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ABSTRACT 

 

Lignocellulosic biomass material sourced from plants and herbaceous 

sources is a promising substrate of inexpensive, abundant, and potentially 

carbon-neutral energy. One of the leading limitations of using lignocellulosic 

biomass as a feedstock for bioenergy products is the flow issues encountered 

during biomass conveyance in biorefineries. In the biorefining process, the 

biomass feedstock undergoes flow through a variety of conveyance systems. 

The inherent variability of the feedstock materials, as evidenced by their 

complex microstructural composition and non-uniform morphology, coupled 

with the varying flow conditions in the conveyance systems, gives rise to flow 

issues such as bridging, ratholing, and clogging. These issues slow down the 

conveyance process, affect machine life, and potentially lead to partial or even 

complete shutdown of the biorefinery. Hence, we need to improve our 

fundamental understanding of biomass feedstock flow physics and mechanics 

to address the flow issues and improve biorefinery economics. 

This dissertation research examines the fundamental relationship 

between structural constituents of diverse lignocellulosic biomass materials, i.e., 

cellulose, hemicellulose, and lignin, their morphology, and the impact of the 

structural composition and morphology on their flow behavior.  



viii 

 

First, we prepared and characterized biomass feedstocks of different 

chemical compositions and morphologies. Then, we conducted our 

fundamental investigation experimentally, through physical flow 

characterization tests, and computationally through high-fidelity discrete 

element modeling. Finally, we statistically analyzed the relative influence of the 

properties of lignocellulosic biomass assemblies on flow behavior to determine 

the most critical properties and the optimum values of flow parameters. Our 

research provides an experimental and computational framework to generalize 

findings to a wider portfolio of biomass materials. It will help the bioenergy 

community to design more efficient biorefining machinery and equipment, 

reduce the risk of failure, and improve the overall commercial viability of the 

bioenergy industry. 

 

KEYWORDS: Lignocellulosic biomass, flow mechanics, shear 

strength, angle of repose, discrete element modeling. 

 



ix 

 

PREFACE 

 

The majority of the work presented in this dissertation was conducted by 

the author, including the design and implementation of the research, the 

analysis of the results, and the writing of the manuscript.  

 

  



x 

 

TABLE OF CONTENTS 

CHAPTER 1. INTRODUCTION………………………………………………………... 1 

1.1. Introduction and Problem Statement…………………………….. 2 

1.2. Research Objectives………………………………………………… 6 

1.3. Organization of the Dissertation…………………………………. 10 

References………………………………………………………………….. 14 

CHAPTER 2. LITERATURE REVIEW…………………………………………………. 18 

2.1. The Global Energy Scenario……………………………………… 19 

2.2. Biomass Energy Sources………………………………………….. 20 

2.3. Lignocellulosic Biomass Composition…………………………... 22 

2.4. Biomass Processing in Biorefineries…………………………….. 26 

2.5. Flow Issues in Biorefineries and Their Economic Impact……... 28 

2.6. Flow Analysis of Lignocellulosic Biomass Feedstock…………. 33 

2.7. Experimental Investigation of Lignocellulosic Biomass………. 36 

2.7.1. Flow Behavior of Biomass Particles………………………….. 36 

2.7.2. Relationship Between Biomass Flow Behavior and Structural 

Composition……………………………………………………………… 40 

2.7.3. Selective Extraction of Biomass Structural Constituents….. 42 

2.8. Computational Investigation of Lignocellulosic Biomass…….. 45 

2.8.1. The Discrete Element Method (DEM)……………………….. 51 



xi 

 

2.8.2. DEM Model Development……………………………………. 56 

2.8.3. Model Parameters: Material and Interaction Properties….. 57 

2.8.4. Particle Representation………………………………………... 67 

2.8.5. Particle Contact Model………………………………………... 74 

2.8.6. Computational Flow Characterization………………………. 78 

2.8.7. Validation of DEM Model Implementation…………………. 79 

References………………………………………………………………….. 81 

CHAPTER 3. EXPERIMENTAL INVESTIGATION OF THE EFFECT OF 

LIGNOCELLULOSIC BIOMASS STRUCTURAL CONSTITUENTS ON THE FLOW 

BEHAVIOR…………………………………………………………………………….106 

3.1. Introduction……………………………………………………….. 107 

3.2. Materials and Methods…………………………………………...113 

3.2.1. Material Selection and Preparation………………………… 113 

3.2.2. Chemical and Physical Characterization…………………... 114 

3.2.3. Flow Behavior Characterization…………………………….. 119 

3.3. Results……………………………………………………………… 124 

3.3.1. Proximate and Density Analysis…………………………….. 124 

3.3.2. Structural and Thermogravimetric Analysis………………..127 

3.3.3. Frictional Parameters………………………………………… 131 

3.3.4. Compressibility Characteristics…………………………... 137 



xii 

 

3.3.5. Shear Strength Characteristics……………………………… 139 

3.3.6. Case Study #2: Relation of Frictional Parameters and Shear 

Strength Characteristics with Biomass of Varying Cellulose  

Content…………………………………………………………………..145 

3.3.7. Case Study #3: Relation of Frictional Parameters and Shear 

Strength Characteristics with Particle Sizes…………………………. 149 

3.3.8. Conclusions…………………………………………………… 151 

References………………………………………………………………… 154 

CHAPTER 4. EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF 

LIGNOCELLULOSIC BIOMASS PARTICLE MORPHOLOGY AND FLOW 

BEHAVIOR…………………………………………………………………………….164 

4.1. Introduction……………………………………………………….. 165 

4.2. Materials and Methods…………………………………………...172 

4.2.1. Sample Particle Selection…………………………………….172 

4.2.2. Sample Material Characterization…………………………...172 

4.2.3. Particle Morphology Representation………………………. 174 

4.2.4. Computational Model Generation…………………………. 180 

4.3. Results……………………………………………………………… 183 

4.3.1. Particle Morphology Representation………………………. 183 

4.3.2. Computational Model Output: Fill Parameters…………... 183 



xiii 

 

4.3.3. Computational Model Output: Contact Forces…………... 188 

4.4. Conclusions……………………………………………………….. 189 

References………………………………………………………………… 192 

CHAPTER 5. RELATIVE INFLUENCE OF LIGNOCELLULOSIC BIOMASS 

PROPERTIES ON THE FLOW BEHAVIOR OF BIOMASS PARTICULATES……. 196 

5.1. Introduction……………………………………………………….. 197 

5.2. Materials and Methods…………………………………………...202 

5.2.1. Design of Simulations (DoS)………………………………… 202 

5.2.2. Input Parameters in the Design of Simulations (DoS)…….203 

5.2.3. Statistical Analysis…………………………………………….. 204 

5.3. Results……………………………………………………………… 208 

5.3.1. Half-Factorial Design………………………………………….208 

5.3.2. Multiple Linear Regression………………………………….. 208 

5.3.3. Process Optimization………………………………………… 211 

5.3.4. Residuals Analysis for Normality……………………………. 215 

5.3.5. Information Criteria…………………………………………... 220 

5.4. Conclusions……………………………………………………….. 224 

References………………………………………………………………… 228 

CHAPTER 6. DISSERTATION CONCLUSIONS AND RECOMMENDATIONS... 231 

6.1. Overall Conclusions……………………………………………… 232 



xiv 

 

6.2. Contributions………………………………………………………234 

6.3. Recommendations……………………………………………….. 235 

References………………………………………………………………… 239 

VITA……………………………………………………………………………………241 

 

  



xv 

 

LIST OF TABLES 

Table 2.1. Range of published material parameters for different organic 

materials. ............................................................................................................ 68 

Table 3.1. Proximate and density analysis of switchgrass, loblolly pine, and 

hybrid poplar samples. ................................................................................... 126 

Table 3.2. Chemical composition (wt.% based on dry ash free basis) of 

switchgrass, loblolly pine, and hybrid poplar samples. ............................. 128 

Table 3.3. The angle of repose and the coefficient of friction results for the 

switchgrass, loblolly pine, and hybrid poplar samples. ............................. 133 

Table 3.4. ANOVA tables for a) angle of repose and b) coefficient of friction 

results for switchgrass, loblolly pine, and hybrid poplar samples. ........... 135 

Table 3.5. Comparison of bulk density from compressibility plot and direct 

measurement. .................................................................................................. 140 

Table 3.6. Summary of shear strength parameters for switchgrass, loblolly pine, 

and hybrid poplar samples. ........................................................................... 143 

Table 3.7. Chemical composition (wt.% based on dry ash free basis) of hybrid 

poplar samples with different cellulosic contents. ...................................... 146 

Table 4.1. Material and interaction properties used in baseline DEM model for 

switchgrass, loblolly pine, and hybrid poplar samples. ............................. 175 



xvi 

 

Table 4.2. Dynamic particle analysis results for the switchgrass, loblolly pine, and 

hybrid poplar samples. ................................................................................... 184 

Table 4.3. Computational and experimental outputs from the angle of repose 

tests for switchgrass, loblolly pine, and hybrid poplar samples. .............. 187 

Table 5.1. DEM input parameters varied in the DoS. ......................................... 205 

Table 5.2. DEM input parameters considered constant in the DoS. ................ 206 

Table 5.3. Inputs and outputs of the angle of repose simulation studies for 

switchgrass (SG), loblolly pine (PI), and hybrid poplar (POP) particles. ... 209 

Table 5.4. Multiple linear regression statistics for switchgrass particles. ........ 210 

Table 5.5. Multiple linear regression statistics for loblolly pine particles. ....... 212 

Table 5.6. Multiple linear regression statistics for hybrid poplar particles. ..... 213 

Table 5.7. Information criteria for switchgrass simulation dataset. .................. 222 

Table 5.8. Information criteria for loblolly pine simulation dataset. ................. 223 

Table 5.9. Information criteria for hybrid poplar simulation dataset. .............. 225 

 



xvii 

 

LIST OF FIGURES 

Figure 2.1. Structural composition of lignocellulosic biomass materials, showing 

the function of the main polymer constituents 38, 39. ..................................... 25 

Figure 2.2. A simplified schematic diagram of the lignocellulosic biomass 

refining process 47. ............................................................................................ 27 

Figure 2.3. Flow issues prevalent in biorefinery conveyor systems, a) bridging 

(arching), b) ratholing, and c) clogging. ......................................................... 30 

Figure 2.4. Economic impacts of reduced on-stream time in a fast pyrolysis 

process 47. ........................................................................................................... 32 

Figure 2.5. Lignocellulosic biomass materials of different morphological 

features, a) switchgrass, b) loblolly pine, and c) hybrid poplar. .................. 34 

Figure 2.6. Relation between biomass structural constituents and 

physiomechanical properties 133. .................................................................... 41 

Figure 2.7. Discrete element modeling of granular materials (pharmaceutical 

tablets) 203. .......................................................................................................... 49 

Figure 2.8. Schematic diagram of a) hard-sphere model and b) soft-sphere 

model 192. ............................................................................................................ 53 

Figure 2.9. Schematic diagram of forces operating between particles 187. ....... 55 

Figure 2.10. Schematic representation of three shape descriptors, a) form, b) 

angularity, and c) surface texture 237. .............................................................. 60 



xviii 

 

Figure 2.11. Representation of particle in three-dimension using the Feret 

parameters. ........................................................................................................ 60 

Figure 2.12. Multisphere model of a) rice grains 288, b) Jatropha curcas 289. ..... 70 

Figure 2.13. Comparison of the measured computing time (wall time) between 

the mono-sphere, sphero-polyhedron, and custom-polyhedron shape 

modes for a cyclic loading-unloading test using a quarter-geometry 

container 197. ....................................................................................................... 72 

Figure 2.14. Representation of real particles in DEM with simpler shapes a) 

multisphere approach 278, b) superquadric approach 295, and c) polyhedral 

approach 197. ...................................................................................................... 73 

Figure 2.15. Superquadric representation of different particle shapes 295. ...... 75 

Figure 2.16. Particle-particle contact for superquadric particles. ...................... 77 

Figure 3.1. Sample materials of different sizes, a) switchgrass,  b) loblolly pine, 

and c) hybrid poplar. ...................................................................................... 115 

Figure 3.2. Schematic representation of the experimental setup for the angle of 

repose measurement...................................................................................... 121 

Figure 3.3. Determination of the angle of repose from the material pile using the 

fitted triangle. .................................................................................................. 121 

Figure 3.4. Schematic representation of the triaxial cell with the sample under 

compressive load. ........................................................................................... 125 



xix 

 

Figure 3.5. Differential thermogravimetric (DTG) curves of the thermal 

decomposition of switchgrass, loblolly pine, and hybrid poplar samples.

 ........................................................................................................................... 130 

Figure 3.6. Material pile formed for a) switchgrass, b) loblolly pine, and c) hybrid 

poplar samples, after image processing. ..................................................... 132 

Figure 3.7. Boxplots for the a) angle of repose, b) coefficient of friction results 

for switchgrass, loblolly pine, and hybrid poplar samples. ....................... 134 

Figure 3.8. Bulk density as a function of normal stress, i.e., compressibility curves 

for switchgrass, loblolly pine, and hybrid poplar materials of different sizes.

 ........................................................................................................................... 138 

Figure 3.9. Principal stress difference vs. axial strain for a) switchgrass, b) loblolly 

pine, c) hybrid poplar samples. ..................................................................... 140 

Figure 3.10. Volumetric strain vs. axial strain for a) switchgrass, b) loblolly pine, 

c) hybrid poplar samples................................................................................ 142 

Figure 3.11. Mohr's Circles at different confining stresses, a) switchgrass, b) 

loblolly pine, and c) hybrid poplar samples. ............................................... 142 

Figure 3.12. Angle of repose as a function of structural constituents, i.e., a) 

cellulose, b) hemicellulose, and c) lignin for biomass materials of the same 

size (0.6-0.4 mm). ............................................................................................ 148 



xx 

 

Figure 3.13. Shear strength as a function of structural constituents, i.e., a) 

cellulose, b) hemicellulose, and c) lignin for biomass materials of the same 

size (0.6-0.4 mm). ............................................................................................ 148 

Figure 3.14. Angle of repose as a function of particle size for a) switchgrass,  b) 

loblolly pine, and c) hybrid poplar samples. ............................................... 150 

Figure 3.15. Shear strength as a function of particle size for a) switchgrass,  b) 

loblolly pine, and c) hybrid poplar samples. ............................................... 152 

Figure 4.1. a) Macro-scale and b) micro-scale view (scanning electron 

microscopy images) of switchgrass particles. ............................................. 167 

Figure 4.2. Herbaceous and woody biomass sample materials. ...................... 173 

Figure 4.3. Particle tracking process for the dynamic particle analyzer (PartAn3D 

Pro) used for particle shape and size distribution analysis. ....................... 176 

Figure 4.4. Particle image from a) dynamic image analysis and error 

minimization, b) Particle assembly in DEM model. ..................................... 179 

Figure 4.5. Computational domain of the hollow cylinder angle of repose test. 

a) isometric view, b) front view. ..................................................................... 182 

Figure 4.6. Front view of material piles from simulation and experiment after 

image processing for a) switchgrass, b) loblolly pine, and c) hybrid poplar.

 ........................................................................................................................... 185 



xxi 

 

Figure 4.7. Top view of material piles from simulation and experiment after 

image processing for a) switchgrass, b) loblolly pine, and c) hybrid poplar.

 ........................................................................................................................... 186 

Figure 4.8. The magnitude of total contact force within particle assemblies of 

different aspect ratios. .................................................................................... 190 

Figure 5.1. Heat map of the reduced model of the angle of repose simulation 

study for switchgrass. ..................................................................................... 214 

Figure 5.2. Heat map of the reduced model of the angle of repose simulation 

study for loblolly pine. .................................................................................... 216 

Figure 5.3. Heat map of the reduced model of the angle of repose simulation 

study for hybrid poplar. .................................................................................. 217 

Figure 5.4. 3D correlation plot for the reduced model for switchgrass. ......... 218 

Figure 5.5. 3D correlation plot for the reduced model for loblolly pine. ........ 218 

Figure 5.6. 3D correlation plot for the reduced model for hybrid poplar. ..... 219 

Figure 5.7. a) Angle of repose (AOR) values for switchgrass – actual vs. estimated 

using the reduced model, b) residuals vs. estimates plot. ........................ 219 

Figure 5.8. a) Angle of repose (AOR) values for loblolly pine – actual vs. 

estimated using the reduced model, b) residuals vs. estimates plot. ...... 221 

Figure 5.9. a) Angle of repose (AOR) values for hybrid poplar – actual vs. 

estimated using the reduced model, b) residuals vs. estimates plot. ...... 221 



xxii 

 

Figure 5.10. Q-Q plot for the switchgrass simulation dataset. ......................... 222 

Figure 5.11. Q-Q plot for the loblolly pine simulation dataset. ........................ 225 

Figure 5.12. Q-Q plot for the hybrid poplar simulation dataset. ...................... 226 



1 

 

CHAPTER 1.  

INTRODUCTION  
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1.1. Introduction and Problem Statement  

The rise in the global population and associated energy demand, 

exacerbation of the climate change crisis, decreasing reserves of fossil fuel 

sources, and socio-political concerns about the existing inequities in the fossil 

fuel markets have increased the need for clean, sustainable, and renewable 

energy 1-3. Among renewable energy sources, plant biomass material, also 

commonly known as lignocellulosic biomass material, has emerged as a 

promising substrate of natural, inexpensive, potentially carbon-neutral energy. 

Sources of lignocellulosic biomass include agricultural and forestry residues, 

dedicated energy crops, and biowaste products 4. Since lignocellulosic biomass 

comes from non-edible sources, they do not compete with human and animal 

food 5, 6. Additionally, certain bioenergy crops can be potentially grown in 

marginal lands without competing with croplands, which is especially relevant 

for countries with limited land and forest resources 7, 8. Thus, lignocellulosic 

biomass materials act as sources of bioenergy and fuel without affecting the 

global food-energy nexus 9. 

The key to expanding bioenergy usage and making it more commercially 

viable involves addressing the major cost drivers affecting the overall bioenergy 

economics. The conversion of lignocellulosic biomass into bioenergy, biofuel, 

and biochemical products occurs in a biorefinery 10, 11. The biorefinery separates 
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the biomass feedstock using necessary technologies into different chemical 

compounds, recovers the inherent energy, and generates value-added 

products 12, 13. A unique challenge of lignocellulosic biomass materials used in 

the biorefinery industry is its inherent variability 14. Biomass feedstock varies in 

composition due to seasonal, chemical, species, and spatiotemporal conditions, 

making the design and construction of biorefinery equipment for handling such 

materials difficult 15. The highly non-uniform biomass feedstock poses 

challenges both in upstream processes like feedstock collection, handling, and 

preprocessing and downstream processes like the thermochemical conversion 

processes (i.e., pyrolysis, gasification, combustion) 16, 17. For example, during the 

feedstock handling and preprocessing stage, the biomass material passes 

through a number of conveyance systems, such as hopper conveyor, screw-feed 

conveyor, screener-feeder conveyor, and vibratory conveyor 18. The feedstock 

material experiences flow issues unique to each conveyor, such as bridging and 

ratholing in hopper conveyors and material clogging in screw-feed conveyors 

19-21. The feedstock flow issues in the conveyor systems have highly detrimental 

effects on biorefinery economics 10, 22. They slow down the conveyance and 

conversion process, affect machine life, and potentially lead to partial or even 

complete shutdown of the biorefinery 23, 24. Hence, we need to improve our 

fundamental understanding of biomass feedstock flow physics and mechanics 
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to design more efficient machinery and equipment, reduce the risk of failure and 

shutdowns, and improve the overall commercial viability of the global 

biorefinery industry. 

Specifically, we need to understand the impacts of biomass cell wall 

structure on its bulk flow behavior to address the fundamental flow issues. The 

lignocellulosic biomass cell wall has a compound, non-uniform, three-

dimensional matrix structure comprising three polymers: cellulose and 

hemicellulose, both polysaccharides, and lignin, a phenolic polymer, with trace 

amounts of other organic and inorganic constituents 14, 25-27. The relative 

composition of biomass constitutive polymers varies between species, harvest 

locations, and conditions and affects such materials' handling, processing, and 

conversion 28. The fundamental relation between the structural composition of 

the lignocellulosic biomass cell wall and the different macro and micro-scale 

mechanical behaviors of the biomass feedstock is an area of great interest. 

However, limited fundamental knowledge is available at the moment 29-31. 

Understanding the relationship between structural composition and specific 

mechanical behaviors, such as frictional behavior under different flow 

conditions, is essential for favorably enhancing said behaviors 32, 33. 

To investigate the structural composition-mechanical behavior 

relationship, we must account for the granular nature of lignocellulosic biomass 
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particle systems. Granular systems comprise a group of macroscopic particles 

undergoing numerous microscopic interactions, and system properties at both 

the particle-scale and bulk-scale depend upon the contacting and non-

contacting forces between the particles 34, 35. Prior research shows that physical 

and chemical properties at the bulk-scale and particle-scale of granular 

particulate feedstocks have an outsized influence on their flow behavior in a 

variety of flow conditions 24, 36, 37. Accurate analysis and measurement of the 

system properties are essential for predicting the granular flow and 

development of handling, feeding, and processing systems 19, 38. 

While granular particulate systems can be analyzed either experimentally 

or computationally, a robust analysis process requires a synergistic balance 

between experimental and computational approaches. Bulk-scale experimental 

analyses of granular materials in a laboratory environment can be expensive and 

impractical for particle-scale investigations because even small particle 

assemblies easily contain tens of thousands of particles 39, 40. On the other hand, 

the application of computational techniques, such as discrete element modeling 

(DEM), for lignocellulosic biomass is complicated by the non-uniform 

morphological, material, and mechanical properties of biomass feedstock 16, 41. 

The computational model needs to capture the inherently variable biomass 

properties, simulate the physical flow process using the available computing 
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power, and generate simulation outputs that can be validated with results 

obtained from physical experiments. 

This dissertation project aims to provide a rational approach combining 

experimental techniques and computational modeling to investigate the 

relationship between lignocellulosic biomass structural constituents, 

morphology, and flow behavior. Our approach involves the characterization of 

lignocellulosic biomass particulates of different structures and morphologies, 

conducting physical flow tests to determine macroscale flow parameters, and 

generating computational models that could provide further insights into their 

microscale flow behavior. The proposed experimental and computational 

framework allows for examining different biomass feedstock, predicting and 

addressing flow issues, and developing next-generation conveyance systems. 

1.2. Research Objectives 

The overall target of this dissertation research is to develop a 

fundamental understanding of the relationship between structural constituents 

of lignocellulosic biomass, i.e., cellulose, hemicellulose, and lignin, their, 

morphology, and the impact of the structure and morphology on their flow 

behavior. We strive to Investigate experimentally with biomass particles of 

different structural compositions, followed by classical physical flow 
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characterization tests, and computationally, through high-fidelity discrete 

element modeling.  

We organized the project around the following specific objectives: 

Objective 1: To experimentally examine and establish the relationship 

between lignocellulosic biomass structural components, morphology, and their 

macro-scale flow behavior. 

We hypothesize that the lignocellulosic biomass materials of different 

structural compositions and morphologies will have significantly different 

frictional and shear strength characteristics. The central research question we 

seek to answer in this objective is: How can we relate the variation of structural 

constituent contents and morphologies between and within lignocellulosic 

biomass materials with variations in their flow behavior? 

To prove the hypothesis and answer the central question, we conduct 

three different case studies to quantify the effects of different lignocellulosic 

biomass structural constituents on the frictional parameters and shear strength 

of herbaceous, softwood, and hardwood feedstocks through a series of 

standardized tests. 

For the first case, we examine the relationship between lignocellulosic 

biomass materials, namely switchgrass, hybrid poplar, and loblolly pine, with 

different proportions of principal structural constituents, namely cellulose, 
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hemicellulose, and lignin, and their frictional parameters and shear strength 

characteristics. 

For the second case, we investigate the relationship between the 

structural compositions of biomass materials of varying cellulosic content but 

collected from a single source, namely hybrid poplar, and their frictional 

parameters and shear strength characteristics. 

Finally, the third case explores the relationship between lignocellulosic 

biomass materials, namely switchgrass, hybrid poplar, and loblolly pine, of 

different particle sizes and their frictional parameters and shear strength. 

Objective 2: To computationally generate particle assemblies capturing 

real biomass morphology and examine their macro-scale flow behavior and 

micro-scale interactions. 

We hypothesize that if we can experimentally determine the necessary 

particle parameters and combine them with superquadric particle assumptions, 

we can reasonably represent real particle morphology and model 

lignocellulosic biomass flow comparable with complex particle approximation. 

The research question we seek to answer in this objective is: How can we 

realistically capture the highly variable morphological characteristics of 

lignocellulosic biomass materials and generate computational models for 

examining their flow behavior at the macro and micro scale? 
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To prove the hypothesis and answer the central question, we 

experimentally determine the appropriate morphological, material, and 

mechanical properties of switchgrass, loblolly pine, and hybrid poplar 

feedstock. Then, we develop high-fidelity computational models with suitable 

particle shapes and size distribution to represent the biomass particle 

assemblies. Finally, we examine the flow behavior of particle assemblies at both 

the macro scale and micro scale during an angle of repose test and validate the 

macro-scale output with experimental measurements.  

Objective 3: To evaluate the influence of lignocellulosic biomass 

assembly’s morphological, material, and mechanical properties on their macro-

scale flow behavior. 

We hypothesize that we can reduce the number of experiments required 

for the statistical analysis, then use classical and modern model selection criteria 

to develop simpler models to represent the relation between the flow behavior 

and biomass properties. The research question we seek to answer in this 

objective is: How to determine the relative influence of critical biomass 

properties on flow behavior and develop statistically efficient models to capture 

their relationship? 

To prove the hypothesis and answer the research question, we initially 

developed a computational simulation plan following a design of experiments 
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(DoE) principle for the angle of repose discrete element computational model. 

We then conduct a multiple linear regression to identify the most critical input 

parameters and interactions. We then conduct an optimization process to 

determine the optimum value for the angle of repose using the regression 

model and examine the accuracy and quality of the fitted model using classical 

and modern statistical analysis criteria.  

1.3. Organization of the Dissertation 

This dissertation includes the captions adapted for mathematical 

equations in parentheses, e.g. (1.1). We prefixed the mathematical equations 

with the chapter number, a dot, and the equation and reaction number in 

descending order of appearance in the chapter. An illustration of this notation 

is shown below for the relationship between the shear strength (𝜏), normal stress 

(𝜎), and the coefficient of friction (𝜇) by Equation 1.1. 

𝜏 = 𝐶 +  𝜇𝜎, (1.1) 

We used the American Psychological Association (APA), 6th Edition style 

guide for in-text citations and bibliographies. Organizationally, we divided this 

dissertation into six chapters.  

Chapter 1 presents a brief introduction to the dissertation project with an 

overview of the research background, the overall research problem, the 
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research objectives, questions, hypotheses, and the rationale for the proposed 

research plan. This chapter acts as a quick overview of the document for readers.  

Chapter 2 comprehensively reviews previous research on various aspects 

of lignocellulosic biomass flow in biorefineries. Initially, we detail the state-of-

the-art global energy sector and lignocellulosic biomass energy's current and 

future role. We follow this section by discussing lignocellulosic biomass 

structural composition and its effect on biomass particulates' flow behavior. 

Then, we discuss biomass processing in biorefineries and the mechanics and 

economics of biomass flow issues. We then review the past works on flow 

analysis techniques for lignocellulosic biomass materials. Finally, we 

comprehensively overview experimental and computational approaches for 

analyzing biomass flow. 

Chapter 3 captures all activities related to Objective 1 and focuses on the 

experimental investigation of the role of lignocellulosic biomass structural 

constituents, namely cellulose, hemicellulose, and lignin on lignocellulosic 

biomass particulates' flow behavior. The chapter initially shows a case study for 

relating the proportion of cellulose, hemicellulose, and lignin to the frictional 

parameters and shear strength characteristics for biomass materials sourced 

from different feedstocks. The second case study relates the structural 

compositions of biomass materials from a single source with their frictional 
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parameters and shear strength characteristics. The third study shows the 

relationship between biomass materials of varied sizes sourced from different 

feedstocks and their frictional parameters and shear strength characteristics. 

Finally, we summarize our findings from these case studies in the conclusions 

section. 

Chapter 4 captures all activities related to Objective 2 and presents a 

framework for capturing lignocellulosic biomass morphology and flow behavior 

by combining experimental morphological parameter measurement and 

discrete element computational modeling (DEM). The chapter initially describes 

the material selection and characterization techniques used to quantify physio-

mechanical properties. Then we present the quasi-three-dimensional imaging, 

image processing, and error minimization used for capturing the morphology 

of the lignocellulosic particles with a high degree of accuracy. Next, we show the 

process for generating the superquadric particulate assemblies in the DEM 

environment to recreate the hollow cylinder angle of repose study. Afterward, 

we present the outputs from DEM computational models, validate them using 

experimental outcomes, and explore the microscale behavior using the 

computational model. Finally, we provide research conclusions based on our 

experimental and computational analysis. 
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Chapter 5 describes the evaluation of the relative influence of 

morphological, material, and mechanical properties of lignocellulosic biomass 

assembly properties on their macro-scale flow behavior. The chapter initially 

describes the design of simulations (DoS) process for producing a matrix of DEM 

simulations for the switchgrass particles by varying selected DEM input 

parameters and determining the angle of repose for each simulation case study. 

Then, we present a classical multiple linear regression model to describe the 

relationship between the response and predictor variables. We follow this step 

with a factorial analysis to determine the most influential input parameters and 

their interactions and generate a reduced model. Then, we provide a process 

optimization technique to determine the lowest value for the angle of repose 

from the reduced model. Next, we examine the suitability of the reduced model 

by conducting a residuals analysis, scoring the information criteria for the 

dataset. Finally, we summarize our findings in the conclusions section. 

Finally, chapter 6 details the overall conclusions made from the previous 

chapters' results, summarizes the contributions made to the field, and makes 

recommendations for future researchers to continue the contributions made by 

this work.  
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Disclaimer: The author previously included partial results of this chapter's work 

in the article: 

Ehite, E.H., and Abdoulmoumine, N. “Woody and herbaceous biomass 

feedstocks and their physical, chemical, and thermal properties.” Under review 

for publication in the Handbook of Biorefinery Research and Technology, 2023.  

https://doi.org/10.1007/978-94-007-6724-9. 

2.1. The Global Energy Scenario  

The global consumption of energy has grown steadily since the 20th 

century due to the ever-increasing population and corresponding 

industrialization. The global energy supply ramped up from 6098 Mtoe in 1973 

to 14282 Mtoe in 2018 to meet this ever-growing energy demand, with 84.3% 

of that energy coming from fossil fuel sources 1. The energy consumption in the 

United States of America constitutes 25% of the global energy consumption, 

with about 80% of its energy currently derived from fossil fuels, including 

petroleum, coal, and natural gas 2. However, the negative impact on global 

climate by fossil fuels, the ever-dwindling reserve of crude oils and geopolitical 

factors affecting their supply chain, and socio-political issues related to 

extraction technologies like hydraulic fracking have made the proper utilization 

of renewable energy resources to produce fuel and energy a critical issue for   
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the global energy researchers 3, 4.  

2.2. Biomass Energy Sources  

In the United States, renewable energy sources, including hydropower, 

wind, solar, biomass, geothermal, and ethanol, supply 11% of the annual 

domestic energy consumption 2. Biomass, including wood, biogenic waste, and 

biofuels, constitutes nearly 43% of the total renewable energy consumed. 

Biomass-derived energy and products are widely used in industrial, 

transportation, residential, and commercial sectors 5. The first generation of 

biofuels sourced from biomass substrates focused on food crops like corn, 

grains, soybean, and sugar beets, and the biofuel derived from such sources is 

termed first-generation biofuels 6. However, such biofuels have low energy 

density and high processing costs, making them a poor substitute for fossil fuels 

7. Moreover, food sources for energy production create competition for land and 

water, negatively influence the price and availability of food, and exacerbate 

socioeconomic inequalities 8. 

Therefore, biomass researchers have concentrated on energy extraction 

from inedible feedstock materials and termed them second-generation biofuels 

9. Among the second-generation biofuel sources, lignocellulosic biomass 

material sourced from plants and herbaceous sources has emerged as an 
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inexpensive, renewable, and abundant energy source. Biomass materials 

contain biopolymers such as cellulose, hemicellulose, and lignin, which can be 

converted into their monomer sugars by a succession of thermo-chemical and 

biological processes to produce a variety of bioproducts. Typical sources of 

lignocellulosic biomass include agricultural residues (e.g., wheat straw, 

sugarcane bagasse, corn stover), forest products (hardwood and softwood), 

dedicated energy crops (switchgrass, Salix, sugarcane, corn), or aquatic plants 

(water hyacinth) 10. Specifically, dedicated woody energy crops and herbaceous 

feedstocks are of interest because they are grown specifically for energy 

production, often on marginal lands unsuitable for food production 11. These 

lignocellulosic materials act as substrates of bioenergy and fuel without affecting 

human or animal food production 12, 13. Thus, bioproduct extraction from these 

agrarian sources is a potential solution for disposing of residual materials while 

reducing pressures on human-animal food security 14. 

In 2017, biomass contributed to 45% of the total renewable energy 

consumption in the United States 5. In addition to energy, biomass acts as 

feedstock for producing liquid transportation fuels and chemical products 15. 

The US Department of Agriculture (USDA) and the US Department of Energy 

(DOE) set down a target to obtain 20% of the total fuel used for transportation 

purposes and 25% of the chemical products from biomass sources by the year 
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2030 16. Additionally, the USDA agricultural innovation agenda (AIA) has a target 

of increasing the agricultural industry output (food, fiber, fuel, and feed) by 40% 

while reducing the environmental footprint by 50% by the year 2050 17. The 

efficient utilization of lignocellulosic biomass materials to produce biofuel, 

energy, and related chemical products aligns directly with USDA’s targets of 

increasing agricultural productivity, enhancing forest management, reducing 

food loss and waste, and supporting renewable energy feedstocks 18. Thus, 

having a robust understanding of lignocellulosic biomass material's structural 

composition is essential for maximizing its potential as a crucial component of 

the US energy and agriculture portfolio. 

2.3. Lignocellulosic Biomass Composition  

The lignocellulosic biomass cell wall has an anisotropic, three-

dimensional matrix structure comprising cellulose, hemicellulose, lignin, and 

trace amounts of other chemical compounds.  

Cellulose is a glucose polymer consisting of linear chains of (1,4)-D-

glucopyranose units arranged in a microcrystalline structure and is difficult to 

dissolve or hydrolyze under natural conditions. The degree of polymerization 

(DP) for the cellulose chains ranges from 500-25,000 19, 20. The agglomeration of 

cellulose chains by Hydrogen and Van Der Waals bond generates microfibrils, 
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and they bundle together to form cellulose fibers. These fibers provide the 

biomass matrix its mechanical strength and chemical stability 21, 22. Cellulose acts 

as the major constituent of the plant cell wall 23. 

Hemicellulose is a heteropolysaccharide. i.e., a mixture of different 

polysaccharides, and comprises a variety of hexoses (mannose, glucose, 

galactose), pentoses (xylose, arabinose), and gluconic acids. Xylan is the most 

predominant hemicellulose for herbaceous and hardwood biomass, and 

glucomannan is predominant in softwood 22. Hemicellulose is more readily 

soluble, and the degree of polymerization for the hemicellulose branches 

ranges from 100-200 24, 25. Hemicellulose links the cellulose fibers and lignin, 

providing biomass structure rigidity 26, 27.  

Lignin is a three-dimensional, highly cross-linked phenolic polymer 

consisting of phenylpropanoid substrates such as p-hydroxyphenyl (H-type), 

guaiacyl (G-type), and syringyl (S-type) units 28, 29. Lignin has an amorphous 

structure with two parts: the aromatic part and the C3 chain part. Only the OH 

group is a usable reaction site for the phenolic and alcoholic hydroxyl groups. 

There are no chains with repeating subunits like cellulose and hemicellulose 30. 

As such, the enzymatic hydrolysis of lignin is extremely difficult. Lignin provides 

structural support to the lignocellulose matrix by filling the space between 
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cellulose and hemicellulose (thus often called a ‘glue’) and resists microbial 

intrusions and oxidative stress 31, 32.  

The relative proportion of these major constituents varies between 

species, i.e., herbaceous, woody, and agricultural residues and types, e.g., 

hardwood and softwood 33. For example, hardwoods like maple, elm, and 

poplar typically have a lower cellulose content (38-49%) than softwoods like 

pine, cedar, and fir (40–45%) but a higher lignin content (hardwood: 26-34%, 

softwood: 23-30%) 34, 35. Generally, the proportion of cellulose, hemicellulose, 

and lignin in the biomass by weight can be 40–60%, 15–30%, and 10–25%, 

respectively 36. 

In addition to the main polymer constituents, the biomass structures 

contain additional compounds called extractives or volatiles. Extractives consist 

of water-soluble modules, such as sucrose or amylose, or alcohol-soluble 

modules, like chlorophyll and waxes. Finally, the biomass structure may include 

secondary components like alkaloids, resins, triglycerides, pigments, or 

terpenes 37.  

Figure 2.1 shows a detailed view of the structural composition of 

lignocellulosic biomass materials. 
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Figure 2.1. Structural composition of lignocellulosic biomass materials, 

showing the function of the main polymer constituents 38, 39.  
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2.4. Biomass Processing in Biorefineries  

The processing and conversion of biomass materials to produce 

transitional products for synthesizing energy, liquid fuel, and chemicals happen 

in biorefineries. The raw biomass feedstock undergoes handling and 

preprocessing through several transport systems before being fed into the 

thermochemical conversion platforms. The production of valuable end products 

from biomass involves deconstructing the lignocellulosic matrix structure into 

reactive intermediaries by biochemical or thermochemical pathways 40, 41. Under 

biochemical conversion processes, the constitutive polysaccharides (cellulose 

and hemicellulose) are released from lignin using different pretreatment 

processes, followed by hydrolysis into simple sugar monomers (e.g., xylose and 

glucose), and finally, fermentation of the released sugars to produce biofuels 

and chemicals 42, 43. Under thermochemical conversion processes (pyrolysis, 

gasification, combustion, co-firing, liquefaction, and carbonization), the biomass 

feedstock undergoes a controlled heating and thermal transformation into 

syngas or flue gas, liquid bio-oil, and solid biochar 44-46. The efficient production 

of energy products from biomass depends on the correct handling of biomass 

feedstock materials.  

Figure 2.2 shows a simplified diagram of the lignocellulosic biomass 

refining process in biorefineries.   
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Figure 2.2. A simplified schematic diagram of the lignocellulosic biomass 

refining process 47.  
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One of the most overlooked areas in the bioenergy industry is receiving 

the biomass feedstock material from the raw material sources and transporting 

it to the conversion equipment, i.e., the conveyance process. During the 

conveyance process, the lignocellulosic biomass feedstock passes through 

several conveyance systems, like a hopper conveyor, screw-feed conveyor, 

screener-feeder conveyor, and vibratory conveyor 48. The screener-feeder 

conveyors are preferred for transportation over longer distances, whereas screw 

conveyors serve as an inexpensive alternative for shorter-distance applications 

49.  

During feedstock flow through typical conveyance systems in the 

biorefinery, the biomass material exhibits a range of behaviors owing to the 

different stress states related to their flow condition, the mechanics of which 

require further investigation. The biomass conveyor system design involves 

accounting for the feedstock variability and ensuring reliable and uniform flow 

characteristics 48. 

2.5. Flow Issues in Biorefineries and Their Economic Impact 

The feedstock material experiences flow through different conveyance 

systems issues, and they encounter flow issues unique to each conveyor 50. Some 

of the most common flow issues include: 
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- Bridging (Arching): This is a flow issue encountered in hopper 

conveyors, in which an arch-shaped obstruction forms above the hopper outlet 

51. The biomass feedstock undergoes mechanical interlocking, and the arch 

supports the contents of the bin. Thus, feedstock material discharge through the 

outlet becomes obstructed 52. 

- Ratholing: This is another issue endemic to hopper conveyors, in which 

a pipe-like vertical-cavity forms above the outlets 53, 54. The feedstock can only 

flow through the cavity, with any material outside becoming stagnant 55.  

- Clogging: This occurs in screw conveyors (augers) when the buildup of 

material (owing to large particle size, high moisture content, or cohesiveness) 

leads to a blockage of the auger blades 56, 57. Clogging causes high disturbance 

in the system, leading to power, feeding, and safety issues 58.  

Figure 2.3 shows the issues biomass materials face in different conveyor 

systems.  

The feedstock flow issues in the conveyor systems have a highly 

detrimental effect on the biorefinery's operational economics 59, 60. Due to the 

challenges faced in the feedstock handling and preprocessing stage, 

biorefineries typically operate on-stream for only 20-50% of their design 

capacity 61. A techno-economic analysis done for a conceptual biorefinery 

assessed that to reach the break-even point, the biorefinery needs to operate   
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Figure 2.3. Flow issues prevalent in biorefinery conveyor systems, a) 

bridging (arching), b) ratholing, and c) clogging.  
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on-stream for 90% of its design capacity (as shown in Figure 2.4) 47. Thus, to meet 

annual cost targets, biorefineries need to raise the minimum fuel selling price 

(MESP) to more than 80% of the target selling price, making them non-

competitive with conventional fuel refineries 62, 63. 

The flow issues have implications beyond the biorefining industry. The 

change in flow properties of granular materials (highly prevalent in all 

manufacturing industries) during the flow process manifests as processing 

problems and severely affects product quality 64. For example, 94% of all solid 

processing plants experience processing problems 65, 66. The pharmaceutical 

industry is especially susceptible to these problems as 80% of the processed 

products (tablets, pills, or capsules) are granular in nature 64, 67, 68. Therefore, a 

fundamental understanding of the controlling factors behind the granular 

biomass flow can benefit the global manufacturing and processing industry.  

Significant work has been done to analyze and improve the logistics of 

biomass feedstock flow, including improvement of biomass collection and 

pretreatment operations 69, supply chain management 70, and the harvest and 

preservation of feedstock 71. However, feedstock quality remains a critical issue, 

as feedstock consistency is integral for reliable, efficient bio-refinery operation 

66. Therefore, a physically and chemically uniform, reliable, and consistent 

biomass feedstock is essential for optimum biorefinery operation 72.   
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Figure 2.4. Economic impacts of reduced on-stream time in a fast pyrolysis 

process 47.  
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2.6. Flow Analysis of Lignocellulosic Biomass Feedstock 

Biomass feedstock exhibits varying quality arising from variations in 

species (herbaceous/woody), geographical locations (warm/cold climate), 

fractional forms (chips/pellets/sawdust), seasonal effects, and 

harvesting/collection techniques 73. The variations are especially evident in the 

biomass particle morphology (size/shape) and size distribution, which are 

essential particle properties that influence feedstock flow behavior 74.  

Figure 2.5 shows three different varieties of biomass feedstock materials 

from diverse sources, namely herbaceous crops (switchgrass), softwood 

(loblolly pine), and hardwood (hybrid poplar), subjected to the same 

preprocessing techniques (hammermilling) and sieved to a particular size range. 

Yet, particle shape and size distribution are highly different between them. 

The quality of biomass feedstock is highly dependent on the feedstock's 

physical, chemical, and engineering properties. The most influential properties 

include particle morphology and distribution, bulk and particle density, 

Poisson’s ratio, elastic modulus, friction coefficient, and restitution coefficient. 

The properties are interlinked, regulating biomass conveyance and conversion 

process efficiency 75. The material and interaction properties are highly 

influential in designing biomass transport equipment, storage systems, and 

thermochemical conversion apparatus 76, 77.  
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Figure 2.5. Lignocellulosic biomass materials of different morphological 

features, a) switchgrass, b) loblolly pine, and c) hybrid poplar.  
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Since biomass feedstock has a granular microstructure, they exhibit 

continua-like behavior in the bulk scale 78 and stress inhomogeneity in the 

particle scale 79. Therefore, researchers have focused on the effect of the bulk-

scale and the particle-scale material characteristics and engineering properties 

on the feedstock variability and flow conditions. Furthermore, since the 

conveyance process is a significant cost driver in bioenergy and biofuel 

production, investigating the biomass properties' effect on flow behavior is 

highly relevant. 

While these properties can be studied individually, each parameter's 

measurement during the bulk scale analysis of the biomass feedstock flow is 

expensive and time-consuming 80. Additionally, the interaction effects during the 

flow process also require consideration. As such, computational simulation 

techniques provide a more feasible particle flow analysis 81. The discrete 

element modeling technique (DEM) 82 is widely used for analyzing particle 

dynamics. In this method, computational analysis of the particles' movement 

(particle displacement, velocity, and related forces) involves solving Newton’s 

equations of motion 83. Researchers have extensively used the discrete element 

method to analyze the flow of granular materials in a wide variety of conveyance 

systems, such screw conveyors 84-86, hopper conveyors 87-89, and belt conveyors 

90, 91.  Others have applied the DEM technique to analyze the mechanical 
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behavior of specific feedstock materials such as switchgrass 92, corn stover 93, 

pine 94, and poplar 95. However, a robust approach combining experimental and 

computational techniques is necessary for analyzing a wide range of feedstock 

materials and conveyance systems. Furthermore, robust computational models 

validated by physical experimental measurements have the potential to predict 

future flow issues encountered by the biomass feedstock in an actual conveyor 

system. Thus, the developed experimental and computational analysis 

framework will help in designing more efficient biomass transport equipment, 

storage systems, and thermochemical conversion apparatus. 

2.7. Experimental Investigation of Lignocellulosic Biomass  

2.7.1. Flow Behavior of Biomass Particles 

Lignocellulosic biomass particles fall in the category of granular materials, 

which are abundant in the natural environment and industrial applications 96. 

Particle scientists have estimated that more than 50% of all manufactured 

products are either in granular form or involve the processing of granular 

materials 97, 98. Despite their ubiquity, the flow behavior of granular materials is 

not clearly understood 99. Solid particulate flow is a complex behavior 

dependent on many powder characteristics, with no one parameter or tests 

completely and quantitatively capturing the flow behavior 100. A granular or 
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powder material's ability to undergo flow under a specified set of conditions 

represents the flowability of said material 51. Flowability results from aggregating 

the physio-mechanical properties that influence the flow and equipment used 

to handle, process, or store materials. No unified framework exists for 

comprehensively describing the particulate flow behavior 101, 102. Hence, 

researchers typically use a combination of experimental techniques and 

empirical correlation to characterize granular particulates 103.  

Scientists characterize the flow behavior of granular particulate 

assemblies in terms of their low shear strength, which depends on the stress 

states. For granular materials, the shear strength (𝜏) is defined in terms of the 

normal stress (𝜎) and the dimensionless coefficient of friction (𝜇), a commonly 

used measure of frictional behavior as presented in Equation 2.1, 

𝜏 = 𝐶 +  𝜇𝜎. (2.1) 

where, 𝐶 = Cohesion (stress independent component),  

𝜇 = coefficient of friction = 𝑡𝑎𝑛(𝜑),  

𝜑 = angle of friction, and  

𝜎 = normal stress. 

The coefficient of friction represents two forces acting perpendicularly 

and in parallel, respectively, to an interface between two bodies under relative 

motion or impending relative motion 104. The translational and rotational 
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motions of the particles in a solid particulate system are closely related to the 

particle-particle and particle-wall coefficients of friction 105. The cohesion force 

is essentially zero for unconsolidated granular material 106, 107; thus, the frictional 

behavior only contains the contribution from the internal friction 108.  

For loose material assemblies, the static angle of friction, and thus the 

coefficient of friction, is equal to the angle of repose, which is the maximum 

angle at which a pile of unconfined material can rest on an incline without 

collapsing 109. According to the classical Coulomb’s theory of friction, the angle 

of internal friction for a conical-shaped pile is equal to the arctan of the maximum 

static friction coefficient, i.e., the angle of repose, assuming the frictional force is 

independent of the contact area and is linearly related to the normal force 110. A 

larger coefficient of friction and the resulting higher resistance to motion result 

in the consumption of kinetic energy and the formation of a material pile of high 

potential energy, thus exhibiting a high repose angle 111. For denser material 

assemblies, the angle of friction and the associated coefficient of friction can be 

determined from the slope of the Mohr-Coulomb failure envelope, representing 

the shear strength at zero confining stress 112.  

The angle of repose test is a popular technique for solid particulate 

system analysis. The angle of repose is an indicator of the flowability of material, 

and researchers classify the flowability as free-flowing (30-38°), fair to passable 
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flowing (38-45°), and cohesive (45-55°) 113, 114. A variety of methods are available 

to determine the static angle of repose of unconfined granular material, 

including the hollow/tilting cylinder method 115-117, the fixed funnel method 118, 

119, and the revolving cylinder/drum method 120, 121. Al-Hashemi et al. conducted 

an exhaustive review of the different methods for the angle of repose 

measurement 122. They concluded that selecting a measurement method 

depends on the specific objectives, materials, and application.  

Another standard flow characterization test is the shear cell test. A.W. 

Jenike 108 initially developed this technique to design hoppers and silos 

handling bulk solid materials. Under this test, the bulk granular specimen is 

contained in an annular shear cell and loaded from the top with vertically acting 

force through the cell lid to adjust the stress level. During testing, the shear cell 

rotates, while lid rotation is prevented by tie rods, leading to solid specimen 

shearing. Forces acting on the tie rods are measured to calculate different 

flowability and frictional parameters, such as the angle of internal friction, time 

consolidation, angle of wall friction, and bulk density 123-125. Shear cells are widely 

used to classify the flowability of granular materials and determine the 

relationship between their bulk density and principal stress components 126. 

There are international standards available specifying the parameter 
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determination procedures 127, and extensive studies have been performed to 

validate the use of shear cell testers for specific situations 125, 128-130. 

2.7.2. Relationship Between Biomass Flow Behavior and Structural 

Composition 

Experimental characterization methods and empirical relationships for 

determining flow parameters solid particle assemblies available for various 

situations. However, the relationship between these parameters and the 

structural and material properties of the particle materials is not well understood 

131, 132. The specific components of biomass materials have an outsized influence 

on their particle and bulk scale properties. While prior research show that 

cellulose, hemicellulose, and lignin play distinct structural roles in the biomass 

matrix and contribute to the biomass mechanical properties (e.g., mechanical 

strength, chemical stability, structural rigidity, etc.), the individual contribution 

of each biopolymer is more challenging to quantify due to their interwoven 

nature. Limited studies focus on the exact nature of the relationship between 

lignocellulosic structural composition and specific mechanical properties of 

biomass materials.  

Figure 2.6 illustrates lignocellulosic biomass structural constituents and 

their influence on particle and bulk-scale physiomechanical properties.  
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Figure 2.6. Relation between biomass structural constituents and 

physiomechanical properties 133.  
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The individual constitutive components can be extracted to alter the 

matrix structure and composition through biochemical (enzymatic degradation 

31, 134) and chemical treatments (aqueous 37, dilute acid 135, or alkaline 136 

pretreatment processes). The alteration of the biomass structure has led to 

phenomena such as the diminution of compressive strength in spruce wood due 

to the thermal degradation of hemicellulose 137, the change of transverse elastic 

modulus of wood cell wall due to a lowered proportion of cellulose and lignin 

138, and increase in tensile strength of lignocellulosic jute fibers by removal of 

hemicellulose 139.  

From the previous studies, we infer that the alteration of the biomass 

structure by changing the composition of hemicellulose, lignin, and cellulose 

content can affect the strength and frictional characteristics and, therefore, 

biomass assemblies' flow behavior. Consequently, the following section 

describes the techniques utilized to change the composition of biomass 

structural constituents by previous researchers. 

2.7.3. Selective Extraction of Biomass Structural Constituents 

Biomass researchers have utilized a variety of pretreatment processes for 

structural modification of lignocellulosic materials to improve the conversion 



43 

 

process of bioenergy and biofuels. Pretreatment efforts can be categorized into 

two major categories: thermo-chemical and biological. 

Thermo-chemical pretreatment processes include hot water extraction 

140-142,  steam explosion 143-145, ammonia fiber expansion 146, 147, dilute acid 

pretreatment 148-150, alkaline pretreatment 149, 151, wet oxidation 152, 153, and CO2 

explosion 154, 155. Among the different methods, the hot water extraction process, 

which utilizes hot water at a moderately high temperature, is a popular choice 

due to the simplicity of the process, as the process requires no additional 

chemicals or specially designed equipment 156. Researchers have successfully 

used the hot water extraction process to dissolve hemicellulose content in 

lignocellulosic biomass feedstock, e.g., switchgrass and loblolly pine 141, sugar 

maple 157, and Norway spruce 140, 141, 157, and fruit processing residues 158.  

For biological pretreatment processes, the wood decay fungi are a 

suitable choice as they are among the most effective bio-converters of native 

cellulose and play an important role in the biodegradation of lignocellulosic 

biomass by producing an array of enzymes 159. Scientists categorize 

Basidiomycete wood fungi (fungi whose spores develop in basidia) in two 

categories: brown rot and white rot fungi, based on the color of decayed wood 

and the degradation mechanism 160. Brown rot fungi preferentially degrade 

cellulose and hemicelluloses 161. The degradation mechanism involves a non-
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enzymatic process, i.e., the Fenton reaction, followed by depolymerization of 

radicals, and finally, enzymatic action leading to cellulosic degradation 162. White 

rot fungi rely more on enzymatic degradation of hemicellulose, cellulose, and 

lignin 163. The white-rot fungi degrade the three major wood components either 

simultaneously or selectively by preferential attack of lignin and hemicelluloses, 

followed by cellulose hydrolysis 164. This is reflected in simultaneous weight loss 

and cellulose depolymerization 165. Lignin degradation using white-rot fungi 

involves the secretion of lignin-degrading enzymes, especially peroxidases 166. 

The degradation of lignin can be performed in two ways, a) selective decay, in 

which lignin and hemicellulose are selectively degraded while cellulose fraction 

remains unaffected. Some commonly used species include C. subvermispora, 

Dichomitus squalens, P. chrysosporium, and Phlebia radiata 167. b) non-selective 

decay, in which approximately equal amounts of all fractions of lignocellulose 

are degraded. Example species include Tramester versicolor, Fomes 

fomentarius 168. 

The effect of brown rot and white rot fungi decay can be investigated in a 

variety of ways, such as nuclear magnetic resonance (NMR) spectroscopy 169-171, 

FT-IR spectroscopy 172, 173, solid-state cross-polarization (CP) 170, 174, 175, X-ray 

diffraction (XRD) 176-178, acid hydrolysis using high-performance liquid 

chromatography (HPLC) 178. These techniques provide complimentary 
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information about the lignocellulose matrix changes in terms of cellulose 

crystallinity and crystal lattice spacing 164, 179. 

In addition to the characterization of biomass structural constitution either 

in their raw state or after undergoing thermochemical or biological modification, 

it is necessary to quantitatively determine the biomass's flow parameters. The 

next section describes the experimental techniques used to characterize solid 

particle assemblies applicable to lignocellulosic biomass materials. 

2.8. Computational Investigation of Lignocellulosic Biomass 

In biorefineries, particulate flow processes are prevalent and have an 

outsized influence on the performance of crucial unit operations and core 

systems, e.g., conversion systems. The particulate flow processes are designed 

following insights and design practices from other biological materials. 

However, considering the challenges encountered in biorefining facilities, there 

is an opportunity to deepen our fundamental knowledge of lignocellulosic 

biomass materials' mechanics and update design practices for their particulate 

flow equipment. These endeavors will directly benefit process efficiency and 

scale-up. Process modeling tools are becoming increasingly necessary to gain 

valuable insight into these processes, translating into improved designs. 
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Lignocellulosic biomass particulate systems are granular in nature, i.e., 

they are a collection of macroscopic particles that undergo unique microscopic 

interactions 180. Granular particulate systems, such as sand, are ubiquitous in 

nature and have applications in various industries, including construction, 

mining, and agriculture 181, 182. The mechanics of these materials are complex, 

and their properties span the range of solids, liquids, and gases. Particulate 

systems' properties depend highly on the micromechanics of both the 

contacting and non-contacting forces between particles 183. The accurate 

understanding and measurement of these forces are essential for predicting the 

flow of biomass materials and the design and development of machinery and 

equipment used for handling, feeding, and processing biomass feedstock 

materials 56, 184. Thus, detailed knowledge about the mechanics of biomass 

particles at the micro or macroscale is important for academics and industry 

practitioners. 

While bulk-scale experimental analyses of granular materials are possible 

in a laboratory environment, they can be costly and are impractical for particle-

scale investigations. Furthermore, the opacity of most analytical flow instruments 

limits accurate experimental measurements using conventional high-speed 

optical imaging approaches 185, 186. Computational simulation techniques can be 

used to investigate a diverse set of granular materials under different flow 
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conditions in a cost-effective and efficient manner 187. Therefore, the high cost 

and inconvenience related to the bulk-scale analysis of granular materials 80 

makes computational modeling a preferred choice for conducting granular flow 

analysis 81, 103, 188. 

Researchers classify computational simulation techniques for granular 

materials into two broad categories: i) continuum models such as finite element 

method (FEM), finite volume method (FVM)) and ii) particle models such as the 

discrete element method (DEM), Monte Carlo method, and cellular automata 189. 

Particle models represent the solid particulate system discretely, and the 

particle-particle collisions are explicitly solved to provide a more accurate 

perspective of the interactions 190. Particle scale computational models are used 

in both academia and industries for process modeling of solid particulates, 

including pharmaceuticals 191, 192, food 193, agriculture products 194, and specialty 

chemicals 195, 196.  

In particular, discrete element computational modeling (DEM) has 

emerged as a suitable technique for simulating the movement of granular 

biomass particles 197. The approach is especially advantageous because it 

relates the macroscopic and microscopic behavior of biomass particulates, 

which are inexorably related, and thus allows for a detailed accounting of the 

interaction effects between the individual particles for greater fundamental 
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insights to practically develop control and optimization strategies for the flow 

system of such materials 198. The ability of the DEM method to provide a more 

thorough description of particle dynamics has made it popular for investigating 

granular systems 199.  

Figure 2.7 shows the application of the DEM method for the flow 

simulation of pharmaceutical tablets in a triangular hopper. 

A wealth of fundamental knowledge of solid mechanics already exists for 

many granular materials (e.g., sand). However, lignocellulosic biomass 

particulates and their assemblies have unique peculiarities that render the 

prospect of a completely experimental-based approach unrealistic. The 

complex hierarchical structure of lignocellulosic biomass makes them highly 

recalcitrant 200 and makes the inference of physio-mechanical properties of 

biomass materials challenging 201. For example, the density of particulate 

systems in typical DEM simulations is bulk density (also known as envelope 

density) 202. For most biomass materials, the envelope density is less than the 

particle density (also known as skeletal density), which is the ratio of the mass of 

solid material to the sum of the volumes of the solid material and closed pores 

within the material). The measurement of either of these densities is not trivial 

for biomass materials. The envelope density is not highly dependent on any 

change in the particle sizes, whereas the skeletal density increases with the   



49 

 

 

Figure 2.7. Discrete element modeling of granular materials 

(pharmaceutical tablets) 203.  
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reduction in sizes. This is due to the decrease in the skeletal volume due to the 

opening up of interparticle voids 204. The changing void structures make the use 

of traditional characterization techniques like surface area analysis by  Brunauer–

Emmett–Teller nitrogen adsorption/desorption technique 205 or pore size and 

volume analysis by Barret–Joyner–Halenda methods 206 quite challenging.  

The variation in the intraparticle porosity influences the stiffness and the 

heat and mass transfer process during the conversion 207. Furthermore, the 

particle shapes and size distribution vary considerably between different 

species of biomass particles, e.g., switchgrass, pine, poplar, corn stover, etc., 

and can significantly affect their bulk flow behavior 208. Prior researchers have 

shown that the computational results match the experimental measurements 

only when the contact force and frictional force models take the geometry of the 

particles into account 209. Finally, the moisture content in biomass assemblies 

significantly influences their mechanical behavior 210, 211, which is challenging to 

capture in the computational simulation process. 

In summary, the discrete element computational modeling of 

lignocellulosic biomass requires determining particle-scale properties by direct 

or indirect measurement and calibration process, selecting proper physical 

models to represent the interaction between the particles and their 
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surroundings, and designing characterization tests whose outputs are 

comparable with experimental measurements. 

The next section of this literature review provides a theoretical 

presentation of the discrete element method and reviews its application in 

modeling granular biological materials in general and lignocellulosic biomass 

materials. 

2.8.1. The Discrete Element Method (DEM) 

Discrete element modeling is a numerical technique developed by 

Cundall and Strack 82 to compute the characteristics of systems represented by 

particles. The basic philosophy behind DEM is modeling actions at a 

microscopic level to study the effect of these actions on a whole media's motion 

at the macroscopic level 212. The DEM allows the determination of particle 

dynamics parameters (e.g., the magnitude and direction of forces on each 

particle), which are challenging to determine using a physical experimentation 

method 213. A well-designed DEM model captures the physical interaction 

between the particles and their surrounding environment, applies appropriate 

boundary conditions to depict the physical process, and produces results like 

experimental measurements. 

The development of a DEM model requires three major components:  
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i) a contact detection strategy between particles and the 

surrounding environment,  

ii) time-discretized equations of motion governing the particle 

motion, and  

iii) contact models for calculating the interparticle contact forces 214.  

Researchers have used two contact detection strategies: the hard-sphere 

and soft-sphere methods. A hard-sphere method is an event-driven approach 

that assumes particles as rigid bodies 215. Particle collisions are processed 

sequentially, one collision at a time, without explicitly considering the contact 

forces. The soft-sphere method is a deterministic or time-driven approach that 

assumes particles undergo deformations during contact 216. The force model 

calculations include these deformations. It is a more flexible approach than the 

hard-particle method since it allows the modeling of particles of different shapes 

and particle collisions of longer duration 214. Researchers have employed the 

soft-sphere approach for investigating various phenomena like hopper flow 81, 

87, 213, 217, mixing and granulation 218, particle packing 219, and transport properties 

220.  

Figure 2.8 shows a schematic illustration of the two major particle contact 

detection models.  
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Figure 2.8. Schematic diagram of a) hard-sphere model and b) soft-sphere 

model 192.  
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The motion of solid particulate systems, namely, the rotational and 

translational motion, are modeled by Newton’s laws of motion 221, 222. 

The particles' translational and rotational motions are described 

mathematically by Equations 2.2 and 2.3. 

𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
=  ∑ 𝐹𝑖

𝐶   +   ∑ 𝐹𝑖
𝑛𝑐  +   𝐹𝑖

𝑓
 +   𝐹𝑖

𝑔
  , (2.2) 

𝐼𝑖

𝑑𝜔𝑖

𝑑𝑡
=  ∑ 𝑀𝑖𝑗

𝑗

, (2.3) 

where, 𝑣𝑖 = translational velocity of particle i,  

∑ 𝐹𝑖𝑗
𝐶

𝑗 = contact force acting on particle i by particle j or walls,  

∑ 𝐹𝑖𝑘
𝑛𝐶

𝑘 = non-contact force acting on particle i by particle k or 

other sources,  

𝐹𝑖
𝑓

= particle–fluid interaction force on particle i,  

𝐹𝑖
𝑔

= gravitational force,  

𝜔𝑖 = angular velocity of particle i, and  

𝑀𝑖𝑗 = torque acting on particle i by particle j or walls.  

Figure 2.9 schematically describes the fundamental forces acting 

between two particles in contact. 

The final component of a successful DEM model is the calculation of the 

interparticle contact forces and torques. The calculation of contact forces uses 

either a linear or non-linear approach.   
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Figure 2.9. Schematic diagram of forces operating between particles 187.  
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The linear approach assumes the force and displacement to be linearly 

correlated, i.e., the contact forces increase with particle displacement 223, 224. The 

non-linear approach considers the shape of the particles 225. The inter-particle 

interaction at the point of contact gives rise to a torque responsible for the 

particle's rotational motion. The torque consists of a normal and tangential 

component 226. The normal component is called the rolling friction torque and 

is of special interest to researchers 227, 228. The simplest case considers the 

particles rigid and in contact at a single point, and the normal forces do not 

contribute to the total torque. Typically, DEM models consider torque to be zero 

for the sake of simplicity. However, the consideration of torque is important in 

cases where there is a shift between static and dynamic forces, such as strain 

localization 229, heaping and piling 105, and tracking of planar particles 230.  

By calculating the contact forces and torques, we can account for the 

particles' trajectories and solve Equations 2.2 and 2.3 to describe the particulate 

system's dynamic state completely. 

2.8.2. DEM Model Development 

The development of a DEM model for particulate flow systems involves 

specifying four significant aspects (Zhu, Zhou, Yang, & Yu, 2007), which are:  

a) Model parameters selection (material/interaction properties)),  
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b) Particle representation (shape and size distribution),  

c) Particle contact models (contact force calculation), and  

d) Computational flow characterization (real physical process) 

These four aspects are defined, and their values are specified to develop 

particulate media investigation in different software packages, such as 

LIGGGHTS (developed by Sandia National Labs and based on LAMMPS), Kratos 

Multiphysics (developed by CIMNE), Altair EDEM, GranOOO, and YadeDEM. 

2.8.3. Model Parameters: Material and Interaction Properties 

For simulating physical processes, we need to specify certain input 

parameters in DEM models. Typically, we classify parameters into two broad 

categories: material properties (intrinsic characteristics) and interaction 

properties (extrinsic characteristics). Critical material properties used as DEM 

modeling input include particle morphology (size/shape) and distribution, 

density, Poisson’s ratio, and modulus of elasticity (particularly Young’s modulus) 

231, 232. Interaction properties result from the particles’ contact with the 

boundaries and surfaces of their surroundings and other particles. DEM's critical 

interaction properties include the coefficients of static friction, rolling friction, 

and restitution 233. The DEM model's accuracy and reliability depend heavily on 

these parameters' appropriate values 234. Instead of using actual measurements 
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of the experimental procedures' parameters, DEM models often adopt a 

calibration approach. Under this method, the input parameters are varied, and 

appropriate statistical tools compare the computational model output to the 

output of the actual physical experiment 235. The following section discusses the 

material and interaction properties necessary for DEM models and the 

characterization methods for determining these properties. 

2.8.3.1. Particle Morphology and Size Distribution 

Biomass particle shape and size are essential properties of biomass 

particles, and researchers recognize them as one of the key parameters 

influencing flow behavior. A realistic representation of biomass morphology is 

necessary for modeling the physical processes 74. Biomass particles usually have 

highly irregular shapes and aspect ratios 198. Particle scientists define the shape 

of biomass particles in specific dimensional parameters, typically by measuring 

three principal dimensions in the three orthogonally orientations (length, width, 

and thickness) 236. Another method to describe particle shape is by specifying it 

in terms of three morphological parameters: form, angularity, and surface 

texture 237. The form describes the dimensional difference of the particle along 

the principal axes (quantified in terms of sphericity), angularity describes the 
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differences in corners/faces, and surface texture describes the particle surface 

roughness.  

Figure 2.10 schematically describes the three major shape descriptors. 

The selection of the particle size parameter is an important consideration. 

Typical size parameters include particle diameters (area equivalent diameter, 

equivalent perimeter), Legendre ellipse dimensions (length/width/thickness), 

Feret parameters, Martin parameters, Krumbein parameters, Heywood 

parameters, etc. The Feret parameters are extensively used for particle size 

analysis processes to projections of three-dimensional objects on a two-

dimensional plane 238.  For quasi-3d particle analysis, the Feret length represents 

the distance between two parallel tangent lines 239. In such a case, the Feret 

parameters along the x, y, and z planes are the Feret length, Feret width, and 

Feret thickness for the particle in three-dimensional space. Figure 2.11 shows a 

particle in three-dimensional space in terms of the Feret parameters. 

Typically, particles are finely ground to reduce size and provide a more 

spherical shape (aspect ratio ~ 1) 240. The biomass particles' packing highly 

depends on the size distribution 241. The shape and size distribution affect non-

spherical particles' packing, with the shape effect primarily controlling the 

packing structure. The angle of internal friction and the related angle of repose 

positively correlate with the aspect ratio 242 and angularity 243.   
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Figure 2.10. Schematic representation of three shape descriptors, a) form, 

b) angularity, and c) surface texture 237. 

 

 

Figure 2.11. Representation of particle in three-dimension using the Feret 

parameters.  
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The particle size distribution significantly contributes to the particles' 

flowability and strength properties 244. The increase in particle size leads to 

increased yield strength 245 and bulk density 246. The increase in particle size and 

the resulting higher packing density leads to higher bulk and particle density of 

feedstock 208. 

Traditional size measurement approaches like sieving can perform 

measurements in one dimension only (e.g., particle length). Additionally, sieving 

is highly dependent on the orientation of the particle. A particle of a prolonged 

dimension may pass through a sieve if the shorter side (width/thickness) is 

oriented parallel to the sieve plane. Hence, researchers have taken alternative 

characterization approaches for biomass feedstock particle morphology. Some 

alternative digital imaging techniques include a digital scanner combined with 

MATLAB image analysis toolbox 247, scanning electron microscope 248, 249, and 

dynamic image analysis 250, 251. 

The dynamic image analysis method involves loading particle samples 

into the measurement field of high-resolution digital cameras, which capture the 

projection of particle shadows at a high frame rate. The built-in software 

analyzes the captured images to determine the particle at different orientations 

and the resulting particle size distribution and particle size and shape 

parameters (length, width, thickness, aspect ratio, sphericity, angularity, etc.).  
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2.8.3.2. Bulk Density 

Bulk density 𝜌𝑏 is defined as the amount of granular material by weight 

present in a specified volume. Bulk density directly influences the feedstock 

delivery cost to refineries and grain silos 252. A feedstock with lower bulk density 

will have a higher transport and handling cost. The bulk density is highly 

dependent on the moisture content and particle morphology. Hence, any 

measurement of the feedstock's bulk density must include information about 

the moisture content and the particle size and shape distribution 253.  

The typical methods used for determining bulk density are specified 

under the ASTM D1895B or ASABE S269.5OCT 2012 standards 208, 254. In this 

method, a specified amount of sample material flows through a vertical hopper 

and fills up a container of known volume. Then, the overflowing material on top 

of the container is leveled off with a leveling stick. Finally, the material's weight 

inside the container is determined using an appropriate weight scale, and the 

bulk density is found by dividing the material weight by the container volume.  

2.8.3.3. Modulus of Elasticity 

The modulus of elasticity is the ratio of the normal stress to the normal 

strain. Young’s modulus of elasticity (𝑌𝑀) reflects the relationship between the 

stress applied to an object in a specific direction and the deformation suffered 
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in that direction. For bulk solid materials, the stress (𝜎) changes directly 

proportional to the strain, 휀 as per Hooke’s law. Hence, for a sample subjected 

to a uniaxial load, the Young’s modulus, 𝑌𝑀 is given by Equation 2.4. 

𝜎 = 𝑌𝑀 ∗ 휀. (2.4) 

For viscoelastic materials, e.g., granular materials like biomass, Young’s 

modulus is based on the Hertz contact stress equations for small deformations. 

The parallel plate method has been used for computing the apparent Young’s 

modulus for wheat 255, soybeans 256, and 257, whereas Young’s modulus for corn 

was computed using a spherically shaped indenter on a curved surface 258, 259. 

2.8.3.4. Poisson’s Ratio 

Poisson’s ratio (𝑃𝑅) is the proportional deformation along an axis 

perpendicular to which the loading stress is applied. Mathematically, it is the 

absolute value of the ratio of the lateral strain, 휀𝑙 to the corresponding axial 

strain, 휀𝑎 in the direction of the applied load, as shown by Equation 2.5. 

𝑃𝑅 =
휀𝑙

휀𝑎
. (2.5) 

Typically, the Poisson’s ratio is determined by plotting the volumetric 

strain as a function of the axial strain. Equations 2.6 and 2.7 show the relationship 

between the Poisson’s ratio, 𝜈, volumetric strain, 휀𝑣, and axial strain, 휀𝑎. 

휀𝑙 =
휀𝑎 − 휀𝑣

2
. (2.6) 
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𝑃𝑅 =
휀𝑙

휀𝑎
=

휀𝑎 − 휀𝑣

2휀𝑎
=

1

2
[1 −

휀𝑣

휀𝑎
] . (2.7) 

The Poisson’s ratio for grains and oilseeds used as biomass feedstock (e.g., 

soybeans, corn, wheat) is determined using the ASAE Standards S368.4 (2003b) 

260, with typical Poisson’s ratio for most biomass materials ranging between 0.2-

0.4 256, 261. 

2.8.3.5. Coefficient of Restitution 

The coefficient of restitution (𝐶𝑜𝑅) represents the intensity of the energy 

dissipated by the collision between the particles and is one of the critical 

properties for DEM techniques 262. The damping parameter of visco-elastic 

contact models in DEM models depends on the coefficient of restitution value 

187. The coefficient of restitution has been determined by researchers using 

different techniques, such as expressing it in terms of the a) ratio of the normal 

components of impulse under compression restitution and under restitution 263, 

b) ratio of the normal components of the rebound and impact velocities 264, and 

c) ratio of the normal components of the reaction forces at the contact point 

under compression and under restitution 232. For the third method, the 

coefficient of restitution is expressed in terms of the square root of the total 

kinetic energy before (𝐾𝐸𝑖) and after (𝐾𝐸𝑟) the collisions while neglecting the 

tangential frictional losses. The drop and rebound heights are measured for 
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sample materials with minimal rotation and near-vertical rebound trajectories. 

The coefficient of restitution (𝐶𝑜𝑅) is calculated using Equation 2.8 as the ratio 

of the square root of the initial height of drop (𝐻𝑖) and the height of the rebound 

(𝐻𝑅), assuming no energy loss except due to contact. 

𝐶𝑜𝑅 = (
𝐾𝐸𝑟

𝐾𝐸𝑖
)

1
2

= (
𝐻𝑟

𝐻𝑖
)

1
2

. (2.8) 

It is difficult to determine the coefficient of restitution for granular 

biological materials due to the shape irregularities and surface complexities, 

and it typically ranges from 0 to 1 (1 represents a perfectly elastic collision) 265. 

Ramírez-Gómez et al. 266 determined the mean particle-particle restitution 

coefficient for a number of biomass pellets using a double-pendulum-based 

experimental setup as described by Wong et al. 267. The different materials and 

their mean interparticle restitution coefficients are as follows: maize stalk (0.113), 

rape straw (0.135), rice husk (0.069), and vine shoots (0.151). 

2.8.3.6. Coefficient of Static Friction 

The coefficient of friction (𝜇) is the ratio of the force of limiting friction and 

normal reaction. A low value of the friction coefficient is indicative of no or little 

friction between the two materials. The coefficient of friction is related to the 

angle of friction, 𝜑 by Equation 2.9. 

𝜇 = tan(𝜑) , (2.9) 
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The frictional forces between objects at rest and in relative motion are 

defined, respectively, in terms of the coefficient of static friction (𝜇𝑠𝑓) and 

dynamic friction (𝜇𝑘𝑓).  

Researchers have determined the static coefficient of friction for various 

materials and contact conditions 194, 268-270. Typically, the coefficient of sliding 

friction is determined using the ASTM D6128 – 16 method 271 with a direct shear 

tester, such as the Jenike shear box (Jenike & Johanson, Inc, North Billerica, MA). 

For biomass materials, the interparticle static coefficient of friction was found to 

be above 0.5, indicating higher resistance to flow 272. Stasiak et al. examined 

pine biomass of different sizes in a Jenike shear box and found the static 

coefficient of friction to be dependent upon the material type, the normal 

compressive pressure, and the moisture content. The coefficient of friction 

values ranged from 0.50 to 0.62 273.  

2.8.3.7. Coefficient of Rolling Friction 

The coefficient of rolling friction (𝜇𝑟𝑓) is the ratio of the frictional force to 

the normal force at the contact surface, which prevents the particle from rolling. 

At the contact point, the force couple can be transferred between the particles 

and acts to resist the rotational motion of the particle without affecting the 

translational motion 230. Jiang et al. 274 provided a micro-mechanical model 



67 

 

based on a spring-dashpot assembly parallel with a series divider for modeling 

the rolling resistance at the particle contacts. Zhou et al. examined the effect of 

the rolling friction on the repose angle of glass beads and utilized coefficients 

of rolling friction values of 0.05 (range: 0-0.1) for particle-particle contact and 

double that value for particle-surface contacts. The results indicate that the 

angle of repose increased with the increase of rolling friction because of the 

reduction of kinetic energy by the rolling resistance and the formation of piles 

with high potential energy 275.  

Table 2.1  summarizes a wide range of DEM parameters used by previous 

researchers for different organic and biological materials. 

2.8.4. Particle Representation  

The reproduction of biomass particles in a DEM environment with 

morphological parameters similar to real particles is essential for analyzing their 

flow behavior. As recreating potentially thousands of particles in typical biomass 

feedstock assemblies is practically impossible, the actual particle shapes in DEM 

are represented by simpler shapes such as disks for two-dimensional and 

spheres for three-dimensional cases 202. The multisphere approach has been 

popular for modeling realistic granular materials due to its simplicity, fast 

computation process, and robust contact detection models 276, 277.  
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Table 2.1. Range of published material parameters for different organic 

materials. 

Material 

Parameters 

Sand Wood  

chips 

Switch 

grass 

Hybrid  

poplar 

Wheat 

straw 

Corn 

stover 

Bulk Density 

 (kg/m3), 𝜌
𝑏
 

1660-

2650 

209- 

498 

149- 

190 

170- 

204 

690- 

823.2 

95.4-

174.5 

Young's modulus 

(MPa), 𝑌𝑀  

100-650 35 25 40 36 30 

Poisson's ratio, 𝑃𝑅 0.25-0.3 0.3 0.25-0.35 0.2-0.3 0.3 0.35 

Coefficient of  

restitution, 𝐶𝑜𝑅 

0.2-0.8 0.3-0.5 0.3-0.7 0.2-0.5 0.4-0.6 0.3-0.5 

Coefficient of 

sliding friction, 𝜇
𝑠𝑓

 

0.6-0.8 0.2-0.8 0.4-0.7 0.5-0.7 0.4-0.7 0.3-0.6 

Coefficient of 

rolling friction, 𝜇
𝑟𝑓

 

1.6

× 10−5 

0.2-0.5 

× 10−5 

1.8

× 10−5 

1.6

× 10−5 

2 

× 10−5 

1.5 

× 10−5 

Angle of  

repose (°), 𝐴𝑂𝑅 

25-35 42-50 32-43 38-45 35-44 36-45 
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Figure 2.12 shows the multisphere models of diverse biological materials 

with different morphologies. 

However, the assumption of rigid particles necessary for applying the 

multisphere approach makes it only suitable for hard, non-flexible particles like 

wood chips 95, 278. The modeling of materials with high degrees of softness and 

flexibility, like switchgrass, corn stover, and loblolly pine, must take into account 

the particle deformability and its effect on the flow behavior 279. Thus, applying 

the multisphere method to irregularly shaped lignocellulosic biomass feedstock 

can result in a significant loss of accuracy 276. Therefore, modeling complex, non-

spherically shaped particulate systems require more robust and sophisticated 

particle models 276, 277, 280, 281. 

While more complex particle-shape representations such as sphero-

cylinders 282, 283, sphero-polyhedrons 284, 285, and composite-polygons (shell) 94 

provide a high level of fidelity for representing particle shapes, implementation 

of such shape models has a highly prohibitive computational cost. 

Additionally, the inherent material variability in particle shapes, 

distributions, and properties requires solving particle-particle interactions via 

custom contact detection algorithms, making them highly complex and time-

consuming 286, 287. Therefore, selecting the DEM particle shape must balance 

computational accuracy and efficiency.   
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Figure 2.12. Multisphere model of a) rice grains 288, b) Jatropha curcas 289.  
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Figure 2.13 compares the computing time required for modeling the 

same group of particles in a cyclic loading-unloading assembly, indicating that 

the wall time rises exponentially from the spherical assumption to custom-

polyhedral models. 

The superquadric particle shape representation method is a 

mathematical representation of geometric shapes introduced by Barr 290 and 

later applied to discrete element modeling by Williams and Pentland 291, Cleary 

81, 292, 293, and Lu 294. It has been mooted as a potential accuracy and 

computational efficiency midpoint 291, 295.  

Figure 2.14 shows different approaches for the representation of real 

particle shapes in DEM processes, namely multisphere, superquadric, and 

polyhedral approaches. 

A superquadric is a generalized form of an ellipsoid whose exponents can 

possess any non-zero real value. A superquadric particle is expressed in three-

dimensional space as a set of points (x, y, z), which satisfies the superquadric 

particle description as per Equation 2.10 290. 

(|
𝑥

𝑎
|

𝑛2

+ |
𝑦

𝑏
|

𝑛2

)

𝑛1
𝑛2

+ |
𝑧

𝑐
|

𝑛1

≤ 1, (2.10) 

where, 𝑎, 𝑏, 𝑐 = particle half-lengths along the principal axes, 𝑛1, 𝑛2= 

blockiness parameters (𝑛𝑖 = 1,2,3, …).   
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Figure 2.13. Comparison of the measured computing time (wall time) 

between the mono-sphere, sphero-polyhedron, and custom-polyhedron 

shape modes for a cyclic loading-unloading test using a quarter-geometry 

container 197.  
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Figure 2.14. Representation of real particles in DEM with simpler shapes a) 

multisphere approach 278, b) superquadric approach 295, and c) polyhedral 

approach 197. 
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By controlling these five parameters, this equation can generate different 

particle shapes, such as a sphere, cylinder, box, ellipse, etc. Therefore, the 

superquadric particle assumption provides an optimum balance between the 

model accuracy and realistic particle shapes 296. 

Figure 2.15 shows the different particle shapes approximated using the 

superquadric equation. 

Unfortunately, limited studies are available on extracting the particle 

parameters necessary for generating a robust superquadric particle-based DEM 

model for simulating the flow behavior of biomass particulate systems. These 

shortcomings in the existing literature about accurately representing biomass 

particulates in DEM models motivated us to develop an analysis framework 

using appropriately selected material and interaction properties and 

morphological characteristics. 

2.8.5. Particle Contact Model 

In a particulate system, two particles are subjected to elastic contact with 

each other at multiple points. It is difficult to ascertain the particles' actual 

contact force distribution; instead, simplified contact models are used 297. 

Computational modeling experts widely use two basic models for the contact 

forces: the linear model and the non-linear model. The linear model considers   
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Figure 2.15. Superquadric representation of different particle shapes 295.  
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the relation between force and displacement to be linear, with the contact force 

increasing linearly with the increase of the displacement. Cundall and Strack 82 

used a linear spring-dashpot system to account for the elastic deformation and 

viscous dissipation between the particles in contact. On the other hand, the non-

linear approach is based on the Hertz-Mindlin contact theory and considers the 

particle shape 187, 225. Hertz provided a non-linear solution for normal elastic 

contact 298, and Mindlin et al. developed a non-slip model for tangential elastic 

contact 299.  

The full Hertz-Mindlin force model is highly complicated and is not 

efficient from a DEM simulation perspective. Instead, DEM programs use 

simplified and modified versions of the Hertz-Mindlin theory 296, 300-302.  

For superquadric particles, contact detection involves finding the midway 

point, 𝑋𝑜 between two superquadric particles A and B (Figure 2.16), and then 

solving the non-linear system described by Equation 2.11 iteratively (using 

Newton’s method) for every particle pair at each time step. 

{
𝛻𝐹𝐴(𝑋) + 𝜇2𝛻𝐹𝐵(𝑋) = 0 

𝐹𝐴(𝑋) − 𝐹𝐵(𝑋) = 0, 
(2.11) 

where, 𝜇 = proportionality coefficient, and  

𝐹𝑘(𝑋) = shape function of particle k.
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Figure 2.16. Particle-particle contact for superquadric particles.  
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The Hertz-Mindlin contact model represents the frictional force as a 

combination of normal and tangential forces. The normal and tangential force 

calculation uses the local curvature radius as the particle radius 281, 303. 

The Hertzian normal force, 𝐹𝑁 and tangential force, 𝐹𝑇 are given by 

Equations 2.12 and 2.13. 

𝐹𝑁 =
4

3
.

𝐸

1 − 𝜗2
√𝑅𝛿3, (2.12) 

𝐹𝑇 = −8
𝐺

1 − 𝜗2
√𝑅𝛿3, (2.13) 

where  𝐸 =Young’s modulus,  

𝜗 = Poisson’s Ratio,  

𝐺 =  shear modulus, and  

𝑅 = reduced radius (
1

𝑅
=

1

𝑅1
+

1

𝑅2
). 

2.8.6. Computational Flow Characterization 

The DEM method has been utilized for a variety of flow characterizations 

relevant to lignocellulosic biomass materials. Horabik et al. conducted a 

detailed review of DEM models used to characterize agricultural and biological 

granular materials 224. Some of the modeled processes include the angle of 

repose test 304-308, shear cell test 222, 309, 310, triaxial test 311, 312, dynamic handling 313, 

uniaxial compression 269, 314, silo discharge 288, 315, 316, chute flow 233, 317, and mass 
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flow 318. In most of these cases, researchers examine the flow experimentally 

using standard measurement techniques to determine important flow 

parameters (e.g., angle of repose, velocity, kinetic energy, material outflow 

mass, wall pressures, and discharge time) and then compare with the numerical 

output of the DEM simulation using statistical techniques for validation purpose. 

Often a sensitivity analysis is performed using a Design of Simulations technique 

on the particle and flow system geometry and the input parameters of the DEM 

model to check for robustness 309, 319. 

2.8.7. Validation of DEM Model Implementation 

The choice of the time step is an important criterion to ascertain the 

robustness of the computational model. DEM utilizes an explicit numerical 

integration scheme to resolve the interparticle contacts, so the scheme is only 

conditionally stable 320. Numerical stability depends on the size of the time step. 

The time step should be small enough that simulation should be numerically 

stable and provide physically reasonable solutions, but an extremely low time 

step would lead to a long simulation time 321. The largest time step at which the 

simulation is numerically stable is called the critical time step. The original 

description of the discrete element method of single-degree-of-freedom 

systems considered only particle mass and stiffness for critical time step 
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calculation 82. However, modern DEM researchers argue that the approach 

taken by Cundall et al. is not applicable for non-linear contacts (e.g., Hertzian 

contact models), and the Rayleigh wave speed controls the time step 322, 323. 

Therefore, we determine the critical time step using the criterion of Rayleigh 

time, 𝑡𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ, which is the time required for a Rayleigh wave to pass a spherical 

particle in a single time increment 324. According to the literature, the critical time 

step, 𝑡𝑐𝑟𝑖𝑡. should be 10 to 20% of the Rayleigh time 225, 325. The relationship 

between the critical time step and Rayleigh number is described by Equation 

2.14.  

𝑡𝑐𝑟𝑖𝑡. = 0.1 … 0.2𝑡𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ = 0.1 … 0.2

(π𝑅√
𝜌
𝐺)

0.01631𝜈 + 0.8766
, (2.14)

 

where 𝐺 is the shear modulus, 𝜌 is particle density, 𝜈 is Poisson's ratio, and 

𝑟 is the radius of the smallest particle.   
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CHAPTER 3.  

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF 

LIGNOCELLULOSIC BIOMASS STRUCTURAL CONSTITUENTS 

ON THE FLOW BEHAVIOR  
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Disclaimer: The author previously included partial results of this chapter's work 

in the following articles:  

1. Ehite, E. H.; Drumm, E.; Abdoulmoumine, N. The effect of hemicellulose on 

the interparticle frictional behavior of lignocellulosic biomass particulates. 

Particuology 2021, 55, 16-22. DOI: 

https://doi.org/10.1016/j.partic.2020.09.002. 1 

2. Ehite, E.H., Oyedeji, O., Abdoulmoumine, N., The role of cellulose, 

hemicellulose, and lignin on the shear strength and frictional parameters of 

lignocellulosic biomass particulates. In preparation for submission at ACS 

Sustainable Chemistry and Engineering. 

3.1. Introduction 

This chapter details the experimental investigation of the relationship 

between the structural constituents of lignocellulosic biomass particle 

assemblies and the flow characteristics of the bulk material. 

The optimum operation of the biorefining process requires a consistent, 

efficient flow of the biomass feedstock material through the whole system 2. As 

such, researchers have focused on different aspects of the flow process, 

including characterizing physiochemical properties of lignocellulosic biomass 3, 

and their variability 4, and the feedstock supply chain process, including the 

https://doi.org/10.1016/j.partic.2020.09.002
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transportation, logistics, and equipment configurations and their impact on 

biomass flow consistency and efficiency 5, 6. However, the existing literature lacks 

a thorough exploration of the impact of the unique structural composition of 

lignocellulosic biomass on the global flow behavior. 

The lignocellulosic biomass cell wall consists of a compound, non-

uniform, three-dimensional matrix structure comprising three polymers: 

cellulose and hemicellulose, both polysaccharides, and lignin, a phenolic 

polymer, with trace amounts of other organic and inorganic constituents 4, 7-10. 

The principal biomass constituents influence different mechanical properties. 

For example, cellulose, hemicellulose, and lignin contribute to mechanical and 

chemical stability 11, 12, structural rigidity and shear strength 13, and cohesion and 

adhesion forces 14, 15, respectively. However, due to their interwoven nature, the 

individual contribution of each biopolymer to specific mechanical properties is 

more challenging to quantify 16.  

Furthermore, the relative composition of biomass constitutive polymers 

varies between species, harvest locations, and conditions 17-19. The typical 

composition of structural constituents in herbaceous plants is 30–38% cellulose, 

16–26% hemicellulose, 16–25% lignin, and 4–9% extractives 20-24. This is 

significantly different from softwood and hardwood materials, as softwood 

species typically include 33–42% cellulose, 22–40% hemicellulose, 27–32% 
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lignin, and 2–3.5% extractives 25-27, whereas hardwood species include 38–51% 

cellulose, 17–38% hemicellulose, 21–31% lignin, and 3% extractives 25, 28-30. The 

variability results in unique and complex structures in lignocellulosic biomass 

feedstocks that influence their mechanical behavior. For example, prior studies 

on herbaceous, softwood, and hardwood feedstock flow characteristics in screw 

conveyors indicate that hardwood materials exhibit quicker clogging than 

softwood and herbaceous feedstock 31. Therefore, the interwoven nature and 

inherent variability are challenges for investigating the effect of structural 

constituents on overall flow behavior. 

The other challenge is defining biomass flow behavior, a complex 

characteristic influenced by numerous lignocellulosic biomass physio-

mechanical properties. Among them, we are specifically interested in two 

properties: i) shear strength, which is the strength of a material or component 

against the type of yield or structural failure when the material or component 

fails in shear 32, 33, and ii) friction, which represents forces acting perpendicularly 

and in parallel, respectively, to an interface between two bodies under relative 

motion or impending relative motion 34-37. The reason behind this specific 

interest is that lignocellulosic biomass particles fall in the category of granular 

materials, i.e., they are a collection of macroscopic particles that undergo unique 

microscopic interactions 38. Granular flow scientists characterize the flow 
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behavior of granular particulate assemblies in terms of their shear strength, 

which depends on the stress states. For granular materials, the shear strength 

(𝜏) is defined in terms of the normal stress (𝜎) and the dimensionless coefficient 

of friction (𝜇), as presented in previous chapter (Equation 2.1). 

For non-fibrous and stiff materials in unconsolidated, i.e., loose states 

such as sand and soil samples, the cohesion force is zero, and therefore their 

shear strength and resulting flow behavior depend only on the normal stress 

and the internal friction 37, 39, 40. For granular biomass materials, the cohesion 

force is non-zero and given by the intercept of the stress-strain curve 41, 42. 

Previous studies have shown that translational and rotational motions of the 

particles in a solid particulate system are governed by the particle-particle and 

particle-wall coefficients of friction 43-45. Therefore, shear strength and frictional 

parameters are critical characteristics necessary to describe the global flow 

behavior of lignocellulosic biomass materials comprehensively. 

Due to their importance in granular material flow, there are a variety of 

experimental characterization techniques for shear strength and frictional 

parameters of solid particle assemblies available for a variety of situations. For 

shear strength, these techniques include direct shear methods using 

instruments with translational and rotational shear kinematics 48-50 and indirect 

methods such as compression and penetration tests 46, 47. During flow, individual 
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particles slide across each other in a shearing action. The shear strength 

expresses the resistance of a granular material to flow, and thus materials with 

higher shear strength will have a lower flowability 48, 49. Similarly, experimental 

techniques for determining frictional parameters of granular materials under 

different stress states include the angle of repose measurement by a variety of 

methods, including the hollow or tilting cylinder method 50, 51, and the fixed 

funnel method 52. Al-Hashemi et al. conducted an exhaustive review of the 

different methods for the angle of repose measurement 53. They concluded that 

selecting a measurement method depends on the specific objectives, materials, 

and application. For example, the fixed funnel/hopper method is used for 

cohesionless, well-graded materials with a grain size ≤10 mm material 54. It 

performs best for materials with a higher flowability, such as pharmaceutical 

tablets 55. For poor-flowing material, the fixed funnel method is susceptible to 

bridging and almost zero flow, making investigating the material flow dynamics 

difficult 56. Furthermore, using this method, the angle of repose of two piles of 

granular material can be compared only if the piles have even, regular slopes, 

which are not exhibited for cohesive material or extremely angular particles as 

is the case of lignocellulosic biomass materials 57.  

Despite the presence of standardized characterization methods and 

empirical relationship, the state-of-the-art neither provides much information 
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about quantitative values of shear strength or frictional parameters of different 

lignocellulosic biomass materials nor does it explore the relationship between 

these parameters and individual structural constituents of lignocellulosic 

biomass materials. This realization has motivated, in part, our overarching goal 

of relating the structural composition of biomass materials with significantly 

different structural constituents to their flow behavior. 

We hypothesize that the lignocellulosic biomass materials of different 

structural compositions will have significantly different shear strengths and 

associated frictional characteristics. Our research question is: How can we relate 

the variation of structural constituent contents between and within 

lignocellulosic biomass materials with variations in their flow behavior? 

We will test this hypothesis by conducting three case studies to quantify 

the effects of different lignocellulosic biomass structural constituents on the 

frictional parameters and shear strength of herbaceous, softwood, and 

hardwood feedstocks through a series of standardized tests. 

In Case Study #1, we examined the relationship between lignocellulosic 

biomass materials from different sources, namely switchgrass, hybrid poplar, 

and loblolly pine, and containing different proportions of structural constituents, 

namely cellulose, hemicellulose, and lignin, and their frictional parameters and 

shear strength. 
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In Case Study #2, we examined the relationship between the structural 

compositions of biomass materials of varying cellulosic content but sourced 

from a single source, namely hybrid poplar, and their frictional parameters and 

shear strength. 

Finally, in case study #3, we examined the relationship between 

lignocellulosic biomass materials, namely switchgrass, hybrid poplar, and 

loblolly pine, of different particle sizes and their frictional parameters and shear 

strength. 

3.2. Materials and Methods 

3.2.1. Material Selection and Preparation  

We used three biomass materials for this case study, representing 

different bioenergy-relevant feedstocks commonly used in lignocellulosic 

biorefineries. They are: a) Herbaceous material: Switchgrass (Panicum 

virgatum), b) Softwood: Loblolly pine (Pinus taeda), and c) Hardwood: Hybrid 

poplar (Populus deltoides). 

We received the switchgrass (Alamo variant) in dried condition from 

Genera Energy Inc. in Vonore, TN. Then, we obtained hybrid poplar and loblolly 

pine materials from trees harvested from the Cumberland Forest Unit of the 

University of Tennessee, Institute of Agriculture's Forest Resources Research 
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and Education Center in Oliver Springs, TN. The trees were approximately 20-

25 and 10 years old for hybrid poplar and loblolly pine, respectively, and were 

felled, delimbed, and cut into logs at the harvest site. The logs were then 

debarked using a draw knife and subsequently dried in a large kiln at 48 °C for 

10 days to begin removing a portion of the water contained within their fibers. 

At the end of the drying period, we chipped the logs in a chipper (Model: 

Predator Chipper Shredder, 6.5 HP, 3 gallons) and then placed them back in a 

large kiln to continue drying at 48 °C for another 10 days. Subsequently, the 

switchgrass and the dried chips were hammermilled and further sieved between 

sieve mesh sizes 10-20 (2 – 0.8 mm), 20-30 (0.8-0.6 mm), and 30–40 (0.6 – 0.4 

mm) to generate the final sample materials.  

Figure 3.1 shows the herbaceous, softwood, and hardwood materials 

used for our research. 

3.2.2. Chemical and Physical Characterization 

We conducted a number of standard chemical and physio-mechanical 

characterization processes on the sample materials, including proximate 

analysis, chemical composition analysis, thermogravimetric, density, and 

compressibility assessments on different feedstock materials following ASTM or 

NREL standards. The next section discusses these analyses in detail.  
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Figure 3.1. Sample materials of different sizes, a) switchgrass,  

b) loblolly pine, and c) hybrid poplar.  
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We measured sample materials’ moisture, ash, and volatile matter 

contents according to the standard methods ASTM E871-82 (2013) 58, ASTM 

E1755-01 (2015) 59, and ASTM E872-82 (2013) 60, respectively. We calculated the 

fixed carbon by the difference between the volatile matter and ash values. We 

conducted all proximate analyses in triplicate. 

Next, we conducted a chemical composition analysis to determine the 

cellulose, hemicellulose, and lignin content in our sample materials. Initially, we 

conducted a Soxhlet extraction process to extract solid extractives from samples 

specified by the NREL/TP-510-42619 standard 61. This step is necessary because 

solid non-structural components (principally phenolic compounds) affect the 

samples' wet chemistry analysis 62. Then, we conducted the biomass structural 

carbohydrates (cellulose and hemicellulose) and lignin content analysis on a 

wt.% basis (on a dry ash-free basis) following the NREL/TP-510-42618 standard 

63. We conducted the chemical composition analysis in triplicate. 

Then, we conducted a thermogravimetric analysis (TGA) on the samples 

to assess the differences qualitatively and quantitatively in cellulose, 

hemicellulose, and lignin compositions between the different materials by 

examining their thermal degradation profile. Thermal decomposition of 

biomass under increasing temperature initially causes moisture loss, followed 

by the decomposition of hemicellulose, then cellulose decomposes, and finally, 
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lignin decomposition occurs. We conducted our thermogravimetric analyses 

using a Pyris 1 thermogravimetric analyzer (Perkin-Elmer, USA) according to the 

method of ASTM E1131-08 (2014) 64. We evaluated the decomposition profile 

of our samples from 25 to 750 °C with a heating rate of 5°C/min under 20 ml/min 

of helium gas flow using about 5 mg for each run. We generated derivatives of 

the resulting mass loss thermographs were generated for each run and plotted 

them against the temperature change. We identified the characteristic peak of 

cellulose, hemicellulose, and lignin and determined its height relative to the 

baseline. We conducted all thermogravimetric analyses in triplicate. 

Afterward, we measured the particle density of the sample materials 

using a gas pycnometer (Model AccuPyc 1330, Micromeritics Instrument Corp., 

Norcross, GA) using the ASTM D5550 standard 65. We used particles sieved 

through an ASTM size 40 sieve (0.425 mm) for the particle density analysis. We 

performed the particle density measurements in triplicate and averaged the 

values to calculate the average particle density. 

Finally, we conducted a compressibility test to examine the sensitivity of 

our granular lignocellulosic biomass materials to a reduction in volume, i.e., their 

compressibility due to pressure. We performed the compressibility test with a 

powder rheometer (model: FT4 Powder Rheometer, Freeman Technology, 

Tewkesbury, Gloucestershire, UK) using the ASTM D7891-15 standard 66, which 
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provides us the bulk density of the sample material under test as a function of 

consolidating stresses. We filled a glass sample cylinder vessel (62 mm diameter 

and 137 ml volume), leveled the material across the top of the vessel’s surface, 

and placed and secured the vessel on the rheometer for compressibility 

characterization. The rheometer compresses the material using a vented piston 

at a rate of 1 mm/s until a consolidating pressure of 0.05, 0.5, 1, 2, 4, 6, 8, 10, 12, 

and 14 kPa is achieved sequentially. Throughout each experimental cycle, the 

rheometer's software recorded, displayed and saved the bulk density 

measurements at each consolidating pressure. We derived and computed the 

compressibility curve and the compressibility index, CI (Equation 3.1) from this 

data. 

CI =
Bulk density at 14 kPa consolidating pressure 

Unconsolidated bulk density
(3.1) 

If the compressibility curve is flat across a range of normal stresses, the 

material is incompressible; if the density rises, then the material is compressible 

67. The intercept of the plot represents the bulk density in the unconsolidated 

state. We compared this unconsolidated bulk density with the bulk density 

determined with a bulk density measurement apparatus (Seedburo Equipment 

Company, Chicago, Ill., USA) using the ASTM D1895B standard 68. We did not 

measure the compressibility characteristics for our largest particle size fraction 

(>2.0 mm), as the equipment sample vessel was not large enough to hold a 
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representative sample of the largest particle size fraction. We performed the 

compressibility and bulk density measurements in triplicate. 

3.2.3. Flow Behavior Characterization 

3.2.3.1. Frictional Parameters 

We chose a classical flow characterization technique, namely the angle of 

repose test, to examine our sample materials' macroscale flow behavior in terms 

of their frictional parameters. While there is no single consistent standard 

technique available for characterizing the angle of repose 50, 53, 69-71, we decided 

to choose the hollow cylinder method for investigating lignocellulosic biomass 

feedstock used for our research because the kinetics of the test ensures the 

formation of pile regardless of the cohesiveness of the material and, therefore, 

can be used reliably for material with poor flow characteristics irrespective of the 

particle size 52, 72. 

The hollow cylinder method places the sample under test inside a hollow 

cylinder of known dimensions above a base. The cylinder is then displaced 

vertically from the base at a specific velocity, and the material flows under gravity 

to form a semi-conical pile. Our experimental setup of the angle of repose test 

consisted of a clear acrylic cylinder attached to a pulley-based lifting mechanism 

and an imaging camera.  
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Figure 3.2 shows the experimental setup used for the angle of repose 

measurement. 

We began the angle of repose experiment by pouring our samples into 

the plexiglass cylinder (inner diameter = 0.04 m; height = 0.20 m) with a funnel 

positioned on the cylinder's top rim. We then raised the cylinder vertically at an 

approximate velocity of 0.1 m/s such that the particles fell on the flat surface and 

formed a semi-conical pile. We then photographed the pile using a high- 

resolution camera (model: Canon Rebel T4i Digital SLR Camera, EF-S 55-250mm 

f4-5.6 lens) placed on an extendable tripod stand with a remote shutter.  

We subsequently processed the images using a custom image analysis 

and segmentation script in MATLAB (The Mathworks, Natick, MA, USA). In order 

to partition the original image file and segment the area of the sample pile into 

distinct regions, we used the active contour method, which detects the 

boundaries of objects using evolving curves 73.  

After the image segmentation, we fitted a triangle to the segmented 

sample pile and calculated the topmost point of the pile as well as the left and 

right vertex to determine the height (h) and the diameter (D) of the pile. We two 

angles 𝛼1 at left and 𝛼2 at right, as shown in Figure 3.3. This is because the peak 

of H of the triangle might not always be directly above the center of the 

diameter, AB 1.  
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Figure 3.2. Schematic representation of the experimental setup for the 

angle of repose measurement. 

 

 

Figure 3.3. Determination of the angle of repose from the material pile 

using the fitted triangle.  
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We can calculate the angle of repose using Equation 3.2. 

𝛼 =
1

2
(𝛼1 + 𝛼2) =

1

2
(tan−1 |

𝐻𝐶

𝐴𝐶
| +tan−1 |

𝐻𝐶

𝐵𝐶
|  ) (3.2) 

where A and B are the left and right vertices of the fitted triangle, and C 

is the intersection of the perpendicular line from top point H with the baseline 

AB. 

For a loose material, the angle of repose (𝛼) is equal to the angle of friction 

(𝜑), which is related to the coefficient of friction, 𝜇, according to Equation 3.3. 

𝜇 = 𝑡𝑎𝑛(𝜑), (3.3)  

We used approximately 50g of material for each run of the angle of 

repose test. We replicated the angle of repose testing, imaging, and analysis 

process 10 times for each sample material and reported the averages.  

Finally, we conducted a balanced one-way analysis of variance (ANOVA) 

on the angle of repose and coefficient of friction for sample materials at 𝛼 = 5%. 

Additionally, we conducted a Tukey-HSD multiple comparison test to see if 

statistically significant differences were observed. We performed the statistical 

analysis using the "anovan" function in MATLAB. 

3.2.3.2. Shear Strength 

We conducted a triaxial shear strength test to determine the strength 

characteristics of the herbaceous, softwood, and hardwood samples. We 
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performed the triaxial test in an S-510 triaxial cell (Durham Geo Slope Indicator, 

Stone Mountain, GA, USA) under consolidated-drained conditions according to 

the ASTM D7181-11 standard 74.  

Initially, we vertically constrained the material in a cylindrical latex sleeve 

and applied a vacuum pressure of 35 kPa to create a stiff sample. Then, we 

placed the sleeve with the sample material between two rigid plates of the 

triaxial test cell. The top plate can move vertically and apply vertical stress to the 

sample, which is the major principal stress, 𝜎1. The movement of this plate 

controls the axial stress and strain of the sample. Water entered the cell and 

provided confining pressure along the sides and tops of the sample, resulting 

in the confining stress or the minor principal stress, 𝜎3. We investigated sample 

materials at three levels of confining stresses, namely 138, 207, and 276 kPa. We 

kept the maximum strain rate at 15% as per the typical triaxial testing convention 

for loose samples 75, 76. We conducted a triaxial test for each sample in triplicate. 

During the test, the top plate mechanically drives up or down along the 

axis of the cylinder to apply additional stress in the vertical direction, resulting in 

the principal stress difference or the deviatoric stress, 𝜎1 − 𝜎3. We plot the 

principal stress difference against axial strain, 휀𝑎 77, 78. Then, we determined the 

volume change of the sample by measuring the exact volume of water displaced 

from the chamber using a flowmeter. We divided this volume change by the 
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initial volume of the cylindrical sample to determine the volumetric strain, 휀𝑣 and 

plotted it against the axial strain, 휀𝑎 79, 80. Finally, we produced a Mohr's Circle for 

each consolidated-drained triaxial compression test to determine the maximum 

and minimum shear stresses that form the shear envelope, i.e., the Mohr-

Coulomb failure envelope 81. Figure 3.4 shows a schematic diagram of the 

triaxial cell with the sample under uniaxial compressive load. 

3.3. Results 

3.3.1. Proximate and Density Analysis 

Table 3.1 shows the proximate and density analysis results for three 

biomass sample materials (switchgrass, loblolly pine, and hybrid poplar). The 

proximate analysis shows that the highest mean moisture content is for hybrid 

poplar, followed by switchgrass and loblolly pine. Switchgrass has the highest 

ash content and volatile matter and the lowest fixed carbon. Loblolly pine has 

the lowest ash content, the lowest volatile content, and the highest fixed carbon. 

Hybrid poplar has middle values of all three materials for all three characteristics. 

The proximate analysis results of switchgrass, loblolly pine, and hybrid poplar 

are consistent with the results reported in literature 82-87. 

The density analysis shows that loblolly pine and hybrid poplar samples 

have higher particle density than switchgrass samples, which is consistent with   
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Figure 3.4. Schematic representation of the triaxial cell with the sample 

under compressive load.  
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Table 3.1. Proximate and density analysis of switchgrass, loblolly pine, and 

hybrid poplar samples. 

 Mean (SD) 

 Switchgrass Loblolly pine Hybrid poplar 

Moisture (wt.% wet basis) 7.16 (0.22)  7.35 (0.13)  7.40 (0.62)  

Proximate analysis (wt.% dry basis) 

Ash 0.90 (0.08)  0.16 (0.04)  0.61 (0.05)  

Volatiles  90.70 (0.69)  85.57 (0.36)  87.12 (0.52)  

Fixed Carbon 8.40 (0.69)  14.28 (0.39)  12.27 (0.51)  

Density analysis 

Particle density (kg/m3) 1098.13 (15.33) 1466.09 (16.80) 1195.50 (15.40) 
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prior comparisons between herbaceous and woody biomass 88, 89. The increase 

in particle density can be attributed to the rise in cellulosic content, as cellulose 

is the densest of all constituent materials owing to its crystalline structure 90, 91.  

From the literature, we see that switchgrass particles in a size range of 0.4 

to 1 mm have a bulk density ranging from 210 to 100 kg/𝑚3 and particle density 

ranging from 690 to 815 kg/𝑚3 92-94. Olatunde et al. conducted a density analysis 

with loblolly pine grinds 95 ranging in size from sieve sizes 12 to 50 (nominal 

sieve opening of 1.7 mm to 0.300 mm) and found the particle density of loblolly 

pine to range from 1453.1 to 1437.5 kg/𝑚3, and bulk density range from 254 to 

152.7 kg/𝑚3. For hybrid poplar samples, Morales Vera et al. found a bulk density 

ranging from 160 to 180 kg/𝑚3 for particle sizes ranging from 2- to 5 mm 96, 

whereas for particles in the same size range, Lam et al. found particle density 

values to range from 1213 to 1164 kg/𝑚3 97. Therefore, we can conclude that 

prior findings from the literature support our density analysis results. 

3.3.2. Structural and Thermogravimetric Analysis 

Table 3.2 shows the overall chemical composition of the sample 

materials. Compared to switchgrass samples, the woody samples have higher 

cellulose content and lower hemicellulose content, whereas the lignin content 

is not significantly different.  
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Table 3.2. Chemical composition (wt.% based on dry ash free basis) of 

switchgrass, loblolly pine, and hybrid poplar samples. 

  Mean (SD) 

  Switchgrass Loblolly pine Hybrid poplar 

Cellulose (Glucose) 27.2 (0.2) 38.1 (0.5) 44.1 (0.9)  

Hemicellulose 30.1 (0.0) 19.6 (0.1) 20.7 (0.1)  

Total sugar 57.3 (0.1) 57.7 (0.3) 64.8 (0.4)  

Xylose 25.5 (0.1) 14.8 (0.2) 15.5 (0.4)  

Galactose 2.4 (0.1) 3.0 (0.1) 3.1 (0.1)  

Arabinose 2.2 (0.0) 0.4 (0.0) 0.6 (0.1)  

Mannose 0.0 (0.0) 1.5 (0.0) 1.6 (0.1)  

Total Lignin 21.2 (0.1) 21.7 (0.2) 23.3 (0.3)  

Acid soluble lignin 2.1 (0.0) 2.1 (0.0) 5.2 (0.1)  

Acid insoluble lignin 19.1 (0.1) 19.6 (0.1) 18.0 (0.3)  

Acetyl 3.3 (0.7) 5.7 (0.1) 5.1 (0.4)  
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Figure 3.5 shows the DTG plots versus temperature for the switchgrass, 

loblolly pine, and hybrid poplar samples at a heating rate of 5° C/min.  

We observed that the hemicellulose peak for the raw samples occurs at 

around 300 °C with a prominent shoulder, while the cellulose peak occurs at 

about 375 °C. Hybrid poplar has a higher peak than loblolly pine and 

switchgrass. Sundar et al. reported a similar DTG curve for the switchgrass 

samples of similar size (40 mesh), with hemicellulose peak and cellulose peaks 

around 300 °C and 337 °C, respectively 98.  

Moreover, switchgrass shows a prominent shoulder in the hemicellulose 

decomposition, indicating a higher proportion of hemicellulose content. The 

smoothening of the hemicellulose peak for the woody biomass samples can be 

attributed to the absence of lower molecular weight polymers. Therefore, 

hemicellulose is included in the cellulose peak instead of appearing as a distinct 

peak 98. Furthermore, an increase in the magnitude of the mass loss rates from 

switchgrass to woody samples is observed. Previous studies demonstrated that 

higher volatile contents correspond to higher mass loss rates during thermal 

decomposition 99. Therefore, the differences in the magnitude of the mass loss 

rate correlate well with the volatile contents presented in Table 3.1.  
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Figure 3.5. Differential thermogravimetric (DTG) curves of the thermal 

decomposition of switchgrass, loblolly pine, and hybrid poplar samples.  
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Overall, our observations confirmed the results obtained from structural 

analysis concerning the cellulose and hemicellulose content of herbaceous, 

softwood, and hardwood samples. 

3.3.3. Frictional Parameters 

Figure 3.6 shows the material piles formed for the angle of repose test for 

the switchgrass, loblolly pine, and hybrid poplar samples after image 

processing.  

Table 3.3 summarizes the average angle of repose and the 

corresponding coefficient of friction for the different sample batches.  

The results show that the angle of repose and coefficient of friction 

decreased from herbaceous to woody samples. Therefore, we conducted a 

statistical significance test using One-way ANOVA to examine the differences. 

Figure 3.7 shows the box plots for the angle of repose and coefficient of 

friction values for the switchgrass, loblolly pine, and hybrid poplar samples.  

Table 3.4 summarizes the ANOVA results (at α=0.05) for the average 

angle of repose and the corresponding coefficient of friction. The boxplots for 

the switchgrass, loblolly pine, and hybrid poplar samples do not overlap, 

indicating a significant difference between those two sample batches. This is 

supported by the ANOVA results that show that both the angle of repose and   
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Figure 3.6. Material pile formed for a) switchgrass, b) loblolly pine, and c) 

hybrid poplar samples, after image processing.  
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Table 3.3. The angle of repose and the coefficient of friction results for the 

switchgrass, loblolly pine, and hybrid poplar samples. 

 Mean (SD) 

 Switchgrass Loblolly pine Hybrid poplar 

Angle of repose (AOR)  40.5° (1.6) a 30.1° (1.1) b 34.8° (1.2) c 

Coefficient of friction (𝜇) 0.61 (0.0) 0.46 (0.0) 0.5 (0.0) 

SD stands for the standard deviation for N = 10 replicates per treatment. 

a, b, and c are significantly different from each other (p<0.05) 
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a) 

 

b) 

 

Figure 3.7. Boxplots for the a) angle of repose, b) coefficient of friction 

results for switchgrass, loblolly pine, and hybrid poplar samples.  
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Table 3.4. ANOVA tables for a) angle of repose and b) coefficient of friction 

results for switchgrass, loblolly pine, and hybrid poplar samples. 

a)  
 

Source df Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Model 2 270.76 135.38 61.07 0.00 

Error 12 26.60 2.217     

Total 14 297.36       

 

b) 
 

Source df Sum of 

Squares 

Mean 

Square 

F 

Ratio 

Prob 

> F 

Model 2 0.04 0.02 63.15 0.00 

Error 12 0.00 0.0     

Total 14 0.04       
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the coefficient of friction values are not the same for all the sample groups 

(p<0.05). Thus, based on our statistical analysis, we can conclude significant 

differences in frictional behavior between the switchgrass, softwood, and 

hardwood biomass samples. According to the Carr classification, the 

switchgrass samples show fair-flowing characteristics (between 38-45°), while 

the softwood and hardwood have free-flowing characteristics (between 30-38°) 

100. The results are consistent with the findings of Lam et al., as they conducted a 

fixed-funnel angle of repose test on switchgrass samples varying in size from 

707 μm to 25 μm and found the angle of repose to range between 35.56° and 

43.03° 101. Similarly, studies conducted on woody biomass varying in size from 

2000 μm to 400 μm have shown to exhibit values of angle of repose ranging 

between 22° to 37° 102-104.  

Overall, based on image processing and statistical analysis values, the 

samples' flowability characteristics and frictional behavior are significantly 

different between the herbaceous and the woody biomass samples. 

The improvement in flowability due to the variation in structural 

composition can be attributed to a decrease in frictional forces acting between 

the particles. The moisture content for the herbaceous and woody samples is 

between 7.16 and 7.40% in this study, which suggests the capillary force 

between the particles is within a close range and should not significantly affect 
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the flowability and friction characteristics of particles 105. Nzokou et al. reported 

that materials with a lower amount of lignin and extractives content on the 

woody biomass surface affect their wettability and Van der Waal's force between 

the particles 106. Kumar et al. found that epoxy-based hybrid composites 

(bonded with natural fiber microparticles) undergoing alkali treatment to reduce 

the hemicellulose and lignin in their structural matrix results in improved flow 

characteristics 107. We believe the difference in cellulosic content between 

lignocellulosic matrices has caused a difference in forces existing on the surfaces 

between the inter-particles, resulting in different particle flow characteristics. 

3.3.4. Compressibility Characteristics 

Figure 3.8 shows the bulk density vs. normal stress plots for switchgrass, 

loblolly pine, and hybrid poplar of different mesh sizes.  

We see that all of our materials are compressible, as their bulk density 

increases with increasing stress. The highest level of bulk density occurs for 

loblolly pine samples, consistent with our particle density analysis results in 

Table 3.1, i.e., loblolly pine shows the highest particle density among the sample 

materials. Additionally, the bulk density at the same stress level for switchgrass 

samples of all sizes is significantly lower than loblolly pine and hybrid poplar. 

The low bulk density of herbaceous samples indicates their porosity is lower   



138 

 

 

Figure 3.8. Bulk density as a function of normal stress, i.e., compressibility 

curves for switchgrass, loblolly pine, and hybrid poplar materials of 

different sizes. 
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than softwood and hardwood samples, consistent with prior studies comparing 

herbaceous and woody biomass samples 92, 108. 

Finally, the bulk density increases as the particle size decreases. As bulk 

density is the amount of material by weight in a definite volume, a smaller 

particle size results in more material accommodated by the same volume. 

Therefore, we achieve the highest bulk density for mesh size 30-40 (0.6-0.4 mm) 

samples of loblolly pine, indicating it has the lowest porosity 109, 110. 

Table 3.5 shows the unconsolidated bulk density from the compressibility 

test (the intercept of the bulk density vs. normal stress curve) and the direct 

measurement using the bulk density measurement apparatus. The results are 

similar between the two methods, and the measured values for bulk density are 

consistent with previous reports from the literature for switchgrass, loblolly pine, 

and hybrid poplar 111.  

3.3.5. Shear Strength Characteristics 

Figure 3.9 shows the principal stress difference as a function of the axial 

strain at 138, 207, and 276 kPa minor principal stresses for different sample 

batches. For all materials, the deviatoric stress increases with the level of 

confining stress, i.e., the material shows increased strength against the applied 

load. At the confining stress levels used in our test, the material does not reach  
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Table 3.5. Comparison of bulk density from compressibility plot and direct 

measurement. 

Material Particle 
mesh  
size 

Bulk density from 
compressibility plot  
(kg/𝑚3) 

Bulk density from 
direct measurement  
(kg/𝑚3)   

Switchgrass 10-20 130.41 133.26 (±1.78)  
20-30 130.91 135.26 (±1.33)  
30-40 143.95 145.83 (±1.09) 

Loblolly pine 10-20 204.86 206.20 (±1.34)  
20-30 207.67 202.11 (±1.22)  
30-40 227.15 239.25 (±1.69) 

Hybrid poplar 10-20 162.02 165.68 (±1.99)  
20-30 172.26 176.31 (±1.44)  
30-40 159.33 185.06 (±1.85) 

 

 

Figure 3.9. Principal stress difference vs. axial strain for a) switchgrass, b) 

loblolly pine, c) hybrid poplar samples.  
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failure at the maximum strain rate of 15%. The lower deviatoric stress at lower 

levels of confining stress results from the lower degree of axial support for the 

sample material during the testing 112, 113. Woody samples have higher deviatoric 

stress at the same confining stress, indicating an increase in the material shear 

strength 114. 

Figure 3.10 shows the volumetric strain as a function of the axial strains 

for the different sample batches. The volumetric response indicates a tendency 

to contract, similar to the characteristics of a typical loose granular specimen 115. 

The contractive phase is quite long and does not reach the peak volumetric 

strain level at the 15% strain rate. The level of contraction increases from 

herbaceous to woody materials. 

Figure 3.11 shows Mohr's circles and resulting shear envelopes for the 

different sample batches. Table 3.6 presents average shear strength values, 

shear envelope sizes, and the cohesion forces at different confining stresses.  

The switchgrass sample has a shear envelope (difference between the 

maximum and minimum shear stress) encompassing 37.9 kPa. The size of the 

shear envelope and the cohesion force (the y-intercept) increases for woody 

samples, from 52.3 kPa for loblolly pine to 55.2 kPa for hybrid poplar. The results 

indicate that shear strength increased from herbaceous to woody biomass. 

Statistical analysis using a One-way ANOVA test and subsequent Tukey's HSD  
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Figure 3.10. Volumetric strain vs. axial strain for a) switchgrass, b) loblolly 

pine, c) hybrid poplar samples. 

 

 

Figure 3.11. Mohr's Circles at different confining stresses, a) switchgrass, 

b) loblolly pine, and c) hybrid poplar samples.  
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Table 3.6. Summary of shear strength parameters for switchgrass, loblolly 

pine, and hybrid poplar samples. 

Minor principal stress, 𝜎3  Average Shear strength, 𝑌𝑠 = (𝜎3 − 𝜎1)/2 

(kPa) (kPa) 
  

 
Mean (SD) 

Switchgrass Loblolly pine Hybrid poplar 

138 80.3 (10.1) a 106.2 (5.3) b 113.4 (13.3) c 

207 109.4 (11.0) a 125.0 (12.7) b 142.8 (11.7) c 

276 126.2 (9.1) a 145.1 (11.1) b 156.2 (16.7) c 

Shear envelope size 

(𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛) (kPa) 

37.9 52.3 55.2 

Cohesion (kPa) 27.1 38.9 42.8 

SD stands for the standard deviation for N = 3 replicates per sample 

material. 

a and c are significantly different (p<0.05) 
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test indicates a significant difference between the switchgrass and the hybrid 

poplar samples (one-way ANOVA, Tukey's HSD, p<0.05). Overall, based on the 

triaxial test results, the shear strength characteristics of the samples are 

significantly different between the herbaceous, softwood, and hardwood 

samples. This, in turn, indicates that differences in relative composition have 

resulted in significant differences in the stress states of the biomass material 

under test. 

Helmerius et al. showed that 116 silver birchwood chips with lower 

hemicellulose content exhibit lower compression strength, tensile strength, and 

burst strength index, all of which are proportional to shear strength. Since the 

moisture content between the different sample batches is not significantly 

different, we can rule out the effect of interparticle capillary forces 117, 118. Zhang 

et al., in their research on the molecular dynamics simulations of cellulose-

hemicellulose composites under shear loading, showed that the presence of 

hemicellulose chains of different shapes between cellulose microfibrils 

increases the overall shear strength of wood specimens increases 119. 

Depending on the binding modes, the magnitude of the shear strength 

changes, where the differences are caused by the contribution of cellulose-

hemicellulose hydrogen bonds and the expansion of the covalent bonds in the 

hemicellulose chain backbone 120, 121. Therefore, we believe the presence of a 
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higher amount of cellulose and hemicellulose in the lignocellulosic matrix has 

caused changes in the bond structure of the lignocellulose matrix, resulting in 

increased strength characteristics for hardwood.  

3.3.6. Case Study #2: Relation of Frictional Parameters and Shear Strength 

Characteristics with Biomass of Varying Cellulose Content 

To study the relationship between different structural compositions of 

lignocellulosic biomass materials, we collected six different hybrid poplar 

samples from different forest sites in the Southeastern United States in chip form 

122. We initially hammermilled hybrid poplar chips through a 1 mm screen to 

create starter batches and further sieved them between sieve mesh sizes 20 – 40 

(0.6 – 0.4 mm) to create our sample batches (hereafter referred to as SE-POP 1, 

SE-POP 2…, SE-POP 6). 

Table 3.7 shows selected hybrid poplar samples' chemical composition 

(carbohydrates and lignin). The cellulose content significantly changed between 

the selected hybrid poplar samples, whereas the hemicellulose and lignin 

content were not significantly different. 

We then conducted the angle of repose and triaxial shear strength study 

with these batches using the process outlined in the previous sections.   
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Table 3.7. Chemical composition (wt.% based on dry ash free basis) of 

hybrid poplar samples with different cellulosic contents. 

  Mean (SD)    

  SE-POP 
1 

SE-POP 
2 

SE-POP 
3 

SE-POP 
4 

SE-POP 
5 

SE-POP 
6 

Cellulose  44.1 
(0.9)  

36.9 
(0.3)  

38.1  
(0.5)  

33.4 
(0.3) 

32.2 
(0.5) 

27.2 
(0.2) 

 

Hemicellulose 20.7 
(0.1) 

19.5 
(0.0) 

19.6  
(0.1) 

18.1 
(0.1) 

18.0 
(0.1) 

17.2 
(0.0) 

 

Total Lignin 23.3 
(0.3) 

25.2 
(0.2) 

26.9  
(0.4) 

30.0 
(0.2) 

24.5 
(0.3) 

25.6 
(0.1) 
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Figure 3.12 shows the angle of repose values from the hollow cylinder 

test as a function of the structural constituents, namely cellulose, hemicellulose, 

and lignin, for the poplar samples of the same size but different compositions, 

ranging from high cellulosic to low cellulosic content.  

Based on the R-square values, we conclude that the angle of repose has 

a strong correlation with cellulose, a slightly weaker correlation with 

hemicellulose, and no significant relation with lignin. 

Figure 3.13 shows shear strength values from the triaxial test as a function 

of the structural constituents, namely cellulose, hemicellulose, and lignin, for the 

same poplar samples of the same size. Based on the R square values, we see 

that shear strength again has a strong correlation with cellulose, a slightly 

weaker correlation with hemicellulose, and no significant relation with lignin. 

The positive correlation of shear strength and angle of repose characteristics 

with the cellulose content can be attributed to the longer length of the linear 

chain of β-(1-4)-D-glucopyranose bonds in materials with higher cellulose 

content 120, 123, 124. Prior studies on pretreatment with woody materials have 

shown that reducing the hemicellulose and lignin content to increase the 

cellulose percentage in the matrix has led to the strength and toughness of 

prepared densified wood to increase by 7-10 times higher, and on a scale 

comparable with metallic alloys 124-126. To create better-flowing materials, we   
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Figure 3.12. Angle of repose as a function of structural constituents, i.e., a) 

cellulose, b) hemicellulose, and c) lignin for biomass materials of the same 

size (0.6-0.4 mm). 

 

 

Figure 3.13. Shear strength as a function of structural constituents, i.e., a) 

cellulose, b) hemicellulose, and c) lignin for biomass materials of the same 

size (0.6-0.4 mm).  
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desire an opposite outcome, i.e., a material with lower shear strength resulting 

in higher flowability. Therefore, using materials with lower cellulosic content can 

lead to better flow characteristics. Additionally, cellulose is the densest of all the 

constituents due to their crystallinity 127-129, making the high cellulosic sample 

(SE-POP 1) the densest. This observation is supported by thermogravimetric 

analysis, which shows cellulose peaks are highest for materials with higher 

cellulosic content. Therefore, we can conclude that materials with a lower 

cellulose content provide the lowest resistance to flow and may give the best 

flow performance. 

3.3.7. Case Study #3: Relation of Frictional Parameters and Shear Strength 

Characteristics with Particle Sizes 

To study the relationship between particle sizes and their frictional and 

strength parameters, we selected the same materials as used in Case Study #1. 

The particle sizes range from > 2 mm, 2 – 0.8 mm, 0.8-0.6 mm), and 0.6 – 0.4 

mm. 

Figure 3.14 shows the angle of repose from the hollow cylinder test as a 

function of particle size for switchgrass, loblolly pine, and hybrid poplars of 

different sizes. The results based on the extremely low R-square values indicate 

that particle size does not significantly correlate with the frictional parameters   
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Figure 3.14. Angle of repose as a function of particle size for a) switchgrass,  

b) loblolly pine, and c) hybrid poplar samples. 
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for all cases. The magnitude of the angle of repose for hardwood and softwood 

materials is lower than for herbaceous materials. 

Figure 3.15 presents the shear strength from the triaxial test as a function 

of particle size for our switchgrass, loblolly pine, and hybrid poplars of different 

sizes. Similar to the angle of repose results, we see that the R-square values are 

very low, and therefore, the size of sample particles does not correlate 

significantly with the shear strength for all cases. Interestingly, unlike the angle 

of repose results, the magnitude of the shear strength of hardwood, namely 

hybrid poplar, is significantly higher than the softwood and herbaceous 

material. 

3.3.8. Conclusions 

In this work, we present the findings of an investigation on the effect of 

the varying proportion of lignocellulosic biomass structural constituents on the 

frictional parameters and shear strength characteristics of herbaceous, 

softwood, and hardwood samples. We observed that lignocellulosic biomass 

materials with high levels of cellulose and hemicellulose exhibit higher shear 

strength characteristics and frictional parameters. In contrast, the lignin content 

and particle size do not strongly affect the shear strength characteristics and   
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Figure 3.15. Shear strength as a function of particle size for a) switchgrass,  

b) loblolly pine, and c) hybrid poplar samples. 
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frictional parameters. On the other hand, the relation between shear strength 

and angle of repose and the biomass materials of different species requires 

further investigation. While we expected trends and relations between shear 

strength, angle of repose, and density with biomass components to be similar 

between different species, we did not see that in reality. Hardwood materials 

show higher shear strength but a lower angle of repose against herbaceous 

switchgrass. Our inference is that this phenomenon has to do with the different 

stress states the materials are in for different flow tests: compressed, densified 

in the triaxial test and compressibility test, and loose, free-flowing under gravity 

for the angle of repose test. Overall, we can conclude that lignocellulosic 

materials with lower shear strength characteristics and frictional parameters 

have better flowability and may be used to improve flow operation in 

biorefineries.  
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CHAPTER 4.  

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF 

LIGNOCELLULOSIC BIOMASS PARTICLE MORPHOLOGY AND 

FLOW BEHAVIOR  
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Disclaimer: This chapter is a draft version of the following article:  

Ehite, E. H.; Abdoulmoumine, N. Realistic Representation of Lignocellulosic 

Biomass Morphology and Flow Behavior Using Spherical and Superquadric 

Discrete Element Models. In preparation for submission to Chemical 

Engineering Science. 

4.1. Introduction 

This chapter details the high-fidelity computational modeling of particle 

assemblies that capture the morphological characteristics of lignocellulosic 

biomass materials and examine their flow behavior. 

Computational modeling techniques, such as the discrete element 

method (DEM), provide an economical and convenient option for investigating 

diverse granular particulate systems 1. A robust computational model can 

reproduce particle attributes with high accuracy, run physical flow 

characterization tests using appropriate computing resources, and generate 

results that can be validated by comparing them with experimental 

measurements. We can use validated computational models to study the flow of 

diverse biomass materials, identify potential flow issues, and apply corrective 

actions at the design stage to optimize the feedstock flow and improve the 

performance of commercial-scale biorefineries. 
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The application of DEM modeling techniques to lignocellulosic biomass 

materials is not straightforward. In early concept applications of discrete 

element models to materials such as the modeling of pharmaceutical tablets 2, 

the material attributes, e.g., the morphological (shape factors, size distributions), 

material, and mechanical properties of the particles, are uniform. On the other 

hand, lignocellulosic materials exhibit large natural variability in their material 

attributes, especially non-uniform shapes and wide-ranging size distributions 3. 

This variability in size distribution and irregular shapes is exemplified by Figure 

4.1, which shows the macro-scale and micro-scale view of a group of switchgrass 

particles. Capturing the variability in particle morphology is a major challenge 

in the computational investigation of lignocellulosic biomass materials. 

The critical component of developing a DEM model for lignocellulosic 

biomass particles is the high-fidelity reproduction of real particles in the 

computational environment. Since real biomass feedstocks can have thousands 

of particles, the exact recreation is impractical and computationally expensive 4. 

Therefore, the DEM process represents real particles by simpler artificial shapes 

and calculates surface contact forces using specific shape models 5. The 

selection of an appropriate particle model must fulfill two criteria: a) suitability, 

i.e., the ability to visually and geometrically represent the interacting particles, 

b) computational efficiency, i.e., the ability to analyze the surface functions of the   
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Figure 4.1. a) Macro-scale and b) micro-scale view (scanning electron 

microscopy images) of switchgrass particles.  



168 

 

particles using available computing power 6.  

The most common approach to represent non-uniform DEM particles is 

the multisphere method, which represents real particles as an agglomeration of 

interconnected spheres 7. This method has been prevalent due to its simplicity, 

well-specified contact models 8, and efficient computational process 9. In the 

early application of DEM, real biomass particles were represented by a number 

of soft, smooth spheres in contact with one another 10-12. However, granular 

materials like lignocellulosic biomass are mostly non-spherical. Additionally, 

non-spherical particle assemblies are more compact and have higher shear and 

rolling resistance than spherical particles 13. Thus, the multisphere assumption is 

not always suitable for granular materials, and complex materials like 

lignocellulosic biomass materials require a more sophisticated particle model 

beyond the spherical assumptions 14. Researchers have considered more 

complex shapes for non-spherical particles, including sphero-cylinders 15, 

sphero-polyhedrons 16, 17, and composite-polygons 18. The efficiency and 

scalability of these models depend on the number of segments being 

considered (e.g., faces of the polyhedrons, spherical joints of the sphero-

cylinders, and smoothed edges and corners for the polygons) 19. 

Additionally, they require specially developed contact detection 

algorithms. Solving the particle interactions for particulate biomass systems 
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using iterative contact detection models can be extremely time-consuming. As 

a result, these complex particle representations have very high computational 

costs 20.  Therefore, finding a shape representation process that can suitably 

reproduce the particles with high fidelity is necessary while ensuring reasonable 

computational efficiency.  

The superquadric particle shape representation method, postulated by 

Barr 21, has been a potential solution for modeling non-spherical particles. 

Superquadrics are polynomials with non-negative real exponents, and they have 

associated geometric parameters that influence the shape factors, dimensions, 

and curvature of the surfaces 22. A superquadric particle is expressed in three-

dimensional space as a set of points (x, y, z), which satisfies the superquadric 

equation (Equation 4.1) 21, 23. 

(|
𝑥

𝑎
|

𝑛2

+ |
𝑦

𝑏
|

𝑛2

)

𝑛1
𝑛2

+ |
𝑧

𝑐
|

𝑛1

≤ 1, (4.1) 

where, 𝑎, 𝑏, 𝑐 = particle half-lengths along the principal axes, 𝑛1, 𝑛2= blockiness 

parameters (𝑛𝑖 = 1,2,3, …). 

By changing these five parameters (𝑎, 𝑏, 𝑐, 𝑛1, 𝑎𝑛𝑑 𝑛2), the equation can 

provide a variety of shapes. For example, 𝑎 = 𝑏 = 𝑐, 𝑛1 = 𝑛2 = 2 provides a 

sphere, 𝑎 = 𝑏 = 𝑐, 𝑛1"2, 𝑛2 = 2 provides a cylinder, and 𝑎 = 𝑏 =

𝑐, 𝑛1"2, 𝑛2"2 provides a box. A well-calibrated superquadric particle simulation 

can provide similar results to a multi-sphere model in equal or less 
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computational time 24-26. Thus, the superquadric particle assumption can provide 

an optimum balance between the model accuracy and capturing the realistic 

particle shape 27.  

Superquadric particle representation has been successfully applied to 

discrete element modeling by computational scientists to model diverse sets of 

particles 23, 24, 28-30. Furthermore, the developed superquadric model can be 

validated using experimental measurements and for predicting material 

behavior in particle scale, including their flow in various conveyance systems. 

A major limitation of state-of-the-art superquadric models is the absence 

of a standardized method for determining superquadric parameters, i.e., the 

length of half axes and the blockiness parameters. Traditional size measurement 

techniques are unsuitable for finding the particle shape parameters in three 

dimensions 31. Alternative digital imaging techniques such as using a digital 

scanner 32, scanning electron microscope 33, 34, or dynamic image analysis 35, 36 

provide high-fidelity particle images, but the selection of the appropriate 

particle size and shape parameters from these images becomes important. 

Among the different parameters used for the analysis of particle size and its 

distribution, e.g., in a powder or a polycrystalline solid, Feret parameters are 

popular for relating the projections of three-dimensional objects on a two-

dimensional plane 37. Feret length, width, and thickness of granular particles can 
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represent the shape or form along principal axes and can provide the length of 

half axes of the superquadric particles. Similarly, the corner curvatures, 

represented by roundness and sphericity, can be translated into blockiness 

parameters 38, 39. Therefore, we can use existing digital imaging technologies to 

capture the particle morphological parameters and render realistic particle 

shapes in a superquadric DEM model.  

This study aims to capture the real lignocellulosic biomass morphology 

and flow behaviors by experimental morphological parameter measurements 

and superquadric discrete element computational models. We hypothesize that 

if we can experimentally approximate the necessary particle parameters and 

combine them with superquadric particle assumptions, we can reasonably 

represent real particle morphology and model lignocellulosic biomass flow 

comparable with complex particle approximation. We will test our hypothesis 

by i) determining the appropriate morphological, material, and mechanical 

properties of switchgrass, loblolly pine, and hybrid poplar feedstocks, ii) 

developing computational models with appropriate particle shapes and size 

distribution to represent the biomass particle assemblies, and iii) examining the 

flow behavior of particle assemblies during an angle of repose test. 
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4.2. Materials and Methods 

4.2.1. Sample Particle Selection 

We chose the three groups of lignocellulosic biomass particle batches 

(same as Objective 1) for this computational research study: switchgrass 

(herbaceous), hybrid poplar (hardwood), and loblolly pine (softwood), as they 

represent different bioenergy-relevant feedstocks commonly used in 

lignocellulosic biorefineries. Additionally, these particles show non-spherical 

characteristics (sphericity <0.5), representing "real" or "irregularly shaped" 

particles.  

Figure 4.2 illustrates the herbaceous and woody biomass samples used 

in our research. 

4.2.2. Sample Material Characterization 

We conducted an extensive literature review to ascertain the material and 

interaction properties that previous DEM researchers deemed critical for 

particulate systems. First, we conducted experimental measurements of the bulk 

and particle density of the sample materials using the method described in 

Chapter 3, Section 3.2.2. Next, we selected appropriate values based on 

available DEM literature for the rest of the particle-particle and wall material 
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Figure 4.2. Herbaceous and woody biomass sample materials.  
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properties. Finally, we calculated the particle-wall interaction properties by 

taking an average of the experimentally measured particle and wall material 

properties from the literature. 

Table 4.1 lists the material and interaction properties values for the 

different sample batches used for generating our baseline model. 

4.2.3. Particle Morphology Representation 

We performed a particle image analysis of the samples from each batch 

to quantify the particle size distribution and its external shape characteristics. 

We analyzed the dynamic particle in a dynamic, quasi-3D particle image 

analyzer (PartAn3D Pro, Microtrac, York, PA, USA). The dynamic image analysis 

method involves loading particle samples into the vibratory funnel that induces 

particles to fall through the instrument's opening. As these particles fall along 

the measurement field of high-resolution digital cameras, they capture the 

particle shadows' projection at a high frame rate providing quasi-3D 

reconstructed images. The built-in software processes the camera feeds to 

generate particle images at different orientations; size distribution-based 

predefined bins, and size and shape parameters.  

Figure 4.3 describes the particle tracking and image capture process by 

the dynamic particle analyzer.   
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Table 4.1. Material and interaction properties used in baseline DEM model 

for switchgrass, loblolly pine, and hybrid poplar samples. 

Parameter Switchgrass Loblolly Pine Hybrid Poplar 

Density of particles (kg/m3)  135 214 165 

Young's modulus wall [MPa] 1.93 × 108  1.93 × 108  1.93 × 108  

Young's modulus particles 

[MPa] 

3.24 × 108  3.24 × 108  3.24 × 108  

Poisson's ratio wall [-] 0.25 0.25 0.25 

Poisson's ratio particle-

particle [-] 

0.4 0.4 0.4 

Coefficient of restitution 

wall [-] 

0.6 0.6 0.6 

Coefficient of restitution 

particle-particle [-]  

0.6 0.6 0.6 

Coefficient of sliding 

friction wall [-] 

0.3 0.3 0.3 

Coefficient of sliding 

friction particle-particle [-] 

0.36 0.36 0.36 

Coefficient of rolling friction 

wall [-] 

0.8 0.8 0.8 

Coefficient of rolling friction 

particle-particle [-] 

0.8 0.8 0.8 

Coefficient of restitution 

particle-wall [-] 

0.6 0.6 0.6 

Coefficient of sliding 

friction particle-wall [-] 

0.36 0.36 0.36 

Coefficient of rolling friction 

particle-wall [-] 

5 × 10−4  5 × 10−4  5 × 10−4  

Time step [s] 10−5  10−5  10−5  
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Figure 4.3. Particle tracking process for the dynamic particle analyzer 

(PartAn3D Pro) used for particle shape and size distribution analysis.  
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We measured the following parameters using this approach:  

i) Size distribution (percentage of particles in each size bin),  

ii) Area equivalent diameter (𝐷𝑎 = (4𝐴𝑟𝑒𝑎/𝜋)1/2),  

iii) Feret length (𝐹𝐿),  

iv) Feret width (𝐹𝑊),  

v) Feret thickness (𝐹𝑇),  

vi) Roundness (𝑅𝑝 = (4𝐴𝑟𝑒𝑎/𝜋(𝐹𝐿)2)), and  

vii) Sphericity (𝑆𝑝 =
𝐷𝑎

𝐷𝑝
,  

where, 𝐷𝑝 = 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =  𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟/π ).  

We used approximately 10g of material (~50,000 particles) for each 

image analysis experiment and conducted our analysis in triplicates of the 

sample batch. We measured three imaging replicates for each particle group 

and reported the averages. After the particle dynamic analysis, we selected the 

particle size bins covering the majority (~99%) of the total particle size 

distribution. We then used the Feret length (𝐹𝐿𝑃𝐴) and Feret width (𝐹𝑊𝑃𝐴) to 

calculate the average particle area for each particle bin (𝐴𝑟𝑒𝑎𝑃𝐴 = 𝐹𝐿𝑃𝐴 × 𝐹𝑊𝑃𝐴).  

Next, we conducted a digital image scanning of the particle bins with an 

Epson Perfection V39 high-resolution scanner (Epson America, Inc., Long Beach, 

CA) at a resolution of 300 dpi (dots per inch). Before scanning, we scattered the 

particles without overlapping on an opaque white sheet. We analyzed the 
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captured images with a custom-built program in the MATLAB software (The 

MathWorks Inc., Natick, MA), which determines their area (𝐴𝑟𝑒𝑎𝐼𝑆) and Feret 

length (𝐹𝐿𝐼𝑆), from which we can calculate the Feret width (𝐹𝑊𝐼𝑆 =
𝐴𝑟𝑒𝑎𝐼𝑆

𝐹𝐿𝐼𝑆
). We 

then determined the initial error between the image scanning and dynamic 

particle analysis using Equation 4.2. 

𝑦𝑖𝑛𝑖
′ =

𝐴𝑟𝑒𝑎𝑃𝐴 − 𝐴𝑟𝑒𝑎𝐼𝑆

𝐴𝑟𝑒𝑎𝐼𝑆
, (4.2) 

We then conducted an optimization process to minimize the error. For 

this purpose, we considered the 𝐹𝑊𝐼𝑆 while adjusting the 𝐹𝐿𝐼𝑆 value until the 

𝑦𝑐𝑜𝑟𝑟
′  is minimum. We then use the corrected Feret length (𝐹𝐿𝑐𝑜𝑟𝑟) and the image 

scanned Feret length value (𝐹𝑊𝐼𝑆) to be the half-length axes in the x and y 

direction for the superquadric particles (𝑎 𝑎𝑛𝑑 𝑏 𝑖𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1). We used the 

Feret thickness from particle analysis 𝐹𝑇 to be the final half-length parameter (𝑐).  

Finally, we used the roundness, 𝑅𝑝, and sphericity, 𝑆𝑝 values to determine 

the blockiness parameters (𝑛1 𝑎𝑛𝑑 𝑛2). We repeated the process for each 

particle bin and used the superquadric particle parameters in the DEM model's 

input script in LIGGGHTS.  

Figure 4.4 shows a superquadric particle generated in MATLAB using size 

and shape parameters from the dynamic particle analysis and error minimization 

and the DEM particle assembly in LIGGHTS with same size parameters. 
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Figure 4.4. Particle image from a) dynamic image analysis and error 

minimization, b) Particle assembly in DEM model.  
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4.2.4. Computational Model Generation 

We conducted our flow simulations of the batches using the open-source 

DEM software LIGGGHTS (LAMMPS improved for general granular and granular 

heat transfer simulations) (version: LIGGGHTS-PUBLIC 3.8, DCS Computing 

GmbH, Linz, Austria). In addition, we conducted the post-processing of the 

simulations from the LIGGGHTS using the analysis and visualization software 

ParaView (version: 5.8.0 64-bit, Kitware Inc., New York, NY, USA). We performed 

the LIGGGHTS simulations on the University of Tennessee's HPC cluster ISAAC, 

which has a 40-core Intel Skylake computing node with 192 GB RAM (Intel Gold 

6148, Intel Corporation, Santa Clara, CA, USA. We ran the simulations in 

LIGGGHTS in batch mode using four cores, each consisting of 16GB RAM. Our 

simulations used a critical time step value of 20% of the Rayleigh time. 

We used the default superquadric contact model in LIGGGHTS-DEM 

(based on the Hertz-Mindlin contact theory) for particle-particle and particle-wall 

interactions 40.  

We characterized the flow of the particle assemblies using a hollow 

cylinder angle of repose test 41. The computational domain is a quasi-3d plane 

hopper with the same dimensions as the experimental setup, i.e., i.e., inner 

diameter, ID = 0.04 m, and cylinder height, CH = 0.20m. The particles are 

generated in an insertion face located vertically above the top of the cylinder 
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and then fill inside the cylinder (𝑚𝑓𝑖𝑙𝑙), allowing them to settle under gravity. 

Then, the cylinder travels vertically at a velocity of 0.1 m/s, and the material flows 

from the lifting cylinder on the flat surface, forming a material pile. 

After completing the final simulation, we calculated several quantitative 

parameters from the model and compared them with the experimental 

outcomes, namely bulk density, pile diameter, and angle of repose.  

We measured the fill height of the particles inside the hopper (ℎ𝑓𝑖𝑙𝑙) after 

the particles had settled inside the cylinder and before the vertical motion was 

initiated. We then calculated the bulk density of the material using Equation 4.3.  

𝜌𝑏𝑢𝑙𝑘 =
𝑚𝑓𝑖𝑙𝑙

𝜋(𝐼𝐷/4)2ℎ𝑓𝑖𝑙𝑙
(4.3) 

We captured two-dimensional images of the pile in the XY plane at the 

end of our simulation. We then processed the same MATLAB image and 

segmentation process as described in the image processing section of 3.2.3.1 

to calculate the angle of repose. We also captured two-dimensional images of 

the pile in the YZ plane and circumscribed a circle to the area covered by the 

pile. The circle's radius represents the particles' spread after the test.  

Figure 4.5 shows the isometric and front views of the computational 

domain used for the hollow cylinder angle of repose test.  
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Figure 4.5. Computational domain of the hollow cylinder angle of repose 

test. a) isometric view, b) front view.  
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4.3. Results 

4.3.1. Particle Morphology Representation 

Table 4.2 summarizes the results after the morphological feature 

extraction by dynamic particle size analysis and error minimization process for 

switchgrass, loblolly pine, and hybrid poplar samples. The results show that five 

particle size bins constitute nearly 99% of their total particle batch by volume. 

We used only these five bins for the particle distribution in LIGGGHTS and 

used their related Feret dimensions (as the length of half-axes, a, b, and c) and 

the roundness and sphericity values (for blockiness parameters, n1, and n2) for 

creating the superquadric particles. 

4.3.2. Computational Model Output: Fill Parameters 

We show still images from the angle of repose tests from the 

computational model and physical experiment for switchgrass, loblolly pine, 

and hybrid poplar samples in Figure 4.6 and Figure 4.7. The visual results 

indicate that we can achieve similarity in the particle shape and size distribution 

for both experiments and simulations.  

Table 4.3 provides quantitative parameters from DEM simulations and 

physical experiments for switchgrass, loblolly pine, and hybrid poplar samples.   
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Table 4.2. Dynamic particle analysis results for the switchgrass, loblolly 

pine, and hybrid poplar samples. 

Material: Switchgrass       

Particle 
size 

Volume 

Feret Feret 
width, 
FW 

Feret 
thickness, 
FT 

Roundness  Sphericity  n1 n2 length, 
FL 

mm %  mm mm mm         

40 36 3 19.2 5 0.41 0.34 6 6 

30 33 3 31.9 5 0.52 0.49 5 5 

20 17 3 23.1 5 0.56 0.15 5 5 

10 9 3 18.9 4 0.37 0.29 6 6 

5 5 2.5 5.25 5 0.44 0.41 5 5 

         
Material: Loblolly Pine       

Particle 
size 

Volume 

Feret Feret 
width, 
FW 

Feret 
thickness, 
FT 

Roundness  Sphericity  n1 n2 length, 
FL 

mm %  mm mm mm         

20 34 2.5 3.5 5 0.46 0.29 6 6 

16 28 2.5 12.3 5 0.52 0.49 5 5 

12 22 2.5 7.5 4 0.51 0.31 5 5 

8 11 2.5 9.8 3 0.39 0.28 6 6 

4 5 2.5 5.25 5 0.49 0.55 5 5 

         
Material: Hybrid Poplar       

Particle 
size 

Volume 

Feret Feret 
width, 
FW 

Feret 
thickness, 
FT 

Roundness  Sphericity  n1 n2 length, 
FL 

mm %  mm mm mm         

20 40 3.5 9.4 5 0.32 0.41 6 6 

16 26 3.5 15.0 5 0.58 0.49 5 5 

12 22 3.5 12.1 3 0.5 0.47 5 5 

8 7 3.5 9.2 3 0.37 0.29 6 6 

4 5 3.5 15.6 4 0.55 0.49 5 5 
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a) 

 

b) 

 

c) 

 

Figure 4.6. Front view of material piles from simulation and experiment 

after image processing for a) switchgrass, b) loblolly pine, and c) hybrid 

poplar.  
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a) 

 

b) 

 

c) 

 

Figure 4.7. Top view of material piles from simulation and experiment after 

image processing for a) switchgrass, b) loblolly pine, and c) hybrid poplar.
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Table 4.3. Computational and experimental outputs from the angle of 

repose tests for switchgrass, loblolly pine, and hybrid poplar samples. 

Material Switchgrass Loblolly Pine Hybrid Poplar 

Parameter Comp. Expt. Comp. Expt. Comp. Expt. 

Mean aspect 

ratio 

7.7 7.9 3.0 3.1 3.5 3.4 

Fill mass  

(kg) 

0.50 0.53 0.50 0.51 0.50 0.51 

Fill height  

(m) 

0.18 0.17 0.25 0.25 0.20 0.19 

Bulk density 

(kg/𝑚3) 

140.80 

(±0.51) 

138.82 

(±1.86) 

200.12 

(±1.55) 

198.12 

(±1.21) 

155.57 

(±1.75) 

152.17 

(±2.11) 

Pile diameter 

(m) 

0.167 

(±0.006)  

0.185 

(±0.011) 

0.210 

(±0.007)  

0.195 

(±0.015) 

0.185 

(±0.009)  

0.199 

(±0.019) 

Angle of  

repose (°) 

41.30 

(±0.95) 

40.10 

(±0.79) 

26.10 

(±0.51)  

27.30 

(±1.05) 

29.10 

(±0.51)  

30.50 

(±1.29) 
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We conducted both DEM simulations and physical experiments in 

triplicate and averaged the results. 

For all cases, the fill mass is similar between experiments and simulations. 

The fill height is highest for the loblolly pine, resulting in the highest bulk density 

value. The bulk density value is not significantly different from values obtained 

using the bulk density apparatus as described in Chapter 3, indicating that the 

simulation's particle packing represents the real biomass particles. We saw a 

larger degree of variation between the computational and experimental spread 

of the particle piles. We believe a potential reason for this might be the presence 

of smaller particles in the samples for the experimental materials that were not 

completely removed from our desired particle-sieving process. Finally, the 

angle of repose values is not significantly different from our experimental 

measurements. The similarity between experimental and computational results 

indicates that the model captures the real particle flow characteristics well. 

4.3.3. Computational Model Output: Contact Forces 

We used the validated model for investigating micro-scale forces. Prior 

research on granular material flow found a correlation between particle aspect 

ratio (AR) and the total contact force between the particles 41-43. Therefore, we 

conducted an investigation of the relationship between the total particle contact 
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force and aspect ratios for our loblolly pine (AR = 3), hybrid poplar (AR = 4), and 

switchgrass (AR = 8) particles.  

Figure 4.8 shows the change in magnitude of the total particle contact 

force with a change in aspect ratios for the different assemblies. With an 

increased particle aspect ratio, the contact forces between the particles initially 

sharply decrease and become almost constant. This is comparable with the 

results of prior research with particles with different aspect ratios, with the 

normal force becoming constant after a certain aspect ratio 44-46.  

We theorize that at higher aspect ratios, i.e., higher degree of elongation 

of particles, the number of contact points between them is also high. However, 

the overall load stays the same. Thus, the particle assembly's average contact 

force (contact force/load) decreases until the preferential orientation is fully 

achieved. This constant contact force indicates the fact that the structuring of the 

particles within the flow reaches a stable layered state and becomes 

independent of the elongation of particles 44. 

4.4. Conclusions 

In this study, we combined a dynamic particle analysis method with a 

custom image feature extraction process and determined important 

morphological parameters for herbaceous, softwood, and hardwood materials.  
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Figure 4.8. The magnitude of total contact force within particle assemblies 

of different aspect ratios.  
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Then we developed a DEM model to study their flow behavior during a hollow 

cylinder angle of repose test. The developed model can realistically capture 

biomass particles' shapes and macro-scale flow using a superquadric particle 

assumption. Next, we quantitatively validated the model by comparing the bulk 

density, angle of repose, and pile diameter from the simulation with physical 

tests performed using geometrically identical experimental setups. Finally, we 

examined the distribution of forces for the particles, providing a unique insight 

into the flow mechanism for the biomass particle assemblies of different aspect 

ratios. The overall contact force decreases with an increased aspect ratio (i.e., 

more elongated superquadric particles) until the contact force achieves a state 

beyond which the uniformity in force distribution becomes nearly constant and 

independent of the aspect ratio. 

Overall, our particle morphology analysis, coupled with the 

computational model, can be used to predict the flow behavior of different 

biomass materials without running expensive physical tests.  
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CHAPTER 5.  

RELATIVE INFLUENCE OF LIGNOCELLULOSIC BIOMASS 

PROPERTIES ON THE FLOW BEHAVIOR OF BIOMASS 

PARTICULATES 
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Disclaimer: This chapter is a draft version of the following article:  

Ehite, E. H.; Abdoulmoumine, N. Analysis of Relative influence of Lignocellulosic 

Biomass Properties on the Flow Behavior Using Classical and Modern Statistical 

Techniques. In preparation for submission to Journal of Computational and 

Applied Mathematics. 

5.1. Introduction 

This chapter details the investigation of the relative influence of the 

morphological, material, and mechanical properties of lignocellulosic biomass 

assemblies on the macro-scale flow behavior. 

The morphological, material, and mechanical properties of 

lignocellulosic biomass materials significantly affect their flow behavior. 

However, it is computationally impractical to capture the contribution of every 

single biomass property when modeling the flow behavior of lignocellulosic 

biomass particle assemblies. Instead, it is more practical to identify the 

properties with the most influence and focus our attention on them. In the 

previous chapter, we developed a high-fidelity discrete element computational 

model that captures real biomass morphology and flow processes. However, 

the output from computational modeling techniques, such as the discrete 

element method (DEM), of solid particulate systems is highly dependent on the 
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appropriate values of the model input parameters representing the 

morphological, material, and mechanical properties of the particle assembly 1. 

While we can validate DEM by accounting for numerical accuracy and 

comparative analysis with experimental results, it is only conditionally valid for 

that specific set of input parameters. Therefore, DEM researchers follow the 

development of baseline models by conducting parametric studies that vary the 

input parameters’ values 2-4. The parametric study allows the examination of the 

effect of individual input parameters on the model outputs and establishes the 

robustness of the model for a wide range of particle properties 5. Additionally, it 

allows the development and selection of simpler models that include only the 

most influential parameters. The principle of Occam’s Razor suggests that 

simpler models are preferred to more complex ones for a given level of accuracy 

and can be more easily validated using experimental outcomes 6.  

A common approach to parametric study involves conducting a design 

of experiments (DOE)-based sensitivity analysis to analyze the relative effect of 

the input parameters on model responses and the cross-relation between the 

input parameters 7-9. The DOE approach initially involves establishing a “full” 

statistical model with all the possible factors influencing the output. Our model 

consists of a response variable 𝑦𝑖 and multiple explanatory variables 𝑥𝑖, and for 

a general case of k variables can be described by Equation 5.1. 
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yi = βo + β1𝑥𝑖1 + β1𝑥𝑖2 + ⋯ + βk𝑥𝑖𝑘 + 휀𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 (5.1) 

Then, instead of performing experiments for all combinations of factors, 

which can be expensive and time-consuming, a selected, systematic set of 

experiments is conducted for specific values of the selected factors. Afterward, 

the best approximating model is chosen among competing models by suitable 

model evaluation criteria for the given data set 10, 11. DEM researchers have 

successfully implemented the sensitivity analysis-based approach for evaluating 

particle velocity trajectories in a convective mixing system 12, powder flowability 

in rheometers 9, and particle aggregations for single-particle crushing tests of 

railway ballast stones 13. 

The choice of the statistical model evaluation and selection technique is 

a great area of interest in the statistical literature 14. Classical model selection 

involves the use of the least square estimates method, which consists of 

determining the linear regression parameters, such as the regression 

coefficients and standard error, and then testing for significance using analysis 

of variance (ANOVA) and t-statistic, with a target of finding the minimum p 

values 15, 16. However, the modern field of statistical data modeling prefers using 

“information-theoretic” criteria for identifying an optimal and parsimonious 

model in data analysis from a class of competing models, considering the model 

complexity 14. This approach is also known as “quantile modeling.” These kinds 
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of model selection criteria act as figures of merits, or performance measures for 

competing models 17, 18. A model with more parsimony, i.e., a lower number of 

parameters or variables, rather than a complex, i.e., a high dimensional model, 

is preferable as it minimizes the cost of measuring the models required to 

implement the model 15, 19.  

Information-theoretic model selection criteria include Akaike’s 

Information Criterion (AIC) 20, Takeuchi’s Information Criterion (TIC) 21, Schwarz 

Bayesian Information Criterion (BIC, also known as SBC) 22, as well as Bozdogan’s 

Consistent AIC (CAIC) and Consistent AIC with Fisher Information (CAICF) 14. 

Bozdogan and Ueno 23 extended the CAICF criterion further, developing a 

dimension-consistent criterion called ICOMP. Most of the above information 

criteria select a model by maximizing the log-likelihood of a model and 

penalizing it by some scalar value 24. AIC penalizes a model based on the 

number of parameters in a model. In contrast, BIC, CAIC, CAICF, and ICOMP all 

penalize a model as a function of both the sample size and the number of 

parameters in the model. These penalty functions aim to penalize more complex 

and overparameterized models 25.  

Therefore, we can use a DOE-based approach in combination with 

classical and modern model selection techniques to determine the influence of 

the biomass properties (the predictor variables) on the flow parameters 
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(response variables) and develop simpler models that can be validated more 

easily with experimental results.  

In this study, we take the computational model for the hollow cylinder 

angle of repose test in Chapter 4 and conduct a sensitivity analysis of the 

biomass assembly’s properties to analyze their relative influence on the 

macroscale flow behavior. The research question in this objective is: How to 

determine the relative influence of biomass properties on flow behavior and 

develop statistically efficient models to capture their relationship? 

We hypothesize that we can take a design of experiments (DoE) 

approach, reduce the number of experiments required for the statistical 

analysis, and then use classical and modern model selection criteria to develop 

simpler models to represent the relation between the flow behavior and 

biomass properties. We will test our hypothesis by i) Developing a 2-level, 5-

factor, half-fractional experimental design for the angle of repose DEM model, 

ii) Constructing a linear regression model to describe the relationship between 

the response variable, namely the angle of repose and the most significant 

predictor variables, and iii) Optimize the validated regression model to 

determine the minimum value of the angle of repose.  
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5.2. Materials and Methods 

5.2.1. Design of Simulations (DoS) 

We employed a design of experiments (DoE) method to analyze the 

interaction between the DEM parameters and the parametric effect on the 

simulation outputs. This approach ensures maximum orthogonal variance, 

encompasses the entire experimental space, and reduces the number of 

required experiments 26. Additionally, unlike the traditional one-at-a-time 

approach (variance of one parameter at a time while keeping the others 

constant), we can produce a large dataset for multivariate analysis 27. Since, in 

our case, the experiments involve conducting DEM simulations, we refer to this 

approach more accurately as the “design of simulations” (DoS) 28, 29. We used the 

DoS approach to create a matrix of simulations and determined the number of 

simulations required using Equation 5.2. 

𝐿𝑥−𝑛, (5.2) 

where 𝐿 = Number of levels (typically 2),  𝑥 = Number of variables, 𝑛 = 

optional fractional reduction. 

Our simulation plan involves using a fractional factorial design (2𝑥−𝑛, 

reduced experimental space with a lower number of tests), namely a half-

factorial design 30, 31.  
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5.2.2. Input Parameters in the Design of Simulations (DoS) 

In this study, we selected the five particle-particle properties as variable 

input parameters for the design of simulations, namely Young’s modulus (𝑌𝑝), 

Poisson’s ratio (𝜈𝑝), coefficient of restitution (휀𝑝𝑝), coefficient of sliding friction 

(𝜇𝑠,𝑝𝑝), and coefficient of rolling friction (𝜇𝑟,𝑝𝑝).  

We considered the experimentally measured values as their base values 

and then changed them by an amount of ±15% to calculate a low (-1) and a high 

value (+1). Therefore, we have two levels of values for each input parameter, and 

thus it is a two-level, five-factor design. Since in our DEM model, the particle-wall 

interaction properties are an average of the particle properties and the value of 

the wall material properties from literature; their values will also assume three 

levels in response to the change in particle properties. We used the wall 

properties based on literature and kept them constant to reduce the required 

number of iterations. 

With our 5 factors to run a full factorial set of experiments, we would need 

25 = 32 experiments. We selected a half-fraction design to reduce time and 

computational cost, reducing the number of simulations to 16 26, 32. We added 2 

replicate tests with all the parameters having the average value. Therefore, the 

total number of simulations is 18. We constructed the design matrices and the 

related analyses using the statistical toolbox in MATLAB.  
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Table 5.1 shows the low (-1), high (+1), and base (0) values used for the 

variable input parameters, and Table 5.2 shows the values used for the constant 

input parameters for the DEM simulations. 

5.2.3. Statistical Analysis 

After running the simulation experiments in the LIGGGHTS DEM 

environment for the half-factorial design, we determine the angle of repose 

(AOR) values using the steps outlined in Chapter 3. Then, we conducted a 

multiple linear regression on the dataset using the “glmfit” function in MATLAB.  

Afterward, we determine the linear regression statistics, including R-

square and adjusted R-square values. If the R square values are high (≥0.90), we 

consider that our full linear regression model fits the data well. Next, we 

construct a reduced regression model using the most significant factors and 

their interactions (p-value < 0.05). Then, we conduct a process optimization 

(using the “fitrauto” function in MATLAB) to find the optimal value of the model 

response, i.e., the angle of repose. As we have established in Chapters 2 and 3, 

a material with a lower angle of repose has a lower potential energy 33. 

Therefore, it provides the lowest resistance to flow and highest flowability when 

motion is induced. Therefore, the value of the angle of repose is optimum for 

flow when it is minimum.   
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Table 5.1. DEM input parameters varied in the DoS. 

Parameter Symbols  Low (-1) Base (0) High (+1) 

Young’s modulus,  

particle [MPa] 

𝑌𝑀 0.85 1 1.15 

Poisson’s ratio,  

particle [-] 

𝑃𝑅 0.26 0.30 0.35 

Coefficient of sliding  

friction, particle-particle [-]  

𝑠𝑓 0.31 0.36 0.41 

Coefficient of rolling  

friction particle-particle [-] 

𝑟𝑓 0.68 0.80 0.92 

Coefficient of restitution, 

particle-particle [-] 

𝐶𝑜𝑅 0.51 0.60 0.69 

Coefficient of sliding  

friction, particle-wall [-] 

𝑠𝑓𝑝𝑤 0.33 0.36 0.39 

Coefficient of rolling  

friction, particle-wall [-] 

𝑟𝑓𝑝𝑤 0.49 0.55 0.61 

Coefficient of restitution, 

particle-wall [-]  

𝐶𝑜𝑅𝑝𝑤 0.56 0.60 0.65 
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Table 5.2. DEM input parameters considered constant in the DoS. 

Parameter Symbols  Values  

Young’s modulus, wall 

[MPa] a 

𝑌𝑀𝑤 1 

Poisson’s ratio, wall [-] a 𝑃𝑅𝑤 0.25 

Coefficient of sliding 

friction, wall [-] a  

𝑠𝑓𝑤  0.30 

Coefficient of rolling 

friction, wall [-] b 

𝑟𝑓𝑤 0.30 

Coefficient of restitution, 

wall [-] a  

𝐶𝑜𝑅𝑤 0.65  
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Finally, we conducted a residuals analysis to ensure the normality 

assumption of our reduced model. 

In addition to the classical statistical parameters, we improved the 

robustness of our data analysis process by conducting quantile modeling for the 

angle of repose data. We scored several information criteria, namely Akaike’s 

Information Criterion (AIC) 20, Bozdogan’s Consistent AIC (CAIC) 14, Schwarz 

Bayesian criterion (SBC) 22, and Bozdogan’s information complexity criterion 

(ICOMP) 23, which are described by Equation 5.3. 

𝐴𝐼𝐶 =  −2𝑙𝑜𝑔𝐿(𝜃) + 2𝑘,

𝐶𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿(𝜃) + 𝑘[𝑙𝑜𝑔(𝑛) + 1]

𝑆𝐵𝐶 =  −2𝑙𝑜𝑔𝐿(𝜃) + 𝑘[𝑙𝑜𝑔(𝑛),

𝐼𝐶𝑂𝑀𝑃(𝐼𝐹𝐼𝑀) =  −2𝑙𝑜𝑔𝐿(𝜃) + 2𝐶1𝐹 (�̂�−1(𝜃)) ,

𝑤ℎ𝑒𝑟𝑒 𝐼𝐹𝐼𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝐹𝑖𝑠ℎ𝑒𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑎𝑛𝑑  

 𝐶1𝐹 (�̂�−1(𝜃)) =
1

4𝜆𝑎
̅̅ ̅2 ∑(𝜆 − �̅�𝑎)

2
,

𝑠

𝑗=1

  

𝑤ℎ𝑒𝑟𝑒, �̅�𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝜆𝑗  , (5.3)

 

We used the information criteria to determine the best-fitting distribution 

for the dataset for each material under the test. The best-fitting distribution 

provides the lowest score for each information criterion. Then, we generate a Q-

Q plot to check the suitability of the selected distribution in a graphical manner. 

We conducted quantile modeling using the statistical toolbox in MATLAB (The 

MathWorks, Natick, MA, USA).  
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5.3. Results  

5.3.1. Half-Factorial Design 

Table 5.3 shows the input parameters (𝑌𝑀, 𝑃𝑅, 𝑠𝑓, 𝑟𝑓, 𝐶𝑜𝑅, 𝑎𝑛𝑑 𝐴𝑜𝑅) and 

response parameters for our half-factorial design for the switchgrass, loblolly 

pine, and hybrid poplar particles. In addition to the 16 simulations, we added 2 

additional experiments with the values called central points (represented by all 

zeros), corresponding to the average value of the high and low levels in each 

factor. 

5.3.2. Multiple Linear Regression 

Table 5.4 shows the regression statistics from the multiple linear 

regression.  

We see that the R-square and adjusted R-square values are > 0.90, 

validating our mathematical model, i.e., the input parameters we chose to have 

some degree of correlation with the response variable (AOR). From the 

Probability column (p), we selected the factors and interactions with p-

value<0.05 to be the most significant. While factors 𝑃𝑅 and 𝑟𝑓 have a p-

value>0.05, their interaction p-value is 0.02; therefore, we must keep them.   
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Table 5.3. Inputs and outputs of the angle of repose simulation studies for 

switchgrass (SG), loblolly pine (PI), and hybrid poplar (POP) particles. 

Run Young’s 

modulus,  

 

 

YM  

Poisson's 

ratio,  

 

 

PR 

Coeff. 

of 

sliding 

friction,  

sf 

Coeff.  

of  

rolling 

friction,  

rf  

Coeff. 

of 

restituti

on,  

CoR 

Angle of repose, (⁰) 

 
(MPa)         SG PI POP 

1 0.85 0.26 0.31 0.68 0.69 29.00 17.85 14.33 

2 1.15 0.26 0.31 0.68 0.51 29.19 21.77 18.41 

3 0.85 0.35 0.31 0.68 0.51 26.60 27.28 21.13 

4 1.15 0.35 0.31 0.68 0.69 34.18 28.77 27.99 

5 0.85 0.26 0.41 0.68 0.51 36.65 26.01 20.72 

6 1.15 0.26 0.41 0.68 0.69 34.96 32.06 21.09 

7 0.85 0.35 0.41 0.68 0.69 41.70 17.79 17.52 

8 1.15 0.35 0.41 0.68 0.51 39.77 25.04 21.69 

9 0.85 0.26 0.31 0.92 0.51 24.75 18.44 15.93 

10 1.15 0.26 0.31 0.92 0.69 42.10 24.28 23.32 

11 0.85 0.35 0.31 0.92 0.69 23.36 23.14 14.76 

12 1.15 0.35 0.31 0.92 0.51 33.21 20.70 15.44 

13 0.85 0.26 0.41 0.92 0.69 14.54 28.88 19.58 

14 1.15 0.26 0.41 0.92 0.51 28.71 18.39 17.11 

15 0.85 0.35 0.41 0.92 0.51 35.01 21.59 20.87 

16 1.15 0.35 0.41 0.92 0.69 45.46 19.15 17.67 

17 1.00 0.31 0.36 0.80 0.60 22.85 18.05 14.81 

18 1.00 0.31 0.36 0.80 0.60 19.57 20.07 17.37 
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Table 5.4. Multiple linear regression statistics for switchgrass particles. 

Regression Statistics 
    

Multiple R 0.99 
    

R Square 0.98 
    

Adjusted R Square 0.80 
    

Standard Error 3.31 
    

Observations 18 
    

       

ANOVA 
      

  df SS MS F Significance F 

Regression 15 968.97 64.60 0.56 0.80 
 

Residual 2 230.02 115.01 
   

Total 17 1198.99 
    

       

  Coeffici
ents 

Standard 
Error 

t Stat P-
value 

Lower 
95% 

Upper 
95% 

Intercept 31.20 2.53 12.34 0.01 20.33 42.08 

YM 3.50 2.68 1.30 0.02 -8.04 15.03 

PR 2.46 2.68 0.92 0.46 -9.07 14.00 

sf 2.15 2.68 0.80 0.51 -9.38 13.69 

rf -1.56 2.68 -0.58 0.62 -13.09 9.98 

CoR 0.71 2.68 0.27 0.82 -10.82 12.25 

YM*PR -0.26 2.68 -0.10 0.93 -11.79 11.28 

YM*sf -0.87 2.68 -0.33 0.78 -12.41 10.66 

YM*rf 2.98 2.68 1.11 0.38 -8.56 14.52 

YM*CoR 2.52 2.68 0.94 0.45 -9.02 14.05 

PR*sf 3.42 2.68 1.28 0.33 -8.11 14.96 

PR*rf 0.91 2.68 0.34 0.04 -10.63 12.44 

PR*CoR 0.55 2.68 0.21 0.86 -10.98 12.09 

sf*rf -2.11 2.68 -0.79 0.51 -13.65 9.42 

sf*CoR -1.15 2.68 -0.43 0.71 -12.68 10.39 

rf*CoR -0.24 2.68 -0.09 0.94 -11.78 11.30 
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Hence, we find a reduced formula for estimating the angle of repose of 

switchgrass as a function of three factors out of the original five we thought 

relevant.  

Equation 5.4 shows the reduced estimation model for switchgrass. 

𝐴𝑜𝑅𝑆𝐺 =  31.20 +  3.50 𝑌𝑀 + 2.46 𝑃𝑅 −  1.56 𝑟𝑓 + 0.91 (𝑃𝑅 ∗ 𝑟𝑓) , (5.4) 

We conducted similar multiple linear regression modeling for loblolly 

pine and hybrid poplar samples, and Table 5.5 and Table 5.6 shows their 

regression statistics. The reduced models for loblolly pine and hybrid poplar 

also contained 𝑌𝑀, 𝑃𝑅, 𝑎𝑛𝑑 𝑟𝑓 as the most significant parameters. The reduced 

models for loblolly pine and hybrid poplar are given by Equations 5.5 and 5.6.  

 𝐴𝑜𝑅𝑃𝐼  = 22.74 +  0.58 𝑌𝑀 − 0.26 𝑃𝑅 − 1.38 𝑟𝑓 − 0.24 (𝑃𝑅 ∗ 𝑟𝑓) , (5.5) 

 𝐴𝑜𝑅𝑃𝑂𝑃  = 18.87 + 1.12 𝑌𝑀 + 0.41 𝑃𝑅 − 1.14 𝑟𝑓 − 1.31 (𝑃𝑅 ∗ 𝑟𝑓) , (5.6) 

5.3.3. Process Optimization 

We took the reduced linear regression model for each material and 

conducted an optimization process in MATLAB to find the minimum value for 

the angle of repose (which provides the maximum flowability within out 

experimental space). Figure 5.1 shows the heat map for the reduced model for 

switchgrass. The greener portion represents the lower value of the angle of 

repose. We can identify the minimum angle value of repose to be 22.78⁰, 

corresponding to 𝑟𝑓 =  1 and 𝑃𝑅 =  −1.   
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Table 5.5. Multiple linear regression statistics for loblolly pine particles. 

Regression Statistics 
    

Multiple R 0.95 
    

R Square 0.90 
    

Adjusted R Square 0.88 
    

Standard Error 4.03 
    

Observations 18 
    

       

ANOVA 
      

  df SS MS F Significance F 

Regression 15 301.93 20.13 1.24 0.53 
 

Residual 2 32.41 16.21 
   

Total 17 334.34 
    

       

  Coefficien
ts 

Standard 
Error 

t Stat P-
value 

Lower 
95% 

Upper 
95% 

Intercept 22.74 0.95 23.96 0.00 18.65 26.82 

YM 0.58 1.01 0.57 0.03 -3.76 4.91 

PR -0.26 1.01 -0.26 0.82 -4.59 4.07 

sf 0.42 1.01 0.41 0.72 -3.91 4.75 

rf -1.38 1.01 -1.37 0.01 -5.71 2.95 

CoR 0.79 1.01 0.79 0.51 -3.54 5.12 

YM*PR -0.09 1.01 -0.09 0.94 -4.42 4.24 

YM*sf -0.53 1.01 -0.52 0.65 -4.86 3.80 

YM*rf -1.76 1.01 -1.75 0.22 -6.09 2.57 

YM*CoR 1.50 1.01 1.49 0.27 -2.83 5.83 

PR*sf -2.46 1.01 -2.44 0.13 -6.79 1.87 

PR*rf -0.24 1.01 -0.41 0.04 -4.74 3.92 

PR*CoR -1.51 1.01 -1.50 0.27 -5.84 2.82 

sf*rf -0.41 1.01 -0.24 0.72 -4.57 4.09 

sf*CoR 0.06 1.01 0.06 0.96 -4.27 4.39 

rf*CoR 1.25 1.01 1.24 0.34 -3.08 5.58 
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Table 5.6. Multiple linear regression statistics for hybrid poplar particles. 

Regression Statistics 
    

Multiple R 0.95 
    

R Square 0.90 
    

Adjusted R Square 0.87 
    

Standard Error 3.22 
    

Observations 18 
    

       

ANOVA 
      

  df SS MS F Significance F 

Regression 15 191.43 12.76 1.23 0.54 
 

Residual 2 20.73 10.37 
   

Total 17 212.16 
    

       

  Coefficien
ts 

Standard 
Error 

t Stat P-
value 

Lower 
95% 

Upper 
95% 

Intercept 18.87 0.76 24.87 0.00 15.61 22.14 

YM 1.12 0.80 1.39 0.03 -2.35 4.58 

PR 0.41 0.80 0.51 0.06 -3.05 3.87 

sf 0.31 0.80 0.38 0.14 -3.16 3.77 

rf -1.14 0.80 -1.41 0.29 -4.60 2.33 

CoR 0.31 0.80 0.38 0.74 -3.15 3.77 

YM*PR -0.05 0.80 -0.07 0.95 -3.52 3.41 

YM*sf -1.26 0.80 -1.56 0.26 -4.72 2.20 

YM*rf -0.82 0.80 -1.02 0.42 -4.28 2.64 

YM*CoR 1.87 0.80 2.32 0.15 -1.60 5.33 

PR*sf -0.51 0.80 -0.63 0.59 -3.97 2.96 

PR*rf -1.31 0.80 -1.63 0.03 -4.77 2.15 

PR*CoR -0.46 0.80 -0.57 0.63 -3.92 3.01 

sf*rf 0.41 0.80 0.51 0.24 -3.05 3.88 

sf*CoR -0.88 0.80 -1.09 0.39 -4.34 2.59 

rf*CoR 0.44 0.80 0.54 0.64 -3.03 3.90 
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Figure 5.1. Heat map of the reduced model of the angle of repose 

simulation study for switchgrass.  
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We conducted a similar optimization process for loblolly pine and hybrid 

poplar. Figure 5.2 and Figure 5.3 show the heat map for the reduced model for 

loblolly pine and hybrid poplar, respectively. We found the minimum angle of 

repose value for loblolly pine and hybrid poplar to be 20.29⁰ (corresponds to 

𝑟𝑓 =  1 and 𝑃𝑅 =  1) and 15.72⁰ (corresponds to 𝑟𝑓 =  1 and 𝑃𝑅 =  1), 

respectively. 

Figure 5.4 shows the relationship between the factors and the angle of 

repose in the three-dimensional space. We can see that despite this shape’s 

curvature, each factor’s behavior is linear. The shape twists due to the interaction 

between 𝑃𝑅 𝑎𝑛𝑑 𝑟𝑓. The minimum angle of repose value of 22.78⁰ can be 

obtained with 𝑌𝑀 =  0.85 𝑀𝑃𝑎, 𝑃𝑅 =  0.26, and 𝑟𝑓 = 0.92.  

Figure 5.5 and Figure 5.6 show a 3D correlation plot for the reduced 

models of loblolly pine and hybrid poplar, respectively. For both loblolly pine 

and hybrid poplar, the minimum angle of repose value of 20.29⁰ and 15.72⁰ can 

be obtained with 𝑌𝑀 =  0.85 𝑀𝑃𝑎, 𝑃𝑅 =  0.35, and 𝑟𝑓 = 0.92. 

5.3.4. Residuals Analysis for Normality 

Figure 5.7 shows the angle of repose values and estimates using the 

reduced model and residuals vs. estimates plot for switchgrass. We obtained 

the residuals by subtracting the actual AOR values from the estimates of our   
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Figure 5.2. Heat map of the reduced model of the angle of repose 

simulation study for loblolly pine. 
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Figure 5.3. Heat map of the reduced model of the angle of repose 

simulation study for hybrid poplar. 
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Figure 5.4. 3D correlation plot for the reduced model for switchgrass. 

 

Figure 5.5. 3D correlation plot for the reduced model for loblolly pine. 
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Figure 5.6. 3D correlation plot for the reduced model for hybrid poplar. 

 

 

Figure 5.7. a) Angle of repose (AOR) values for switchgrass – actual vs. 

estimated using the reduced model, b) residuals vs. estimates plot.  



220 

 

formula. Additionally, we checked whether the average of the residuals is close 

to zero and if they follow a normal distribution by examining the p-value. 

The residuals are symmetrically distributed, tending to cluster towards 

the middle of the plot and clustered around the lower digits of the y-axis. We 

see no trends of the residuals along the estimate range. Additionally, the p-value 

for the normality is 0.983, which is higher than the critical p-value (0.05). 

Therefore, the residuals pass the normality check, and our reduced 

model has an elevated level of accuracy. We see similar normality observations 

for loblolly pine and hybrid poplar, shown in Figure 5.8 and Figure 5.9. 

5.3.5. Information Criteria 

Table 5.7 shows the information criteria for the switchgrass angle of 

repose study. Normal distribution best fits the switchgrass angle of repose as it 

shows the lowest values for all information criteria parameters. 

Figure 5.10 shows the Q-Q plot for the angle of repose values of 

switchgrass. The Q-Q plots indicate that residuals fall along the middle of the 

line, with a higher deviation near the lower bounds, and therefore the normal 

distribution fits the switchgrass dataset well.  

Table 5.8 shows the information criteria for the loblolly angle of repose 

study. We see that lognormal distribution best fits the loblolly angle of repose   
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Figure 5.8. a) Angle of repose (AOR) values for loblolly pine – actual vs. 

estimated using the reduced model, b) residuals vs. estimates plot. 

 

 

Figure 5.9. a) Angle of repose (AOR) values for hybrid poplar – actual vs. 

estimated using the reduced model, b) residuals vs. estimates plot.  
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Table 5.7. Information criteria for switchgrass simulation dataset. 

Distribution AIC CAIC BIC ICOMP 

Normal -46.9 -43.1 -45.1 -47.1 

Lognormal -46.3 -42.6 -44.6 -46.7 

Student t -44.9 -39.2 -42.2 -47.1 

Exponential -41.7 -39.8 -40.8 -40.5 

Gamma -46.7 -42.9 -44.9 -47 

Weibull -46 -42.2 -44.2 -46.5 

 

 

Figure 5.10. Q-Q plot for the switchgrass simulation dataset.  
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Table 5.8. Information criteria for loblolly pine simulation dataset. 

Distribution AIC CAIC BIC ICOMP 

Normal 61.3 65.0 63.0 58.4 

Lognormal 51.2 55.0 53.0 47.8 

Student t 63.3 68.9 65.9 58.4 

Exponential 57.4 59.3 58.3 55.8 

Gamma 53.9 57.7 55.7 50.7 

Weibull 67.9 71.7 69.7 65.1 
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as it shows the lowest values for all information criteria parameters. This 

conclusion is supported by the Q-Q plot in Figure 5.11, which shows the 

residuals falling along the middle of the line, with a higher deviation near the 

lower bounds. Therefore, the lognormal distribution fits the loblolly pine dataset 

well.  

Table 5.9 shows the information criteria for the loblolly angle of repose 

study. We see that lognormal distribution best fits the hybrid poplar angle of 

repose as it shows the lowest values for all information criteria parameters. This 

conclusion is supported by the Q-Q plot shown in Figure 5.12, which shows the 

residuals falling along the middle of the line, with a higher deviation near the 

lower bounds. Therefore, the lognormal distribution is suitable for the hybrid 

poplar. 

5.4. Conclusions 

In this study, we took a design of experiments approach to investigate the 

relative effects of select input parameters on the output of a discrete 

computational model for the hollow cylinder angle of repose study for different 

lignocellulosic biomass feedstock materials. We used a half-factorial design with 

two levels and five factors and determined the angle of repose values for flow 

models representing switchgrass, loblolly pine, and hybrid poplar. Next, we    
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Figure 5.11. Q-Q plot for the loblolly pine simulation dataset. 

Table 5.9. Information criteria for hybrid poplar simulation dataset. 

Distribution AIC CAIC BIC ICOMP 

Normal 52.4 56.2 54.2 49.6 

Lognormal 42.0 45.7 43.7 38.3 

Student t 54.4 60.1 57.1 49.5 

Exponential 46.2 48.1 47.1 44.3 

Gamma 45.3 49.1 47.1 41.9 

Weibull 59.1 62.8 60.8 56.7 
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Figure 5.12. Q-Q plot for the hybrid poplar simulation dataset.  
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a multiple linear regression model on the angle of repose dataset and validated 

our choice of input parameters using regression statistics. We then identified 

Young’s modulus, Poisson’s ratio, and the coefficient of rolling friction as the 

most critical factors for the angle of repose and developed a reduced regression 

model to describe their relationship. We then conducted an optimization 

process to determine the model input parameters required to obtain the 

minimum value for the angle of repose. We checked the normality of the 

reduced model using residuals analysis to ensure the linear regression 

approach was suitable for our suitable model. Finally, we conducted a quantile 

modeling process using information criteria to determine the best-fitting 

distribution for the dataset obtained for the different lignocellulosic biomass 

materials. Overall, our results indicate that our statistical analysis process 

combining the design of experiments with classical and modern model 

selection process can be used to determine the level of influence of DEM model 

input parameters on model outputs and, therefore, build better models to 

capture the flow behavior of different biomass particulate assemblies 

computationally. 
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CHAPTER 6.  

DISSERTATION CONCLUSIONS 

AND RECOMMENDATIONS 
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6.1. Overall Conclusions 

The overall objective of this dissertation research was to develop a 

fundamental understanding of the relationship between structural constituents 

of lignocellulosic biomass, i.e., cellulose, hemicellulose, and lignin, their, 

morphology, and the impact of the structure and morphology on their flow 

behavior. We carried out three different studies to achieve the objectives of this 

dissertation and reached the following conclusions. 

1) We presented a comprehensive experimental investigation of three 

lignocellulosic biomass feedstock materials (switchgrass, loblolly 

pine, and hybrid poplar), examining the effect of variable proportions 

of cellulose, hemicellulose, and lignin on their flow behavior in 

Chapter 3. Our research shows that the magnitude of angle repose for 

switchgrass is higher than loblolly pine and hybrid poplar. In contrast, 

the shear strength value increases from switchgrass to loblolly pine to 

hybrid poplar. We conclude that the angle of repose and shear 

strength positively correlate with cellulose and hemicellulose and no 

significant correlation with lignin. Additionally, we conclude that the 

shear strength and angle of repose values are independent of the 

particle sizes of the feedstock. 
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2) We provide a combination of experimental morphological 

parameters and superquadric discrete element computational 

modeling techniques to capture the real lignocellulosic biomass 

morphology and flow behaviors in Chapter 4. The developed 

experimental method (involving dynamic particle analysis and error 

minimization) and computational models can reliably and accurately 

capture switchgrass, loblolly pine, and hybrid poplar materials 

morphologies. We conclude that the bulk density, pile diameter, and 

angle of repose from DEM simulations are validated by the results 

from geometrically identical physical experiments. Additionally, we 

conclude that the overall contact force between particles decreases 

with an increased aspect ratio until the contact force achieves a state 

beyond which the uniformity in force distribution becomes nearly 

constant and independent of the aspect ratio. 

3) We demonstrate a design of an experiments-based statistical analysis 

process approach to investigate the relative effects of select input 

parameters on the output of a discrete computational model for a 

hollow cylinder angle of repose study in Chapter 5. We conclude that 

the relationship between the model input parameters (Young’s 

modulus, Poisson’s ratio, coefficient of static friction, coefficient of 
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rolling friction, and coefficient of restitution) and the response variable 

(angle of repose) can be fitted using a linear regression model. We 

also conclude that the regression model can be simplified by selecting 

the most critical input parameters, namely Young’s modulus, Poisson’s 

ratio, and the coefficient of rolling friction, and the minimum value of 

angle of repose for a particular feedstock material can be determined 

by optimizing the critical input parameters. 

6.2. Contributions 

The main contribution of this dissertation research is the development of 

an experimental and computational framework for quantitatively examining the 

effect of lignocellulosic biomass materials’ structural composition and 

morphology on their flow properties. We built a comprehensive database of 

shear strength and angle of repose for different lignocellulosic biomass 

materials, covering herbaceous, softwood, and hardwood, as well as hardwood 

materials of different compositions. We also established and validated a method 

for realistically capturing irregularly shaped biomass particle morphologies and 

generating discrete element computational models using the morphological 

parameters. Finally, we provided a statistical analysis process combining both 

classical and modern statistical model evaluation techniques to determine the 
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relative influence of DEM model input parameters on model outputs and 

develop simpler and more efficient models for determining important flow 

parameters.  

6.3. Recommendations 

The different studies presented in this dissertation provide highly relevant 

information and tools for understanding the fundamental relationship between 

lignocellulosic biomass structural composition, morphology, and flow behavior. 

However, specific research questions require more conclusive answers, and 

certain research gaps require further investigation. We will highlight these 

research gaps and opportunities in the interest of future researchers in this 

subject area. 

Examining the microstructural composition of different lignocellulosic 

biomass materials  

For our objective 1, we qualitatively and quantitatively determined the 

cellulose, hemicellulose, and lignin composition by means of structural analysis 

and thermogravimetric analysis. However, we need to explore the lignocellulose 

matrix at the fiber level and the chemical bonds between the principal 

constituents to make more informed decisions. We suggest examining biomass 

structural constituents using advanced technologies such as X-ray diffraction 
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(XRD), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic 

resonance (NMR)  1-5. 

Capturing the particle surface texture of lignocellulosic biomass materials  

For our objective 2, we presented an experimental pathway for accurately 

capturing particle shape and size distribution using dynamic image analysis and 

processing. However, particle surface texture is an essential component to 

completely describe the particle morphology 6, potentially affecting the 

interaction forces between the particles. Therefore, we need an experimental 

quantitative method for determining the particle surface conditions. We suggest 

conducting a surface texture analysis using techniques such as atomic force 

microscopy (AFM) 7. This technique conducts the imaging by monitoring the 

position of a sharpened tip attached to a micro-cantilever as it scans over a 

sample surface 8. The AFM provides three-dimensional surface visualization and 

measurement of the sample's nanomechanical properties 9, 10. We believe that 

the AFM technique will provide a quantitative way of examining the surface 

texture expressed in terms of surface roughness parameters. 

Additionally, The discrete element model developed in our research 

using the state-of-the-art superquadric particle model assumes the contacting 

particles to be completely smooth 11. However, real biomass particles are highly 

textured, and the irregularities on the particle surface significantly influence their 
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interlocking nature, frictional properties, and, ultimately, their macro-scale flow 

behavior 12. Therefore, we need a new superquadric particle model that can 

capture the effect of the biomass particle’s surface texture. We propose that the 

new contact model considers the surface roughness, measured using AFM or a 

similar surface analysis technique to calculate interaction forces between the 

particles. 

Experimentally measuring lignocellulosic biomass material properties  

For our objective 3, we conducted a design of experiments-based 

sensitivity analysis to determine the relative effects of different biomass 

morphological, material, and mechanical properties on the angle of repose. For 

this purpose, we used the values of input parameters, such as Young’s modulus, 

Poisson’s ratio, coefficient of restitution, coefficient of static friction, and 

coefficient of rolling friction, as described in the literature. However, to achieve 

a robust and accurate model applicable to diverse biomass materials, we 

recommend the use of experimentally determined values for each parameter 

for the material under test. For example, we can determine the interparticle 

coefficient of restitution of the beechwood sample materials using the double-

pendulum-based experimental method developed by Wong et al. and utilized 

for restitution coefficient measurement by Ramírez-Gómez et al. 13, 14. Similarly, 

we can determine the coefficient of rolling friction by using the contact 
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eccentricity method 15. This method assumes that the rolling friction of a non-

spherical particle is equal to the ratio of the ensemble-averaged contact 

eccentricity (𝑒) to the equivalent partial diameter (𝑑𝑝) 16. Therefore, the rolling 

friction can be found by determining the ensemble average of the contact 

eccentricity and projected diameter of particles using image analysis and post-

processing.   
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