sides

by the GSF as shown below

Wp = GSF T · (R · Pn) ·GSF (5.12)

The new Lagrangian function is then approximated as

L(P,U, λ) =
T∑
t=1

NG∑
i=1

(ai+ biPi+ ciP
2
i )Uit+

T∑
t=1

λt(P t
load+P T

inj ·Wp ·Pinj −
NG∑
i=1

PiUit) (5.13)

For simplicity, both transmission lines are scaled equally and the effect of scaling by a

factor of 10 is seen in Figure 5.12. Comparing both cases, it can be easily seen that the

penalty was able to reduce the power flow in the required transmission lines by committing

units that reduce the flow of power on the identified lines. In Figure 5.13, the optimization

problem is solved for multiple iterations while increasing the scaling factor (penalty) for each

iteration from 0 to 40. At period 19 where the peak load is observed, the maximum line flows

for lines 125 and 325 are recorded and plotted against the penalty values. Point 0 (scaling

factor = 0) represents the maximum line flow for the base case (during the first iteration)

as observed in Figure 5.11. The inverse relationship between the penalty and the maximum

line flow for both lines is easily seen. At a scaling factor of 6, the maximum line flows are

either equal to or below their required line flow limits.

A second metric worthy of considering in measuring the performance of the proposed

penalty method is its effect on solution quality. It is expected that every additional constraint

that is added to an optimization problem would have some form of negative impact on the

solution quality. Hence, it is important to find an optimum penalty value with the least

impact on the solution quality. Figure 5.14 Shows that the additional constraint cost is

about $48, 000 with no considerable change in cost as the penalty increases. One advantage

of this penalty approach is that the impact on cost settles down quickly and stays flat for a

wide range of scaling factors. In essence, no further calculation is needed to find a unique or

optimum scaling factor. Therefore reducing both the computational resources and simulation
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Figure 5.12: Heuristic case with targeted line penalties

121



Figure 5.13: Line flow as a function of penalty
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Figure 5.14: Total costs differences Using the base case as reference
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run time required for solving SCUC problems with transmission constraints. As shown in

Figures 5.13 and 5.14, choosing any scaling factor from 6 and above would eliminate all

violations with no noticeable impact on the solution quality.

5.4.3 Discussion

The above investigation illustrates that the proposed heuristic can considerably reduce

simulation run time by partly or fully eliminating repetitive solving of the SCUC problem.

Instead of adding a list of predefined transmission constraints to the optimization problem

in batches and solving repetitively, all the transmission lines with binding constraint limits

can be penalized during a single round of simulation.

Another advantage of the proposed formulation is that the cost impact of the transmission

line constraints settles down quickly and stays relatively the same for a wide range of scaling

factors. This implies that there is no need for an added computational burden to get an

optimum penalty or scaling factor value. Figure 5.14 shows that the generation cost stays

considerably constant with increasing scaling factor.

As observed in Figures 5.11, 5.12, and 5.13, the power flow in lines 125 and 325 decreases

as the penalty scaling factor increases. The heuristic takes advantage of the relationship

between bus injection and line flow sensitivity by increasing the costs of injecting power

through the buses to the transmission lines of interest. This increase in cost directly targets

contributing generators, forcing them to either reduce their output or prevent them from

being committed altogether.

The lines with transmission constraints could be pre-identified from historical data and

previous studies or by pre-solving the SCUC problem. Figure 5.15 shows a proposed flowchart

of a pre-solved SCUC algorithm. The solution of the pre-solved UC and ED is checked for

transmission flow violations and all the branches with binding line flow limits are identified

and penalized appropriately. The modified PTDF is then updated with the penalty value(s)

and the optimization problem is resolved. The kind of modification applied to the PTDF and

selected scaling factor are expected to be system dependent. Some systems might also require

different values of scaling factors for different transmission lines with binding constraints.
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Figure 5.15: Flowchart for transmission penalty algorithm
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In conclusion, the proposed LR with heuristic can act as a fast alternative tool for

solving SCUC especially when the optimization problem has a high volume of transmission

constraints and virtual transactions. It is important to note that the incremental nature of

LR by default can help improve SCUC solutions with a high volume of virtual transactions

since units are selected by iterating over λ, starting with cheaper units.

5.5 Large System Integration of Similar and Identical

DER Units

The push for net-zero carbon emissions and expanding electrification will require some

notable changes on the power grid [39]. While electricity demand continues to increase and a

large capacity of high carbon emitting generators like coal are being decommissioned, other

generation resources would be needed to fill this gap. Some of these required replacement

generation capacities could come from DER which are usually small and non-traditional

units. The integration of a large volume of DER on the power grid offers advantages such

as resource diversification and grid flexibility, but not without some challenges. One of such

challenges is the impact on solving SCUC as it relates to the increase in the number of

binary variables [8, 49]. An added difficulty could arise from the fact that a notable number

of similar and identical units could start showing up at different bus locations. For example,

small modular reactors (SMR) from the same manufacturer could be owned by different

utility companies.

5.5.1 Effect of a Large Volume of Similar and Identical Units on

Simulation Run Time

In this section, the impact of a large volume of DER with similar or identical characteristics

is investigated using a modified WECC 240 bus system model. Three system models with

the number of units randomly scaled up to approximately 2X, 5X, and 10X respectively

are considered. Starting with 143 units, the number of units is approximately doubled by

adding 100 (DER) units for case 1. These units are made up of 10 different types of units
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with identical capacities, ramp rates, and cost functions. The costs of the 10 types of units

are also slightly different, making each unit type similar in cost to the next expensive unit

type. The number of DER in case 2 and case 3 increased by a total of 500 and 1000 units

respectively. To keep the system network constraints fairly constant, the new units are only

added to the existing generation buses (generation centers). The UC was solved via the

heuristic formulation from Section 3.3. Each of the 3 models is simulated 50 times to get

a good average of the simulation time. The simulations were performed using a 2-Core

2.20GHz Intel(R) Core(TM) i5-5200U processor and 16 GB RAM. Figure 5.16 shows that

the simulation run time for the proposed formulation is linear with increases in the number

of DER. It is worth noting that this setup is only able to compare the simulation run time

since the total generation mix (types and costs) changes a lot for each case.

5.5.2 Discussion

This investigation focuses on the impact of distributing small non-traditional similar and

identical units on simulation run time. The setup is such that similar units are co-located

and are also distributed across the system, while identical units only exist on different buses.

A strong point of the formulation is that it can differentiate between both similar and

identical units especially when they are marginal (near marginal) units. This formulation is

unable to differentiate between identical units if they are co-located. It is worth noting that

as the system gets larger if the number of iteration processes over the ED is not capped, the

simulation time would increase considerably. Overall, the heuristic formulation scales well

with the increasing number of distributed units.

5.6 Conclusions

In this chapter, several computational efficiency techniques were considered, using LR.

Some challenges that are associated with SCUC and SCED as it relates to scalability were

investigated.

The WECC 240 bus system data is first formatted for solving the UC and ED problems

while highlighting the data modifications and challenges. For simplicity and consistency, the
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Figure 5.16: Simulation run time for increasing volume of DER
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piecewise cost function data is converted to a quadratic cost function type. Next, the system

flexibility requirement for load patterns with a high daily ramping requirement and a high

daily peak were investigated. It was shown that if 3% of the daily peak load is available for

DR, large spikes in LMP can be eliminated. DR is most effective if the shift in energy usage

time can shave off the daily peak which can prevent expensive units from being committed.

This work can help determine a good market price for DR since the reduction in energy cost

can be calculated.

Methods of UC and ED solution improvements are studied using three algorithms. The

classic ALR scales well and can provide a fairly good solution. A second algorithm (Heuristic-

1) attempts to avoid over-commitment by committing the least possible number of units. The

heuristic iterates over λ and solves the ED only once, thereby, only minimally impacting the

simulation run time. A third algorithm (Heuristic-2), solves for the optimum number of units

by iterating over λ and the price obtained from solving the ED. The solution improvement is

tracked by comparing the total generation cost of the previous iteration (k-1) to the current

iteration (k). Heuristic-2 is preferred to Heuristic-1 because it comes out with the best

objective even though it has an impact on simulation run time.

Considering the effect of a high volume of transmission constraints and virtual transac-

tions on UC solution and simulation run time, a transmission line penalty is proposed. This

approach targets units that contribute significantly to the power flow on the transmission

lines of interest and either reduce the output of the generators or prevent such generators

from being committed. This algorithm can be used as a fast alternative for MIP since it can

greatly reduce the number of iterations for solving SCUC and SCED. A notable advantage

of this algorithm is that it is somewhat easy to choose a penalty value.

Finally, a scalability optimization study is performed for systems with similar and

identical DER. The system volume of the DER is roughly increased by factors of 2, 5,

and 10. The simulation run time scales linearly with the increase in the volume of DER in

the system.

In general, the proposed LR formulations present alternative new and fast ways of solving

optimization problems. These formulations can be combined with other techniques (MIP)

to form hybrid optimization tools in the future.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The recent and continuous advancement in grid technologies is creating new challenges and

difficulties for the existing methods of solving UC and ED. Power system operators are now

faced with a future where a large volume of small MW units will dominate the grid. The

possible increase in the volume of similar and identical units on different bus locations is

also a real possibility. MIP technique is a state-of-the-art optimization tool but does not

scale well with increasing binary variables. LR technique on the other hand scales well with

increasing binary variables but performs poorly when similar and identical units are present

in the generation mix. This work proposes LR algorithms and formulations that can improve

the solution quality of SCUC and SCED with acceptable trade-offs in the simulation run

time.

In Chapter 3, a modified UC formulation with system network losses is first derived using

a heuristic. The heuristic uses the network PTDF and incorporates the loss effect using the

line resistances as scaling factors. The immediate challenge is the values of the resistance

are too small for penalizing the transmission lines appropriately. Hence, the need to include

a weighting factor, which is system dependent. The calculated loss penalties are distributed

appropriately using the network sensitivity. The proposed loss formulation is able to reduce

the cost of generation and differentiate between similar and identical units that are not

co-located.
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To confirm the validity of the proposed formulation in Chapter 3, several benchmarks

were performed using MIP in Chapter 4. Compared to MIP, the proposed LR formulation

does not just distinguish between similar units but prioritizes units that are closer to the load

center as well. For a small system with similar and identical units, the solution quality is in an

acceptable range. The scalability test using a much larger RTS-GMLC 73 bus system shows

that the proposed method scales linearly well with minimal trade-offs in solution quality. The

proposed formulation can work as a good alternative for solving SCUC problems depending

on the situation.

In Chapter 5, the computational efficiency of LR is investigated, considering the impact of

integrating DER and concepts like DR and virtual transactions. First, the system flexibility

requirement based on the available DR capacity and customers’ response in time of need

is considered. The study shows the sensitivity of marginal energy cost and LMP to actual

committed DR as a percentage of the daily peak load. Simulation results on the WECC

240 bus system show that DR can improve the system flexibility especially when customers

respond in such a way that shaves the peak load. Second, price iteration techniques for

improving solution quality are considered. The best-performing algorithm iterates over λ

and price (from ED) using the improvements in the total generation cost as a guide. The

solution quality is improved with minimal impact on simulation run time. Third, the impact

of transmission line limits on simulation run time is investigated. Taking advantage of

the incremental nature of LR, a line flow penalty is proposed. The penalty targets the

transmission lines of interest and distributes the added cost on generators that contribute

to the line flow. Simulation results show a reduction in power flow on the transmission

line of interest with a great potential for reductions in simulation run time. The cost of

transmission limit constraint quickly settles down and stays relatively constant for a wide

range of penalty values. This makes selecting a penalty value an easy task. Fourth, the

integration of a large volume of similar and identical DER is considered. The number of

units in the system is roughly scaled by factors of 2,5, and 10 using DER with similar and

identical cost functions. The proposed formulation scales linearly well with the increasing

number of distributed non-traditional similar and identical units.
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6.2 Future Work

Considering the work to date, further research is needed for a real-world implementation of

the proposed formulations and algorithms.

• On unit commitment formulations

1. The proposed methods in this work are focused on a centralized algorithm.

It would be of interest to investigate the benefit of the proposed methods on

distributed UC algorithms. An area of interest would be the effect of the proposed

line penalty on the way information can be exchanged between subproblems.

2. While ALR is applied to some extent in this work, it was not integrated into the

proposed formulation. This would be a good future area of research since the

ALR can improve the convergence problems associated with LR in general.

• On large scale integration of DER

1. The study involving large-scale integration of DER is only focused on scalability

and simulation run time. It would be interesting to use Egret as a benchmark for

solution quality and scalability. The challenge here is to model a corresponding

large system in Egret.

• On virtual transaction

1. This work assumed that the incremental nature of LR will automatically take

care of the difficulty imposed by virtual transactions since it selects units starting

with the cheaper ones. An investigation focusing on the impact of a high volume

of virtual transactions combined with a high volume of transmission constraints

on solution quality and simulation run time would be of interest.
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A Data Information for WECC

The WECC hourly load data from August 10, 2004, was selected because it has the daily

annual peak for the year. The renewable resources in the CAISO and WECC regional

markets have increased drastically and will continue to increase into the future. Figure

A.1 shows the current trend and the future projection of WECC peak demand (Source:

https://www.wecc.org). Following this information, the WECC load pattern from Figure

A.2 was modified to a projected load pattern with high renewable resources as seen in

Figure A.3.
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Figure A.1: WECC annual peak hourly demand

Figure A.2: WECC hourly load for August 10, 2004
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Figure A.3: Modified WECC load using CAISO RES data from July 2, 2022
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B Load Peak and Spike in LMPs

The California ISO Summer Market Performance Report [3] is prepared annually. The 2022

edition shows that the load exceeded the 50,000 MW mark for the 3rd time in history. It

can be observed that as the load approaches the resource adequacy (RA) line in Figure B.1,

the daily average LPMs show spikes in price as seen in Figure B.2.

LMP spikes can also be observed at individual bus locations or hubs. The Intercontinental

Exchange (ICE) data focuses on energy prices at specific trading hubs [29]. Figure B.3 shows

the price of energy at the southern California hub (SP15) and northern California hub (NP15)

over a range of trading days. The price spikes in SP15 and NP15 overlap well. This implies

that the event is not isolated to a hub but results from a heavily loaded system. The observed

high price is a function of a high daily peak.
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Figure B.1: Daily peaks and RA capacity for August and September 2022 [3]

Figure B.2: Average daily prices across markets Aug-Sep 2022 [3]
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Figure B.3: Electricity prices variation at the SP15 and NP15 hubs.
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C LR Formulations and Matlab Code

C.1 Data Process

The raw WECC 240 bus data is given in an Excel file and a PSSE case format is also

available for dynamic studies [75]. First, the PSSE data is converted to a MATPOWER

format using the psse2mpc command [103], with bus, branch, generator, and instantaneous

load data but no generator cost data. The full load data and generator parameters are given

in the Excel data. The generation costs are derived from the given generator parameters

in both piecewise and quadratic cost function formats. The unit minimum and maximum

capacities from the Excel data are compared with the MATPOWER data for consistency.

C.2 Code Implementation

For each simulation scenario, the load, network, and generator data are pre-processed in

a separate MATLAB script. The output is saved in MATLAB format for easy access and

loading. Before the iteration process starts, the unit minimum up and down times are fixed

via a function that tracks and updates the up and down times of each unit. Binary codes

(1/0) are generated for each generator. A unit that is allowed to come on if off or stay on if

already on has a code of 1 while a unit that cannot come on during that period is assigned

a code of 0. During the iteration process, the unit maximum and minimum capacity for

the time period is fixed by calling a function. The function sets the ramp limits using the

previous values of the units. For example, in period one, the previous output values of the

units are given as part of the initial data while for subsequent periods, the result of the ED

from the previous period is used. Next a function that commits units using the dual variable

is called. The total capacity of the committed units is compared with the periodic load. If

the sum of the maximum capacity exceeds the load and the sum of the minimum capacity is

less than the load then the ED is solved as seen in Figure C.1 For scenarios with additional

iteration requirements, the price from the ED is compared with the λ value (dual variable),

and the improvement in the objective is used as the stopping criteria.
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Figure C.1: Code flowchart
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C.3 ED Implementation

Once the committed capacity equals or exceeds the demand and there are no violations found,

the ED will be solved using a linear programming function or the quadratic programming

function from MATLAB [90]. The UC values and the total period load demand form the

equality constraint equation. Note that the minimum up time and down time have been

implemented during the UC process because the ED is unable to commit or de-commit units.

The unit periodic maximum and minimum capacities are the upper and lower bounds. In

the case of a quadratic cost function, the objective function is made up of the quadratic part

(2c) and the linear part (b). Where b and c are the linear and quadratic parts of the cost

function.
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