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ABSTRACT 

 

The transmission of airborne diseases indoors is a significant challenge to public 

health. Buildings are hotspots for viral transmission, which can result in adverse effects on 

human health and quality of life, especially considering that individuals spend 

approximately 87% of their time indoors. The emergence of the COVID-19 pandemic has 

highlighted the importance of considering health aspects during the development of 

sustainable built environments. Consequently, maintaining a healthy, sustainable, and 

comfortable built environment represents a major challenge for facilities management 

teams. However, research on the infection risks associated with emerging pandemics is still 

in its infancy, and the effectiveness of intervention strategies remains uncertain. 

Furthermore, the complex interplay between health, energy consumption, and human 

comfort remains poorly understood, impeding the development of comprehensive control 

strategies that encompass all three critical dimensions of building sustainability. In 

addition, existing technologies have limitations to conduct real-time monitoring, while 

current communication methods between occupants and facilities management teams 

suffer from a lack of effectiveness, user-friendliness, and informativeness. These 

deficiencies hinder their ability to address the pressing needs of occupants during 

pandemics. 

To address these challenges, this dissertation proposes a convergent framework that 

integrates modeling, simulation, and monitoring methodologies for the development and 

maintenance of a sustainable built environment. Airborne transmission risks were first 

modeled and estimated under different epidemic scenarios, allowing for the evaluation of 
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various intervention strategies. Facility data was then used to develop methods for 

modeling and simulating the dimensions of energy consumption and thermal comfort, 

allowing for the identification of tradeoff relationships among health, energy, and comfort, 

and quantitatively analyzing the impact of indoor environments through HVAC control 

strategies on the three major dimensions. Finally, an integrated platform was developed to 

enable the real-time assessment of health, energy, and comfort, including monitoring, 

visualization, and conversational communication functionalities. The developed 

framework thus encompasses modeling, simulation, monitoring, and communication 

capabilities and can be widely adopted by facility management teams, providing insights 

and guidance to governments and policymakers based on their specific needs. The 

applicability of the framework extends beyond specific pandemics and can be used to 

address a broader range of infectious diseases.  
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CHAPTER ONE  

INTRODUCTION 

 
1.1 Background 

Throughout the entirety of human history, pandemics have represented a prolonged 

and persistent public health threat. Over the last two decades, multiple disease outbreaks 

have raised global concerns about the threat of pandemics in human society. In particular, 

the globally extensive COVID-19 pandemic posed a significant threat to human life, having 

rapidly spread across more than 220 countries and territories [1]. This unprecedented crisis 

has shed light on the urgent need to prioritize the improvement of human health as a crucial 

objective of sustainable development [2]. Given that people spend a significant amount of 

their time indoors, buildings are major hotspots for pathogen exposure and transmission. 

Consequently, epidemics and everyday infections can wreak havoc on urban populations, 

particularly in high-risk environments such as mass-gathering infrastructure facilities, 

where the close and frequent contact between individuals facilitates the transmission of 

infectious diseases. Indeed, the transmission of airborne diseases within indoor spaces 

poses a significant challenge to public health and has raised concerns regarding the creation 

and maintenance of a healthy and sustainable indoor environment. The COVID-19 

pandemic has consequently introduced health considerations as a new dimension in 

building operations—especially in the context of sustainable development—which must 

be addressed alongside energy efficiency and human thermal comfort: the three primary 

dimensions of building sustainability. 
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Given the emergence of new pandemics as well as the continuous evolution of their 

variants, there is an urgent need for a holistic approach that allows for the quantitative 

analysis of the impact of pandemics on human health. It is thus essential to develop a 

methodology that allows for the modeling of infection risks across diverse population 

groups. Furthermore, efficient intervention strategies must be formulated; these strategies 

must be flexible enough to accommodate different virus transmission patterns, building 

characteristics, occupant profiles, as well as the specific concerns of certain demographic 

groups. In addition, since health, energy consumption, and occupant comfort are closely 

interconnected, understanding the intricate relationships between these dimensions is 

essential for maintaining building sustainability. This understanding will facilitate the 

adoption of different environmental control strategies based on the priorities of decision-

makers in terms of their health, energy efficiency, and comfort. Consequently, to gain a 

comprehensive understanding of real-world conditions, it is imperative to integrate real-

time sensing data and building information that accurately reflects the interactions between 

the immediate indoor environment and human behavior. By quantifying real-time changes 

in health, energy consumption, and comfort, teams can effectively monitor building 

sustainability and provide timely recommendations for the adjustment of operational 

strategies and occupant behaviors. Facilitating effective interactive communication with 

facility management teams and occupants is thus crucial for the management of a healthy 

and sustainable building environment. 
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1.2 Problem statement 

 Airborne infectious pathogens, such as SARS-CoV-2 and influenza, have the 

potential to rapidly spread within the built environment, even among individuals practicing 

social distancing. Consequently, it is crucial to identify and understand the risks associated 

with disease transmission to ensure the maintenance of a healthy building environment 

during pandemics.  

 However, there is currently a lack of knowledge on the influence of different 

various building characteristics on infection risks, especially in buildings located in 

different regions with diverse climates; consequently, the quantitative influence of control 

strategies on these risks remains uncertain. This limited understanding further hampers the 

accurate estimation of changes in building energy consumption and human thermal comfort 

that may result from the different control strategies that are implemented for risk mitigation 

during pandemics. Furthermore, the intricate relationship between the three essential 

dimensions for building sustainability—i.e., health, building energy consumption, and 

human thermal comfort—are poorly understood, which poses challenges in implementing 

appropriate tradeoffs between these dimensions while still maintaining building 

sustainability. Finally, the absence of an integrated methodology that allows for the real-

time monitoring of health, energy, and comfort, as well as the limited ability to 

communicate between facility management teams and occupants, impedes the 

implementation of sustainable building management and limits the potential for effective 

interactions based on monitored information. 
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1.2.1 Modeling of infection risks 

 The problem to be addressed involves understanding infection risks within critical 

infrastructure facilities, specifically schools, due to their diverse characteristics and 

functionalities. These infection risks are influenced by various building-specific 

characteristics and occupant behaviors, which can exhibit spatial and temporal variations 

as a result of pathogen-specific characteristics as well as the evolving epidemic situation. 

Despite this, the impact of school characteristics on infection risks, particularly in K-12 

schools with different levels (e.g., elementary vs. high schools) and types (e.g., public vs. 

private schools), remains unexplored. Furthermore, the quantitative influence of 

intervention strategies in different pandemic scenarios in schools of varying levels and 

types is poorly understood. There is, therefore, a need to address these problems to develop 

models that describe the transmission of viruses to evaluate effective intervention strategies 

while accounting for the diverse characteristics of buildings and students in the context of 

the current state of the epidemic. 

 

1.2.2 Relationships among infection risks, energy consumption, and thermal comfort 

 The management and control of building environments have been significantly 

impacted by the COVID-19 pandemic. Operation strategies aimed at controlling infection 

risks have an inevitable influence on building energy consumption and human thermal 

sensation. However, there is a lack of understanding regarding the complex interactions 

between the three critical aspects of building sustainability: 1) health measured as exposure 

to pathogens and infection risk, 2) building energy consumption as a result of different 
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heating, ventilation, and air conditioning (HVAC) control strategies, and 3) thermal 

comfort in different climate zones. This problem hinders the development of appropriate 

building operation strategies that collectively consider all three aspects during pandemics. 

In addition, the impact of the characteristics of the built environment on these three aspects 

remains unclear. These issues prevent the accurate simulation of these three major aspects 

in indoor environments, consequently preventing researchers from gaining a 

comprehensive understanding of the relationships among health, energy, and comfort. 

These issues must be tackled by establishing clear links that connect these three aspects, 

enabling a deeper understanding of their interactions and relationships. 

 

1.2.3 Monitoring and communication in building management 

 Building-specific characteristics play a crucial role in shaping aspects of health, 

energy, and comfort. Furthermore, the fluctuating nature of building occupancy, as well as 

dynamic changes in building environments, have a significant impact on these three 

dimensions. Therefore, real-time building monitoring is extremely valuable because it 

allows for the timely and accurate assessment of changes in health, energy, and comfort 

within a facility of interest. Furthermore, this would allow building operation strategies to 

adapt in response to these fluctuations. However, there is no standard methodology for 

integrating the real-time data collected by sensors into simulations of risk, energy, and 

comfort; the lack of such a system hinders the development of a comprehensive monitoring 

approach. In addition, there is a dearth of comprehensive and dynamically updated tools 

for the communication of essential information to facility management teams and/or the 



 

6 

 

provision of user-friendly recommendations to workers and occupants. These problems 

impede the establishment of technology that can achieve real-time monitoring while also 

allowing for efficient, effective interactions during epidemics. 

 

1.3 Knowledge gaps 

1.3.1 Lack of a standard modeling approach for nationwide quantitative analysis 

1) Lack of awareness of facility- and pathogen-specific characteristics  

 Existing studies have not adequately discussed the development of a standardized 

modeling approach required for a nationwide assessment of infection risks, especially 

considering the unique characteristics of facilities such as schools with different types and 

levels across the United States. Variations in school characteristics and student 

demographics across different school types and levels can lead to significant differences in 

infection risks and affects the selection of appropriate facility operation strategies. Higher-

level schools tend to have longer operating hours and higher occupancy density, while 

students from different age groups have different breathing rates. Furthermore, there is a 

lack of understanding regarding the infection risks in schools of different levels as well as 

how various intervention strategies quantitatively influence infection risks in different 

epidemic scenarios, especially in the context of the relevant school and disease 

characteristics. Neglecting these knowledge gaps can lead to inaccuracies during the 

estimation of infection risks.  

2) Lack of consideration of epidemic scenarios 
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 The rapid evolution of virus variants has had a strong influence on their infectivity, 

which in turn impacts the accuracy of current infection estimations as well as the ability to 

predict disease transmission patterns. However, existing studies have failed to consider 

variations in epidemiological scenarios and how they might affect the insights and 

guidance that should be provided to decision-makers in facilities or governments 

considering the risk-mitigation strategies for schools with different levels. It is, therefore, 

crucial to address these knowledge gaps in order to develop comprehensive and flexible 

approaches for assessing and mitigating infection risks in public facilities such as schools. 

 

1.3.2 Lack of a modeling approach that analyzes the tradeoffs in relationships between 

infection risk, energy, and thermal comfort 

 Existing studies have focused on developing separate models that analyze health, 

energy consumption, and thermal comfort within the built environment; however, the 

relationships governing the tradeoffs between these three aspects remain elusive. Two 

significant knowledge gaps exist in this area:  

1) Lack of a systematic framework for the investigation of influential parameters in 

models of health, energy, and thermal comfort. 

 Existing studies have been unable to establish a comprehensive link between 

models of health, energy, and thermal comfort. This is primarily due to the neglect of 

mutually related parameters, which hinders the development of a systematic framework. 

Without such a framework, it is challenging to analyze and understand the relationships 

between these three important dimensions. Consequently, addressing this knowledge gap 
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is crucial for advancing our understanding of the complex interactions and tradeoffs 

between health, energy consumption, and thermal comfort in the built environment. 

2) The absence of simultaneous and reliable quantitative analysis of the three major 

aspects of building sustainability during the pandemic.  

 This knowledge gap exists due to three primary reasons. Firstly, the impact of 

HVAC-controlled environment factors on these models is relatively unclear. The COVID-

19 pandemic has significantly changed the requirements for indoor environments, 

especially concerning public health. However, the lack of real data on control factors and 

related aspects is a major challenge in the analysis of tradeoff relationships. Furthermore, 

current studies tend to use constants to represent environmental factors during infection 

estimation [3–5]. However, these environmental factors tend to be dynamic, especially in 

the context of HVAC settings. 

 Secondly, the impact of occupancy settings on infection risk is generally neglected. 

When computing infection risks, studies tend to assume a closed space without changes in 

occupancy during the estimation period [6–8]. This simplification in occupancy inevitably 

leads to inaccuracies in the evaluation of energy and thermal comfort. 

 Finally, the climate characteristics are generally ignored during tradeoff analysis. 

The lack of climate-related data, as well as the absence of a systematic framework that 

links the models of health, energy, and thermal comfort, impedes the detailed and 

quantitative analysis of tradeoff relationships. 
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1.3.3 Lack of an integrated real-time building monitoring and communication system 

 Existing studies have not yet developed an integrated platform that consolidates the 

essential functionalities of monitoring, simulation, alerts, and persuasion into smart 

building management. Three significant knowledge gaps exist in this area: 

1) The absence of integrated technology that consolidates all of the necessary 

functionalities into a single platform. 

 Such an integrated platform should be capable of completing multiple tasks in real-

time, including data acquisition and processing, simulations using different models, 

providing alerts and enabling communication, and effectively persuading occupants by 

obtaining an understanding of their preferences. Each of these capabilities is complex and 

requires advanced technological infrastructure to fully realize its functionality. In addition, 

the platform should allow for the efficient exchange of data between its different 

functionalities while also providing interoperability, allowing a broad range of users to 

effortlessly access and utilize the platform, making it accessible to various stakeholders in 

building management. 

2) Inability to simultaneously monitor and simulate health, energy, and thermal comfort in 

real-time, while still considering both aspect-specific and mutually related parameters. 

 There are several distinct challenges associated with real-time health, primarily 

stemming from the difficulty of retrieving timely epidemiologically related parameters for 

specific building locations. The effective implementation of measures aimed at protecting 

public health and safety within buildings requires access to up-to-date and location-specific 

data on epidemiological factors. The real-time assessment of energy consumption and 
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thermal comfort also faces similar difficulties, including the development of reliable 

methods for the real-time simulation of occupancy fluctuations, which would enable the 

tradeoff analysis between health, energy, and thermal comfort.  

3) Absence of an AI-based application for the built environment that can interact with both 

facility management teams and occupants as well as promote healthy behaviors and 

energy-saving practices  

 This application should include crucial functionalities such as alerting facility 

management teams about abnormal situations (e.g., poor indoor environment, occupant 

discomfort, and health risks). These alerts provide essential information to facility 

management that allows for timely intervention and remediation. Furthermore, the 

application should feature a persuasive conversational system that attempts to convince 

occupants to adopt environmentally friendly behaviors, actively participate in improving 

their living conditions, and promote energy savings. For instance, the application could 

suggest adjusting the occupant’s risk levels by moving to a healthier room instead of 

applying extensive mitigation measures to the current room, or changing clothes rather than 

adjusting temperature setpoints (which would result in increased energy use). However, 

existing technologies often lack these capabilities and fail to recognize the significance of 

occupant engagement in building management. 

1.4 Research questions and objectives 

 This dissertation addresses three primary research questions and establishes 

specific objectives in response to each of these questions. 
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 Figure 1-1 provides an overview of how this research was designed to achieve the 

stated objectives. 

1) How to develop computational mathematical models capable of quantifying infection 

risks, while also considering the characteristics of specific infrastructure facilities and the 

current state of the epidemic? 

 The main purpose of developing these models is to assist policymakers with 

understanding and addressing infection risks, as well as help design effective facility 

operation strategies for infrastructure facilities such as K-12 schools. To achieve this, a 

comprehensive nationwide assessment will be conducted, encompassing different school 

levels, to gain a thorough understanding of infection risks across the country. The models 

will be designed to accommodate various epidemiological scenarios that reflect the diverse 

contexts of different pandemics, and validated to ensure their adaptability and practicality. 

Evaluating the effectiveness of different operation strategies involves the consideration of 

factors such as building and occupant characteristics, as well as the current state of the 

pandemic. 

2) How to develop a comprehensive framework that allows for the tradeoff analysis of 

energy, health, and thermal comfort?  

 This framework aims to help with the development of models that can describe the 

relationships and interactions between the three major dimensions of building 

sustainability while also incorporating mutually related parameters, with a specific focus 

on HVAC-controlled environmental factors.  
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 The framework will utilize simulations to predict the interactions between health, 

energy consumption, and thermal comfort, allowing for a comprehensive analysis based 

on dynamic values of the environmental factors. The framework will also investigate the 

impacts of various environmental factors on health, energy consumption, and thermal 

comfort in buildings situated in different climate zones. Furthermore, it will demonstrate 

the tradeoff relationships between these aspects, providing insights for facility 

management teams for decision-making purposes. 

3) How to create an integrated platform that allows for real-time monitoring as well as 

effective communication between occupants and building management during pandemics? 

 This platform aims to improve overall building management by seamlessly 

integrating multiple functionalities, which include the gathering of building characteristics, 

the monitoring of real-time information from the environment and its occupants, and the 

developing of a comprehensive web-based app that possesses a wide range of 

functionalities ranging from data collection to information distribution and communication. 

To accomplish this, digital twin-based technology will be employed to retrieve building 

information and occupant data, as well as monitor changes in the environment. Cloud 

computing technology will allow for real-time data retrieval, utilization, and integration 

during the simulation process. The web app will be designed to incorporate various features, 

such as information visualization, an alert system, and an AI-based recommendation 

system, to provide users with an efficient, user-friendly interface that enables effective 

building management for maintaining a healthy and sustainable environment. 
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1.5 Contributions 

 This dissertation presents the results of a multidisciplinary study that focuses on 

three fundamental dimensions of building sustainability: health, energy consumption, and 

human thermal comfort. This research aims to develop a comprehensive framework that 

systematically explores these three dimensions through the implementation of modeling, 

simulation, and monitoring methods. In particular, this works aims to alleviate transmission 

risks during pandemics by identifying effective mitigation strategies through the 

development of infection risk models. Furthermore, the dissertation uses an integrated 

simulation of building energy consumption, human thermal sensation, and infection risks 

to investigate the interactions and relationships between these three dimensions through 

the utilization of building data. This contributes to our understanding of HVAC operation 

strategies in the context of pandemics. Lastly, the dissertation proposes the development 

of an interactive tool that provides real-time monitoring of the three major aspects and 

provides recommendations for the implementation of appropriate and timely building 

operation strategies. The detailed contributions of this dissertation can be categorized into 

three main aspects.  

1) Establishing scenario-based analyses for risk assessment in K-12 schools 

 This study developed infection risk models and conducted analyses to examine the 

influence of different intervention strategies on the risk of airborne infection in 111,485 

public and private schools in the U.S. The research considers infection risks at different 

schooling levels, such as in elementary and high schools, and quantitatively assessed the 

impact of different intervention strategies on infection risk while taking into account 
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relevant school factors such as occupant density, school hours, and pulmonary ventilation 

rate. The results provide insights for schools and governments regarding the use of 

effective mitigation measures to control infection risk. 

 Two distinct epidemiological scenarios were utilized to forecast the short-term and 

long-term risks associated with different intervention strategies. Monte Carlo simulation 

(MCS) and sensitivity analysis were used to assess the influence of diverse school 

characteristics as well as the prevailing state of the epidemic. The scenario-based analyses 

employed in this research can be readily expanded to account for the emergence of new 

SARS-CoV-2 variants or the study of other infectious diseases. 

2) Developing a simulation methodology to perform a comprehensive tradeoff analysis of 

energy, health, and thermal comfort during school building operations 

 This research proposed a new convergent framework that links computational 

models of health, energy consumption, and thermal comfort in built environments by 

identifying and modeling influential and mutually related parameters. Understanding 

HVAC-controlled indoor environments and their related health, energy, and comfort 

implications are the primary outcomes of the proposed framework and are expected to 

present new paradigms in sustainable building environment assessment. 

 This research quantitatively analyzed the influence of indoor environment 

modifications on energy consumption, infection risks, and thermal sensation in schools 

during the COVID-19 pandemic. The data obtained were used to conduct simulations that 

revealed new insights into the tradeoffs between health, energy, and thermal comfort under 

various control strategies and climate characteristics. 
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3) Developing an integrated building management system that includes monitoring and 

communications features for use during pandemics 

 This research proposed an integrated platform for real-time building monitoring 

and communication aimed at improving overall building management. An Internet of 

Things (IoT) sensor network was deployed to enable real-time monitoring, which allowed 

for the collection of data such as room occupancy and air quality. Off-the-shelf occupant 

counters were used to determine room occupancy, while air quality sensors were used to 

measure the levels of indoor pollutants like carbon dioxide (CO2), volatile organic 

compounds (VOCs), and fine particulate matter (PM2.5). Cloud computing technology was 

used to ensure seamless real-time data acquisition, storage, processing, simulation of the 

health, energy, and comfort models, and tradeoff analysis. The cloud-hosted platform also 

allowed for all functionalities to be accessed in real time through an integrated web-based 

application.  

 The platform possesses two key features that allow for effective communication. 

Firstly, it provides visualizations of the monitored data and simulated results and is 

equipped with an alert system that notifies facility management teams of any abnormalities 

detected in the indoor environment. This capability primarily assists facility management 

teams with decision-making processes. Secondly, the platform provides recommendations 

and utilizes an AI-based communication system empowered by GPT targeted at persuading 

building occupants, encouraging them to adopt more environmentally friendly measures. 

By raising awareness of the positive impact of such behaviors on indoor environment 

quality and energy savings, occupants may be motivated to make conscious, 
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environmentally friendly choices. In addition, the interaction between occupants and 

facility management teams allows for the adoption of occupant-preferred operation 

strategies, improving occupant satisfaction. 

 The dissertation led to two publications [9,10].  
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CHAPTER TWO  

MODELING OF AIRBORNE INFECTION RISKS AND IMPACTS OF 

DIFFERENT INTERVENTION STRATEGIES 

 

2.1 Introduction 

 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants 

are identified as the viruses that causes the coronavirus disease 2019 (COVID-19). The 

outbreak of COVID-19 spreads over 220 countries and territories [1], causing global 

pandemic and threatening human life, which reveals the urge of improving human health 

as an important goal of sustainability development [11]. Schools are considered high-risk 

environments for the transmission of infectious diseases due to the close and frequent 

contact and communication that occur among students and teachers. The negative impacts 

of crowded and poorly-ventilated indoor environments further raise concerns about the 

student health in schools. 

 The COVID-19 pandemic has resulted in the enactment of social distancing 

policies, with school closures existing among the first actions taken by governments 

worldwide. In the United States, prolonged school closures have affected about 55 million 

students enrolled in more than 130,000 K–12 schools and their parents in the U.S. [12], 

impacting their mental and physical health as well as education due to the variable 

efficiency of remote learning and by placing additional childcare burdens on their parents. 

At this stage in the pandemic, which is marked by increasing vaccine rollout, many schools 

in the U.S. are considering reopening or have already reopened for in-person instruction. 

However, concerns persist as the chance of contracting and transmitting COVID-19 

increases in crowded indoor environments. Although several studies have indicated that 
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children are less susceptible to experiencing severe COVID-19 [13,14], those with mild or 

asymptomatic cases without confirmed diagnoses and treatment may facilitate rapid 

transmission of the disease within schools and to households and the surrounding 

communities. So far, it is not recommended for K–12 schools to screen all students for 

symptoms of COVID-19 on a routine basis [15], which poses a potential risk for the spread 

and outbreak of the disease within schools. In addition, no vaccines have yet been approved 

for children and, even in vaccinated people, the risk of SARS-CoV-2 infection is not 

entirely eliminated [16]. Due to the important role of schools in children’s growth and the 

high prevalence of COVID-19 across the U.S., nonpharmacological interventions are 

required to help limit the spread of COVID-19 and other respiratory illnesses and maintain 

a healthy environment in schools. 

 Despite the transmission of the original variant of SARS-CoV-2, the Omicron 

variant is an emerging variant of SARS-CoV-2 and has become the dominant variant that 

accounts for the spread of COVID-19 against all other variants. The variant was first 

detected in South Africa in 2021 [17], and resulted in an unprecedented outbreak in SARS-

CoV-2 cases around the world. Compared with the Delta variant, the other rapidly spread 

coronavirus variant, Omicron multiplied around 70 times faster in the bronchi [18], and is 

found to be 2 to 3 times more contagious [19]. Although generally, Omicron infection 

causes less severe cases than other variants, the hyper-transmissibility in the crowd could 

overwhelm the healthcare system since some of the cases may develop severe symptoms 

and need hospitalization. The immunity through vaccination remains unclear since some 

variants reduce the efficacy of vaccines and lead to reinfection. Thus, despite getting 



 

20 

 

vaccinated, other mitigation measures are required to curb the transmission of SARS-CoV-

2 variants in K-12 schools. 

 Several studies have demonstrated that SARS-CoV-2 and its variants, like other 

respiratory viruses (e.g., influenza, tuberculosis, and measles [20], can be transmitted by 

way of an airborne route [21,22], wherein the infectious aerosols are dispensed and 

suspended over long distances in the air, and inhaled by the susceptible individuals [23]. 

The spread of airborne diseases indicates the significance of dedensification and 

introducing fresh air into the crowded and poorly-ventilated buildings. For schools, 

dedensification can effectively help students to maintain adequate physical distancing and 

can be achieved by the use of hybrid learning. Meanwhile, improved ventilation and air 

filtration can introduce fresh air and dilute the concentration of airborne infectious particles 

indoors. However, the infection risks in schools of different levels (e.g., elementary vs. 

high schools) and how different intervention strategies quantitatively influence infection 

risk in different pandemic scenarios given various relevant school and disease factors (e.g., 

occupant density, school hours, pulmonary ventilation rate) remain elusive. 

 To close this gap, in this chapter, scenario-based analyses were conducted to 

examine the relationship between the risk for airborne infection and different intervention 

strategies in 111,485 public and private schools in the U.S., using the COVID-19 pandemic 

as the epidemiological context. Specifically, two epidemiological scenarios were employed 

to predict both the long- and short-term risks under different intervention strategies. Monte 

Carlo simulation (MCS) and sensitivity analysis were also performed to exploit the impacts 

of various school characteristics and epidemic situation. The analysis of airborne 
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transmission is also applicable to the Omicron variants, given the heightened infectivity 

illustrated in airborne transmission modeling. The results provide insights for schools and 

governments regarding the control of infection risk using effective mitigation measures. 

Although this methodology focuses on controlling the infection risks of SARS-CoV-2 and 

its variants in U.S. schools, the framework can be extended to other infectious diseases 

within other indoor environments in other countries, to maintain a healthy and sustainable 

environment.  

 

2.2 Literature review 

 Mathematical models have been widely used to estimate the airborne transmission 

of diseases in indoor environments. Epidemic modeling frameworks such as susceptible-

infectious-recovered (SIR) [24] and susceptible-infector-susceptible (SIS) [25] models are 

used to analyze the transmission of disease in a population and may fail to describe the 

airborne diseases alone [26]. The epidemic models should be used together with other 

mathematical models to estimate airborne risks. One mathematical model that can describe 

airborne transmission is the dose-response model. The model estimates the airborne 

transmission risks given the dose of infectious aerosols deposited in the upper and lower 

respiratory tracts of susceptible people. The information on the number of deposited 

pathogens to the sites in the respiratory tracts is acquired using models such as Markov 

chains, multi-zone balance models, and computational fluid dynamics (CFD) [27–29]. The 

complexity of the models restricts the application to the sophisticated simulation of the 

environment and well-studied viruses such as influenza [30]. 
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 The Wells-Riley (W-R) model is the most extensively used mathematical model 

[31]. The model was developed by Wells [32] and Riley et al. [33], and is utilized to 

evaluate the indoor airborne transmission of infectious agents. The W-R model is relatively 

simple and can be applied to diseases with less information regarding the ambient 

environment and the characteristics of the viruses such as SARS-CoV-2 and its variants. 

The model illustrated the hypothetical concentration of virus-laden aerosols using material 

balances.  

 Rudnick and Milton [34] further derived the model to estimate the received dose 

and the probability of infection transmission. The received dose is estimated as the integral 

of aerosol concentration over time multiplied by the individual exposure rate. The 

probability of infection is subject to an exponential relationship to the received dose 

multiplied by a constant that reflects the infectivity of the dose. Wells used a hypothetical 

infectious dose unit to measure the amount of the infectious particles, which was defined 

as “infectious quanta”, and is commonly back-calculated from the observation of 

epidemiological studies. From Wells, the infection probability of exposure to one quantum 

is 63%. For the W-R model, there is a common assumption that airborne aerosols are well-

mixed in the indoor environment.  

 The W-R model has been considered a valid method to estimate the airborne 

transmission of various viruses [35]. Table 2-1 summarizes the comparison of various 

mathematical models concerning their suitability for modeling indoor airborne 

transmission. 
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Table 2-1 Comparison of Mathematical models for the estimation of airborne 

disease transmission in indoor environments. 

Models  Description Advantages Disadvantages Reference 

SIR Characterizes the 

fraction of 

population 

(susceptible, 

infectious, 

recovered)  

getting infected that 

varies over time 

Used to analyze 

the transmission in 

a population 

Simplified 

assumptions for 

the population; 

Require 

combining other 

models to describe 

airborne 

transmission 

[24,26]  

SEIR Introduces a new 

compartment 'E' for 

exposed people 

compared with SIR 

model 

Included more 

state and 

parameters to 

provide reliable 

prediction for the 

transmission in a 

population. 

May fail to 

describe airborne 

disease alone; 

more complex and 

requires 

assumptions 

compared with 

SIR model 

[36,37] 

Dose 

response 

model 

Estimates airborne 

transmission risks 

given the dose of 

infectious 

aerosols deposited in 

the respiratory tracts 

of susceptible people 

More reliable with 

the use of other 

models to acquire 

the deposited 

pathogens in 

respiratory tracts 

High complexity 

model; Can only 

be applied to 

sophisticated 

simulation of 

environment and 

well-studied 

viruses 

[27–

29,38] 

Wells-

Riley 

model 

Illustrates the 

hypothetical 

concentration of 

virus-laden aerosols 

and 

estimates the 

probability of 

infection 

transmission 

Comprehensive 

and well-

structured, widely 

adopted to various 

viruses; 

Relatively simple 

to use  

May oversimplify 

and lead to limited 

accuracy 

 [32–

34,39] 
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2.3 Methodology 

2.3.1 Data collection and processing 

 A total of 111,485 schools in the U.S., including 90,160 public schools and 21,325 

private schools, were analyzed in this research. Basic information about schools was 

retrieved from the National Center for Education Statistics [40], including school type, 

school level, school location, and total numbers of students and teachers. 

 Schools were divided into public schools and private schools and, based on the 

lowest and highest grades offered, stratified as follows: pre-kindergarten, elementary, 

middle, high, and secondary schools for public schools and elementary, secondary, and 

combined schools for private schools, respectively. The school population was determined 

as the sum of students and full-time–equivalent teachers.  

 To assess the airborne infection risk in schools, the occupant density of school 

buildings was estimated from 1,433 representative schools across different levels. The 

representative schools with clear building characteristics shown in Google Maps were 

selected from the aforementioned 111,485 schools to retrieve the gross floor area. To 

reduce human errors in acquiring the gross floor area of the representative schools, a 

standard process was designed and followed: 1) the schools were observed using Google 

Maps street view to ensure that the building boundaries, the number of buildings, and the 

number of floors of each building can be clearly recognized; 2) For the buildings that were 

clearly recognized, the building area was manually collected using the area calculator tool 

in the Google Maps API by drawing an enclosed line along the building boundary; 3) A 

total of 1,433 schools were finally selected to calculate the gross floor area. The gross floor 



 

25 

 

area of each school building was computed as the product of the building area and number 

of floors; The gross floor area of the school was the sum of space of all school buildings. 

The occupant density of a school was computed as the ratio of school gross floor area to 

the school population. The mean and standard deviation values of occupant density of each 

school level were then estimated based on the corresponding representative schools. The 

relevant descriptive statistics are provided in Table 2-2. 

 

2.3.2 Modeling of epidemiological scenarios 

 In this research, the following two epidemiological scenarios were considered: a 

one-year pandemic scenario based on long-term projections of COVID-19 prevalence and 

the current epidemiological scenario across the U.S. based on recorded COVID-19 

infection cases to date. The one-year pandemic scenario indicated the temporal-varying 

prevalence, considering the seasonal variation and immunity duration of SARS-COV-2, 

and was used to provide insights into long-term strategies in school operations by 

estimating the general trend of infection risk in schools. Separately, the current 

epidemiological scenario demonstrated the county-level prevalence based on the records 

of confirmed cases and was used to provide guidance for timely adjustment of school 

operations based on local conditions. 

2.3.2.1 One-year pandemic scenario 

 The long-term projection model developed in the study by Kissler et al. [41] was 

adopted to estimate the nationwide prevalence of SARS-CoV-2 during the post-pandemic 

period. 
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Table 2-2 School information descriptive statistics. 

School  Total 

Schools 

Representative 

schools 

 Students FTE teachers Occupant density 

(m2/student) 

Mean SD Mean SD Mean SD 

All schools 111,485 1,433 427 432 30 25 14.93 5.45 

Public 90,160 1,106 538 440 33 25 14.99 5.07 

Private 21,325 327 192 250 16 21 14.72 6.6 

PK 1,131 56 175 171 9 10 16.04 5.88 

Elementary 

(K–5) 

64,998 944 396 246 25 15 14.19 5 

Middle (grades 

6–8) 

16,087 127 595 350 37 21 16.52 5.54 

High 

(grades 9–12) 

20,785 148 717 743 43 41 16.02 5.6 

Secondary 

(grades 6–12) 

2,475 72 306 351 26 26 17.39 6.19 

Combined 

(PK–12) 

6,009 86 242 356 24 31 15.9 7.07 

          FTE: full-time–equivalent; PK: pre-kindergarten; SD: standard deviation. 
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 The transmission dynamics of SARS-CoV-2 were determined according to 

seasonal variation, duration of immunity, and cross-immunity due to prior transmission of 

other coronaviruses (e.g., HCoV-OC43, CoV-HKU1). Seasonal variation affected the peak 

incidence and severity of wintertime outbreaks, while the duration of immunity and the 

level of cross-immunity impacted the total incidence and the pattern of recurrent 

circulation. Specifically, this research used a one-year pandemic scenario with moderate 

seasonal forcing (i.e., the R0 in summertime is 0.8 of that in wintertime), an immunity 

duration of 10 weeks, and no cross-immunity between SARS-CoV-2 and other 

coronaviruses. The relatively short immunity duration was assumed, considering the rapid 

decrease of SARS-CoV-2 antibody levels and the short duration between reinfections [42–

44]. The resulting prevalence of COVID-19 (i.e., number of infections per 1,000 people) 

is illustrated in Figure 2-1.  

 

2.3.2.2 Current epidemiological scenario 

 Identifying the COVID-19 infection rate in local areas is critical to understand the 

current epidemiological scenario and develop corresponding intervention strategies to 

mitigate infection risk in schools. However, the true number of infections is typically 

underestimated because a large proportion of infected individuals—especially those who 

are asymptomatic or only mildly symptomatic—develop the disease without a confirmed 

diagnosis. A study from the University of Texas at Austin [45] indicated that the reported 

cases should be multiplied by 3 to 10 as the lower and upper estimate of true infections. 

The Centers for Disease Control and Prevention (CDC) stated that approximately 1 in 4.3 

total infection cases nationwide were reported [46]. 
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Figure 2-1 Prevalence of COVID-19 in the population (generated based on Kissler et 

al. [41]). 
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 In this research, the true number of current infection cases in each county was 

estimated based on the method developed by Gu (2021), where the relationship between 

the ratio of true infections to confirmed cases and the standardized test positivity rate can 

be computed using Equation 2-1:  

𝜌 =
1500

𝑑𝑐 + 50
𝑟0.5 + 2 

(2-1) 

where 𝜌 is the ratio of true infections to confirmed cases; 𝑑𝑐 is the number of days from 

February 12, 2020 to the current date; and 𝑟 is the standardized daily test-positivity rate. 

The model standardizes the test-positivity rate across all states in the U.S. due to 

differences in the criteria and units of test reports. Most states use “test encounters” (TE) 

or “test specimens” (TS) to report test totals, but nine states use “unique individuals” (UI). 

TE, TS, and UI are three ways of counting the number of total tests. TE or TS is the number 

of people or specimens been tested per day, including the multiple tests on the same person. 

UI is the number of individuals being tested during the reporting period, with multiple tests 

on the same person removed. In [48], TE and TS results are treated as equivalent units, 

while UI results are converted to TE or TS values. The unit conversion factor (𝛼𝑚) was 

estimated as the daily average ratio of daily test totals, reported as TE or TS, to those 

reported as UI of states that provide data using both units (e.g., TE and UI or TS and UI). 

The adjusted daily TE or TS test total is the product of 𝛼𝑚 and the test total reported as UI. 

The daily standardized test-positivity rate can be determined with the state-adjusted test 

total. The parameters in Equation 2-1 are determined through curve-fitting on historical 

test positivity, serological surveys, and hospitalization data, where the constants are 

estimated using grid search. The true number of people becoming infected is the product 
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of daily confirmed cases and 𝜌, and the county infection rate is computed as the true 

number of infections divided by the county population size.  

 

2.3.3 Modeling of Infection Risk 

 With a focus on airborne transmission, infection risk in this chapter was defined as 

the probability that susceptible individuals will be infected via airborne transmission after 

one day of in-person school attendance. Infection risk was calculated using the 

Gammaitoni–Nucci (G-N) equation, a widely adopted method [49] for indoor airborne 

infection risk assessment (e.g., influenza, tuberculosis, SARS-CoV-2). The G-N equation 

is a variation of an earlier model proposed by Wells-Riley et al. (W-R equation) [33]; this 

latter equation is based on the concept of the “quantum of infection,” according to which 

the probability of infection is determined by the intake dose of airborne pathogens in terms 

of the number of quanta. Randomly distributed infectious particles in the air are considered 

to follow a Poisson distribution. The assumption of a steady-state particle concentration is 

the main limitation of the W-R equation. To overcome this limitation, the G-N equation 

demonstrates concentration changes in quanta level using a differential equation and 

considers the time-weighted average pathogen concentration rather than assuming the 

steady-state concentration [35]. In the G-N equation, the probability of susceptible 

individuals becoming infected (𝐼𝑅) after a certain duration of exposure can be calculated 

using Equation 2-2 [3,50,51], where 𝐼 is the number of infectors, 𝑉 is the room volume 

(𝑚3), 𝑁 is the total disinfection rate of the environment (ℎ𝑟−1), 𝑡 is the exposure duration 
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of susceptible individuals to infectors (h), 𝑝 is the pulmonary ventilation rate (𝑚3/ℎ), and 

𝜑 is the quantum generation rate (quanta/h).  

𝐼𝑅 = 1 − 𝑒
−

𝑝𝐼𝜑
𝑉

(
𝑁𝑡+𝑒−𝑁𝑡−1

𝑁2 )
 

(2-2) 

 In this chapter, I was calculated differently according to the two epidemiological 

scenarios. In the one-year pandemic scenario, I was estimated as the product of the school 

population and the prevalence of COVID-19 in the population divided by 1,000 (note the 

prevalence of COVID-19 is the number of positive cases per 1,000 people in the one-year 

pandemic scenario). In the current epidemiological scenario, I was the product of the 

county infection rate and school population. V was estimated as the product of the occupant 

density, school population, and the height of the classroom, where a height of 3 m was 

assumed for all schools [52]. t was set as the number of hours in a typical school day, 

varying across different states according to [53]. N is the effect of introducing and 

circulating fresh air in the building. A ventilation rate of 2 ℎ𝑟−1 was set as the baseline rate 

[54]. Because 𝑝 varies with different age groups [55], different values were assigned to 

each school level (Table 2-3), and 𝜑 for SARS-CoV-2 was estimated as a function of 𝑝 

using Equation 2-3 as follows according to [3]:  

𝜑 = 𝛽𝑐𝑣𝑐𝑖𝑝(∑ 𝑉𝑑,𝑖𝑁𝑑,𝑖,𝑗

4

𝑖=1

) 

(2-3) 

 To describe the hyper-transmissibility of the Omicron variant, a new parameter 𝛽 

was introduced in the model. For Omicron variant, 𝛽  was set to be 3.3 to reflect the 

increased transmissibility compared with the original SARS-CoV-2 strain [56]; 𝑐𝑣 is the 

SARS-CoV-2 viral load in the sputum, set at 109  RNA virus copies 𝑚𝐿−1 [57]; 𝑐𝑖  is a 
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conversion factor between the infectious quantum and infectious dose, set as 0.02 [57]; 𝑝 

is the pulmonary ventilation rate based on school level (𝑚3/ℎ); 𝑉𝑑,𝑖 is the volume of a 

droplet calculated by the droplet diameter 𝐷𝑖; and 𝑁𝑑,𝑖,𝑗 is the droplet concentration per 

𝑐𝑚3 of droplet diameter 𝑖 and expiratory activity 𝑗 (see Table 2-4 for details). Since the 

quantum generation rate is related with the degree of infection, the individual difference of 

pulmonary ventilation rate, the activity the patient involved in, and the range of the 

quantum generation rate of SARS-CoV-2 varies in the literatures. The quantum generation 

rate for different school levels is in accordance with recent studies. Shen et al. [58] 

indicated that the quantum generation rate for children under 16 is 58 ± 31 ℎ−1 ; The 

quantum generation rate used in [3] is 142 ℎ−1 for subjects performing speaking and light 

activity. The estimated quantum generation rate in [59] is 14–48 ℎ−1 . Generally, the 

quantum generation rates are from tens to hundreds in the literatures. In this chapter, the 

quantum generation rate is set as 31.16, 42.72, and 51.94 ℎ−1  for prekindergarten, 

elementary and combined school students respectively, and is 61.16 ℎ−1 for middle, high, 

and secondary school students. 

 

2.3.4 Modeling the Impact of Intervention Strategies 

 The impact of different intervention strategies on the airborne infection risk was 

modeled by modifying the parameters in Equation 2-2. The considered intervention 

strategies included increasing the outdoor ventilation rate, implementing air filtration, 

adopting hybrid learning (students learning partially online), and a combination of these 

three strategies. 
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Table 2-3 Pulmonary ventilation rate of each school level based on student age 

groups. 

Parameter PK Elementary Middle High Secondary Combined Reference 

Age (years) 3–5 5–11 11–14 14–18 11–18 3–18 NCES  

Pulmonary 

ventilation 

rate (m3/day) 

7.28 9.98 14.29 14.29 14.29 12.135 Literature 

[55]  

NCES: National Center for Education Statistics; PK: pre-kindergarten 

 

Table 2-4 Droplet concentration (per cm3) of different droplet size distributions 

during speaking activity. 

Expiratory activity 𝐷1(0.8 µm) 𝐷2 (1.8 µm) 𝐷3 (3.5 µm) 𝐷4 (5.5 µm) 

Voiced counting 0.236 0.068 0.007 0.011 

Unmodulated 

vocalization 

0.751 0.139 0.139 0.059 

Note: Regarding respiratory activity, speaking is considered the main activity during 

school hours and is defined as the mean value between unmodulated vocalization and 

voiced counting. 
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1. Increase in outdoor ventilation rate (S1) 

 Increasing the outdoor ventilation rate will bring in more fresh outdoor air to dilute 

contaminated indoor air, thus reducing the infection risk. This research modeled the impact 

of increasing the baseline ventilation rate by various levels (from 25% to 200% in steps of 

25%) on the infection risk. 

2. Implementation of air filtration (S2)  

 When filtration is applied in a building’s heating, ventilation, and air conditioning 

(HVAC) system, the total disinfection rate of the environment (N) can be modeled as a 

combined effect of outdoor ventilation and filtration, computed as 𝑁 =  𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 +

 𝑘𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛, where 𝑘𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 is the particle removal rate due to filtration [51], which can 

be calculated using Equation 2-4 [60] as follows: 

𝑘𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  𝜆𝑟𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝜂𝑓𝑖𝑙𝑡𝑒𝑟 (2-4) 

 where 𝜆𝑟𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒𝑑 is the recirculation rate, set as 6.4 ℎ𝑟−1 [61], and 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 is the 

filtration efficiency weighted by infectious particle size. American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) specifies the method by which 

to determine 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 based on the minimum efficiency reporting value (MERV) and particle 

size range [62] and has suggested that filters with MERVs of at least 13 can efficiently 

capture airborne viruses [63]. Therefore, the impact of adopting MERV 13 filters is 

estimated in this chapter. The filtration efficiency of MERV 13 filters is 67.5% based on 

the assumed particle size range of SARS-CoV-2. [64] indicates that more than half of the 

viral RNA of SARS-CoV-2 have aerosols smaller than 2.5 𝜇𝑚. In this study, it is assumed 
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that half of the particles are 0.3 to 1 𝜇𝑚 in size (50% average particle size efficiency) and 

the other half are 1 to 3 𝜇𝑚 (85% average particle size efficiency).  

3. Hybrid learning (S3) 

 Having part of the student body learn online reduces the school population and thus 

decreases the number of infectors (𝐼) given the specific prevalence of COVID-19 estimated 

from two epidemiological scenarios. In this chapter, the impact of switching 10%, 20%, 

30%, 40%, and 50% of the students to online learning, respectively, was computed. 

4. Combined strategies  

 The impacts of different combinations of strategies—including increasing the 

ventilation rate and implementing filters (S1 + S2, denoted as S4; increasing the ventilation 

rate and switching part of the student body to online learning (S2 + S3, denoted as S5); and 

increasing the ventilation rate, implementing filtration, and switching part of the student 

body to online learning (S1 + S2 + S3, denoted as S6)—were considered. 

 

2.3.5 Modeling the Impact of Parameter Uncertainties 

 The risk of COVID-19 infection in schools may vary due to the uncertainty of 

multiple parameters, such as occupant density, pulmonary ventilation rate, and exposure 

duration. In this study, MCS and sensitivity analysis were used to quantify the influence of 

uncertainties of multiple parameters.  

2.3.5.1 Monte Carlo simulation 

 MCS is a method widely used to calculate possible outcomes as well as the 

associated uncertainty using multiple variables with different probability distributions. 
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Based on Equation 2-2, a stochastic MCS was developed to represent the uncertainty of 

infection risk. MCS demonstrates the uncertainty and stochasticity of the factors, and the 

outcomes reveal the possible results with a large variation, indicating both average and 

extreme case scenarios of school infection risk [65]. In this study, the MCS contained three 

steps: random variable determination, random number generation, and simulation result 

acquisition.  

1. Random variable determination  

 Three parameters with uncertainties that will influence infection risk in schools 

were treated as random variables, including occupant density, pulmonary ventilation rate, 

and exposure duration in a school day. The possible range and empirical probability 

distribution of each variable were estimated based on school information and existing 

literature and are detailed in Table 2-5. 

2. Infection risk simulation 

 Given a specific ventilation rate, 10,000 simulations were conducted to estimate the 

school infection risk. In each simulation, a random number was generated using repeated 

random sampling from the empirical distributions of each input variable and used to 

compute the infection risk of all schools. In this study, 10,000 simulations were performed 

under a ventilation rate varying from 2 to 6 hr−1. Specifically, the peak prevalence of 

COVID-19 in the one-year pandemic scenario was used when calculating the infection risk. 

3. Simulation result acquisition  

 For each school, 10,000 simulation results could be achieved using Equation 2-2. 

For each simulation, the average infection risk was computed among all schools. The 
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obtained result of 10,000 simulations indicates the distribution of average infection risk of 

schools nationwide. 

 

2.3.5.2 Sensitivity analysis 

 Sensitivity analysis was conducted to evaluate the influence of individual 

parameters, including infection rate, exposure time, occupant density, and pulmonary 

ventilation rate. The estimated ranges and default values of the parameters are listed in 

Table 2-6. The infection rate was determined based on the current epidemiological scenario 

across the U.S. and ranged from 50% of the minimum estimated infection rate to 150% of 

the maximum estimated infection rate as of January 30, 2021. The pulmonary ventilation 

rate used in the sensitivity analysis was the average pulmonary ventilation rate of 

elementary school students (aged 6–11 years), because elementary schools account for 

more than 50% of the total number of schools nationwide. 

 

2.4 Results 

2.4.1 Infection risks under one-year pandemic scenario 

 Adopting the one-year pandemic scenario [41], the infection risk of SARS-CoV-2 

in 111,485 U.S. schools was estimated for a 12-month period and reported per month. A 

ventilation rate of two air changes per hour (ACH) in schools [54] was used as the baseline 

to represent normal ventilation operation. The daily infection risk was derived based on the 

exposure time for each single school day, and was considered to remain unchanged within 

a single month.  
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Table 2-5 Random variables used in MCS. 

Parameter PK Elementary Middle High Secondary Combined Distribution Reference 

Occupant 

density 

(m2/people) 

5.34–27.97 3.49–28.82 6.76– 28.92 6.38– 29.26 4.08– 28.64 4.03– 37.75 Truncated 

normal 

Table 1 

Pulmonary 

ventilation 

rate(m3/day) 

5.29– 9.27 7.11–12.85 9.56– 19.02 9.56– 19.02 9.56– 19.02 9.37–14.9 Truncated 

normal 

EPA, 2011 

School day 

(hrs/day) 

6.25–7.08 Truncated 

normal 

NCES, 

2008 

NCES: National Center for Education Statistics; PK: pre-kindergarten 

Table 2-6 Parameters used in the sensitivity analysis. 

Parameter Max. Min. Default value Reference 

Infection rate (%) 48.9 0 2.18 Gu, 2020 

Exposure time (h) 7.08 6.25 6.67 NCES, 2008 

Occupant density 

(m2/people) 

3.48 37.75 14.93 Table 1 

Pulmonary ventilation 

rate (m3/day) 

19.02 5.29 9.98 EPA, 2011 
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 As shown in Figure 2-2, the average infection risks in schools exhibit strong 

patterns of seasonality, reaching a peak in winter months and a trough in summer months 

(e.g., the school average infection risk reaches 6.83% in December and drops to 3.85% in 

July), suggesting that adaptive measures could be implemented as a function of the 

seasonal risk to control infection. The prediction of a greater prevalence of COVID-19 (i.e., 

number of cases per 1,000 people) from November to February (Figure 2-2) indicates a 

higher number of infectious students attending schools, elevating the infection risk. High 

schools exhibit the greatest average infection risk, followed by middle and secondary 

schools, while the infection risk in pre-kindergarten and elementary schools remains lower. 

Infection risk is largely affected by human pulmonary ventilation rate, which determines 

the amount of virus in aerosols exhaled by infectious people and inhaled by susceptible 

people. The pulmonary ventilation rate of teenagers (14.29 m3/day) is almost twice that of 

younger children (7.28 m3/day) [55]. Thus, with the same baseline ventilation and similar 

occupant density, middle and high schools would have higher risks than pre-kindergarten 

and elementary schools. The differences among schools in terms of infection risk suggest 

that time-varying intervention strategies could be adopted according to a school’s risk level 

and characteristics. Different intervention strategies have different impacts on the infection 

risk (Figure 2-3). The results illustrate that, among the three basic intervention strategies—

increasing the ventilation rate by 100% (S1), implementing MERV 13 filters (S2), and 

having half of the student body learn online (S3)—the infection risk under S3 is slightly 

lower than that under S1, while S2 is the most effective strategy and results in a 

significantly reduced infection risk relative to both S1 and S3. 
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Figure 2-2 Monthly average infection risk with normal school operation.
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Figure 2-3 Monthly average infection risk under different intervention strategies. 
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 Among all schools, pre-kindergarten maintains the lowest average infection risk 

throughout the year, which can be controlled below a sufficiently low threshold (1% in this 

study) solely by implementing S2. In contrast, for the other school levels, combined 

intervention strategies are required to keep the infection risk below 1% throughout the year. 

The considered combined intervention strategies include the combination of S1 and S2 

(denoted as S4), the combination of S1 and S3 (denoted as S5), and the combination of S1 

through S3 (denoted as S6). It was observed that the effects of S4 and S5 are almost the 

same, indicating that, if MERV 13 filters are not compatible with the existing HVAC 

system, schools may have to consider S5 to achieve a similar degree of infection risk 

reduction. By implementing S6, elementary and combined schools can keep the infection 

risk below 1% throughout the year.  

 However, in middle, high, and secondary schools, the infection risk may exceed 

1% during wintertime, where more restrictive measures (e.g., further increasing the 

ventilation rate, implementing filters with a higher MERV rating, and increasing the 

proportion of students enrolled in online learning) may be necessary to maintain the 

infection risk at a sufficiently low level. Given the varying prevalence throughout the year, 

schools may select different strategies to ensure an acceptable risk while considering other 

factors, such as energy costs and learning outcomes. 

 The distribution of infection risk under various ventilation rates was obtained using 

MCS. The results illustrate that the variation of infection risk decreases as the ventilation 

rate increases. For schools with the baseline ventilation rate (2 ℎ𝑟−1), the mean infection 

risk is around 7% and the highest infection risk is 10%, demonstrating a high level of 
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uncertainty and the significance of adopting intervention strategies (Figure 2-4). The 

efficiency of increasing the ventilation rate decreases as the ventilation rate increases: the 

infection risk decreases by 16.5% when the ventilation rate is increased from 2 ℎ𝑟−1 to 2.5 

ℎ𝑟−1, while it only decreases by 8% when the ventilation rate is increased from 5.5 ℎ𝑟−1 

to 6 ℎ𝑟−1. Therefore, to further reduce the infection risk, increasing the ventilation rate 

alone may not be the most efficient strategy when considering the energy required. Schools 

might also contemplate adopting complementary mitigation measures to maintain low 

infection risk levels and energy costs. 

 
2.4.2 Infection risks under current epidemiological scenario 

 The infection risk for each state under different intervention strategies is presented 

in Figure 2-5. The average infection risk of a state is computed as the mean value of the 

infection risks over all counties in the state, and the range of the infection risk of a state is 

represented as the range of the infection risk of the counties with 95% confidence interval. 

The infection risk for each county is computed based on county epidemic situation and the 

characteristics of schools in the county.  

 For most states, schools with the baseline ventilation rate show a high infection 

risk, with an average infection risk of 3.75%. Under the current epidemiological scenario, 

more than 90% of counties exhibit an infection risk of greater than 1%, indicating the 

significance of implementing intervention strategies to decrease the infection risk. The 

impacts of increasing the ventilation rate by 100% (S1) and having half of students learn 

online (S3) are similar, resulting in average infection risks of 1.98% and 1.90%, 

respectively. 
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Figure 2-4 Distribution of average school infection risk under various ventilation 

rates. 
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Figure 2-5 Infection risk for each state with different intervention strategies: (a) the 

baseline scenario; (b) with MERV 13 filtration; (c) with 50% of students learning 

online; and (d) when increasing the ventilation rate by 100%. 
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 Under both strategies, the infection risk of nearly 20% of counties nationwide falls 

below 1%. Implementing MERV 13 filters (S2) outperforms both S1 and S3, with an 

average infection risk of 1.28%—35% and 33% lower than the infection risks calculated 

under S1 and S3, respectively—resulting in an infection risk below 1% for approximately 

40% of counties nationwide. 

 The average infection risk of a given county is determined by the infection rate and 

the characteristics of the schools in that county. Counties with higher prevalence rates 

generally exhibit greater infection risk in schools. Figure 2-5 shows that schools in the 

southeastern and southwestern U.S. are exposed to higher infection risks. Specifically, 

Arizona, South Carolina, Oklahoma, Mississippi, and Georgia are the five states with the 

highest infection rates (≥ 3.18%), and the schools in these states also have the highest 

levels of infection risk (≥ 5.5%). In addition, the infection risk in each county is also 

influenced by the characteristics of individual schools, especially the school level, which 

determines the school occupant density and the student pulmonary ventilation rate.  

 Table 2-7 shows that the distribution of schools is similar across different states, 

indicating that a state’s average infection risk depends crucially upon the infection rate. 

However, as shown in Table 2-7, the county-level school distribution varies significantly, 

especially for elementary and high schools, demonstrating that, in addition to the county 

infection rate, school distribution contributes to the variation in infection risk. These results 

suggest that schools and policymakers should consider and adopt specific intervention 

strategies based on various factors, including the local epidemic situation, school 

characteristics, and school HVAC system conditions. 
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Table 2-7 School distribution by state and county. 

School level 
Max. Min. Mean SD 

State County State County State County State County 

PK 5.13% 40% 0.00% 0% 1.11% 1.04% 0.011 0.032 

Elementary 67.76% 100% 49.67% 0% 58.15% 51.61% 0.039 0.118 

Middle 24.73% 50% 7.10% 0% 14.47% 15.71% 0.030 0.089 

High 31.21% 100% 11.02% 0% 18.73% 25.63% 0.042 0.113 

Secondary 5.46% 100% 0.53% 0% 2.18% 1.37% 0.011 0.037 

Combined 14.07% 100% 1.97% 0% 5.36% 4.64% 0.026 0.071 

         PK: pre-kindergarten; SD: standard deviation. 
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 S2 is cost-effective and efficient at reducing infection risks. If MERV 13 filters are 

not accommodated in the school HVAC system, S1 and S2 can be used, and further 

increases in ventilation or in the proportion of hybrid learning may be adopted according 

to the infection risk, school system capacity, and teaching quality. 

 

2.4.3 Sensitivity analysis 

 In addition to different intervention strategies, the infection risk in schools is also 

sensitive to changes in multiple factors, including the infection rate of the population, 

exposure time in schools, occupant density, and the students’ pulmonary ventilation rate. 

In this study, a sensitivity analysis was conducted to quantify the influence of these factors 

given the estimated ranges detailed in Table 2-6; the results of this analysis are shown in 

Figure 2-6. 

 As depicted in Figure 2-6, the infection risk shows a near-linear relationship with 

the exposure time. The change in exposure time within the estimated range has a limited 

impact on infection risk because the average number of hours in the school day do not vary 

distinctly across the U.S. The infection risk increases with an increase in the infection rate 

parameter. The infection rate varies significantly across counties, leading to great changes 

in school infection risks. For instance, Forest County, Pennsylvania, exhibits the highest 

infection rate among all counties of 32.6% and a county infection risk of 32.9%, whereas 

the average infection risk for all counties nationwide is only 3.8%. Schools located in 

counties with high infection rates are expected to be exposed to greater risk levels and will 

need to adopt much stricter mitigation measures to effectively control the infection risk.
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Figure 2-6 Sensitivity analysis of parameters: (a) exposure time; (b) infection rate; (c) occupant density; and (d) 

pulmonary ventilation rate
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 Considering occupant density, the results show a sharp decrease in the infection 

risk, with the parameter changing from 3 to 10 square meters per student; the trend then 

flattens after this point. Nationwide, the infection risk reaches 10.8% for schools with the 

highest occupant density, while the lowest value is 1%. The mean and median values are 

close, and the infection risk is 2.6% with a mean value of 14.93 and 2.8% with a median 

value of 14.04, respectively.  

 These results indicate that, for most schools, the current occupant density is 

appropriate, and further reductions in occupant density may not lead to a significantly 

reduced infection risk. For schools with high occupant density (e.g., 3 to 10 square meters 

per student), it is recommended that the density be reduced to the average level (e.g., 14.93 

square meters per student). The infection risk increases as the pulmonary ventilation rate 

rises, with the rate of change increasing as well. The annotation in red dashed lines in 

Figure 2-6(d) indicates the mean pulmonary ventilation rates of different school levels (as 

shown in Table 2-3) and the corresponding infection risk. The infection risk is 1.4% for 

pre-kindergarten students (aged 3–5 years); 2.6% for elementary school students (aged 5–

11 years); and 5.3% for middle, high, and secondary school students (aged 11–18 years). 

The pulmonary ventilation rate increases with the maturation of children, leading to an 

even greater infection risk. Intervention strategies are necessary for schools with higher 

levels of infection risk to adopt to reduce the infection risk to a sufficiently low level. 

2.4.4 Airborne infection risk of Omicron variant 

   The county level airborne infection risk was computed based on the current 

Omicron epidemic situation and the school characteristics.  
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  Figure 2-7 presents the Omicron airborne infection risk of each state under different 

control measures. The overall average airborne infection risk under was 4.51%, and more 

than 90% of the states had a greater than 2% of average airborne infection risk, which is 

higher than the infection risks in previous epidemic situations (e.g., the prevalence for 

original SARS-CoV-2 strain).  

  Kruskal–Wallis one-way analysis of variance (ANOVA) test was conducted to 

figure out if the impact of modeled mitigation measures was statistically significant [66]. 

The One-way Kruskal–Wallis test is a nonparametric method for analyzing if there is a 

difference of the population medians among all the groups under one categorical variable. 

In this study, the groups were identified as different mitigation measures, and the 

categorical variable was the airborne infection risks. 

  A Kruskal–Wallis test was conducted to demonstrate the significance of different 

mitigation strategies. The p-value of the test was nearly 0, indicating that the null-

hypothesis of same median among all groups can be rejected. The result demonstrated that 

there were significant differences among the mitigation strategies within 99% confidence 

interval (CI).  

  A Conover squared ranks test was conducted as the post-hoc comparison to identify 

significant differences between pairs of groups [67]. The result indicated that among all 

the pairs of strategies, the difference between two combined control measures were 

insignificant with a p-value of 0.2809. The two combined measures are AM1+AM3 and 

AM2+AM3. All other pairs of strategies were found to be significantly different within 

99% CI. 
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Figure 2-7 Infection risk for each state with different intervention strategies: (a) the 

baseline scenario; (b) with MERV 13 filtration; (c) with 50% of students learning 

online; and (d) when increasing the ventilation rate by 100%. 
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  Similar to the results in Section 2.4.2, The impact of implementing AM1 indicated 

a significant improvement in reducing the airborne infection risk, and outperformed all the 

three interventions. The overall average airborne infection risk was reduced to 1.55% and 

the variation range of all states was reduced, which was illustrated by the smaller ranges. 

Airborne infection risk in more than 90% of states decreased to less than 2% under this 

control intervention. AM2 displayed a similar result as AM3. The overall average airborne 

infection risks under these two control measures were 2.40% and 2.30%, respectively. 

About 70% of states had the airborne infection risk lessen to 2%. The variation in airborne 

infection risk was reduced for all states as well. 

  As stated in Section 2.4.2, the airborne infection risk is significantly influenced by 

both the county prevalence and school characteristics. States such as Alaska, Idaho, 

Kentucky, Maine, Rhode Island, and Vermont had more than twice the overall average 

airborne infection. Vermont exposed the highest average airborne infection risk among all 

states, which was 17.19% under baseline ventilation situations. Figure 2-8 shows the 

airborne infection risks of different school levels under various airborne transmission 

control measures. The figure indicates that high school had the highest median airborne 

infection risk of 4.29% and the highest interquartile range (IQR) among all six levels of 

schools that were considered in this study. Elementary school showed the lowest median 

airborne infection risk and the lowest IQR among all school levels. Distinct control 

measures indicated a diverse impact on airborne infection risk. For individual controls, 

similar results are shown in Figure 2-7. AM1 had the best solo control performance among 

all school levels. The median risk was reduced to 1.46% using AM1 in high school. The 
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combination of AM1, AM2, and AM3 revealed the best performance among all control 

measures at all school levels. The median airborne infection risk in high school decreased 

to 0.56% under this combined control measure. 

 

2.5 Discussion 

 COVID-19 pandemic leads to significant education crisis all over the world. The 

worldwide school closure has affected over 80% of total enrolled students, and half of the 

students in more than 200 countries have experienced partially or fully school closures 

[68]. Long-time school closures raise public concerns about the negative impacts on 

children health, education, and financial burdens on the households [69]. Therefore, as 

schools reopen and resume in-person instruction, effective operation strategies are essential 

to maintain a healthy and sustainable learning environment. 

 Ventilation, social distancing, and filtration are three broadly utilized strategies 

during the pandemic. Several studies have been dedicated to discussing the impact of these 

strategies in the control of COVID-19 transmission, and achieved compatible results with 

this chapter, despite of different pandemic scenario, indoor environment, and countries 

considered.  

 Sun and Zhai [70] introduced a distance index and a ventilation index in the Wells-

Riley model to compute the infection risks in buses in China. Similar to our study, their 

results suggest a near-linear relationship between infection risk and the exposure time and 

demonstrate the efficiency of increasing ventilation and reducing occupant density in 

mitigating the infection risk.
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Figure 2-8 Airborne Infection Risks of the Omicron Variant Across Different School Levels under Varying Airborne 

Transmission Control Measures. 
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 Shen et al. [58] discussed the effectiveness of multi-scale strategies for reducing 

airborne infection risk of SARS-CoV-2 using Wells-Riley model for indoor spaces, and 

suggested the higher efficiency of applying filters compared to solely increasing airflow 

rate, which aligns with our conclusion. However, in previous studies, the number of 

infectors were either set to be 1 for each room which is unlikely in the actual situation, or 

calculated using the infection rate estimated from limited sample size. To overcome the 

limitation, this study leveraged data-driven and scenario-based analysis to evaluate school 

infection risk under various intervention strategies considering both long-term and short-

term realistic pandemic scenarios.  

 Regarding the selection of intervention strategies in this study, given the 

importance of in-person interaction for student learning, the intervention strategy only 

considers that up to 50% of students would be learning online. Considering the current 

condition of most school HVAC systems, although increasing room ventilation rates is 

efficient in reducing infection risks, the ventilation rate cannot be increased beyond the 

system capacity. In this chapter, doubling the baseline ventilation rate was considered to 

ensure that the proposed strategy would be affordable for most schools. Implementing 

filters with higher MERV ratings (e.g., MERV 14–16) would only have a slight effect on 

decreasing the infection risk but would generate additional product and energy costs. For 

instance, the average school infection risk in December is 2.34%, 2.04%, 1.96%, and 

1.85% for implementing MERV 13–16 filters, respectively. With the increase of MERV 

ratings, more energy is required to overcome additional pressure drop, and the purchase 

cost increases from $ 11 per filter for MERV 13 filters to $50, $90, $125, $150 for MERV 
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14–16 filters, respectively [60]. Thus, implementing MERV 13 filters was adopted as 

filtration intervention strategy. It is found that filtration is most effective in reducing the 

infection risk, resulting in a risk reduction of more than 30% relative to that achieved with 

either ventilation increase or hybrid learning in both considered pandemic scenarios. 

However, to maintain a healthy school environment, it is suggested that multiple 

intervention strategies be adopted simultaneously. Beside the direct impact of intervention 

strategies to the airborne infection risk, it has been proved that poor air quality caused by 

pollutants (e.g., particulate matters and volatile compounds) may lead to acceleration of 

the contagion of SARS-CoV-2 [71]. The intervention strategies can also improve the 

indoor air quality, and further reduce the transmission of SARS-CoV-2. Other technologies 

can be considered for sustainable building retrofitting together with the intervention 

strategies (e.g., natural ventilation, botanical biofilters [72], passive cooling techniques 

[73] to maintain healthy indoor environment and human comfort. 

 The infection risk may vary significantly across countries due to the differences in 

population size, disease prevalence, infection-hospitalization ratios, fraction of immunity, 

etc. However, the findings in this study can provide insights for other countries regarding 

the risk control during the pandemic. For instance, the effectiveness of intervention is 

analyzed and compared, including filtration, ventilation, and social distancing achieved by 

online learning, indicating that filtration strategy can be widely adopted for schools 

worldwide. In addition, the framework can be extended to other infectious diseases in other 

counties by considering specific disease characteristics and epidemic and operation 

scenarios. 
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2.6 Summary 

 The airborne infection risk of SARS-CoV-2 and its variants in U.S. schools has 

been estimated under different epidemiological scenarios. Multiple intervention strategies, 

including increased ventilation, air filtration, and hybrid learning, are modeled to evaluate 

their effectiveness in reducing the infection risk. Two epidemiological scenarios were 

considered, including a one-year pandemic scenario and a current epidemiological 

scenario. A series of findings and important insights were derived as follows, which will 

provide insights for schools and governments to develop guidelines on adopting 

appropriate intervention strategies to mitigate airborne infection risk considering epidemic 

situation and school characteristics.  

1. The airborne infection risk in schools exhibits seasonal patterns, with the average 

infection risk in all schools ranging from 3.85% in the summer to 6.83% in the winter 

under the one-year pandemic scenario, indicating the necessity of adjusting mitigation 

measures over the year.  

2. The effectiveness of intervention strategies varies with different school levels and 

pandemic periods and, thus, requires individual schools to adopt variable intervention 

strategies over the long term. In general, schools with higher school level experience 

higher risk. For instance, the infection risk in pre-kindergarten remains low throughout 

the year, and the implementation of MERV 13 filters can limit the infection risk to 

below 1%. For elementary schools, implementing all strategies are suggested in most 

months, while, in months with lower prevalence rates (e.g., summertime), schools can 

adopt fully in-person learning in concert with filtration and increased ventilation. For 
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other school levels (e.g., middle, secondary, and high schools), the infection risk may 

persist above 1% in some months even after implementing all strategies. Additional 

mitigation measures, such as wearing masks and enacting further social distancing, are 

needed to ensure an acceptable risk level.  

3. The relationships between infection risk and ventilation rates are depicted using Monte 

Carlo simulation, illustrating the efficiency of increasing the ventilation rate on 

reducing the infection risk and demonstrating the significance of combined intervention 

strategies when considering the capacity of school systems.  

4. The infection risk for each state is computed based on the infection risk of the counties 

in the state under normal operations as well as various intervention strategies based on 

the current epidemiological scenario. Schools with the baseline ventilation rate show a 

high infection risk across the U.S., with more than 90% of the counties exhibit an 

infection risk of greater than 1%, indicating the necessity of intervention strategies to 

maintain a sustainable indoor environment. The results show that increasing the 

ventilation rate by 100% and having half of students learn online have similar impacts 

on reducing infection risks, while implementing air filtration is more efficient than 

either of the strategies, with over 30% less than the risk levels correlating with 

ventilation enhancement and hybrid learning.  

5. Sensitivity analysis is conducted to further illustrate the impact of the characteristics of 

schools and the epidemic situation on infection risk. In general, the infection risk shows 

a near-linear relationship with the exposure time in schools. It is also found that the 

current occupant density is appropriate for most schools, while it is recommended that 
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the density be reduced to the average level (e.g., 15 square meters per student) for 

schools with higher occupant density. 

6. The airborne transmission of Omicron variant spread fast in U.S. schools, and the 

average infection risk reaches 4.51% without any mitigation measures. The 

effectiveness of the mitigation measures is similar to the original strain, while multiple 

interventions are required to maintain low infection risks. 
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CHAPTER THREE  

SIMULATION-BASED TRADE-OFF MODELING FOR HEALTH, ENERGY, 

AND THERMAL COMFORT 

 
3.1 Introduction 

 The prolonged COVID-19 pandemic has prompted concerns regarding the 

establishment and maintenance of a healthy and sustainable indoor environment as schools 

resume full in-person instruction. Due to their crowded and inadequately ventilated nature, 

schools are often regarded as spaces where frequent interactions take place among students 

and teachers. Several studies have confirmed that the airborne route is the main pathway 

for the transmission of SARS-CoV-2 [22,74–76]. The special environmental condition of 

schools could accelerate the transmission of airborne diseases and lead to an outbreak 

during the pandemic. The indoor environment can affect the virus infectivity, survival, and 

the suspension time in the air. Thus, maintaining an appropriate indoor air environment in 

the building operation is of significance to prevent the airborne transmission of the virus. 

Increased ventilation rate and implementation of air filtration, as the primary mitigation 

measures for risk control, can dilute the aerosol concentration in the air, and result in a 

decrease in infection risk [9]. In addition, recent research has demonstrated that indoor 

temperature and humidity can affect the transmission of the virus by aerosols since both 

factors are influential on the decay and deposition rate of the virus, and thus affect the 

survival time of the virus. Dabisch et al. [77] reported that both the temperature and air 

humidity will be influential on the infectivity of SARS-CoV-2 in aerosols, especially for 

temperature. For instance, when air humidity remains constant, the time needed for a 90% 

virus decay increases from 11.5 min to 19.5 min when temperature decreases from 30°C 
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to 10°C. Under constant temperature, the decay rate increases from 0.6 ± 0.6% to 

1.5 ± 0.5% with increased relative humidity from 20% to 70%. Bazant et al. [78] indicated 

air humidity can affect the drop size distributions. Thus, despite the influence on virus 

infectivity, relative humidity can affect the deposition rate, since the deposition rate is 

relevant to the virus radius. Building HVAC systems, as a primary means to regulate the 

indoor environment, is essential for the control of indoor disease transmission. 

 The HVAC sector is a significant contributor to energy consumption. According to 

the Commercial Buildings Energy Consumption Survey, electricity and natural gas are the 

primary energy sources for commercial buildings, comprising 60% and 34% of energy 

consumption, respectively. In terms of expenditure, commercial buildings allocated $119 

billion for electricity and $16 billion for natural gas to fulfill their energy needs [79]. 

Growth in population, increasing demand for building services and occupant comfort 

levels, and the increased time spent in buildings will continue to increase the energy 

demand. Thus, improving the energy-saving efficiency of HVAC systems is an essential 

objective for the building operation. HVAC energy demand is directly related to the 

building configuration, local climate, and the indoor environment status such as internal 

loads and temperature setpoint [80]. Appropriate operations can reduce energy use while 

maintaining a satisfactory thermal sensation and a healthy environment. However, 

currently, there is a lack of study that quantitively illustrates the relationships among the 

above three important aspects of the indoor environment. Therefore, this chapter aimed to 

find the relationships and investigate the tradeoff among health, energy, and thermal 

comfort. The tradeoff exists due to the assumable inverse relationships among variables. 
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For example, mitigation strategies such as improved ventilation can be adopted by the 

operation of HVAC systems to reduce infection risks, which may lead to increased energy 

consumption and dissatisfied thermal sensation. As stated above, there is a tradeoff among 

the important aspects of school operations during the pandemic. 

 Existing studies have developed various models to analyze health, energy 

consumption, and thermal comfort in the built environment, while the tradeoff among the 

three aspects considering mutual-related parameters remains elusive. Two significant 

knowledge gaps exist in this area. The first knowledge gap is the lack of a systematic 

framework to investigate the influential parameters in the models of health, energy, and 

thermal comfort, as the linkage between these models remains elusive without 

consideration of mutual-related parameters. The second knowledge gap is the absence of 

reliable quantitative analysis for the three major aspects during the pandemic 

simultaneously. This is due to three primary reasons. The first reason is the unclear impact 

of HVAC-controlled environment factors on these models. The COVID-19 pandemic has 

significantly changed the requirement for the indoor environment with the consideration 

of the health aspect. However, the lack of real data on all the control factors and concerned 

aspects is a major challenge for the tradeoff analysis. In addition, current studies tend to 

use constants to represent the environment factors for infection estimation [3–5]. However, 

the actual values of the environment factors are dynamic in terms of the HVAC settings. 

Second is the ignorance of the impact of occupancy settings on the infection risk. Studies 

tend to assume a closed space without occupancy variation during the estimating period 

when computing the infection risks [6–8]. This simplification in occupancy will lead to 
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inaccuracies in the evaluation of energy and thermal sensation. Third is the ignorance of 

climate characteristics for the tradeoff analysis. The lack of utilization of school and 

climate data and the absence of a systematic framework that links the models of health, 

energy, and thermal comfort holds back detailed and quantitative tradeoff analysis. 

 To close these knowledge gaps, this chapter proposes to develop a convergent 

framework to perform the tradeoff analysis of energy, health, and thermal comfort in the 

school building operation. The framework considers the impacts of various room-level 

control methods, including temperature, ventilation, and humidity control, on the three 

important aspects. Additionally, this study provides insights into how different 

environment factors affect health, energy consumption, and thermal comfort for buildings 

located in different climate zones and demonstrates the tradeoff between these aspects. The 

predicted results of the three major aspects are estimated based on the set values of different 

environment factors, and the simulation results are used as a reference to illustrate the 

tradeoff based on the priorities of health, cost, or comfort as determined by the facility 

management team. The contributions of this study are two-fold. Firstly, this research 

proposed a new convergent framework to computationally link models of health, energy 

consumption, and thermal comfort in built environments with the identification and 

modeling of influential and related parameters. The HVAC-controlled indoor environment 

and related implications of health, energy, and comfort outcomes of our proposed 

framework are expected to present new paradigms in sustainable building environment 

assessment. Secondly, this chapter quantitatively analyzed the influence of indoor 

environment modifications on energy consumption, infection risks, and thermal sensation 
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in schools during the COVID-19 pandemic. Using school data, this research conducted 

simulations to reveal new insights regarding the trade-offs among health, energy, and 

thermal comfort under various control strategies and climate characteristics. 

 

3.2 Literature review 

3.2.1 Impacts of indoor environment on transmission mechanisms  

 Traditionally, it was believed that respiratory pathogens spread mainly through 

large droplets produced by coughing or sneezing, or through contact with contaminated 

surfaces (fomites). However, studies have shown that several respiratory pathogens, 

including measles [81], influenza [82], severe acute respiratory syndrome coronavirus 

(SARS-CoV) [83], and SARS-CoV-2 [84,85], can spread through small respiratory 

aerosols. These aerosols can remain suspended in the air for extended periods and travel 

long distances. Respiratory aerosols are small droplets that are formed when people exhale 

during activities such as breathing, talking, and coughing, and these droplets can dry out 

partially, becoming aerosols that can transmit pathogens. Studies have shown that the 

concentration of infectious viruses is enriched in small particles with sizes smaller than 5 

𝜇𝑚 [86]. Such small aerosol particles are the main concern of airborne transmission, and 

the World Health Organization (WHO) and the US Centers for Disease Control and 

Prevention (CDC) have acknowledged that the inhalation of infectious aerosols is the 

primary transmission mode of COVID-19 [23,87].  

 The transmission and persistence of infectious aerosols in the air are influenced by 

both the virus characteristics and environmental conditions. Aerosol particle size changes 
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over time due to processes such as evaporation, coagulation, and deposition, impacting 

virus viability and transmission. Larger particles tend to deposit to the ground faster than 

smaller ones, with particles of 5 𝜇𝑚 taking approximately 33 minutes to deposit from a 

height of 1.5 m, while those of 1 𝜇𝑚 can take over 12 hours to deposit [86]. The travel 

distance of aerosols in indoor environments is influenced by the particle size, the initial 

velocity induced by various respiratory activities, and the environment factors, such as the 

room air velocity, controlled by natural or mechanical ventilation [88]. Furthermore, 

environment factors can significantly affect the decay mechanisms in aerosols. 

Temperature plays a critical role in virus persistence and transmission by influencing the 

stability of the composition of viruses such as proteins and lipids. Several respiratory 

viruses that tend to infect the upper airways in the respiratory tract such as influenza and 

SARS-CoV-2 are more stable in environments with lower temperatures [89,90]. Relative 

humidity affects the survival of viruses in the air through the evaporation process. Once 

the infectious aerosols are exhaled from the respiratory tract with the saturated conditions 

to the ambient environment, the aerosols begin to evaporate due to the decrease in relative 

humidity [91]. The sensitivity of virus persistence to the relative humidity is determined 

by both the characteristics of the virus and the ambient environment [86]. For instance, 

influenza A viruses are reported to remain active over a wide range of relative humidity 

[92], while influenza viruses prefer environments with low relative humidity [93]. Given 

the substantial influence of environment factors on virus properties, assuming a constant 

environmental condition could potentially result in an erroneous estimation of virus 

transmission. 
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3.2.2 Energy and thermal comfort 

 The environment factors are essential for occupant thermal comfort. Achieving 

thermal comfort is vital for human well-being, satisfaction, and performance, and is an 

essential consideration in building design and operation [94]. To estimate occupant thermal 

comfort, the most popular model was proposed by P.O. Fanger [95]. The model takes into 

account all the thermal factors in the environment to predict thermal comfort, expressed as 

the largest possible percentage of a given group of people. The predicted mean vote (PMV) 

model has become an internationally recognized tool for estimating the predicted mean 

thermal perception of occupants. According to Fanger's definition, PMV is the index that 

indicates the mean thermal sensation vote for any combinations of thermal factors, human 

activities, and clothing levels for a large group of people. The results of the PMV model 

are demonstrated by the ASHRAE 7-point thermal sensation scale, which ranges from 

"cold" to "hot," with results ranging from -3 to +3 [96]. The PMV index can be computed 

using Equation 3-1, where 𝑀 is the metabolic rate, and 𝐿 is the thermal load defined as the 

difference between the human internal heat production and the heat loss to the environment 

due to evaporation. 

𝑃𝑀𝑉 =  (0.303 𝑒−0.036𝑀  +  0.028) 𝐿 (3-1) 

 Human thermal comfort perception is significantly impacted by indoor air 

temperature, which, if not set appropriately, can lead to negative effects such as low 

performance and health problems such as shivering, inattentiveness, and muscular tension 

[97]. The relative humidity level is also related to indoor thermal comfort. Inadequate air 

humidity levels can cause dry skin and throat irritation. A recent study has indicated that a 
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low-humidity environment can significantly increase the degree of fatigue in 

undergraduate students compared to a high-humidity environment [98]. Additionally, 

different ventilation modes can affect thermal comfort. Fan et al. [99] reported that various 

non-uniform ventilation modes can decrease the floor-to-ceiling temperature difference 

and increase thermal comfort by 45%. However, unsteady ventilation modes may result in 

lower thermal comfort levels. 

 The principal objective of HVAC systems is to uphold thermal comfort, which 

necessitates energy consumption for heating and cooling purposes. Energy consumption is 

largely influenced by both external weather conditions (e.g., outside air temperature, 

relative humidity, and wind characteristics) and internal conditions (e.g., occupancy, heat 

flow, and moisture flow). HVAC systems regulate indoor air temperature and moisture 

levels to maintain them within desired thresholds [100]. During the pandemic, the need for 

increased room ventilation leads to a further increase in building energy demand. 

 

3.2.3 Studies for tradeoff relationships 

 Several recent researches have investigated the tradeoffs between energy 

consumption, infection risks, and thermal comfort. Mokhtari et al. [101] examined the 

effect of occupant distribution on energy consumption and COVID-19 infections using a 

university building, and the optimal occupant distribution pattern was found to reduce the 

number of infectors and building energy consumption. Jung et al. [102] demonstrated the 

potential for energy efficiency gains by integrating personal thermal comfort models into 

building operational conditions. Risbeck et al. [103] proposed dynamical optimization 
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models to estimate indoor airborne transmission risk and building energy consumption 

based on HVAC controller setpoints and a weather forecast. They found that infection risk 

and energy-efficient disinfection measures varied significantly across different spaces and 

were heavily dependent on the season. Guo et al. [104] developed a quantitative model to 

balance infection risk and energy consumption, resulting in a 13.7% reduction in energy 

consumption on weekdays and 45.1% on weekends when considering the combined effects 

of multiple mitigation measures. However, there lack the studies that analyze the tradeoff 

for all three major aspects (e.g., infection risk, energy consumption, and thermal comfort), 

and the tradeoff analysis over different climate zones remains elusive. 

3.3 Methodology 

 The proposed framework consists of three phases: preparation, simulation, and 

tradeoff analysis, as illustrated in Figure 3-1. During the preparation phase, U.S. school 

data was gathered and prepared for both simulation and risk modeling, and building models 

were edited to incorporate energy and thermal comfort simulation. The selection of weather 

data is contingent on the climate zone in which the building is situated. The simulation 

phase involved utilizing the simulation methods to produce energy and comfort-related 

outcomes, as well as incorporating disease data of the SARS-CoV-2 virus into risk models 

to simulate infection risk outcomes. The tradeoff analysis phase analyzed the outcomes 

generated by the simulation models and compared them to explain the observed 

phenomenon. The methodology utilized quantitative analysis and simulation to obtain a 

comprehensive understanding of the tradeoff between infection risk, energy consumption, 

and thermal comfort in U.S. schools. 
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Figure 3-1 Framework of research methodolog
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3.3.1 Data and model preparation 

 In this chapter, a reference building model of a primary school, developed by the 

Department of Energy (DOE) [105], was used for simulation. DOE has developed 16 

baseline building models, which represent approximately 70% of the US commercial 

building stock. The reference building model used in this study was derived from one of 

the commercial prototype buildings and was modified based on Standard 90.1 and 

International Energy Conservation Code (IECC) evolve [106]. The weather data for the 16 

climate zones corresponding to the building models were utilized respectively. The zone-

specified parameters such as zone area, height, and infiltration were retrieved from the 

building model as inputs for risk assessment. The disease data, such as the epidemiological 

parameters of COVID-19 were obtained from relevant literature to compute the infection 

risks. 

 

3.3.2 Simulation 

 The simulation methodology encompasses three aspects: 1) environment modeling, 

i.e., physics-based building modeling with indoor environment control; 2) 

occupancy/human modeling, i.e., setting occupancy and operation schedules, which is used 

as inputs to the risk model; 3) Health modeling, including the estimation of viral-specific 

parameters (e.g., viral decay rate, viral deposition rate, and viral removal rate) and local 

prevalence. The simulation for energy consumption and thermal comfort is based on 

environment modeling and occupancy/human modeling, and the simulation for infection 

risk relies on health modeling. The simulation outcomes obtained under various settings of 
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environment variables will be utilized for tradeoff analysis, whereby the tradeoff 

relationship is represented by blue circular arrows. Figure 3-2 illustrates the data processing 

and simulation methodology. 

 

3.3.2.1 Simulation of energy and thermal comfort 

 EnergyPlus was used to estimate building energy consumption and thermal 

comfort. Ventilation rate, relative humidity level, and temperature were the three focused 

environment factors in this study, which were controlled as needed in the simulation. These 

three factors are identified as the key influential variables for thermal comfort, energy, and 

health [101,107]. Besides the settings relevant to the control of environment factors, the 

default settings of the reference building model were applied for energy and thermal 

comfort simulation.  

 The building model used in this study is a single-story building structure consisting 

of 25 zones, including a bathroom, a cafeteria, a computer laboratory, corridors, a 

gymnasium, a kitchen, a library, a lobby, a mechanical room, offices, and classrooms 

classified into four distinct types. The building features steel-framed exterior walls and 

roofs insulated entirely above deck (IEAD) with non-residential insulation. The window-

to-wall ratio is 0.35, and the overall total floor area is 6871 𝑚2. Figure 3-3 shows the 3-D 

geometry of the reference building model. The building employs both gas and electricity 

as its primary fuel sources. The HVAC system for the reference model employs both 

constant air volume (CAV) and variable air volume (VAV) systems, depending on the 

functionality of the building zones. 
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Figure 3-2 Data processing and simulation methodology for tradeoff analysis. 



 

74 

 

 
Figure 3-3 3-D geometry of the reference building model [105]. 
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 The heating system utilizes both gas boilers and gas furnaces, while the cooling 

system is a packaged air conditioning unit (PACU). Further details of the DOE reference 

model are presented in Table 3-1, where the key parameters that vary across different 

climate zones are summarized. HVAC sizing, HVAC efficiency, and fan maximum flow 

rate vary according to building zone and climate zone. The values presented in the table 

represent the range retrieved from all zones in the building that correspond to the given 

climate zones. The table also outlines the installation of economizers. Other key 

parameters, such as building infiltration, lighting density, appliance density, occupancy 

fraction, and economizer maximum limit dry bulb temperature, remain constant across all 

climate zones, with values of 0.00133 𝑚3/𝑠 ∗ 𝑚2, 9.68–21.52 𝑊/𝑚2, 4–25.29 𝑊/𝑚2, 0–

0.95, and 28°C, respectively. In order to manipulate environmental conditions, the 

minimum ventilation rate of each room can be adjusted to regulate room ventilation rates. 

For humidity control, the original HVAC system of the reference building model cannot 

adjust the level of relative humidity in each room. Our simulation incorporated the addition 

of humidifiers and dehumidifiers to the HVAC system to facilitate indoor air humidity 

control. The humidifiers are electrically heated, self-contained steam humidifiers. Each 

humidifier was set to provide at most 4 ∗ 10−5 𝑚3/𝑠 water flow rate to humidify the room 

air [108]. The dehumidifiers were conventional mechanical dehumidifiers. This system 

uses a direct expansion cooling coil to cool and dehumidify the airstream. Default settings 

of this equipment were utilized, with the ability to dehumidify airstreams ranging from 

10℉ to 95℉. 
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Table 3-1 Key parameters of the DOE reference model in different climate zones [105]. 

Climate zone 1A 2A 2B 3A 3B-CA 3B 3C 4A 

R-value 

(exterior walls) 

0.32 1.17 0.73 1.36 0.80 1.10 1.36 1.98 

R-value (roof) 2.38 2.67 3.83 2.44 1.76 3.66 2.00 3.03 

AC (kW) 

[20.62, 

204.32] 

[17.59, 

170.31] 

[16.45, 

157.70] 

[18.00, 

169.11] 

[19.83, 

150.77] 

[14.52, 

133.12] 

[20.68, 

151.32] 

[15.54, 

138.26] 

Heating (kW) 

[32.15, 

440.67] 

[36.20, 

451.59] 

[28.57, 

363.53] 

[39.97, 

472.75] 

[32.16, 

442.62] 

[27.26, 

351.00] 

[47.24, 

534.37] 

[38.42, 

433.08] 

AC (COP) 

3.23, 3.3 

3.5 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 3.23, 3.3 3.5 

3.23, 3.3, 3.5, 

3.67 3.23, 3.3 3.5 

3.23, 3.3, 3.5, 

3.67 

Economizer  
- - 

- / Diff dry 

bulb 
- Diff dry bulb 

- / Diff dry 

bulb 
Diff dry bulb - 

Fan max flow [0.2, 8.23] [0.2, 6.86] [0.2, 6.35] [0.20, 6.9] [0.20, 8.02] [0.20, 5.82] [0.20, 9.04] [0.20, 5.57] 

Climate zone 4B 4C 5A 5B 6A 6B 7 8 

R-value 

(exterior walls) 

1.76 1.92 2.15 2.15 2.71 2.44 3.04 3.91 

R-value (roof) 2.99 2.75 3.38 3.51 3.97 3.65 4.41 5.75 

AC (kW) 

[14.40, 

97.58] [11.59, 99.88] 

[14.99, 

129.43] [12.99, 85.08] 

[14.17, 

114.16] [10.37, 85.44] 

[12.23, 

116.09] [8.14, 93.38] 

Heating (kW) 

[30.46, 

347.96] 

[27.77, 

376.05] 

[43.29, 

467.19] 

[32.51, 

336.32] 

[44.22, 

439.91] 

[36.90, 

414.54] 

[39.05, 

433.79] 

[48.31, 

663.20] 

AC (COP) 

3.23, 3.3, 

3.5, 3.67 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 

3.23, 3.3, 3.5, 

3.67 

Economizer  

- / Diff dry 

bulb 

- / Diff dry 

bulb 

- / Diff dry 

bulb 

- / Diff dry 

bulb 

- / Diff dry 

bulb 

- / Diff dry 

bulb 

- / Diff dry 

bulb 

- / Diff dry 

bulb 

Fan max flow [0.20, 5.52] [0.20, 5.5] [0.20, 5.21] [0.20, 4.6] [0.20, 4.6] [0.20, 5.16] [0.20, 4.68] [0.20, 5.64] 

Diff dry bulb: All zones in the reference building model are equipped with differential dry bulb economizers. 

- / Diff dry bulb: Some zones are not equipped with economizers, while others have differential dry bulb economizers. 

-: Economizer is not equipped in any of the zones of the reference building model. 

The unit of R-value is m2kW
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 The humidifiers were connected to each HVAC branch, with one humidifier 

allocated for each branch, while the dehumidifiers were positioned in each zone and 

connected to the zone's exhaust fan. The relative humidity level of each zone was detected 

by a humidistat and regulated by the humidity ratio setpoint. Economizers were installed 

in five of the seven HVAC branches. The HVAC system was set to operate from 6:00 to 

21:00 during weekdays and to shut down at other times and on non-working days. With 

the implementation of specific controller settings of the indoor environment, the hourly 

room temperature, humidity, and air flow rate were simulated, which enabled the prediction 

of the building energy consumption and room thermal comfort. 

 

3.3.2.2 Modeling of disease transmission 

 As stated in Chapter 2, the W-R equation can be used to estimate the indoor airborne 

transmission of an infectious agent using Equation 3-2 [32,33].  

𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 = 1 − 𝑒−�̅� (3-2) 

 Where 𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 is the probability of a susceptible person being infected, and �̅� is 

the number of quanta breathed by a susceptible person. 

 Azimi et al. [30] considered several school microenvironments or spaces and 

developed a model based on the W-R equation to estimate the transmission risk of 

infectious aerosols between students when one index case is present in the school. The 

average number of quanta inhaled by a susceptible student during a typical school day is 

estimated using Equation 3-3.  
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�̅� =
1

𝑁𝑡𝑜𝑡𝑎𝑙
∗ �̅� ∗ ∑ ∫ 𝑁𝑖(𝜏)𝐶𝑞𝑢𝑎𝑛𝑡𝑎,𝑖(𝜏)𝑑𝜏

𝑡�̅�

0𝑖

 

(3-3) 

𝑖: Index of the spaces, which are classroom and common area. 

𝑁𝑡𝑜𝑡𝑎𝑙: Total number of students. 

𝑁𝑖(𝜏): Number of students in space 𝑖. 

�̅�: Average inhalation rate (𝑚3/hour), set as 10.59 𝑚3/𝑑𝑎𝑦 according to [55], which is 

estimated as the average breathing rate for students from 6 to 11 years. 

𝑡�̅�: Average time students stay in space 𝑖. 

𝐶𝑞𝑢𝑎𝑛𝑡𝑎,𝑖(𝜏): Concentration of quanta in space 𝑖, 𝜏 hours after the index case is present in 

space 𝑖 (quanta/𝑚3).  

𝐶𝑞𝑢𝑎𝑛𝑡𝑎,𝑖(𝜏) can be estimated using Equation 3-4 [30]. 

𝐶𝑞𝑢𝑎𝑛𝑡𝑎, 𝑖(𝜏) =
𝐼𝑞

𝑉𝑖𝐾𝑡𝑜𝑡𝑎𝑙,𝑖

(1 − 𝑒−𝐾𝑡𝑜𝑡𝑎𝑙,𝑖𝝉) 
(3-4) 

𝐼: Number of infectors 

𝑞: quanta generation rate (quanta/hour) 

𝑉𝑖: Volume of space 𝑖 (𝑚3) 

𝐾𝑡𝑜𝑡𝑎𝑙,𝑖: Total removal rate of infectious viruses in space 𝑖 (per hour), and is computed 

using Equation 4-5. 

𝐾𝑡𝑜𝑡𝑎𝑙,𝑖 = 𝜆𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 + 𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛,𝑖 + 𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑘𝑑𝑒𝑐𝑎𝑦 (4-5) 

𝜆𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖: Natural ventilation rate or infiltration air exchange rate in space 𝑖 (per hour). 

𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛,𝑖: Mechanical ventilation rate of the HVAC system in space 𝑖 (per hour). 
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𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 : Deposition rate of infectious particles in space 𝑖  (per hour). The viral 

deposition rate is computed based on the radius of the infectious particles, which is varied 

according to the room relative humidity, and can be calculated using Equation 4-6 and 

Equation 4-7 [78].   

𝑘𝑑𝑒𝑐𝑎𝑦: decay rate for viral infectivity in space 𝑖 (per hour).  

𝑟 = 𝑟0 ∗ √0.4/(1 − 𝑅𝐻)
3

 (4-6) 

 

𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 2𝛥𝜌𝑔𝑟2/(9𝜇𝑎𝐻) (4-7) 

 

 The viral decay rate can be estimated by a series of empirical equations related to 

relative humidity and temperature, which is shown in Equation 4-8 to 4-13 [109]. 

𝑘𝑑𝑒𝑐𝑎𝑦 = 16.9803 + 0.0622𝐸𝑠 − 0.796𝑝𝑣 − 21.95𝑉𝑠 (4-8) 

 

𝐸𝑠 = (1.007𝑇 − 0.026) + 𝐶𝑚(2501 + 1.84𝑇) (4-9) 

 

𝑝𝑣 =
𝑅𝐻 ∗ 𝑝𝑠

100
 

(4-10) 

 

𝑉𝑠 = (0.287 + 0.461𝐶𝑚)(
273.15 + 𝑇

𝑝𝑏
) 

 

(4-11) 

 

𝐶𝑚 =
0.622𝑝𝑣

𝑝𝑏 − 𝑝𝑣
 

(4-12) 

 

𝑝𝑠 = 0.61078𝑒
17.2694𝑇
𝑇+237.99 

(4-13) 

 

 Where 𝑇  is the room air temperature (°C), 𝑅𝐻  is room relative humidity, 𝐸𝑠 

represents specific enthalpy (kJ/kg), 𝑝𝑣  is the vapor pressure (kPa), 𝑝𝑠  is the saturated 

vapor pressure (kPa), 𝑉𝑠 is the specific volume per kilogram of dry air (𝑚3/𝑘𝑔), 𝐶𝑚 is the 

moisture content, and 𝑝𝑏 is the barometric pressure (101.325 kPa). 

 For the school buildings, the occupancy schedule specifies the hourly occupancy 

for each room. In addition, the indoor environment such as temperature, humidity, and air 

flow rate, is subject to continuous changes over time for each room. In this chapter, to 
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account for the time-dependent parameters, the value of µ was calculated with 1-hour time 

step. µ(𝑡) indicates the number of quanta breathed by a susceptible student from time 𝑡 to 

𝑡 + 1 , and is estimated using Equation 4-14. This equation assumes that the quanta 

generated before time 𝑡 are all inhaled by susceptible hosts. 

µ(𝑡) =
1

𝑁𝑡𝑜𝑡𝑎𝑙(𝑡)
× �̅� × ∑(𝑁𝑖(𝑡) ∫ 𝐶𝑞𝑢𝑎𝑛𝑡𝑎,𝑖(𝑡, 𝜏)

𝑡+1

𝑡

𝑑𝜏)

𝑖

 
(4-14) 

𝐶𝑞𝑢𝑎𝑛𝑡𝑎(𝑡) =
𝐼𝑖(𝑡)𝑞

𝑉𝐾𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡)
(1 − 𝑒−𝐾𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡)) 

(4-15) 

 

  

𝐾𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡) = 𝜆𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡) + 𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡) + 𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡)

+ 𝑘𝑑𝑒𝑐𝑎𝑦(𝑡) 

(4-16) 

 

𝑡: Time step with step size of one hour from 𝑡0. 𝑡 ∈ 𝑡0, 𝑡0 + 1, … , 𝑡𝑛 − 1. 𝑡𝑛 is the end of 

operation hour. 

𝑁𝑡𝑜𝑡𝑎𝑙(𝑡): Total number of students in schools at time 𝑡. 𝑁𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ 𝑁𝑖(𝑡)𝑖 .  

𝑁𝑖(𝑡) : Number of students in space 𝑖  at time step 𝑡 , which is achieved from room 

occupancy schedule. 

𝐼𝑖(𝑡): Number of index cases at time step 𝑡 in space 𝑖, and can be estimated using Equation 

4-17. 

𝐼𝑖(𝑡) = 𝐼𝑅 ∗ 𝑁𝑖(𝑡) (4-17) 

𝜆𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡): Natural air ventilation rate or infiltration air exchange rate in space 𝑖 (per 

hour), retrieved from the EnergyPlus model. 

𝜆𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛,𝑖(𝑡): Mechanical ventilation rate of the HVAC system in space 𝑖 (per hour), 

retrieved from the simulation result of the hourly room air flow rate. 
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𝑘𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) : Deposition rate of infectious particles in space 𝑖  (per hour), which is 

computed based on the room air relative humidity retrieved from the hourly simulation 

result. 

𝑘𝑑𝑒𝑐𝑎𝑦(𝑡): decay rate for viral infectivity in space 𝑖 (per hour), which is computed based 

on the room temperature and relative humidity retrieved from the hourly simulation result. 

𝑞 : quanta generation rate, set as 142 𝑞𝑢𝑎𝑛𝑡𝑎/ℎ  according to the study conducted by 

Buonanno  et al. [3]. 

𝑉𝑖: Volume of space 𝑖 (𝑚3) 

𝐾𝑡𝑜𝑡𝑎𝑙,𝑖(𝑡): Total removal rate of infectious viruses in space 𝑖 at time 𝑡 (per hour). 

𝐼𝑅: Local infection rate (%), assumed to be 5% in this chapter. 

 The average infection risk for a student staying in the school for an hour is 

calculated using Equation 4-18. 𝑃 is the infection risk for a typical school day, and is 

calculated using Equation 4-19. 

µ𝑛 =  ∑ µ(𝑡)

𝑡𝑛−1

𝑡=𝑡0

 

 

(4-18) 

 

𝑃 =  1 − 𝑒−µ𝑛 

 

(4-19) 

 

µ𝑛 indicates the total number of quanta breathed by a susceptible student during a typical 

school day. 𝑃 is the infection risk of a typical school day. 

 

3.3.3 Tradeoff analysis 

 To perform the tradeoff analysis, different sets of environment parameters were 

identified and evaluated to aid school facility managers in decision making for HVAC 

operation. For temperature control, the thermostat placed in each room regulates the 
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heating and cooling setpoints. In the simulation, five groups of cooling and heating 

setpoints were adopted, including [24℃, 24℃], [25℃, 23℃], [26℃, 22℃], [27℃, 21℃], 

and [28℃, 20℃]. The increased differences between cooling and heating setpoints were 

set to ensure the workload of the HVAC system decreasing both in winter and summertime, 

and to better understand the relationship between thermal comfort and energy use. 

Therefore, the cooling setpoint should increase while the heating setpoint should decrease 

simultaneously. For humidity control, the ranges of the set values were specified to define 

the minimum and maximum values of the room relative humidity, and were regulated via 

the humidistat in each room. Four humidity ranges were used, which were [30%, 40%], 

[40%, 50%], [50%, 60%], and [60%, 70%], since the indoor comfort range is typically 

between 30% and 60% relative humidity. Furthermore, relative humidity in northern U.S. 

cities is approximately 30%, while in southern cities it can reach 70% [110]. For ventilation 

control, the set values were identified as the designed minimum outdoor air flow rate in 

each room. Four values of the ventilation rate were considered: 2 air changes per hour 

(ACH), 4 ACH, 6 ACH, and 8 ACH. Research indicates that the average air change rate in 

U.S. school classrooms is 2 ACH [54], and during the pandemic, the classroom ventilation 

rate should be increased according to CDC instructions [111]. In total, 80 combinations of 

set values (5 temperature set values × 4 humidity set values × 4 ventilation set values) 

were generated, resulting in 80 simulation runs for analysis. 

 The simulation process leverages EnergyPlus to model indoor dynamics and PMV 

values in the hourly resolution and annual building energy consumption based on the 

building and environment configurations. The annual average values for each environment 
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factor were computed as the average of the hourly results. For thermal comfort, the 

predicted mean vote (PMV) model was used, with PMV indexes ranging from -3 to +3, 

representing cold to hot thermal sensations on the ASHRAE thermal sense scale. Neutral 

thermal conditions are achieved at a PMV index of 0. In this study, the annual average 

result for thermal comfort was computed as the average of the absolute value of the hourly 

results, considering the consequences of both the positive and negative values of the PMV 

index. The trade-off analysis considered annual building energy consumption, annual 

average thermal comfort, and infection risks on a typical school day within the year.  

 To simulate infection risks, the number of quanta inhaled by a susceptible 

individual during a typical school day was computed, with details provided in Section 

3.3.2.2 and illustrated in Figure 3-2. This calculation was performed using a 1-hour time 

step, taking into account the school population, occupancy schedule, and simulated hourly 

results of the environment factors. Specifically, the number of infectors was estimated 

based on occupancy schedule and local epidemic prevalence; The virus total removal rate 

was estimated based on hourly result values of the environment factors, including the room 

temperature, humidity, and ventilation, which affect the viral decay, deposition and decay, 

and removal rates, respectively. The total number of quanta inhaled by a susceptible student 

during a school day was determined by summing the hourly breathed quanta, and the 

infection risk of a typical school day was estimated based on the total quanta inhalation.  

 To conclude, in the tradeoff analysis, temperature, humidity, and air flow rate are 

the variables representing different indoor environments. The three aspects of 

consideration, i.e., energy consumption, infection risk, and occupant thermal comfort were 
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simulated based on set values of the three environment factors. The tradeoff analysis is 

presented at the building level with the averaged modeling results over all building zones. 

 

3.4 Results 

 In this chapter, simulations were conducted to model building energy consumption, 

thermal comfort, and infection risks using building reference models representative of their 

respective climate zones. The results show that the general tradeoff patterns between the 

three aspects and the relationships between the aspects and environment factors are similar. 

Therefore, in Sections 3.4.1 and 3.4.2, the simulation of a building located in climate zone 

5A with a cool and humid climate was chosen as a representative case to illustrate the result 

of the tradeoff analysis. The reason for selecting climate zone 5A was its extensive 

geographic coverage, as well as its recognized status as a representative of a typical climate 

within the United States. 

3.4.1 Influence of environment factors 

 This study involved specifying different set values for the room air flow rate, 

humidity, and temperature as environment factors, resulting in 80 simulation runs and 

corresponding simulation results of health, energy consumption, and thermal comfort 

sensation. The results of the three aspects are annual building energy consumption, average 

daily infection risk, and average occupant thermal comfort for a year. The relationships 

between the environment factors and the three aspects are shown in Figure 3-4. 

Specifically, figure 3-4(a-c) demonstrate the impact of temperature set values on the 

infection risk, building energy, and thermal comfort, respectively. Likewise, Figure 3-4(d-
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f) depict the impact of air flow rate, and Figure 3-4(g-i) demonstrate the impact of 

humidity. The results indicate that lowering cooling setpoints leads to a decrease in 

infection risks, as the increased cooling load of the HVAC system could lead to an increase 

in economizer operation. Since the economizer introduces a massive amount of outdoor 

air, it is advantageous in reducing infection risks. Furthermore, an increase in the 

differences between heating and cooling setpoints results in decreased building energy 

consumption due to the decrease in both heating and cooling load. Temperature setpoints 

also significantly impact thermal comfort sensation, with an increase in temperature 

deviation from neutral temperature resulting in higher PMV values, indicating greater 

dissatisfaction with the thermal environment. A linear relationship between air flow rate 

and infection risk was observed, as increased ventilation leads to the dilution of indoor air 

and a subsequent decrease in infection risk. In addition, increased ventilation leads to 

increased energy consumption, with a near-linear relationship between ventilation and 

building energy consumption. The impact of air flow rate on thermal comfort was found to 

be minor. Finally, the effects of air humidity on the three aspects were found to be 

insignificant for this climate zone. 

 Figure 3-4(a-c) utilized color schemes to identify the distinct effects of environment 

factors. It can be inferred that, holding the air flow rate constant, decreasing cooling 

setpoints results in an increase in infection risks and a decrease in energy consumption. 

Similarly, at constant temperature setpoints, an increase in air flow rate is correlated with 

a reduction in infection risks and increased energy use. Temperature setpoints are the 
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dominant factor in determining thermal comfort, while the impact of ventilation and 

humidity is minimal. 

 

3.4.2 Tradeoff analysis 

 The tradeoff was analyzed based on the 80 simulation runs of the three aspects, and 

is illustrated in Figure 3-5, which presents a 3-dimensional view of the relationship 

between the three aspects and the 2-dimensional representations between each two aspects, 

as shown in Figures 3-5(b-d). The color of each point in the figures represents the value of 

the other aspect, with darker colors indicating smaller values. The results demonstrate that 

there are tradeoffs between energy consumption and thermal comfort, and between 

infection risk and thermal comfort. The detailed relations are shown in Figure 3-6.   

 There is a near-linear relationship between energy consumption and PMV values, 

indicating that increased energy consumption leads to improved thermal comfort. In 

addition, a near-linear relationship is observed between decreased infection risk and 

increased thermal satisfaction for the same room ventilation rate. The increased deviation 

from neutral temperature will lead to reduced operating hours of HVAC and more a 

dissatisfied environment for occupants. The tradeoff between infection risk and energy 

consumption is shown to be nearly linear, as increasing the air flow rate to decrease 

infection risk also increases energy consumption. Therefore, increased energy 

consumption can lead to reduced infection risk and improved thermal comfort 

simultaneously. 
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Figure 3-4 The impact of environment factors on energy consumption, infection 

risk, and thermal comfort. 
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Figure 3-5 Tradeoff among energy consumption, infection risk, and thermal 

comfort. 
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Figure 3-6 (a). The relationship between building energy consumption and thermal 

comfort with controlled ventilation. (b). The relationship between infection risk and 

thermal comfort with controlled ventilation.  
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3.4.3 Analysis for buildings in different climate zones 

 A nationwide assessment of energy, risk, and thermal comfort was conducted to 

analyze the impact of climate characteristics on buildings across the U.S. The findings 

indicate that the overall tradeoff patterns and the relationships between environment factors 

and the concerned aspects are similar for buildings located in different climate zones under 

most circumstances. The results suggest that an increase in building energy consumption 

can lead to improved thermal sensation and reduced infection risks.  However, the 

simulated outcomes of the three aspects vary significantly across different climate zones.  

Figure 3-7 displays the distributions of the average values of infection risks, building 

energy consumption, and thermal comfort with different set values of environment factors 

in the climate zones. The median values presented in the boxplots provide an intuitive 

illustration of the impact of climate on the three aspects, and the variation in the simulated 

results indicates the influence of different set values of environment factors.  

 Regarding energy consumption, buildings located in cold climates tend to consume 

more energy, and the range of simulated energy consumption is larger compared with those 

in warm climates. For instance, the energy consumption in zone 1A is less than half of that 

in zone 7, and the range of the energy consumption in zone 1A is reduced by 36% compared 

to zone 7. In subarctic climates, the annual median energy consumption and the 

corresponding range reach the highest values over all climate zones. In warm climates, the 

heating and cooling load are usually mild due to the small difference between indoor and 

outdoor environment. Hence, changing setpoints will not produce discernible influences 

on energy consumption, leading to smaller variances in energy use. 
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Figure 3-7 The distribution of infection risks, energy consumption, and thermal 

comfort in 16 climate zones. 
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 While in colder climates with large temperature differences between indoor and 

outdoor environment, any decrease in the heating temperature setpoint will lead to an 

observable reduction in energy consumption. Hence, the variances of energy use in cold 

climates tend to be larger. For hot climate zones, the VAV system can help reduce energy 

consumption. Regarding thermal comfort, buildings in mild climate zones are more likely 

to achieve better thermal sensation than those in hot or cold climates. For instance, in zone 

2A and zone 8, representing very hot and subarctic climates respectively, the median PMV 

values are around 0.63 and 0.65. Mixed climates like Zone 4A and 4B achieve satisfactory 

thermal sensation with a median value of 0.3. The spread of the data tends to decrease from 

extremely hot or cold climates to mild climates, indicating that although the deviation of 

the temperature setpoints increases, the indoor temperature remains around neutral 

temperature in mild climates. Improper indoor temperature settings are more likely to result 

in thermal dissatisfaction in hot or cold climates. As for infection risks, the median and 

variation of the simulated result values are not subject to change significantly across 

different climate zones. Room ventilation rate dominates this aspect compared with the 

other environment factors, which is not varied significantly over most climate zones. 

Consequently, infection risks do not vary significantly across different climate zones, 

except in very hot regions. Buildings in climate zone 1A exhibit the lowest infection risks 

due to higher ventilation rate associated with much longer cooling season and economizer 

operation hours that introduce a larger volume of outdoor air intake to dilute the infection 

virus. Generally, buildings in climate zone 1A require cooling almost all through the year, 

compared to limited summer cooling months in other climate zones (e.g., June to August 
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as the cooling season in climate zone 5A). With the setting of maximum limit dry bulb 

temperature of economizer operation in reference buildings, the economizer will diligently 

operate to introduce natural cooling from November to May in climate zone 1A when 

outdoor temperature falls in the appropriate operation range. While in other climate zones, 

the economizer are only active in summer months or shoulder seasons. Hence, the total 

economizer operation hours and ventilation rate are significantly larger in zone 1A than 

other climate zones. 

 The influence of humidity setpoints on energy consumption is negligible except for 

regions with high humidity levels, such as zone 1A. In these areas, energy consumption 

reduces with the increase of humidity setpoint. For instance, in zone 1A, the average annual 

energy consumption decreases by 49% when the humidity setpoint is raised from [30%, 

40%] to [60%, 70%]. The prominent influence of humidity setpoint on HVAC energy use 

in zone 1A results from the extremely humid climate, where raising the humidity setpoint 

reduces the energy required for dehumidification. 

 
3.5 Discussion 

 This study investigates the impact of various indoor environment factors on three 

critical aspects that are of concern for school management teams during the COVID-19 

pandemic: building energy consumption, thermal comfort, and infection risks. To illustrate 

the tradeoff analysis and the interrelationships between environment factors and the 

aforementioned aspects, a representative building model of a primary school was 

employed. Furthermore, climate data from 16 different zones in the U.S. developed by the 

Department of Energy (DOE) were incorporated into the simulation to highlight the 
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influence of climate characteristics. By controlling the indoor environment, the study 

obtained the results of health, energy consumption, and thermal comfort sensation based 

on the building characteristics and climate data. 

 

3.5.1 Impacts of environment factors 

 The results suggest that the environment factors have a certain degree of influence 

on the concerned factors. Room ventilation rate and temperature setpoints are identified as 

the two key factors that affect energy use in all climate zones, with room ventilation being 

the most significant factor. In most climate zones, humidity has minimal impact on building 

energy consumption, except for humid zones like 1A, where the energy use of 

dehumidifiers can be influential. To reduce infection risks, decreasing cooling temperature 

setpoints and increasing ventilation rates are effective measures. However, indoor 

temperature alone does not significantly affect infection risks. Lowering the cooling 

setpoint can increase the cooling load of the HVAC system and the operation hours of 

economizers to bring in more outdoor air for cooling purposes, thus influencing infection 

risks. Room ventilation rate dominates the changes in building infection risks and energy 

consumption, and both have near-linear and positive relationships. These findings align 

with recent studies that also indicate the significant impact of ventilation on the infection 

risks of SARS-CoV-2 [4,9,74]. The study further suggests that increased temperature 

deviation from the neutral temperature reduces thermal sensation satisfaction, and the 

influence of room ventilation on thermal sensation is minimal.  This result conclusion is 

similar to the study proposed by Miranda et al. [107], who investigated the influence of 
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ventilation on thermal comfort in classrooms during COVID-19. The study concludes that 

room ventilation does not have a decisive influence on comfort when the temperature is 

above 12 ℃. The effect of room air relative humidity is not significant to infection risks 

and thermal sensation, which is consistent with the conclusions of other studies. For 

instance, Zuo et al. [112] indicated that the increase in relative humidity from 50% to 70% 

at 26 ℃ had trivial influences on physiological responses and thermal comfort. 

 

3.5.2 Impact of considering health aspect on building operation 

 The COVID-19 pandemic has introduced health considerations as a new dimension 

to building operations, which are closely associated with thermal comfort and energy use. 

The study reveals a clear linear relationship between infection risks and energy 

consumption, which can be attributed to the dominant effect of room ventilation rate on 

both aspects. Moreover, a near-linear relationship between infection risks and thermal 

satisfaction is observed due to the working principle of VAV systems. Therefore, there are 

evident tradeoffs among the three dimensions, indicating that the lowest infection risk and 

optimal thermal sensation can be achieved by setting appropriate indoor conditions, such 

as utilizing the maximum ventilation rate and setting cooling and heating temperature 

setpoints to 24℃. The appropriate indoor temperature can achieve satisfactory thermal 

sensation based on the PMV model, while increasing energy consumption through reduced 

cooling setpoint and increased ventilation can both decrease the infection risk.  

 The ASHRAE 62.1-2019 standard regulated the minimum ventilation rate for 

classrooms as 10 cfm/person and 0.12 cfm/𝑓𝑡2. According to the building characteristics 
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and occupancy schedule, the room minimum ventilation rate is between 0.54 ACH to 3.56 

ACH for the prototype primary school building. During the pandemic, CDC encourages 

increasing room ventilation as much as possible [111], and according to the study 

conducted by Guo et al. [104], the requirements for fresh air ventilation rate ranges from 

0.8 ACH to 5.75 ACH given the characteristics of the reference building. Taking zone 5A 

for example, the increase of ventilation rate by 1 ACH implies an increase in energy use 

by 19.7%. The implications of ventilation rate on energy use do not vary significantly 

across different climates. 

 

3.5.3 Impact of climate characteristics on tradeoff relationships 

 According to the analysis based on the weather data of different climate zones, it is 

concluded that climate characteristics can have influential impacts on the concerned 

factors. In cold climate zones, the building energy consumption is sensitive to the 

adjustment in temperature setpoints. On the contrary, energy consumption in hot and warm 

climate zones is relatively low, and increasing the cooling setpoint has a less efficient 

impact on energy savings than decreasing the heating setpoint in cold climates. Regarding 

thermal comfort sensation, occupants in buildings located in cold and hot climate zones 

(e.g., 1A, 2A, 6A, 6B, 7, and 8) are more likely to experience discomfort. Therefore, facility 

management teams must implement more restrictive temperature set values around the 

neutral temperature to maintain a comfortable indoor environment for such buildings. 

However, the effect of temperature control is not as significant for some mild climate 

zones, including 3B-CA, 3C, and 5A, where thermal sensation variation is minor, and 



 

97 

 

restricted temperature control could result in a significant increase in energy consumption 

for marginal improvements in thermal comfort. Regarding the infection risks, climate 

characteristics do not appear to have a significant influence except for zones with extremely 

hot weather. Therefore, in order to establish a healthy indoor environment in buildings 

located in other climate zones, it is imperative to implement alternative mitigation 

measures such as air filtration and social distancing. 

 This study highlights the interdependent nature of energy consumption, infection 

risks, and thermal comfort in building operations. The findings suggest a near-linear 

relationship between energy consumption and thermal comfort across all climate zones 

with constant ventilation levels, as a result of considerable influence of temperature 

settings. Similarly, with constant ventilation levels, there is a near-linear relationship exists 

between infection risks and thermal comfort, attributable to the increased cooling load that 

necessitates additional outdoor air additional cold air from central air handling units and 

more economizer operation. There is a clear linear relationship between infection risks and 

energy consumption attributable to building ventilation and temperature setpoints that 

affect both factors linearly, and an insignificant effect of relative humidity on these two 

aspects. 

 

3.6 Summary 

 The prolonged COVID-19 pandemic has prompted school management teams to 

prioritize maintaining a healthy and sustainable indoor environment through effective 

HVAC system control. This chapter presents a tradeoff analysis of three crucial aspects of 
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the built environment during the pandemic: health, energy consumption, and thermal 

comfort. A novel and convergent framework was developed to perform a quantitative 

analysis of the intricate tradeoff relationships between these aspects, taking into account 

the influence of dynamic environment factors and fluctuations in occupancy. The study 

used EnergyPlus to simulate building energy consumption and occupant thermal comfort, 

and a revised Wells-Riley model was developed to estimate indoor airborne infection risks. 

The simulation was carried out across all climate zones in the U.S. to account for the 

diverse range of climate characteristics. 

 A case study utilizing a reference building model of a primary school was 

conducted to demonstrate the framework. The analysis investigated the effects of various 

environment factors regulated through the HVAC systems on health, energy consumption, 

and thermal comfort. The examined environment factors comprised temperature, humidity, 

and air flow rate, and their set values were determined based on practical operation ranges. 

The study concludes that variations in the set values of environment factors, in addition to 

the environment factors themselves, have a significant impact on the three key aspects of 

indoor environments: health, energy consumption, and thermal comfort. These impacts are 

influenced by the HVAC system and climate characteristics. The optimal thermal comfort 

and lowest infection risk can be achieved simultaneously with the highest energy 

consumption. Taking zone 5A as an example, the infection risks decrease by 43%, and the 

thermal satisfaction increases by 61% when using the optimal environment settings (e.g., 

highest ventilation rate and neutral temperature) compared to the worst environment 

settings (e.g., lowest ventilation rate and largest deviation from neutral temperature). 
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However, the increase of ventilation rate by 1 ACH implies an increase in energy use by 

19.7%, and an increase of over 70% energy consumption is observed when comparing the 

two scenarios. Therefore, the school budget is the main restriction to achieve a healthy 

environment and thermal comfort. To lower the energy cost, reducing ventilation is more 

effective than increasing the temperature variation. The effectiveness of the change in 

environment factors varies over different climate zones. For instance, increasing the 

deviation of the temperature setpoints from neutral setpoints can significantly reduce the 

energy consumption of buildings located in cold climate zones, while the effect of hot and 

warm climate zones on energy saving is not that significant. For the tradeoff among the 

three major aspects, the findings suggest a near-linear relationship between energy 

consumption and thermal comfort, as well as between infection risks and thermal comfort 

when the ventilation level is constant. Additionally, there exists a distinct linear 

relationship between infection risks and energy consumption. 

 Although this chapter focuses on the tradeoff relationship between energy 

consumption, thermal comfort perception, and infection risks for U.S. primary schools 

during the COVID-19 pandemic, The generalizability of the framework is not limited to 

COVID-19 and can be extended to other infectious diseases. Furthermore, it can 

incorporate other important aspects to cater to the specific needs of other countries and 

facilities, thereby contributing to the maintenance of a sustainable indoor environment. In 

order to ensure accuracy and relevance in practical implementation, the detailed building 

model can be tailored to account for specific building envelopes and HVAC configurations 

in a given context. 
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CHAPTER FOUR  

A REAL-TIME INTEGRATED PLATFORM FOR MONITORING AND 

COMMUNICATION IN BUILDING MANAGEMENT 

 
4.1 Introduction 

 The emergence and spread of various pandemics—such as influenza and SARS-

CoV-2—over the past few decades have resulted in increasing concerns about public health 

and safety. As the world grapples with the unprecedented challenges posed by these 

infectious diseases, health has emerged as a pivotal dimension in building monitoring and 

operational strategy development. The need to create healthy environments has become 

paramount in ensuring the well-being of building occupants. Additional factors such as 

human comfort and energy consumption are also pivotal dimensions that must be 

considered for effective building management when aiming to maintain a healthy and 

sustainable built environment. However, there are significant challenges in the real-time 

assessment and analysis of the tradeoffs between these three dimensions, which prevents 

the proactive control of and response to pandemics. Facility management teams play a 

crucial role in implementing timely control measures, and they must have a comprehensive 

understanding of the built environment. In addition, it is equally important to engage with 

and persuade occupants to actively participate in improving their quality of life and 

contributing to a healthy and sustainable environment. Such occupancy engagement is 

essential for the promotion and implementation of acceptable sustainable practices, which 

will lead to improved health outcomes, enhanced comfort, and reduced energy 

consumption. 
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 Indoor environments play a crucial role in daily life, with individuals spending 

approximately 90% of their time indoors; indeed, students spend around 30% of their 

waking hours in schools [113]. Low-quality indoor environments can have negative effects 

on residents, leading to increased health issues such as respiratory problems, the 

exacerbation of asthmatic issues, headaches caused by pollutants, and symptoms of sick 

building syndrome (SBS) [114]. SBS is a condition in which occupants experience 

discomfort and health symptoms while spending time in a building, often associated with 

poor indoor air quality and inadequate ventilation. In addition, inadequate indoor 

environments can accelerate the spread of diseases, especially airborne viruses. In addition 

to health concerns, suboptimal indoor environments can result in reduced performance, 

productivity, and discomfort among occupants. Implementing effective building 

management measures is crucial for facility management teams to ensure a healthy and 

sustainable environment while reducing energy consumption. Hence, a timely awareness 

and understanding of the built environment are essential for facility management teams to 

make informed decisions and take appropriate actions. An additional challenge for facility 

management teams is that variations in occupant behavior can lead to significant 

differences in the built environment and building energy consumption [115]. For example, 

studies have found that identical housing units can exhibit electricity consumption 

variations of up to 600% during certain periods of the year [116], while energy 

consumption in townhouses can vary by a factor of two [117]. These findings highlight the 

significant influence of human activities and decision-making on energy use and indoor 

environmental conditions. Improper occupant behaviors can also negatively impact living 
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quality and the built environment, having adverse effects that not only influence the 

occupants themselves but also others sharing the same space. Conversely, the adoption of 

appropriate occupant behaviors can result in significant energy savings and contribute to a 

better indoor environment for all occupants. Therefore, the development of an integrated 

platform that caters to the needs of both facility management teams as well as that of 

occupants is crucial for ensuring the maintenance of a sustainable and healthy built 

environment. 

 There are currently no existing integrated platforms that can consolidate the 

essential functionalities of monitoring, simulation, alerting, and persuasion in the context 

of smart building management. There are three significant knowledge gaps that pose 

challenges to the development of such a service. Firstly, there is the absence of an 

integrated technology that consolidates all of the necessary functionalities into a single 

platform. This platform should be capable of completing multiple tasks in real time, 

including data acquisition and processing, conducting simulations for different models, 

providing alerts and communication, and effectively persuading occupants through an 

understanding of their preferences. Each of these capabilities is complex and requires 

advanced technological infrastructure to fully realize its functionalities. Secondly, there is 

the inability to simultaneously monitor and simulate variations in health, energy, and 

thermal comfort in real-time, while still considering both aspect-specific and mutually 

related parameters. Real-time health assessment poses distinct challenges, primarily 

stemming from the complexity of retrieving timely epidemiological-related parameters 

from specific building locations. To implement effective measures for the protection of 
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public health and safety within buildings, it is imperative to have access to up-to-date and 

location-specific data on epidemiological factors. The real-time assessment of energy 

consumption and thermal comfort also faces similar difficulties, including the development 

of reliable methods for the real-time simulation of occupancy fluctuations, which would 

enable the tradeoff analysis between health, energy, and thermal comfort. Finally, there is 

an absence of an AI-based application for the built environment that can interact with both 

facility management teams and occupants as well as promote healthy behaviors and 

energy-saving practices. This application should include functionalities, such as alerting 

facility management teams about abnormal situations (e.g., poor indoor environment, 

occupant discomfort, and health risks) while featuring feature a persuasive conversational 

system that attempts to convince occupants to adopt environmentally friendly behaviors, 

actively participate in improving their living conditions, and promote energy savings. 

However, current technologies lack these capabilities and often overlook the importance 

of occupant engagement in building management. 

 To address these knowledge gaps, this research proposes the development of an 

integrated platform for real-time building monitoring and communication aimed at 

improving overall building management. An IoT sensor network was deployed to enable 

real-time monitoring, which allowed for the collection of data such as room occupancy and 

air quality. Off-the-shelf occupant counters were used to determine room occupancy, while 

air quality sensors were used to measure the levels of indoor pollutants like carbon dioxide 

(CO2), volatile organic compounds (VOCs), and fine particulate matter (PM2.5). Cloud 

computing technology was used to ensure seamless real-time data acquisition, storage, 
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processing, simulation of the health, energy, and comfort models, and tradeoff analysis. 

The cloud-hosted platform also allowed for all functionalities to be accessed in real time 

through an integrated web-based application. To enable effective communication, the 

platform incorporates two key capabilities. The platform possesses two key features that 

allow for effective communication. Firstly, it provides visualizations of the monitored data 

and simulated results and is equipped with an alert system that notifies facility management 

teams of any abnormalities detected in the indoor environment. This capability primarily 

assists facility management teams with decision-making processes. Secondly, the platform 

provides recommendations and utilizes an AI-based communication system empowered by 

GPT targeted at persuading building occupants, encouraging them to adopt more 

environmentally friendly measures. By raising awareness of the positive impact of such 

behaviors on indoor environment quality and energy savings, occupants may be motivated 

to make conscious, environmentally friendly choices. In addition, the interaction between 

occupants and facility management teams allows for the adoption of occupant-preferred 

operation strategies, improving occupant satisfaction. 

 

4.2 Literature review 

4.2.1 IoT integrated digital twin technology 

 The emergence of digital twin technology has revolutionized the field of asset 

management and monitoring, providing new opportunities for enhanced control and 

efficiency. A digital twin refers to a virtual model that replicates a physical asset and 

continually adapts to changes based on real-time data and information from a variety of 

sources. Liu et al. [118] defined a digital twin as a living model that represents a physical 
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asset, capable of capturing its dynamic behavior and responding to changes through the 

integration of virtual and real-world data. Madni et al. [119] described digital twins as more 

than just virtual prototypes; instead, they would be better defined as a virtual instance that 

incorporates real-time performance data throughout the lifecycle of the physical asset. In 

essence, digital twin technology enables the creation of a virtual counterpart that mirrors 

the physical asset, leveraging the power of IoT to collect and integrate real-time data from 

sensors installed in the asset of interest. In this case, IoT refers to the network of physical 

devices embedded within the asset, composed of sensors, software, and other technologies 

that enable the exchange of data with other devices and systems over the internet [120]. 

The interconnectedness provided by IoT facilitates the seamless exchange of information 

between the physical and virtual realms, providing a wealth of information that can be used 

to monitor, control, and inform decision-making processes. Recent studies have explored 

IoT-integrated digital twin technologies to enhance building management practices. 

Zaballos et al. [121] focused on a smart campus concept involving the integration of BIM 

tools with IoT-based sensor networks. Their work aimed to monitor the environment, 

detect emotions, and provide insights into student comfort, leading to the development of 

an updated digital twin for the campus. Tagliabue et al. [122] utilized digital twin 

technology to conduct a sustainability assessment of an educational building by employing 

an IoT-enabled dynamic approach involving real-time evaluation to provide user-centered 

control of sustainability criteria. This involved constant interaction between the digital twin 

and the sensors that monitored indoor comfort, air quality conditions, and energy behavior. 

The digital twin framework supported decision-making processes associated with 
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sustainability. Yitmen et al. [123] proposed a modified cognitive digital twin model 

focused on using their cognitive ability to detect actions and reasons to inform dynamically 

processed optimization strategies. By integrating machine learning, cyber-physical 

systems, artificial intelligence, and IoT technologies, their model aimed to support 

decision-making in building lifecycle management. However, none of these studies utilized 

IoT-based digital twin technologies to monitor, model, and simulate health and infection 

risks associated with hazardous viruses. In addition, the ability to analyze the tradeoff 

relationships between health, energy, and thermal comfort in the context of smart building 

operations remains relatively unexplored. Addressing these limitations is essential for 

advancing the application of IoT-based digital twin technologies aimed at maintaining a 

healthy and sustainable built environment. 

 

4.2.2 Communications technology in building management 

 Communication is an essential component of smart building monitoring and 

operation due to the importance of sharing information with facility management teams. 

Various studies have developed different methods of sharing this information with users, 

including web-based and mobile applications. Mataloto et al. [124] developed an IoT 

system as part of a larger building energy management system (BEMS), including a 

platform that used data visualization templates to create a dashboard that allowed facilities 

management to identify appropriate actions that could lead to potential energy savings. 

Marinakis and Doukas [125] developed a recommendation system for intelligent BEMS in 

residential settings that was capable of pushing notifications when parameters exceeded 
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certain thresholds as well as providing analytical, tailor-made recommendations and 

energy-saving tips. Fernando et al. [126] developed a web application that acted as a 

dashboard through which users could control the platform and access the energy 

consumption service. Ribino et al. [127] proposed a human-like social robot-based 

approach to monitoring indoor environment quality. The robot interacted with occupants 

in a friendly manner and provided appropriate suggestions, while also demonstrating 

cognitive capabilities by assessing indoor air quality (IAQ). Currently, communication 

systems in building operation and management applications primarily focus on tasks such 

as data visualization and notifications. Recommendations provided during communication 

are often targeted towards specific, singular objectives, such as reducing energy 

consumption or improving IAQ. However, there remains a significant gap in terms of the 

comprehensive analysis of tradeoff relationships between different dimensions such as 

energy, the indoor environment, and health risks within these systems. In addition, there is 

a notable knowledge gap associated with the integration of interactive tools that can 

understand and communicate with users in the field of building management systems 

(BMS). The effectiveness of these tools would be significantly increased should they be 

able to fully comprehend simulation results and current environmental conditions, as well 

as understand user concerns and preferences as expressed through natural language. 

Developments in this area are expected to bridge this knowledge gap and enhance 

communication between users and the BMS. 

 With the recent developments in natural language processing (NLP) as well as 

groundbreaking advancements in the sophistication of large language models (LLMs) such 
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as ChatGPT, the integration of similar technology into communication systems is 

extremely promising. ChatGPT is an AI language model developed by OpenAI based on 

the GPT-4 architecture [128]. Trained on a diverse range of textual data, including 

scientific literature, technology articles, and other written sources, ChatGPT is designed to 

generate human-like text in response to user prompts. The GPT-4 model—upon which 

ChatGPT is built—has gained a considerable amount of attention in the field of NLP [129]. 

Its applications span various domains, including content generation, language translation, 

and virtual assistance. ChatGPT is exposed to a vast corpus of textual information during 

training, including books, articles, websites, and publicly available written content. 

Consequently, ChatGPT is uniquely capable of effectively parsing the suggestion features 

present in BMS platforms, while also having the potential to persuade end-users to make 

rational changes to their behavior by providing them with an understanding of the current 

condition of the building. However, the integration of this technology into the field of BMS 

has not been explored in existing studies. Consequently, the novel and unique approach of 

integrating a ChatGPT-like conversational system with simulation results in a BMS 

platform to provide persuasive suggestions holds significant promise. 

 

4.3 Methodology 

 The proposed framework comprises three phases: preparation, simulation, and web 

app development. In the preparation phase, a BIM of the target building was developed, 

composed of mechanical, electrical, and plumbing (MEP) as well as architectural 

components. This facilitates the development of the energy model used for the EnergyPlus 
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simulation. Specifically, the MEP model was used to configure the HVAC system, which 

was further developed using OpenStudio. In addition, an IoT sensor network was set up in 

the building to enable the real-time monitoring of relevant indoor environment parameters 

and occupancy status. In the simulation phase, a comprehensive methodology was 

implemented to generate outputs describing energy consumption, thermal comfort, and 

infection risks based on the collected IoT data and building configurations. Energy 

consumption and thermal comfort were simulated through the EnergyPlus API, while 

infection risk was simulated using programming scripts that incorporated up-to-date 

disease data on the COVID-19 pandemic. During the web app development phase, the 

platform that integrated the entire process, ranging from data acquisition to data 

visualization, was designed and hosted on a web server environment. This phase focused 

on providing three primary features. Firstly, it involved the retrieval of IoT data and up-to-

date disease data from cloud storage, which was then provided to the simulation process. 

Secondly, the app ran simulations and collected these results. Finally, the interactive app 

visualized and communicated the simulated outcomes to users through the integration of 

BIM and GPT technologies. The interactive app allowed real-time access to health, energy, 

comfort, and air quality information in selected rooms of interest. The developed platform 

integrated the three phases within a cloud environment, leveraging cloud computing 

technology to store IoT data, perform simulations, and host the web app on the same server. 

This integrated framework allowed for efficient computation and real-time communication 

with users based on monitored and simulated results, as depicted in Figure 4-1. 
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Figure 4-1 Framework for the development of the web-based application. 
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4.3.1 Preparation 

4.3.1.1 Creating the building energy model 

 The building energy model used in the simulations was generated by combining the 

building architecture model and the MEP model. The architectural model was imported 

into Sketchup, enabling adjustments to the building envelope to accurately depict the 

building envelope and streamline the energy simulations. The HVAC systems of the 

building were subsequently incorporated into the model using OpenStudio based on the 

HVAC configuration from the MEP model. These modifications were then saved, resulting 

in a comprehensive model that could be used for energy simulations using EnergyPlus API. 

 

4.3.1.2 Configuring the IoT sensing system 

 An IoT sensing system was implemented in our case study area to allow for the 

real-time monitoring of the building environment. The off-the-shelf IoT hardware devices 

were used to collect data on air quality and occupancy at the room level. The architecture 

of this system is depicted in Figure 4-2, illustrating the components and their connections 

within the IoT sensing system. 

 The IoT system consists of two main types of devices: IoT sensors and a wireless 

gateway. The off-the-shelf IoT sensors employed in the system included IAQ sensors for 

monitoring indoor air quality and a room occupancy sensor that tracked the number of 

people in the room. The IAQ sensors were composed of pollutant-specific sensors, 

including CO2, VOC, and PM2.5 sensors, with data collected and measured in parts per 

million (PPM) for CO2, and micrograms per cubic meter (µg/m3) for PM2.5 and VOC.  
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Figure 4-2 Architecture of IoT system.  
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 The VOC sensors measured the concentration of various pollutants, such as carbon 

monoxide, ethane, isoprene, and acetone. The system also collected other environmental 

data, such as temperature (°C), and relative humidity (%). The room occupancy sensor 

utilized overhead counters to count the number of occupants. The wireless gateway was 

used to manage the IoT sensors and was responsible for collecting data from the sensors 

and transmitting them to the Microsoft Azure Cloud Portal where it was saved and accessed 

by Amazon Web Services (AWS) for further analysis. Figure 4-3 presents an example of a 

set-up of the hardware environment, with the IAQ sensor highlighted in the green box, and 

the gateway highlighted within a blue box. 

 In addition to the hardware setup, a building-IoT sensor solution website was used 

to create a virtual representation of the case study site. In this virtual representation, 

different rooms were defined as spaces, facilitating the mapping and identification of 

device locations within the building. In addition, the website was used to create virtual 

devices, including the gateway and sensors, and synchronized them with their 

corresponding physical devices. The status and location of these devices were visualized 

on the website, with different shapes representing different devices (Figure 4-4). 

 

4.3.2 Simulation 

 Once the data have been collected from the off-the-shelf sensors, appropriate 

simulations must be used to effectively utilize the data. The simulation phase involves two 

main components: 1) energy consumption and thermal comfort simulation, and 2) infection 

risk simulation. 
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Figure 4-3 An example set-up of the hardware environment. 

 
 

 
 

Figure 4-4 Layout of hardware in the case study site. 
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 The energy consumption and thermal comfort simulation were conducted in 

EnergyPlus. The default setpoints for the indoor environment were configured based on 

common operational scenarios. For example, during working hours, the heating and 

cooling setpoints were maintained at 22°C and 26°C, respectively, while during non-

working hours, the setpoints were adjusted to 15.6°C and 26.7°C, respectively. The outdoor 

air supply rate was set to 0.0094 m3/s per person, and an economizer operational 

temperature of 28°C was implemented. The default relative humidity range was set to be 

between 30–60%. Real-time room occupancy was monitored using the occupancy sensor 

system, which was collected, transmitted, and saved on a Windows server hosted on an 

Amazon Elastic Compute Cloud (Amazon EC2). This integrated approach ensures that the 

simulation process uses up-to-date occupancy information, allowing for the accurate 

analysis and assessment of energy consumption, thermal comfort, and infection risks. 

 The web application allows facility managers to customize their desired setpoints 

for the indoor environment with the capability of reading idf files as text, a file format 

commonly used by EnergyPlus. When users input their desired setpoints, the application 

allows direct adjustments to the idf file by overwriting the original text. This functionality 

provides facility managers with a comprehensive understanding of the changes in energy 

consumption, thermal comfort, and infection risks associated with their desired settings, 

giving them insights into the effects of different HVAC operation strategies. 

 In the context of infection risk simulations, our approach considered the dynamic 

indoor environment within each zone, including factors such as temperature, humidity, and 

ventilation rate, as well as fluctuating occupancy levels. A derivative of the Wells–Riley 
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equation was used to estimate room infection risk. Detailed information about the risk 

model is described in Chapter 3. All estimated infection risk data refers to the degree of 

infection risk at the time when the web app was executed. 

 

4.3.3 Cloud computing 

4.3.3.1 Real-time data retrieval and storage 

 Real-time data was retrieved and stored using IoT sensors, including the latest 

updates on the epidemic situation. The IoT data is collected using sensors deployed 

throughout the building, which are then transmitted to the Amazon EC2 for storage and 

processing. Epidemic situation data is obtained through an API provided by Covid Act 

Now [130]. This API can be seamlessly integrated into the cloud-based system, ensuring 

that the latest epidemic data is readily available for analysis and simulation. Specifically, 

the epidemic data provided include the county hospitalizations per 100,000 people. The 

infection rate is then estimated using Equation 4-1: 

𝐼𝑅 =
𝐶𝐻

𝐼𝐻𝑅 ∗ 100,000
 

 (4-1) 

 where 𝐼𝑅 is the county infection rate, 𝐶𝐻 is county hospitalization data, 𝐼𝐻𝑅 is the 

infection-hospitalization ratio [131]. 𝐼𝑅  is the prevalence parameter used in the risk 

simulation model. 

 

4.3.3.2 Computation of health, energy, and comfort parameters 

 The cloud computing approach determines the health, energy, and comfort 

parameters through a combination of mathematical models and simulation programming 
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on the cloud server. Health parameters are calculated using the Python implementation of 

a revised W–R model, which is then saved in a Windows server hosted within the AWS 

infrastructure. An interface was included in the Python script to facilitate the retrieval of 

prevalence data from the front end of the web app, allowing for seamless communication 

between the two scripts. The Windows server described above was specifically built using 

the EC2 service.  

The Python API provided by the EnergyPlus simulation software was used to 

compute the energy consumption and thermal comfort parameters. This simulation 

software utilizes the building energy model, along with real-time occupancy data, to 

calculate energy consumption and assess thermal comfort. These Python scripts are 

responsible for triggering the simulation process as required as well as generating the 

relevant outputs pertaining to energy consumption and thermal comfort. Similar to the 

scripts responsible for the computation of health parameters, these Python scripts are stored 

within the same Windows server hosted on AWS, ensuring seamless integration and 

accessibility. 

4.3.3.3 App hosting 

 The web app is seamlessly hosted on a Windows server, which also serves as a 

repository for IoT data and the Python scripts responsible for cloud computing tasks. This 

integrated setup allows for the smooth integration of the app and the computing 

environment. Python scripts that handle various calculations and simulations are triggered 

by the web app whenever necessary. To facilitate this dynamic interaction, the web app 

sends inputs to the programming scripts via an XMLHttpRequest object. This enables users 
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to provide inputs through the web app's user interface (UI), which are then passed on to the 

scripts for processing. The outputs generated by the Python scripts are read by the web app 

using the same XMLHttpRequest object and are promptly presented using the app’s UI, 

providing users with relevant information in real time. This hosting configuration 

establishes a cohesive ecosystem in which the web app and programming scripts 

collaborate harmoniously, ensuring a seamless and efficient user experience. Furthermore, 

the web app eliminates the need for users to install additional software, as all of the 

provided functions are easily accessible through a simple URL. This streamlined approach 

enhances the app’s ease of use, in terms of both setup and interactivity, allowing a broader 

range of potential users to benefit from its functionalities. The app is not only designed for 

facility management teams but also for occupants, workers, or anyone temporarily present 

in the building. By removing the requirement for software installation, the app becomes 

more inclusive and user-friendly, catering to a wider audience and ensuring convenient 

access to its features. 

 

4.3.4 Web app development 

 The web app developed in this study incorporates several key components aimed 

at assisting with facility management practices. Firstly, the app allows for the 3D 

visualization of the building model and time series data visualization, allowing for the real-

time monitoring of the building environment. These visualizations aid facility managers by 

providing them with a comprehensive understanding of the current state of the facility. 

Facility managers can adjust the setpoints of the indoor environments based on their 
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preference, while also providing them with any changes in the energy consumption or 

building environment that may arise as a result of these changes. In addition, an alerts 

system allows facility managers to promptly identify and address any abnormalities or 

deviations from the desired conditions by providing timely alerts and notifications. An AI-

based persuasion system was also developed to encourage desirable occupant behaviors 

and preferences. This integrated system provides facility managers with a deeper 

understanding of occupant-preferred measures, fostering effective interactions between 

occupants and facility managers. By leveraging AI technologies, this system offers 

personalized recommendations and suggestions to optimize both occupant satisfaction and 

facility management efficiency. Together, these components encompass a robust 

methodology that integrates visualization, alerts and notifications, and AI-based persuasion 

systems that allow facility managers to effectively monitor, respond to, and engage with 

the built environment and its occupants. 

4.3.4.1 Visualizations 

 The web app was developed using the NodeJS and Bootstrap frameworks, creating 

a user-friendly interface that facilitates efficient data visualization and interaction. One 

notable feature of the app is the 3D visualization of the building model made possible 

through its integration with Autodesk Platform Services. This functionality allows users to 

select specific rooms of interest and observe them highlighted within the 3D building 

model. The 3D view of the building model can also highlight specific rooms to emphasize 

the presence of any abnormalities, drawing attention to rooms that require immediate 

attention or further investigation, aiding in effective decision-making and the prioritization 
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of actions. The 3D building model is also fully interactive, allowing users to zoom in, pan 

around, and explore different parts of the building. This immersive and interactive 

visualization system enhances the user experience and provides users with a better spatial 

understanding of the layout of the building.  

 The app is also capable of visualizing the fluctuation of key parameters over time. 

Line plots are used to illustrate the dynamic changes in energy infection risk, energy 

consumption, and thermal comfort in specific rooms, allowing users to easily observe 

trends and identify potential areas of concern. Line plots are also utilized to visualize room 

temperature, humidity, and ventilation, providing insights into indoor environmental 

conditions. Finally, line plots are also used to show the cumulative infection risks of each 

room, allowing users to assess their individual infection risks based on the time spend in 

each room. This information can be used for high-infection risk alerts and proactive 

measures. 

4.3.4.2 Alerting system 

 An alerting system was seamlessly integrated into the app to provide 

comprehensive guidance and support to facilities management. This system effectively 

utilizes simulation results associated with the user’s selected room to proactively trigger 

alerts. An alert can be triggered based on the following conditions: 

1. Cumulative Infection Risk: If the cumulative infection risk exceeds a predetermined 

threshold (e.g., 1%), then an automatic alert is triggered, notifying facility managers of 

potential health risks and providing recommendations on various mitigation measures, 
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such as increasing ventilation, reducing room occupancy, and implementing 

disinfection strategies such as the use of ultraviolet lights. 

2. Relative Humidity: When the relative humidity exceeds specified thresholds, such as 

exceeding 60% or falling below 30%, an alert will be sent to facility managers, 

informing them about these humidity-related issues. These issues can be mitigated 

through the activation of humidifiers or dehumidifiers at low or high humidities, 

respectively. 

3. Thermal Comfort: Alerts are pushed if the thermal comfort levels deviate from 

predefined thresholds, such as when the predicted mean vote (PMV) exceeds 1 or falls 

below -1. This allows facility managers to take timely action in response to comfort-

related concerns, such as adjusting the room temperature setpoints. 

4. Indoor air quality (IAQ): An alert is triggered when the IAQ exceeds acceptable 

thresholds. These thresholds are set for specific parameters, which are 500 ppm [132],  

15 μg/m3 [133], and 500 μg/m3  [134] for the concentration of CO2, PM2.5, and 

VOCs, respectively. Exceeding these thresholds indicates that the IAQ may pose 

potential health risks, and facility management teams should take actions to address the 

situation, such as increasing the room ventilation rate or reducing the concentration of 

pollutants. 

 

4.3.4.3 AI-based persuasion system 

 The functionality of the web app extends beyond facility managers and can cater to 

the needs of other users, such as occupants or workers, by providing them with information 
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about the facility as well as receiving and providing suggestions to their concerns. In 

addition to the visualization capabilities described earlier, the app incorporates an AI-based 

persuasion system that offers personalized suggestions to this user group through the use 

of conversations informed by the current environment data and simulation results. This 

persuasion system takes the form of a conversational interface powered by the highly 

regarded GPT-3.5-turbo LLM [135]. This LLM has been specifically optimized for 

conversational tasks and is thus highly effective at generating meaningful responses. 

 The LLM has three main functions: data retrieval, data comparison, and the 

provision of suggestions. After the web app simulates the current state of the building, the 

real-time environmental data from IoT sensors (such as IAQ and temperature) and the 

simulation results (including energy consumption, thermal comfort, and infection risk) are 

automatically transmitted to the GPT model through the OpenAI API [136] in the JSON 

format. The LLM then utilizes the retrieved JSON data to identify differences between 

neutral and current conditions, such as variations in simulated energy use. The LLM is 

trained using predefined decision-tree-based training phrases to provide conversational 

suggestions to end-users. To ensure accurate responses, a manual check is performed after 

each training session.  

 Users can engage with the app's conversational UI to express their concerns, share 

their feelings, or ask questions about the current environment. The LLM is capable of 

providing relevant and personalized responses based on the real-time data it receives. This 

comprehensive approach allows the app to provide users with appropriate guidance and 

effectively address their specific concerns, fostering an informative, user-centric 
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experience. The fundamental concepts behind the persuading system are founded in the 

tradeoff relationships between health, energy, and thermal comfort. Two adaptive 

persuasion algorithms were developed in this study: one focused on the occupant’s 

perception of thermal comfort and the other on their perception of the IAQ. These qualities 

are important for occupants, as they directly relate to what occupants can feel and are most 

concerned about in an indoor environment. The persuasion algorithms are presented using 

a decision-tree format and are utilized as training data for the GPT. Specifically, they were 

provided in the form of descriptive phrases, allowing the model to learn and understand 

how to generate effective and persuasive suggestions. Figure 4-5 provides a comprehensive 

illustration of the entire process. 

 
 
4.3.4.3.1 Adaptive persuasion algorithm based on user perception of thermal comfort 

 The first of the two adaptive persuasion algorithms utilized in the app focuses on 

the user's perception of thermal comfort. The algorithm involves three decisions, with the 

result of each decision based on user input or environmental conditions. A demonstration 

of how outputs are generated by the persuasion algorithm is shown in Figure 4-6. The 

algorithm distinguishes between cooling and heating seasons based on the current date 

retrieved from the device’s system time. It then obtained the occupant’s thermal perception 

through the conversational interface, capturing their feelings about the state of the indoor 

thermal environment. It then compares the current temperature—acquired from real-time 

IoT sensing data—with the preset neutral temperature (e.g., 24°C). 
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Figure 4-5 Integrated operations of the AI-based persuasion system.
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Figure 4-6 The persuasion algorithm according to the occupant perception of indoor 

temperature and environmental conditions. 
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 The simulation results under current and neutral conditions are then used to 

calculate the difference in energy use. Based on the outcomes of these three decisions, the 

algorithm generates eight distinct scenarios, with specific suggestions and persuasive 

phrases formulated for each scenario. The contents of the persuasion system were 

developed by considering the tradeoff between energy consumption and thermal sensation. 

If changing temperature setpoints will result in increased energy use, the system initially 

recommends that users change their clothing levels to reduce energy consumption. If 

changing setpoints will reduce energy use while also satisfying user thermal requirements, 

the system will suggest adjusting setpoints accordingly.  

 To enhance user engagement, the system provides suggestions while demonstrating 

the energy savings achieved by user actions. This approach helps users better understand 

the impact of their behavioral changes while making the system more persuasive, 

improving thermal comfort and energy conservation by encouraging the active 

participation and collaboration of occupants. In each scenario, multiple recommendations 

are offered to users, allowing them to choose their preferred course of action. The system 

then responds according to user choices and informs the facility management teams of the 

user’s preference. The detailed persuading phrases based on different scenarios are as 

follows: 

Scenario 1 (cooling season, the user feels hot, and the current temperature is higher 

than neutral): Shall I communicate with the facility managers and advise them to lower the 

indoor temperature? Alternatively, if you are comfortable adjusting your clothing to lighter 

attire, it could potentially save an estimated Y kWh of energy (where Y is the number 
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retrieved from the result of cloud-computed energy simulation). Please let me know your 

preference regarding contacting the facility managers. 

Scenario 2 (cooling season, the user feels hot, and the current temperature is lower 

than neutral): The current temperature is already below the neutral level, and lowering it 

further may cause people to feel cold. In this case, I recommend wearing additional layers 

or a light blanket if you're still feeling chilly.  

Scenario 3 (cooling season, the user feels cold, and the current temperature is higher 

than neutral): The current temperature is already higher than the neutral level. In this 

situation, I recommend considering removing some layers of clothing to help you feel more 

comfortable and alleviate your thermal discomfort.  

Scenario 4 (cooling season, the user feels cold, and the current temperature is lower 

than neutral): The current temperature is below the neutral level. I will inform the facility 

managers to increase the temperature cooling setpoint, which will help save energy by Y 

kWh. 

Scenario 5 (heating season, the user feels hot, and the current temperature is higher 

than neutral): The current temperature is above the neutral level. I will communicate with 

the facility managers to lower the temperature heating setpoint, which will help save energy 

by Y kWh. 

Scenario 6 (heating season, the user feels hot, and the current temperature is lower 

than neutral): Should I communicate with the facility managers to decrease the 

temperature? Alternatively, you could remove some layers of clothing to help us save Y 

energy. Please let me know your preference regarding contacting the facility managers. 
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Scenario 7 (heating season, the user feels cold, and the current temperature is higher 

than neutral): The current temperature is already higher than the neutral level, and further 

increasing it may cause people to feel hot and lead to higher energy consumption. In this 

situation, I recommend removing some layers of clothing to help you feel more 

comfortable and reduce the need for additional adjustments to the indoor temperature. 

Scenario 8 (heating season, the user feels cold, and the current temperature is lower than 

neutral): Should I communicate with the facility managers to increase the temperature? 

Alternatively, you could put on more layers of clothing to help us save Y energy. Please 

let me know your preference regarding contacting the facility managers. 

 

4.3.4.3.2 Adaptive persuasion algorithm based on user perception of IAQ 

 Like the algorithm described in Section 4.3.4.3.1, this algorithm generates 

responses based on three key decisions (Figure 4-7), involving a consideration of the 

environmental conditions, user perception, and health risks. It first prompts the user to 

input their perception of the air quality through the conversational interface of the 

application. It then compares the current infection risk level to a predefined risk threshold 

to determine if the room's infection risk is high. Finally, it evaluates the IAQ with close 

consideration of the concentration of air pollutants such as CO2, PM2.5, and VOC. This data 

is gathered in real-time through IoT sensing devices and compared against preset 

thresholds as demonstrated in Section 4.3.4.2. From this data, the algorithm generates 

outputs based on one of six scenarios. 
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Figure 4-7 The persuasion algorithm according to the indoor infection risks and 

occupant perception of the IAQ. 
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 The system considers two crucial factors: the health risks associated with airborne 

diseases and air pollutants. The system acquires the infection risk through real-time 

simulation results, while the health risks related to air pollutants are obtained from the IoT 

monitoring system. The algorithm presents users with different mitigation measures, 

allowing them to choose the option that best aligns with their preferences. 

 The persuasion system’s initial strategy is to encourage occupants to consider 

moving to another room, which helps to reduce potential health risks while minimizing the 

need for the extensive implementation of mitigation measures, thus promoting energy and 

cost savings. Furthermore, the system acts as a communicative link between the building 

occupants and the facility management teams, providing insights into occupant preferences 

and needs. This promotes the adoption of preferred mitigation measures, leading to a 

healthier environment, energy savings, and improved occupant satisfaction. The detailed 

persuading phrases based on different scenarios are as follows: 

Scenario 1 (the user feels good, infection risk is high, and IAQ is acceptable): 

Although the air quality in this room may feel comfortable, it's important to be aware that 

the current infection risks are high. To address this concern, I strongly recommend moving 

to another room. The healthy room numbers are Z (recommended rooms are determined 

based on risk simulation). Would you be willing to move to one of these healthier rooms? 

(Response from the user). If moving to another room is not feasible for you, I can promptly 

contact the facility management teams to implement one of three mitigation measures: 1. 

An increase in room ventilation. 2. Room disinfection procedures. 3. Occupancy control 

measures. Which of these mitigation measures would you prefer? 
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Scenario 2 (the user feels good, infection risk is high, IAQ not acceptable): While 

you may currently feel good, it's crucial to be aware that both the infection risks and the air 

quality in this room are not at an acceptable level. To address these concerns, I strongly 

suggest moving to another room, such as room Z1, Z2, or Z3. If you do not wish to or cannot 

change rooms, I can contact the facility manager to increase the ventilation rate in this 

room. 

Scenario 3 (the user feels bad, infection risk is high, IAQ is acceptable): Thank you 

for expressing your concerns. The current room's infection risk is indeed not at an 

acceptable level for maintaining a healthy environment. (At this point, the same 

recommendations from Scenario 1 will be provided). 

Scenario 4 (the user feels bad, infection risk is high, IAQ is acceptable): Thank you 

for acknowledging the concerns. It is crucial to note that both the infection risk and the air 

quality in the room are not at a healthy level. (Same recommendations from Scenario 2 will 

be provided). 

Scenario 5 (the user feels bad, infection risk is low, IAQ is acceptable): Although 

you feel unwell, please note that the room environment is healthy and has an acceptable 

level of air quality. However, considering your discomfort, I recommend taking a break 

outside the building to refresh yourself. 

Scenario 6 (the user feels bad, infection risk is low, IAQ not acceptable): Thank you for 

expressing your concerns. The air quality in this room is not at an acceptable level, which 

can potentially affect your performance and well-being. (Same recommendation from 

Scenario 2 will be provided). 
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4.4 Case study 

 This section presents the development of a real-time, cloud-based, integrated 

platform aimed at monitoring crucial aspects of building management, including energy 

consumption, thermal comfort, infection risks, and overall building environments, as well 

as communicating this information to users. The infrastructure integrates various 

components, such as sensor APIs, web servers, cloud computing, and EnergyPlus 

simulations. The UI of the web app was designed to effectively communicate the dynamic 

information collected to facility management teams. To demonstrate the application's 

capabilities, a case study was conducted using a section of the Zeanah Engineering 

Complex, the largest academic building on the campus of The University of Tennessee, 

Knoxville, with the results of the simulation presented within the app. This platform offers 

a comprehensive solution for real-time monitoring, analysis, and communication in 

building management scenarios. 

 

4.4.1 Energy model generation 

 The capabilities of the platform were demonstrated by using a specific section of 

the Zeanah building as a case study. The selected region included the left wings of the 

second floor, which is composed of various spaces, including seven classrooms, thirteen 

offices, two laboratories, one learning space, one wellness room, two restrooms, two stair 

rooms, one electric room, and one data room. The total area of this building section is 

approximately 1848.9 m2, and the layout of the building is presented in Figure 4-8. The 
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HVAC systems employed in the building include three centralized variable air volume 

(VAV) systems equipped with economizers (Figure 4-9). 

 Figure 4-9 illustrates a sample configuration of a deployed HVAC system. The 

building uses both gas and electricity as primary fuel sources. The heating system utilizes 

gas boilers, while the cooling system uses a packaged air conditioning unit (PACU). A 

VAV box with a reheat function is installed within each zone to regulate the airflow and 

temperature.  

 The architectural model was imported into Sketchup using OpenStudio plugin to 

accurately represent the building envelope and facilitate the energy simulation process. 

OpenStudio was then used to incorporate the building’s HV C systems into the model 

based on the configuration provided in the MEP model. These modifications resulted in a 

comprehensive model for energy simulation using EnergyPlus as described in Section 

4.3.2. 

 

4.4.2 Web app UI 

 The web app UI was designed with a focus on user-friendliness and clarity. By 

incorporating the principles of simplicity and intuitive navigation, the interface was 

designed to be both easy to use and comprehend. The concise UI design, combined with 

the same page display function, allows users to efficiently access and absorb information. 

The core design principles and features are demonstrated on the main page of the web app 

(Figure 4-10). 
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Figure 4-8 The architectural configuration of the selected building section. 

 
 
 
 

 
Figure 4-9 Diagrammatic representation of the HVAC configuration in the selected 

building section. 
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(a) (b) 

Figure 4-10 The UI of the web app. (a) Main page and (b) simulation results visualized using line plots. 
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4.4.3 Sample simulation results 

 A test simulation was conducted to demonstrate the capabilities of the web app, as 

well as to showcase the range of information that can be displayed. This simulation utilized 

data and information specifically collected from classroom 278, located on the second floor 

of the Zeanah building. The simulation was performed for a whole day using weather and 

IoT data retrieved on June 22, 2023. The simulated hourly outcomes included infection 

risk, cumulative infection risk, energy consumption, and thermal comfort. Room 

temperature, relative humidity, occupancy, and the concentration of different pollutants 

were monitored by the IoT sensors. Figure 4-11 illustrates the time series results of the 

simulation and monitoring for room 278, as would be presented within the app’s UI. 

 

4.4.4 Alerting system and conversational persuasion system 

 The app’s alerting system is designed to automatically trigger when predefined 

thresholds are exceeded. Popup alerts are displayed immediately after the user selects a 

room. To provide a comprehensive view of the alerts related to the selected room, all 

identified alerts are presented using a dropdown menu. Users can conveniently explore the 

dropdown menu and select specific problems they are interested in and access the relevant 

suggestions. In addition, the app utilizes a persuasive conversational interface powered by 

GPT-3.5 to provide appropriate suggestions and recommendations. Users can engage in a 

conversation-like interaction to receive personalized suggestions based on user inputs and 

current environmental conditions. Figure 4-12 illustrates the visual representation of the 

alerting system and the conversational interface within the app.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-11 Simulation results from a sample room. Hourly outcomes included: (a) 

infection risk (%); (b) PM2.5 (PPM); (c) Energy consumption (kWh); (d) Thermal 

comfort (PMV); (e) Occupancy (no. of persons); (f) Relative humidity (%). 
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 This user-friendly design allows users to easily navigate and access alert 

information, obtain tailored suggestions, and engage in interactive conversations to 

enhance their experience and address specific concerns. 

 In addition to offering persuasive strategies, the AI-powered conversational 

persuasion system also encourages user participation by offering the user several energy-

saving tips by considering the tradeoffs between energy consumption, thermal comfort, 

and infection risks.  

 By explicitly informing the user of the amount of energy saved, this approach helps 

occupants better understand the positive effects of their actions and promotes responsible 

behavior. Furthermore, the system not only encourages positive occupant behavior but also 

provides multiple mitigation measures that occupants can choose from. These measures 

can be implemented by the facility management teams, offering occupants a range of 

options based on their preferences to address their specific needs.  

 Figure 4-12(b) illustrates an example of the persuasion system's response when the 

user feels overly hot in a room. The system suggests adjusting their clothing as a potential 

solution that addresses the user's discomfort. To enhance the persuasiveness of these 

suggestions, the app presents the estimated potential energy savings that can be achieved 

through clothing adjustments.  

 By indicating the potential energy savings and environmental benefits tied to 

specific actions, users are encouraged to adopt sustainable behaviors, resulting in a more 

informed and eco-conscious user experience. 
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Figure 4-12 The UI of (a) The alerting system and (b) the GPT-powered suggestion system. 

  

(a) (b) 
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 A sample conversation between the LLM-powered persuasion system and an 

occupant is provided in Table 4-1, demonstrating the interactive nature of the system and 

how it facilitates informative discussions. This dialogue exemplifies the interactive 

capabilities of the LLM-powered assistant, allowing for personalized suggestions and 

engaging conversations.  

 

4.5 Discussion 

 This study proposes the use of an innovative real-time integrated platform for 

building management that integrates a variety of features from building environment 

monitoring to the effective communication of information with the express purpose of 

fostering a healthy and sustainable built environment. To demonstrate the capabilities of 

the platform, a case study was conducted within a section of Zeanah Engineering Complex 

in Knoxville, Tennessee.  

 The building’s architectural model and ME  model were used to create a building 

energy model, which served as the basis for the digital twin. An IoT sensor network was 

deployed throughout the selected study area to allow for comprehensive building 

monitoring. This network continuously collects real-time data on various environmental 

factors in each room, including temperature, humidity, as well as the concentrations of 

pollutants such as CO2, PM2.5, and VOC.  

 The platform conducts simulations at the room level to assess three crucial aspects 

that are essential for building sustainability: health, energy consumption, and thermal 

comfort. 



 

141 

 

  

Table 4-1 Sample conversation between the LLM-powered assistant and an 

occupant. 

Occupant  I feel hot in room 278. 

Assistant I'm sorry to hear that you're feeling hot in room 278. I have two 

suggestions for you: 

      1. Should I communicate with the facility managers and advise them to 

lower the indoor temperature? 

      2. If you are willing to adjust your clothing to a lighter attire, it could 

potentially save energy. 

Please let me know your preference regarding contacting the facility 

managers. 

Occupant I can adjust my clothing. 

Assistant That's great! Adjusting your clothing to a lighter attire can help you stay 

comfortable and also save energy. Thank you for contributing to energy 

conservation. 

Based on the simulation data, by not adjusting the temperature setting for 

an hour, you have saved a total of 1.853 kWh of energy. 

Thank you for your effort in conserving energy! If you have any other 

questions or need further assistance, please let me know. 
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 The UI of the platform facilitates information sharing and visualization for facility 

management teams and occupants and uses an enhanced communications system involving 

a conversational persuasion system to provide occupants with a user-friendly experience. 

 

4.5.1 Health aspects of building management 

 The occurrence of several severe pandemics over the past two decades, including 

influenza, SARS, and COVID-19 pandemic, has emphasized the critical significance of 

health considerations in building management. Although the threat of the COVID-19 

pandemic has subsided recently, the need to prevent potential disease outbreaks remains 

crucial due to the pandemic’s devastating impact on human lives and the economy. 

Airborne transmitted diseases pose a particularly severe threat due to their potentially rapid 

spread and limited means of transmission control. Indoor environments, often lacking 

adequate ventilation in typical operation scenarios, can become breeding grounds for 

airborne viruses. Hence, the development and implementation of a health-focused platform 

that monitors indoor environments is vital in curbing potential disease outbreaks. In 

addition to disease transmission, traditional concerns about IAQ continue to be significant 

in building management. Low-quality indoor environments can adversely affect occupants’ 

health, leading to increased absenteeism due to SBS as well as reduced productivity and 

performance among occupants and workers. SBS is primarily caused by contaminations 

from various pollutants and insufficient indoor ventilation [137]. Consequently, IAQ 

detection was also considered in this study as a means of mitigating health risks and 

ensuring a healthier and more productive indoor environment. 
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 It is essential to recognize that mitigation measures, such as increased ventilation, 

can effectively address health risks arising from both airborne diseases and pollutants. 

However, these two aspects should be considered separately to improve building 

performance. During pandemics, it becomes crucial to prioritize the reduction of disease 

transmission; consequently, room ventilation rates must be set to higher levels to enhance 

air circulation and minimize the risks of infection. Despite the implementation of these 

measures, the infection risks can remain high depending on the current state of the 

epidemic, while the IAQ can remain at low levels. Conversely, during non-pandemic 

periods, priority shifts to the management of IAQ during building operations. Maintaining 

a high-quality indoor environment is essential to promote the well-being and productivity 

of occupants and workers.  

 

4.5.2 Interoperability achieved by cloud computing 

 To effectively conduct real-time energy simulations, researchers often rely on 

additional software for programming and data storage. In general, the energy simulation 

process is conducted locally before the data is transferred to a cloud server for retrieval. 

For instance, Pang et al. [138] introduced a framework for the real-time performance 

assessment of entire buildings, utilizing Building Controls Virtual Test Bed (BCVTB) as 

the software platform to which inputs from the Energy Management and Control System 

(EMCS) were provided. The acquired data were then sent to EnergyPlus for simulation, 

with the results archived in a separate database. Pallonetto et al. [139] proposed a grid co-

simulation software platform that integrated BCVTB with a MySQL database using Java 
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Database Connectivity (JDBC). By accessing the database, this platform allowed for real-

time simulation and visualization through a web application. However, such approaches 

still require the local installation of BCVTB software, which poses challenges to users, 

impacting accessibility and ease of use. The need for additional software installation may 

limit user’s access to information, especially in the context of the wide variety of user 

devices, excluding potential users who may not require the app for professional purposes 

but still seek information or interaction about the building environment. In this study, a 

cloud-based integrated platform was developed to address these problems. This technology 

allows for interoperability within the same device, eliminating the need for additional 

software installation. This cloud-based approach supports cross-platform accessibility, 

allowing users to easily access the platform from any device and at any time (as long as 

they have Internet access) through the simple use of a URL. This innovation allows for 

room-level monitoring and simulation, laying the foundation for efficient building 

operations.  

 

4.5.3 Human-centric conversational persuasion system 

 This study introduced an innovative AI-based conversational persuasion system 

powered by GPT technology that can generate personalized responses to specific user 

inputs. The development of this conversational system expands the scope of human-centric 

interactive services in the context of smart building operations. While such technologies 

are finding wide usage in fields like healthcare and services, it has not been extensively 

applied to the field of building management for indoor environments. This conversational 
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system effectively bridges this gap, allowing facility management teams to promptly 

address occupant needs and preferences. It also enhances occupant participation and fosters 

a healthier and more sustainable building environment. This system offers significant 

improvements in the interactive process compared to traditional conversational agents or 

chatbots. Traditional chatbots tend to provide consistent, rigid responses to similar 

questions, leading to user boredom and dissatisfaction due to repetitive interactions. 

However, the integration of a GPT-empowered interface as a conversational tool addresses 

these issues while introducing several advantages. Firstly, the widespread usage and 

human-like interface of GPT contribute to improving the users’ trust and acceptance of the 

information provided, establishing credibility and fostering user engagement. Furthermore, 

GPT’s ability to generate diverse sentences during communication ensures dynamic and 

varied conversations enhances the overall user experience, and makes interactions more 

engaging and enjoyable. This contributes to increased user satisfaction and promotes 

sustained user engagement with the system. 

 The monitoring data and simulated results are automatically transferred to the GPT 

model in real time. Through a comprehensive, predefined set of training phrases, the 

system gains the ability to understand the current environmental conditions and respond 

appropriately to user inputs by providing accurate and relevant responses. In particular, 

information regarding the tradeoffs between health, energy use, and thermal comfort serves 

as a powerful motivator, causing building occupants to actively engage with and embrace 

energy-saving strategies. The use of human-like conversational tones to demonstrate the 

energy savings allows occupants to gain a sense of awareness regarding their actions and 
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informs them of their direct impact on the building's overall performance. This creative 

approach allows for the effective and relatable visualization of energy consumption, 

making it easier for occupants to understand the extent of the environmental implications 

of their daily activities. This engagement encourages occupants to take a more active role 

in enhancing indoor environments and living quality through their participation. 

 

4.6 Summary 

 The COVID-19 pandemic and other severe airborne diseases have highlighted the 

critical importance of health monitoring in the context of facilities management, as 

improper operation strategies can have severe implications for public health. Consequently, 

monitoring health and infection risks alongside energy consumption and thermal comfort 

has become essential for the maintenance of a sustainable built environment. The real-time, 

cloud-based integrated platform presented in this study represents a significant 

advancement in adaptive built environment management due to its incorporation and 

consolidation of various innovative functionalities.  

 The platform offers distinct advantages over existing solutions for three key 

reasons. Firstly, it combines all essential functionalities into a single platform, facilitating 

efficient data exchange and interoperability regardless of the device used to access this 

platform. Secondly, the platform enables the real-time simulation of crucial aspects of 

smart building management, such as health, energy, and thermal comfort. By utilizing the 

data collected from IoT sensing networks as inputs, the platform generates comprehensive 

results based on the interconnected relationships between these three critical aspects. 
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Thirdly, an interactive AI-based conversational agent was developed to promote healthy 

occupant behaviors and energy-saving practices in the context of the tradeoffs between 

health, energy, and thermal comfort. The platform offers real-time room-level information 

and presents a comprehensive view of the building environment through simulated results 

and monitored data. Via this interface, facility management teams can visualize their 

changes in the building environment when adjusting the setpoints of environment factors, 

allowing them to implement timely operation strategies at a granular level. In addition, the 

persuasion system fosters effective interactions between occupants and management teams 

while also encouraging occupant behaviors that align with sustainability objectives. By 

considering occupant preferences when implementing mitigation measures, the platform 

aims to enhance occupant satisfaction and contribute to the overall sustainability of the 

building. A case study was conducted on a section of a university building to demonstrate 

the capabilities of the proposed platform and the wealth of information it can provide.  

The practical applications of this platform extend beyond disease control, and it can be 

deployed in various built environments where managing health, energy, and thermal 

comfort is essential. The platform's broad potential user base includes facility managers 

and individuals living or working in the building, making it a versatile and impactful tool 

for enhancing indoor environments and promoting sustainability. 
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CHAPTER FIVE  

CONCLUSIONS AND RECOMMENDATIONS 

 
 This final chapter serves as a comprehensive conclusion to the dissertation, 

summarizing its key findings and contributions. It serves as a thorough consolidation of 

the research journey and emphasizes its significance in the literature. In addition, it 

describes the limitations of the current study and provides recommendations for avenues 

of future research, paving the way for additional advancements and developments. 

 

5.1 Conclusions 

 The COVID-19 pandemic has caused over 6 million deaths worldwide [1] and 

ranks among the top three leading causes of mortality worldwide [140]. The global impact 

of the pandemic has raised concerns about public health, particularly in mass-gathering 

infrastructure facilities that often serve as hotbeds for disease transmission due to their 

crowded and high-contact nature. It is also essential to recognize that COVID-19 will not 

be the last pandemic to impact global health. The integration of health considerations into 

the process of long-term building maintenance is thus crucial to prevent potential outbreaks 

in the future. By emphasizing health and well-being in building maintenance strategies, we 

can proactively safeguard public health and create resilient infrastructures capable of 

effectively addressing current and future health crises. 

 In response to these urgent needs, this dissertation focused on three primary 

research objectives to facilitate the maintenance of a healthy, comfortable, and sustainable 

built environment during viral outbreaks. In particular, this thesis examines three essential 
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dimensions: health, energy consumption, and thermal comfort. The overarching goal was 

to develop a comprehensive framework that systematically explores these dimensions 

through the implementation of models, simulations, and monitoring methods. The thesis 

comprises three primary research areas, each contributing to the overall goal of the study. 

Firstly, a modeling approach was devised to estimate the infection risks of SARS-CoV-2 

and assess the effectiveness of various intervention strategies in mitigating transmission. 

Secondly, a simulation-based modeling method was employed that incorporated health as 

a new dimension in building operations. This approach integrated facility, weather, and 

occupancy data to conduct simulations, providing insights into the relationship between 

health, energy use, and thermal comfort. Finally, a platform utilizing a coupling between 

digital twin-based technology and cloud computing was developed to perform real-time 

monitoring of these three dimensions. This innovative tool provides users with an 

interactive platform that includes a variety of integrated functionalities for monitoring, 

visualization, environmental alerts, and behavioral persuasion. The detailed methodologies 

are described in Chapters 2–4 as follows. 

 In Chapter 2, a mathematical model was developed to estimate the airborne 

infection risks of SARS-CoV-2 and the Omicron variant in 111,485 U.S. public and private 

schools, as well as evaluate the impacts of different intervention strategies, including 

increased ventilation, air filtration, and hybrid learning. It was found that schools in more 

than 90% of counties exhibit infection risks greater than 1%, highlighting the importance 

of implementing intervention strategies. Among the studied control strategies, air filtration 

was found to be most effective: the school's average infection risk when employing MERV 
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13 filters was over 30% less than the risk levels correlating with the use of increased 

ventilation and hybrid learning strategies. Most schools required the combined adoption of 

multiple intervention strategies to reduce the infection risk below 1%. The results provide 

insights into airborne infection risk in schools under various scenarios and guide schools 

and policymakers aiming to develop effective operations strategies to maintain 

environmental health. 

 In Chapter 3, a simulation-based trade-off modeling method was developed to 

understand the intricate relationships between 1) human health measured in terms of 

exposure to pathogens and infection risk; 2) building energy consumption as a result of 

differential heating, ventilation, and air conditioning (HVAC) control strategies; and 3) 

human thermal comfort in different climate zones. This research developed a modeling 

framework that evaluated the trade-offs among health, energy, and human thermal comfort 

and conducted simulations using school building data, which included a variety of 

temperature, humidity, and ventilation control parameters. The key findings of this study 

revealed that indoor temperature profoundly influences infection risk, energy consumption, 

and thermal comfort. Ventilation rates were found to influence the fluctuations in infection 

risks and building energy usage, while indoor relative humidity demonstrated negligible 

impacts. Notably, maintaining thermal comfort and low infection risk can be accomplished 

simultaneously, albeit at the expense of high energy consumption. A comparison of the 

optimal and the worst environmental settings in a typical U.S. climate zone revealed a 43% 

decrease in infection risks and a 61% increase in thermal comfort, accompanied by an over 

70% increase in energy consumption. The influences and tradeoffs between infection risks, 
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energy consumption, and thermal comfort were additionally modulated by climate 

characteristics. 

 In Chapter 4, a novel platform integrating IoT-based BIM technology, cloud 

computing-based real-time simulations, and an AI-based conversational suggestion system 

powered by GPT was developed to enhance smart building operations. This integrated 

platform combines monitoring, simulation, alerting, and persuasion capabilities into a 

single comprehensive solution. The integration of these technologies enables the real-time 

monitoring of health, energy consumption, and thermal comfort, perform simulations to 

assess the tradeoffs between these aspects, provides timely alerts and recommendations, 

and employs persuasive techniques to encourage occupants to adopt more sustainable 

practices. Furthermore, the suggestion system serves as a communicative link between the 

building occupants and the facility management teams, promoting mutual understanding 

and enabling the timely implementation of occupant-preferred mitigation measures. A case 

study was carried out in a university building, which involved the establishment of an IoT 

sensor network, to evaluate the platform's performance. This case study demonstrated the 

platform's ability to monitor and analyze the building environment, assess tradeoffs 

between the three major dimensions of building sustainability, and provide timely 

recommendations as a persuasive social interactive tool. 

 By accomplishing its three primary objectives, this dissertation has produced a 

comprehensive framework that integrates modeling, simulation, and monitoring methods 

that significantly improve the sustainability of building operations. This framework 

provides insights to local governments and facility management teams, allowing them to 
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implement effective operational strategies based on the current status of an evolving 

epidemic situation. The proposed findings are expected to introduce new paradigms and 

novel technologies within the field of sustainable building environments. By combining 

theoretical advancements with practical applications, this research contributes to the 

broader goal of enhancing the sustainability and resilience of built environments, thereby 

fostering healthier and more sustainable communities. While this research primarily 

focuses on the COVID-19 pandemic and its application to school environments, the 

framework developed herein can be extended to encompass other airborne diseases as well 

as applied to a diverse range of infrastructure facilities. 

 

5.2 Recommendations 

 This section outlines several specific limitations of this dissertation that provide 

intriguing opportunities for future investigation to offer insights and assistance in the 

maintenance of sustainable buildings during pandemics. 

 

5.2.1 Limitations of the modeling approach for airborne infection risks 

 The estimated infection risk generated by the model refers to the daily infection 

risk based on exposure time in a single day, ignoring probability transition effects due to 

continuous exposure in schools, which may lead to an underestimation of infection risk. 

Future studies may wish to consider the effects of previous school days—particularly in 

the context of different school schedules—on cumulative infection risk. 
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 As this model utilizes a scenario-based analysis, the derived results and findings on 

infection risk and intervention strategies were based on a one-year pandemic scenario and 

a short-term county-level epidemiological scenario, which may be different from actual 

epidemic situations. Leveraging the findings and insights of this work about the impacts of 

various intervention strategies on infection risk under different scenarios, schools and 

governments can design their own strategies based on their specific characteristics and 

epidemic conditions. Future work may wish to consider how the adoption of mitigation 

measures causes changes in disease transmission patterns. 

 

5.2.2 Limitations of the simulation-based modeling approach for tradeoff analysis 

 The approach used to model the tradeoffs between infection risks, thermal comfort, 

and energy consumption was carried out on a one-year timescale. In reality, the outcomes 

and corresponding environmental factors may vary across different simulation periods. 

Consequently, future studies should consider the impact of seasonal variations on the three 

aspects as well as HVAC operation strategies. 

 While this study elucidates the nature of tradeoff relationships, it does not present 

a single optimal solution that considers all three aspects. Further research is thus necessary 

to develop an optimization method that provides intuitive decision-making suggestions. 
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5.2.3 Limitations of the integrated platform for real-time monitoring and 

communication. 

 This study focuses on estimating the indoor infection risk for specific viruses. 

However, it's important to recognize that the impact of indoor environmental factors, such 

as temperature and humidity, can vary depending on the specific virus or bacteria. 

Therefore, understanding the optimal indoor environment and mitigation measures for 

different pathogens, especially when multiple pathogens are present in the building, 

remains an area for further exploration. 

 The suggestions provided by the persuasion system, such as any recommendations 

in which occupants are encouraged to move to a different room with better indoor 

conditions, may potentially lead to congestion when multiple occupants adopt the same 

suggestion and converge on the same room, inadvertently turning the initially healthy room 

into a high-risk area. Future developments may wish to improve the persuasions algorithms 

through the integration of appropriate traffic models and/or optimization methods to ensure 

the balanced and effective distribution of occupants. 

 Additional research on human behavior would also allow for the implementation 

of more effective persuading methods, further enhancing the user experience and 

encouraging user participation and interaction. 
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