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ABSTRACT 

 

One of the biggest challenges the clinical research industry currently faces is the accurate 

forecasting of patient enrollment (namely if and when a clinical trial will achieve full 

enrollment), as the stochastic behavior of enrollment can significantly contribute to delays in the 

development of new drugs, increases in duration and costs of clinical trials, and the over- or 

under- estimation of clinical supply. This study proposes a Machine Learning model using a 

Fully Convolutional Network (FCN) that is trained on a dataset of 100,000 patient enrollment 

data points including patient age, patient gender, patient disease, investigational product, study 

phase, blinded vs. unblinded, sponsor CRO selection, enrollment quarter, and enrollment country 

values to predict patient enrollment characteristics in clinical trials. The model was tested using a 

dataset consisting of 5,000 data points and yielded a high level of accuracy. This development in 

patient enrollment prediction will optimize portfolio demand planning and help avoid costs 

associated with inaccurate patient enrollment forecasting.  
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Chapter 1 – Introduction 

1.1 Pharmaceutical Clinical Trial Supply Chain 

Given the current competition in the pharmaceutical industry, and the need to accelerate drug 

development to be first to market, a critical component of delivering therapies to market has been 

to optimize the Clinical Supply Chain. Clinical supply disruptions can lead to serious economic 

impact on a program, and operational inefficiencies. These challenges cause various supply chain 

disruptions, which lead to delays in meeting milestones and completion of a study and could 

potentially delay the time to market. Figure 1 illustrates the complex nature of a clinical supply 

chain. 

 

All parameters of a clinical trial, and the potential factors that influence a clinical supply chain 

must be considered, to develop an appropriate strategy ensuring the timely delivery of clinical 

supplies (Rodgers et al. 2019). Clinical supply chains are already governed under very strict 

regulatory guidance from global agencies; therefore, there are many limitations and factors that 

restrict the flexibility in a clinical supply chain. These restrictions, along with the fact that these 

drugs are in drug development, create complexity in furnishing to delayed recruitment in clinical 

trials. This brings several unique qualities to this supply chain: 

1)  Due to a long production lead times (sometimes up to one year or even longer), and 

expensive changeover cost in trial production, the resupply of these trials is not always 

feasible. 

2) The demand for clinical drugs are stochastic, and their arrival rates at clinics vary with time 

(i.e., non-stationary) (Zheng et. al)[2]. 
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Figure 1, Clinical Supply Chain End-To-End Process Overview 
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In order to take a drug from discovery to commercialization, this takes many years, and the 

fulfillment of several regulatory requirements (Mohs et al. 2017). One of these requirements is 

the successful completion of studies spanning from Phase I to Phase IV. Each phased study 

consists of unique characteristic, making the demand planning process different between the 

study types. For example, in early phase studies (Phase I), safety and dose ranging are studied. 

These studies contain anywhere between 20-100 subjects, depending on the therapeutic area, 

indication, and endpoints of the study. Phase II studies study the drug efficacy of the drug, and 

evaluate 80-300 patients. Phase III evaluate the therapeutic effects of the drug on 100-2000 

patients. Lastly, Phase IV studies are designed to study the long-term effects of the 

investigational product and are usually available for anyone seeking treatment (Mahan 2014). 

Given the intricacies related to drug development, regulation, and stochastic nature of enrollment 

in clinical trials, it is complex to precisely demand plan for Clinical Trials. According to research 

from the Tufts Center for the Study of Drug Development (Tufts), while 9 out of 10 clinical trials 

worldwide meet their patient enrollment goals, reaching those targets means that drug developers 

need to nearly double their original timelines. Clinical trial supply enrollment can be extended 

which impact production. Also, to support Pharmaceutical company strategies, an increase in 

indications and to support market entry strategies is almost always experienced. To understand 

what kind of demand is required to support multiple clinical trials, and expanding portfolios, 

common practice in industry, and in the literature on clinical trial demand planning, Monte Carlo 

simulations are the go-to; however, the programs and software that depend on these types of 

simulations require an input based on the clinical teams site feasibility data, which is not always 

reliable as they are mostly assumptions. The parameter of patient enrollment rate is usually input 

as a flat percentage and is not considered to be an essential input. The main point is that if poor 
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parameters and constraints are input into the model then poor results will be given as outputs, 

which is not a model that could be viewed as reliable in such a competitive and high stakes 

environment such as clinical supply management in the pharmaceutical industry, as patients’ 

lives are at stake. Monte Carlo simulations are often useful on how to allocate a specific batch 

that has been already allocated to a trial, and distribution strategies to global depots; however, 

program and portfolio level demand planning using solely a Monte Carlo simulation requires 

significant improvement as drug product manufacturing lead times can be long (9-12 months in 

some cases), and finished product may not be available in time to meet patient dosing. Portfolio 

demand level planning is planning that occurs with a multi-year outlook for the product, which 

constitutes target indications in which the product will be investigated, as well as strategies for 

which global markets the product will target to enter. This requires careful planning, as the 

decisions made as far as production volume will impact the portfolio plan downstream. It is 

critical to understand the demand many years in advance due to the long production lead times, 

especially due to supply constraints, and complexity of the clinical supply chain. The inputs into 

the Monte Carlo simulation can be refined at the trial level, but this is not beneficial in 

understanding the program demands. With Pharma companies outsourcing more than 90% of 

their activities (Solem Global 2021), better insight into the future as to how much supply is 

needed and when is critical, which will create the framework in orchestrating batch productions, 

while taking into account the short shelf-life of drugs in development. The issue at hand is not 

just a matter of fine tuning the current demand of one trial, this is program level optimization.  

The pharmaceutical clinical trial supply chain is a complex process that involves various stages 

and stakeholders (Chen et al. 2012). The first step is planning and Study Design where the 

sponsor, a pharmaceutical company, develops a study protocol and design with the help of 
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researchers and regulatory agencies. As seen in Figure 1, this step feeds into Investigation 

Medicinal Product (IMP) Manufacturing, where the IMP is manufactured in accordance with 

Good Manufacturing Practices (GMPs) and is subject to quality control measures. After this is 

Investigation Medicinal Product Packaging and Labeling, where IMP is packaged, labeled, and 

distributed to global depots then to the clinical trial sites where it is stored and administered to 

patients. In parallel to these operations, clinical trial sponsors must obtain regulatory approval 

from regulatory bodies to carry out the trial, from agencies such as the US FDA or the European 

Medicines Agency (EMA). The main goal for any pharmaceutical company is to achieve 

commercialization, so that the drug may be commercialized and made available to patients. 

Given the complex nature of the drug development, throughout the clinical trial supply chain, 

there are various stakeholders involved, including the sponsor, investigators, clinical research 

organizations (CROs), regulatory agencies, and contract manufacturing organizations (CMOs). It 

is important to maintain close communication and collaboration between these stakeholders to 

ensure the success of the clinical trial. 

 

1.1.1 Challenges Faced by Clinical Supply Managers 

 

Due to the complex nature of clinical supply chains, clinical supply managers often face several 

challenges in the clinical supply management process. One of the main challenges is the accurate 

prediction of patient enrollment, as enrollment rate predictions can be affected by many factors, 

including patient demographics, study design, and feasibility strategies. What is patient 

enrollment in a clinical trial? According to the FDA, “patient enrollment is the process of 

registering or entering a patient into a clinical trial. Once a patient has been enrolled, the 

participant would then follow the clinical trial protocol. Clinical investigations are designed to 
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enroll a set number of participants to increase the likelihood of answering the trial questions.” 

Enrollment occurs in a set duration of the clinical trial, and once defined, the study team must 

not close enrollment until the last patient has enrolled. Based on this stipulation, accurate 

enrollment predictions are essential for ensuring the appropriate supply of drugs and other 

materials needed for a clinical trial, and that sufficient batches of IMP are produced with 

sufficient shelf-life. If enrollment is extended, then additional batches will require to be produced 

to support the clinical trial further, as IMPs in the drug development process contain limited 

stability data to support shelf-life which is why they have a short shelf-life. The clinical trial will 

also be extended if the enrollment period is also extended. Figure 2 below shows an example 

schematic of impact of clinical trial enrollment delays on batch allocation and clinical trial 

duration. Inventory management is also a challenge that clinical supply manager face, as 

managing the inventory of IMP required for a clinical requires precise balance in order to 

minimize waste and avoid stockouts.  

Clinical trials often involve multiple sites in different locations, making logistics and distribution 

a significant challenge for clinical supply managers. Ensuring that IMP is delivered to sites on 

time and in the correct quantities is essential for the success of a clinical trial. Not only is having 

sufficient quantities a requirement for the success of a trial, but the quality and integrity of the 

IMP is also key. Maintaining quality of IMP is achieved by ensuring that IMP is stored and 

shipped within the labeled storage conditions, as defined by the stability data. Clinical supply 

managers must ensure that all aspects of the clinical supply management process comply with 

regulatory requirements and Good Clinical Practices (GCP). This includes ensuring that IMP is 

process at approved suppliers, and that proper documentation is maintained throughout the 

clinical trial process.  
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Figure 2, Patient Enrollment Duration Impact on Batch Allocation and Clinical Trial 

Duration 
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1.1.2 Technological Solutions for Challenges  

 

Addressing these challenges requires a combination of careful planning, robust processes, and 

innovative technologies such as machine learning and AI algorithms. Examples of potential 

innovative technological solutions to these challenges include, machine learning algorithms, 

which can be used to improve the accuracy of enrollment rate predictions. These algorithms can 

take into account multiple factors, and provide more accurate predictions than traditional 

statistical methods. For inventory management, real-time data and analytics can help clinical 

supply managers optimize their inventory management. Predictive analytics can help identify 

trends, and patterns in drug usage and provide insight into future demand. This information can 

be used to optimize inventory levels, and reduce waste. These systems can provide real-time 

visibility into the supply chain, allowing clinical supply managers to identify potential problems 

and address them before they impact the clinical trial. To assist in quality control, the use of 

automated temperature monitoring systems, and cold chain management solutions can help 

ensure that IMP is stored and transported at the correct temperature. This helps to maintain the 

quality, and integrity of IMP throughout the clinical trial process. Machine learning can be a 

clinical supply manager’s partner if utilized correctly. 

 

It is widely recognized that wasted clinical supply can be a significant cost for pharmaceutical 

companies. In clinical trials, wasted clinical supply can occur when there is an overproduction of 

clinical supplies, which leads to expired or unused materials. This can result in significant 

financial losses, as the materials and the resources required to produce and store them are 

essentially wasted. Additionally, the storage and transportation of expired or unused materials 

can also result in additional costs. It is estimated that the cost of wasted clinical supply can range 
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from 10-30% of the total clinical supply budget for a clinical trial. For large, multi-national 

pharmaceutical companies, this can represent millions of dollars in wasted resources and lost 

profits, as a clinical trial can cost an average of $80MM to $150 billion. Therefore, 

pharmaceutical companies are actively looking for ways to minimize the amount of wasted 

clinical supply in their clinical trials. This includes using advanced forecasting and optimization 

techniques, such as machine learning and artificial intelligence algorithms, to improve the 

accuracy of their clinical supply forecasts, and reduce the amount of overproduction, by 

predicting more accurate patient enrollment.   

 

1.2  Pharmaceutical Clinical Trials and Patient Enrollment  

Pharmaceutical clinical trials are an essential step in the development of new treatments and are 

used to assess the efficacy and safety of new medications before they are made available to the 

general population. To find the optimal treatment choice, these studies are carried out in stages, 

with each step building on the findings of the one before it. (Mahan 2014) 

 

According to CT.gov and the Food and Drug Administration (FDA), there are four phases of 

clinical trials. These trials are conducted in phases, with each phase building on the results of 

previous trials to determine the best possible treatment option. Phase I trials focus on 

determining the safety of a new drug and involve a small number of healthy volunteers. Phase II 

trials are designed to evaluate the efficacy of the drug, and are conducted in a larger patient 

population. Phase III trials are larger, randomized, controlled trials that provide the most 

definitive evidence of a drug's safety and efficacy. Finally, Phase IV trials are conducted after the 

drug has been approved for public use, and are designed to monitor the long-term effects and 
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risks of the drug. Clinical trials are a critical step in the drug development process, and can take 

several years to complete. The process begins with the development of a study protocol, which 

outlines the study design, patient population, and endpoints. The protocol is reviewed by 

regulatory agencies such as the FDA, and the trial is only approved if it meets rigorous scientific 

and ethical standards. Once the trial has been approved, the clinical trial material is manufactured 

and shipped to clinical trial sites. Patients are then recruited, and the trial begins. Clinical trial 

sites collect data on patient outcomes and side effects, which is then analyzed by the sponsor and 

reported to regulatory agencies. If the results of the trial are favorable, the sponsor may seek 

regulatory approval for the drug, and it may be made available to patients. 

 

Given the high level of regulation, and the complexity of clinical trial designs, clinical supply 

chains are in turn very complex in nature. It is important for clinical trials to be supported by a 

strong supply chain in order to be able to support global patient populations, and deliver supply 

just in time for patient dosing. A strong supply chain is stemmed from accurate forecasting, and 

prediction of patient enrollment, which gives the Clinical Supply managers the essential 

information required to accurately predict how many batches to produce, the quantities in each 

batch, and when to produce and release these batches. Many parameters are taken into 

consideration in these forecasts, such as the clinical trial design, where information about the 

design of the clinical trial, including the objectives, study population, number of study sites, and 

trial duration, is required to determine the necessary supply levels and plan the clinical supply 

management process. Another piece of critical information to accurately demand plan is the 

clinical trial site feasibility assessment, where the CRO predicts patient recruitment, percentage 

of patients endorsing treatment consent, and primary investigators willing to take on patients. 
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The limitations with this information on predicting patient enrollment is that CROs depend on 

their past experiences with specific sites, inability to onboard a site due to various reasons, and 

high turnover at the CROs where knowledge is also lost. This limits the ability to provide 

accurate inputs into forecasting tools to best understand where patients will enroll and when, this 

information is not reliable. 

 

Clinical trial enrollment refers to the process of recruiting and selecting patients to participate in 

a clinical trial. Enrolling patients in a clinical trial is a complex process that involves several 

steps and multiple stakeholders. The process begins with the selection of eligible study 

participants, followed by informed consent, randomization, and initiation of treatment. The first 

step in the process of enrolling patients in a clinical trial is to identify and select individuals who 

meet the inclusion and exclusion criteria for the study. The enrollment process is based on a set 

of predetermined criteria, such as age, sex, medical history, and current health status (Cui et al., 

2016). Once eligible participants have been identified, they must provide informed consent to 

participate in the study. Informed consent is a process by which study participants are provided 

with information about the study, including its purpose, risks, benefits, and alternatives, and are 

given the opportunity to ask questions and make an informed decision about participation (FDA, 

2020). After informed consent is obtained, eligible participants are randomized into different 

treatment groups, and randomization is a process that is used to allocate study participants to 

different treatment groups in a way that is random and unbiased. Once patients have been 

randomized, they are initiated on treatment. This includes scheduling visits, and administering 

the study drug or intervention according to the study protocol.  Patients are monitored throughout 



 

12 

 

the trial and followed up regularly to assess the safety and efficacy of the study drug or 

intervention.  

 

A global clinical trial implies a diverse population with various cultural and social backgrounds; 

therefore, it is critical to consider these parameters when developing, and accessing enrollment 

predictions. The enrolment rates in clinical trials can be impacted by several factors. The 

complexity of the study design can make it more difficult for patients to understand and 

participate in the trial, which could lead to a low enrollment rate, as they will be reluctant to 

enroll into a trial that they do not understand. Rigorous eligibility criteria can also impact the 

number of patients who are able to participate in the trial, as this will disqualify a higher subset 

of patients. The location of the trial can impact enrollment rates also, as patients may be more 

likely to participate in a trial that is closer to their home, which has been observed in many 

global trials, especially with patients who are located in rural areas. Long study duration could 

also receive push back from a patient, as this would mean they would need to commit to a longer 

time. Clinical indications can also impact patient enrollment, for example, a trial that targets a 

rare disease may have fewer potential participants than a trial that targets a more common 

condition, as rare disease patients are less prevalent. The characteristics of a clinical trial that 

may impact the enrollment rate are many; therefore, it is important to consider these factors 

when predicting patient enrollment rates. All of these are contributing factors to a longer clinical 

trial duration, which significantly increases the cost of a clinical trial. 
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1.3 Research Objectives 

The primary objective of this research is to project a study’s enrollment timeline at the portfolio 

demand planning phase, when there is very little details about the anticipated studies known. 

This indicates that the studies have not yet seen any actual in-trial enrollment of patients and that 

no comprehensive patient enrollment planning information is available. Very basic details about 

the intended studies, such as the total number of participants to be enrolled, and the disease 

indication, are provided for enrollment prediction purpose. To accomplish the primary objective, 

it is important to use enrollment data from prior clinical studies to model the enrollment 

projections as the in trial enrollment data is not yet accessible. For the portfolio demand planning 

to be successful, it is essential to estimate which specific countries the enrolled subjects will 

come from as well as when the patients will enroll in each country. Projected trial enrollment and 

associated costs are crucial feasibility factors that senior management must consider before 

deciding whether to invest in an asset. A predictive modeling approach capable of offering 

accurate enough enrollment forecast across all portfolios to aid in the endorsement of 

management's decision is hugely valuable in any pharmaceutical company. 

 

The objective of this research will contribute to the current literature by accurately predicting 

patient enrollment at the portfolio demand planning level in clinical trials based on historical 

patient enrollment data including patient age, patient gender, patient disease, investigational 

product, study phase, blinded vs. unblinded, sponsor CRO selection, enrollment quarter, and 

enrollment country. Portfolio demand level planning occurs with a multi-year outlook for the 

product, which constitutes target indications in which the product will be investigated, as well as 

strategies for which global markets the product will target to enter. This requires careful 

planning, as the decisions made as far as production volume will impact the portfolio plan 
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downstream, since production lead times are long, and procurement of Active Pharmaceutical 

Ingredients (API) and excipients is challenging due to global supply chain constraints in the 

current global environment due to COVID-19, and manufacturing personnel shortages. This 

enhancement of patient enrollment prediction will allow for the optimization of clinical trial 

supply strategies at the portfolio demand level, and also in a clinical trial, which will minimize 

clinical trial duration, and will allow for the minimization of total clinical trial production costs, 

and reduce the overall clinical trial cost.  

 

This will be achieved by the utilization of a Machine Learning model using a Fully 

Convolutional Network (FCN) to predict the values of enrollment Quarter and enrollment 

Country. This novel approach to the inputs of patient enrollment will more accurately predict 

patient enrollment, which will allow for more accurate batch production planning, as the output 

data will allow demand planning to have insight into when the patients will arrive, and in which 

country. This will avoid an industry wide issue of over- and under- estimation of clinical trial 

supply demand.  
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Chapter 2 – Literature Review  

 

2.1 Analysis of Previous Studies 

Several studies have been conducted to investigate the current state of clinical trial supply chain 

management and identify challenges and opportunities for improvement, especially with that of 

patient enrollment predictions. The overall theme in the literature with regards to patient 

enrollment is that, patient enrollment follows an independent non-stationary Poisson process. 

The forecast demand at each clinical site can be approximated from the record of patients 

visiting the site and/or the previous data of clinical trials for the same disease. This type of 

distribution for patients is not reliable, as not all clinical trials experience the same exact 

constraints. The data can give us an idea; however, there is opportunity to optimize and improve 

this view of patient enrollment data.  Since patient enrollment behavior differs between 

indications, programs, companies, regions, and products, it cannot be a one size fits all approach; 

therefore, patient enrollment prediction will need to be viewed exclusively for a specific product, 

specifically for individual companies (sponsors), in each program. Patient enrollment prediction 

will be considered on a case-by-case basis, based on the historical data of each program. 

 

A study conducted by Chen et al. (2012) focused on the importance of accurate forecasting in 

clinical trial supply chain management. The study found that accurate forecasting of patient 

enrollment, and demand for IMP is critical for effective supply chain management and can help 

to minimize waste and ensure that the IMP is available when and where it is required. The study 

also found that improved forecasting techniques, such as simulation modeling, can help to 

improve the accuracy of patient enrollment predictions and support effective clinical trial supply 

chain management. This study; however, assumes that patient enrollment demand profile rate is 

low at the beginning of the trial, and then slows down towards the end of the trial. While this is 
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the likely scenario, this is not always the case in clinical trial enrollment, as patient enrollment 

could occur at any time, even at the tail end of the study. 

 

Zhao et al. 2019 also researched this matter, and addressed the challenges of managing time and 

cost in clinical trials. Clinical trials are essential in the development of new drugs and medical 

devices, but they are expensive and time-consuming, with many interrelated tasks that need to be 

coordinated. The authors propose a production planning model that optimizes both time and cost 

in clinical trials by incorporating multiple objectives. The model aims to minimize the overall 

completion time and cost of a clinical trial while meeting quality requirements and constraints 

such as resource availability, patient recruitment, and regulatory compliance. The proposed 

model uses a mixed-integer linear programming (MILP) approach to optimize the production 

planning process. The MILP approach allows the model to consider multiple objectives, 

constraints, and uncertainties simultaneously. The authors use real-world data from a clinical 

trial to demonstrate the effectiveness of the proposed model. Patient enrollment is predicted by 

using a non-stationary Poisson distribution, which is the state of the art in predicting patient 

enrollment, but is not the most accurate, as it does not take into account that each program and 

company are constrained to specific resources and regions. 

 

Kasenda et al. 2020, study the rationale and design of an international collaborative study, called 

RECRUIT-IT, which aims to develop, and validate a prediction model for the recruitment of 

participants in randomized clinical trials. The RECRUIT-IT study aims to address this issue by 

developing and validating a prediction model that can accurately estimate the time and number 

of participants needed to recruit in a clinical trial. The objective of the model is to investigate 
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participant recruitment patterns and study site recruitment patterns and their association with the 

overall recruitment process. While this information is helpful for site level optimization of 

supply inventory, this does not address the issue of pooled program supply demand, which has 

long lead times. The model can aid in allocating supply to specific sites once the program supply 

is released; however, this will not benefit program/portfolio level demand planning and will not 

address the long lead times of batch production. 

 

Zhong, Sheng et al. propose a novel method for enrollment forecasting that uses site-level 

historical data to estimate patient enrollment rates, where their statistical framework is based on 

generalized linear mixed-effects models (GLMM) and the use of non-homogeneous Poisson 

processes through Bayesian hierarchical framework to model and predict the country initiation, 

site activation and subject enrollment sequentially in a systematic fashion, utilizing historical 

site-level enrollment related data. The method involves three steps: 1. collecting historical data 

from sites that have participated in similar trials, 2. identifying site-level factors that are 

associated with patient enrollment rates, such as site location, patient population, and trial 

complexity, and 3. using a machine learning algorithm to model the relationship between site-

level factors and patient accrual rates and make enrollment forecasts. The method is applied to a 

portfolio of clinical trials in oncology, and compare the forecasts with actual enrollment data. 

The results show that the method can accurately predict patient accrual rates, with a mean 

absolute error of 12.6% and a predicted enrollment curve with 95% confidence bands. It is 

demonstrated that the method can be used to optimize trial portfolios by selecting sites with high 

enrollment potential and adjusting trial designs to improve patient recruitment. This method is 

more efficient than the traditional statistical approach which utilizes the simple Poisson-Gamma 
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model. This study will be beneficial to understanding country start up timelines, site initiations, 

and more clinical operation as it was based on the historical data of these parameters.  

 

Liu et al. propose a novel machine learning framework for predicting recruitment in clinical 

trials during the design phase. The goal of this comparison is to predict the number of patients 

enrolled per month at a clinical trial site over the course of a trial's enrollment duration. They 

evaluate three approaches to this prediction problem: LightGBM with a tweedie loss function, 

Zero-Inflated Poisson (ZIP) regression, and a family of hurdle models with Poisson, truncated 

Poisson, or negative binomial count distributions. The model uses historical trial data and other 

relevant factors to predict recruitment with greater accuracy. The limitation of the paper is that it 

does not predict portfolio demand, which would not help support an entire program; however, 

the model could be used to optimize trial supply after it has been released, and optimize 

distribution plans to the site at the micro level. 

 

2.2 Research Gap  

 

Overall, there have been many attempts in the literature to use statistical models to predict 

patient enrollment, and little to no attempts in the literature to use a Machine Learning Neural 

network for enrollment forecast in portfolio demand planning. The objective of the statistical 

analyses currently in the literature have been to improve the prediction of patient enrollment 

based on site level historical data, clinical trial characteristics, and clinical operations data. While 

these attempts portray a very promising future in utilizing machine learning in predicting patient 

enrollment and patient arrivals in a clinical trial, it appears that improvement is still needed in the 

field to better understand when patients will be projected to enroll in a trial, and in which 
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countries in order to optimize batch production. These two paramters, when and where, and the 

most critical pieces of information rquired for portfolio planning, as this will define the 

production plan, and batch allocation.    

 

Since there is little to no published literature for enrollment prediction in portfolio demand 

planning, and to fill this gap, we propose a novel a novel Machine Learning framework based on 

a Fully Convolutional Network (FCN) to model and predict patient enrollment by quarter, and 

country of enrollment. This Machine Learning FCN will predict when patients will enroll and 

where. 
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Chapter 3 – Methods 

 

3.1 Problem Definition 

The problem which will be solved by this research is the lack of accurate prediction of patient 

enrollment in the portfolio demand planning stage. The primary objective of this research is to 

solve this challenge by projecting a study’s enrollment timeline at the portfolio demand planning 

phase, when there is very little details about the anticipated studies known. We will use 

technology to solve this problem, with a more data driven approach. This will be solved by the 

development of a Machine Learning Fully Convolutional Network (FCN) that will learn and 

train on historical data collected from multiple clinical trials collected over a period of three 

years, and to predict when patients will enroll and where, and as a result be able to forecast when 

patients will enroll and in which countries for a given trial. Figure 3 presents an overview of the 

methodology of this research. 

 

3.2 Machine Learning and Neural Networks 

 

Machine learning neural networks, also known as artificial neural networks (ANNs), are a subset 

of machine learning that model the structure and function of biological neural networks in the 

brain to solve complex problems. Neural networks consist of interconnected layers of nodes or 

artificial neurons that process and transmit information. These networks can be trained using 

large amounts of data to recognize patterns and make predictions. The basic architecture of a 

neural network consists of input, hidden, and output layers. The input layer receives data from 

external sources, and the hidden layers process this data to generate output in the output layer. 

Each node in the hidden layer receives input from nodes in the previous layer and applies a  
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Figure 3, Methodology 
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mathematical transformation to this input before passing it on to the next layer. The output layer 

produces a prediction or classification based on the input data. 

 

The most commonly used neural network architectures are feedforward neural networks, 

convolutional neural networks, and recurrent neural networks. Feedforward neural networks are 

the simplest type of neural network, where data flows in only one direction from input to output. 

Convolutional neural networks are designed to process data with a grid-like structure, such as 

images or audio, and use convolutional filters to extract features from the input data. Recurrent 

neural networks are designed to process sequences of data, such as text or speech, and use a loop 

to pass information from one time step to the next (Goodfellow et al., 2016).  

 

In this study, we develop a Fully Convolutional Network (FCN), which is a type of neural 

network used for segmentation, which involves dividing a dataset into different regions or 

segments based on the properties of the data. FCNs were first introduced by Long et al. in 2015, 

and have since become a popular method for semantic segmentation, object detection, and other 

segmentation tasks. The main difference between FCNs and other neural networks, such as 

feedforward neural networks, is that FCNs only use convolutional layers and do not include fully 

connected layers. This allows the network to take inputs of any size and produce outputs of the 

same size, which is important for any segmentation tasks. The architecture of an FCN typically 

includes an encoder and a decoder. The encoder consists of multiple convolutional layers that 

reduce the spatial dimension of the input image and extract high-level features. The decoder 

consists of multiple deconvolutional or up sampling layers that increase the spatial dimension of 

the output and generate the final segmentation map (Ronneberger et al., 2015). Given that this 
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problem is a segmentation problem, and not a classification problem, FCN’s ability to partition a 

dataset into multiple parts or regions, based on the characteristics of the inputs in the dataset. 

This is why an FCN was selected for this research, as the variables are of various sizes, and not 

necessarily connected. Given the binary output of the final output, the FCN was most 

appropriate. Refer to Figure 4 below for an overall schematic of the neural network design 

framework. 

 

Between the algorithm's input and output, a hidden layer is present in neural networks. In this 

layer, the function gives the inputs weights and sends them through an activation function as the 

algorithm's output. The network's inputs are transformed nonlinearly by the hidden layers. The 

neural network's hidden layers can vary based on how it performs, and the layers themselves can 

vary based on the weights that go with them. Hidden layers are a collection of mathematical 

operations, each of which is meant to produce a certain output that corresponds to a desired 

outcome. Squashing functions, for instance, are a name for some types of hidden layers. These 

functions are especially helpful when the algorithm's desired result is a probability because they 

take an input and output a value between 0 and 1, which is the range used to define probability 

(Long et al., 2015).  

 

3.3 Study Design and Data Sources  

 

In this study, a Machine Learning model using Fully Convolutional Network (FCN) was trained 

to predict patient enrollment in multi-centered Global Clinical Trials. These clinical trials are in 

support of early and late phase portfolio assets in Pharmaceutical Drug Development. The 

outputs of this model will predict where patients arrive and when, which addresses a massive  
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Figure 4, Convolutional Neural Network Schematic 
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issue faced by Pharmaceutical and Biotechnology companies globally. Figure 3 above describes 

the overall high-level methodology for this research paper. 

 

The study aims to train a Machine Learning model using a Fully Convolutional Network (FCN) 

to predict the values of Quarter and Country of a patient based on their Age, Gender, Disease, 

Product, Phase, Blinded, and CRO values. The model is trained on a dataset of subject records 

that includes these attributes as well as the Quarter and Country values. The code developed can 

be adapted to work with other datasets with similar attributes. 

 

This project requires the following dependencies: 

 

Python 3.x 

NumPy 

PyTorch 

Keras 

Installation: 

 

Install the required dependencies using pip install -r requirements.txt 

Ensure that your dataset is in a CSV format with the following columns: Age, Gender, Disease, 

Product, Phase, Blinded, CRO, Quarter, and Country. 

Update the train_df and test_df variables in train.py to point to the location of your training and 

testing datasets. 

Run train.py to train the model. The trained model will be saved to a file named model_new.pth. 
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Once the model is trained, you can use predict.py to predict Quarter and Country values for new 

patients. Update the input_data variable to include the patient attributes for which you want to 

make predictions. 

Run predict.py to generate predictions. The output will be a dictionary with keys "Quarter" and 

"Country" and corresponding predicted values. 

 

The first step was to prepare the data. The data in this study was comprised of 105,000 data 

points collected from several multi-centered global clinical trials over a period of three years, or 

12 quarters. The data was partitioned into training, and testing/validation sets. 100,000 data 

points were used for training, and 5,000 were used for testing/validation. This data collected 

from each patient was Age, Gender, Disease, Product, Trial Phase, enrolled in a Blinded vs. 

Unblinded study, and CRO (Contract Research Organization). The model is trained on a dataset 

of patient information that includes these attributes as well as the Quarter and Country values, 

which are also the target output values. Refer to Table 1 for a hypothetical example of the dataset 

inputs, and Table 2 for the data input key. 

 

Refer to Table 3 for all variables used in all equations in this section. The dataset is then 

converted into one hot encoding, which is the conversion of categorical information into a format 

that may be fed into machine learning algorithms to improve prediction accuracy, 

mathematically represented as: 

 

𝐴 (x) ∶= {
1, 𝑖𝑓 𝑥 ∈ 𝐴
0, 𝑖𝑓 𝑥 ∉ 𝐴

                                                               (1) 
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Table 1, Hypothetical Example of Dataset Inputs 

 

ID Age Country Gender Disease Product CRO Blinded Phase Date Enrolled Quarter 

90001 65 12 0 1 1 1 0 1 2021-05-25 10 
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Table 2, Data Input Key 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key 

Age (18-100) 

Gender (1=male, 0=female) 

Disease (1=BNB, 0=CFH) 

Product (1=ZX-44, 0=CX-55) 

CRO (1,2,3), 

Blinded (0=false, 1=true) 

Phase (1,2,3) 

Country (0-38) 

Quarter (0-11) 
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Table 3, Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables               Definition 

A A set 

A (x) A function of A 

n The number of samples 

R Input layers 

Rn×x Input or output layer to the sample size 

multiplied by the number of inputs 

X ∈ Rn×x Input matrix 

Yc ∈ Rn×x Country output matrix 

Yq ∈ Rn×x Quarter output matrix 

Yc Country output value 

Yq Quarter output value 

[Yc Yq ] Output matrix of country and quarter values 

P  The ground truth segmentation map 

q predicted segmentation map 

L Cross-entropy loss 

log The natural logarithm 
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where 𝐴 is a set. If 𝑥 is an element of 𝐴, return 1. Else return 0. Thus 𝐴 is the set of cases that is 

assigned a 1 to in the encoding vector; therefore, one-hot encoding is a vector form of this 

indicator function that applies component wise. The data is then converted to tensors, to be 

further evaluated algebraically as matrices, and segmented more efficiently as it will embedding 

high-dimensional data into a multi-dimensional array. 

 

Next was defining the model, where the architecture typically consists of an encoder and an 

activation function. The encoder consists of convolutional layers that extract high-level features 

from the input image, and the activation function is responsible for processing weighted inputs 

and helping to deliver an output, virtually decoding layers that reconstruct the segmentation map 

(Long et al., 2015). The skip connections between the encoder and activation function layers 

help to preserve spatial information and improve the accuracy of the segmentation results, which 

is why the FCN is more of an efficient model. The encoder utilized was the ‘nn.linear’ function, 

and for the activation function, ‘nn.Relu’ or rectified linear unit was utilized, to introduce non-

linearity into the network. FCNs are models to do nonlinear regression, and they are built up 

from linear models. They take one of the mainstays of scientific analysis, linear regression, and 

generalize it to handle complex, nonlinear relationships among data. Figure 5 expresses the 

framework function on nonlinear regressive neural networks. 

This FCN can be expressed mathematically as follows: 

Let X ∈ Rn×7 be the input matrix, where n is the number of samples and 7 is the number of input 

features, including Age, Gender, Disease, Product, Phase, Blinded, and CRO. Let Yc ∈ Rn×1 and 

Yq ∈ Rn×1 be the output matrices for the predicted country and quarter values, respectively.  
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Figure 5, Non-linear Regression Mathematical Framework (Goings 2020) 
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We can define the FCN-based model as a function f : Rn×7 → Rn×4, where the output matrix is 

comprised of the predicted country and quarter values, represented as [Yc Yq ].  

The FCN-based model can be represented mathematically as (Goodfellow et al., 2016):  

[Yc Yq] = f(X); where f is the function implemented by the FCN-based model.      (2) 

Explanation of the FCN model: 

The brackets “[…]” are the concatenation of the predicted country and quarter values, which are 

represented as separate matrices. This means that the output of the neural network is a matrix 

with two columns, where the first column contains the predicted country values and the second 

column contains the predicted quarter values. 

 

In the equation f(X) = [Yc Yq], f is the function implemented by the Neural Network, X is the 

input matrix containing the patient features, and [Yc Yq] represents the output matrix containing 

the predicted country and quarter values. Again, we take patient features and outputs a matrix 

with the predicted country and quarter 

 

Functions can output matrices, just like numbers or other data types. In our model, the Neural 

Network is designed to output a matrix containing two columns of predicted values, country and 

quarter. As a result, the output could be a matrix, even though the input is a matrix as well. 

 

After this was defining the loss function and optimizer for training. FCN is trained using the 

prepared dataset of 100,000 patient data points. The training process involves optimizing the 

model parameters to minimize the loss function, which measures the difference between the 
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predicted and ground truth segmentation maps. The optimization is typically done using 

stochastic gradient descent or one of its variants. ‘optim.Adam’ was selected as the optimizer. 

Adam is an optimization algorithm that can be used instead of the classical stochastic gradient 

descent procedure to update network weights iterative based in training data, which is critical in 

validation which occurs internally during training, as it returns training loss and accuracy over 

time; therefore, so it is performing an iteration of training and then validates, then an additional 

iteration and validation, and so on and picks the best accuracies of all.  

The loss function used for training an FCN depends on the specific application. For segmentation 

tasks, the commonly used loss function is the cross-entropy loss, which measures the difference 

between the predicted segmentation map and the ground truth segmentation map. 

‘nn.CrossEntropyLoss’ was selected as the loss function. The cross-entropy loss can be written 

as: 

 

𝐿 =  −𝑠𝑢𝑚(𝑝 × 𝑙𝑜𝑔(𝑞) + (1 − 𝑝) × 𝑙𝑜𝑔(1 − 𝑞))                               (3) 

where p is the ground truth segmentation map, q is the predicted segmentation map, and log is 

the natural logarithm. FCNs can be modified in various ways to improve their performance. For 

example, skip connections can be added to connect the output of an earlier layer to the output of 

a later layer. This helps to preserve spatial information and improves the accuracy of the 

segmentation map. 

The training accuracy is defined as follows: 
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Training accuracy = (number of correct predictions on training set) / (total number of training 

examples); 87,000/100,000 = 0.87 

During training the FCN's parameters (i.e., the weight matrices) are adjusted to maximize the 

training accuracy over a set of training examples, Adam, which iteratively updates the 

parameters in the direction that improves the accuracy. 

After collecting the data, defining the mode, and training parameters, then comes the actual 

training of the Machine Leaning FCN. The FCN was trained using 100,000 data points of patient 

and clinical trial data (input values in Table 2).  

 

The outputs of the training are portrayed in Figure 6, Training Loss over time, and Figure 7, 

Training Accuracy. The training loss shows how the model improves performance over time, and 

how often it misses the right prediction. Training accuracy is a metric that shows how accurate 

the training model was. 

While training accuracy is useful for monitoring the progress of the model during training, it can 

be misleading if the model is overfitting the training data. Overfitting occurs when the model 

becomes too specialized to the training data and does not generalize well to new, unseen data. In 

such cases, the training accuracy may be high, but the model's performance on a separate 

validation or test set may be poor; therefore, a test run using a new subset of data is performed to 

run the model on data the FCN had not seen in the past. For the test, 5,000 data points were 

utilized, and the model successfully trained on the data, with no error. Figure 8 shows patient  
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Figure 6, Training Loss Over Time 
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Figure 7, Training Accuracy 
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Figure 8, Patient Enrollment Over Time for Data Subset 
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enrollment over time for the 5,000 patient subset, which shows that the data trained, and 

predicted the instance successfully. 
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Chapter 4 – Results and Discussion 

4.1 Results  

 

As mentioned in previous sections, this Machine Learning FCN was developed to model patient 

enrollment in Global Clinical Trials, which will support portfolio demand planning. Portfolio 

demand planning is planning that occurs with a multi-year outlook for the product, which 

constitutes target indications in which the product will be investigated, as well as strategies for 

which global markets the product will target to enter. This requires careful planning, as the 

decisions made as far as production volume will impact the portfolio plan downstream, since 

production lead times are long, and procurement of Active Pharmaceutical Ingredients (API) and 

excipients is challenging due to global supply chain constraints in the current global environment 

due to COVID-19, and manufacturing personnel shortages. This enhancement of patient 

enrollment prediction will allow for the optimization of clinical trial supply strategies at the 

portfolio demand level, and also in a clinical trial, which will minimize clinical trial duration, 

and will allow for the minimization of total clinical trial production costs, and reduce the overall 

clinical trial cost.  

 

For purposes of this research, a Phase III, Double Blinded, Multi-Centered, Global Clinical Trial 

investigating the hypothetical indication “CFH” utilizing product CX-55 enrollment projections, 

for approximately 1,907 patients, stratified into four age strata. The input parameters into the 

Machine Learning FCN were as follows:  

 

First age stratum (N = 477): 

1) Age: 20  

2) Gender: 0 (Female) 
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3) Disease: 0 (CFH) 

4) Product: 0 (CX-55) 

5) Phase: 2.0 (Phase III) 

6) Blinded: 1.0 (True) 

7) CRO: 0 (CRO 1) 

 

Second age stratum (N = 476): 

1) Age: 45  

2) Gender: 1 (Male) 

3) Disease: 0 (CFH) 

4) Product: 0 (CX-55) 

5) Phase: 2.0 (Phase III) 

6) Blinded: 1.0 (True) 

7) CRO: 0 (CRO 1) 

 

Third age stratum (N = 476): 

1) Age: 60 

2) Gender: 0 (Female) 

3) Disease: 0 (CFH) 

4) Product: 0 (CX-55) 

5) Phase: 2.0 (Phase III) 

6) Blinded: 1.0 (True) 

7) CRO: 0 (CRO 1) 
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Fourth age stratum (N = 477): 

1) Age: 85  

2) Gender: 1 (Male) 

3) Disease: 0 (CFH) 

4) Product: 0 (CX-55) 

5) Phase: 2.0 (Phase III) 

6) Blinded: 1.0 (True) 

7) CRO: 0 (CRO 1) 

 

 

The outputs of the model predicted where the patients would enroll (country), and during which 

quarter of a three-year period (which is a typical lookout window in portfolio demand planning). 

Refer to Figure 9 for Patient Enrollment Per Quarter Per Country (Map). Figure 9 will assist 

significantly in defining a more robust and optimal distribution plan for the CX-55 product, as it 

is evident which countries will enroll, and when.  

 

Total patient enrollment per quarter is portrayed in Figure 10, where it is evident that there is a 

spike in Enrollment towards the end of the three-year defined period (12 quarters). It is typically 

assumed in most Clinical Trials that enrollment spikes at the start of a trial; however, this 

assumption is not accurate given the historical data for this product and indication. Figure 11 

shows the percentage distribution of enrollment per country and quarter. As shown in the figure, 

Turkey has the highest rate of enrollment 50.68% of all patients, in the 12th quarter, while South 

Korea and Singapore tie for the lowest patient enrollment percentage at 0.05%. Based on the data  
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Figure 9, Patient Enrollment Per Quarter Per Country (Map) 
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Figure 10, Total Patient Enrollment per Quarter 
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Figure 11, Percentage Distribution per Country/Quarter 
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from Figure 11, batch release would be prioritized for Philippines, United Kingdom, United 

States, and Brazil for the first year, as these countries are anticipated to enroll sooner than the 

rest of the countries in the distribution. Second year prioritization would include Singapore, 

Chile, South Korea, Japan, and Italy as these countries will enroll patients in quarters 5-8. Lastly, 

prioritization to batch release would be given to Denmark, and Turkey, where these countries 

project enrollments to occur in quarters 10 and 12.  

 

Based on Figure 10 data, given that 966 patients, or 50.68% of the total patient population are 

projected to enroll by quarter 12, this spike in enrollment will allow clinical manufacturing to 

stagger batch productions in order to be able to product newer batch later in the period, since 

short-shelf life is a constraint. Production will also need to consider production 13% of the 

allocated batches for quarter 1 and 2, and ensure not to overproduce to avoid wastes. The data in 

Figure 10 data can be used to optimize batch production runs, to support the staggering of batch 

production and release to support patient enrollment. The data in Figure 9 and Figure 12 would 

be used to optimize distribution strategies, optimizing the use of allocated supplies to specific 

trials. 

 

4.2 Discussion and Business Insights 

 

There are many benefits for using a Machine Leaning FCN to predict patient enrollment in 

clinical trials are the portfolio demand planning stage. The two metrics outputted are the quarter 

of enrollment, and the country of enrollment for the patient in a given trial. In portfolio demand 

planning, there is little to no data on the trial other than very high-level information such as the 

phase of the trial, and the target number of patients. When this information can be inputted into a  
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Figure 12, Total number of Patients Enrolled per Quarter 
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model, and output where and when the patients will enroll, the benefits of these outputs, and 

metrics can be utilized in multiple functions. There are several business benefits that come with 

improving the accuracy of this prediction. 

 

Some of the business benefits for pharmaceutical companies of having an improved predictive 

model for patient enrollment are as follows: 

 

1) Optimizing Production and Waste Reduction: Having an accurate prediction of when 

patients will enroll greatly benefits demand planning in that it optimizes batch 

productions on the production horizon. Given that the products in question are still in 

drug development, these products do have a short life, sometimes 3-6 months only. With 

such short shelf-life, producing batches large enough to cover the span of the full 

duration of a clinical trial will lead to high level of waste, as most of the drugs will expire 

within the first few months of the trial. Given the long lead times of 9-12 months for drug 

production, it is also not the most optimal to prepare drug product just-in-time (JIT), as 

this strategy could present its own unique challenges in lights of cold chain logistics and 

would not be able to absorb any delays. In drug development it is best to be proactive, 

and not reactive. This model will ensure there is sufficient supply is manufactured to 

support the inventory of the clinical trials. 

A clinical trial can cost an average of $80MM to $150MM, and the cost of wasted 

clinical supply can range from 10-30% of the total clinical supply budget (~15% of total 

trial) for a clinical trial. Taking the lower end of the range ($80MM USD), if by 
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optimizing production based on this prediction model reduces waste by only 1%, 

pharmaceutical, the potential savings is as follows: 

 

$80MM (Total Trial Budget) × 15% = $12MM (Total Clinical Supply Chain Budget) × 

30% = $3.6MM (Total Waste) × 1% = $36,000 

 

companies will save $36,000 for every 1% improvement in enrollment predictions, which 

is an astronomical saving. In addition, this model will assist in streamlining the internal 

process for batch allocations. The demand allocations for each batch will be optimized, as 

patient arrival data will now be more realistic. 

 

3) Regulatory Submission Strategy Improvement: Having an improved accurate 

prediction of where patients will enroll, will allow for regulatory teams to optimize their 

strategies with country regulatory submissions. The average cost of regulatory submissions 

to the FDA alone can cost in excess of $3MM (without taking into account head count) for 

phase 1, 2, and 3 clinical trials across therapeutic areas (Ledesma 2023). If a regulatory 

team in a pharmaceutical company is aware of which countries will enroll patients sooner 

than others, then the team can strategize prioritizations between countries, significantly 

decreasing the risk of mistakes from expediting regulatory applications globally.  Mistakes 

in regulatory submissions could lead to applications rejections, which would prevent a 

clinical trial from participating in a certain country. The impact of this would cause a barrier 

to entry to that market, virtually costing a pharmaceutical company billions of dollars in 

potential missed revenue.  
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4) Streaming Internal Processes and Improved Decision Making:  

Projected trial enrollment and associated costs are crucial feasibility factors that senior 

management must consider before deciding whether to invest further cash in an asset. A 

predictive modeling approach capable of offering accurate enough enrollment prediction 

across all portfolios to aid in the endorsement of management's decision is hugely 

valuable in any pharmaceutical company. This model will improve the decision-making 

process, as total trial costs will be reduced due to the improvement of patient enrollment 

projections, which reduces the waste associated, which will make the budget forecast 

more desirable to the decision makers.  
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Chapter 5 – Conclusions and Recommendations 

 

 

One of the biggest challenges the clinical research industry currently faces is the accurate 

prediction of patient enrollment, as the stochastic behavior of enrollment can significantly 

contribute to delays in the development of new drugs, increases in duration and costs of clinical 

trials, and the over- or under- estimation of clinical supply. The primary objective of this 

research is to solve this challenge by projecting a study’s enrollment timeline at the portfolio 

demand planning phase, when there is very little details about the anticipated studies known.  

 

This was achieved by the utilization of a Machine Learning model using a Fully Convolutional 

Network (FCN) to predict the values of enrollment Quarter and enrollment Country. This novel 

approach to the inputs of patient enrollment will more accurately predict patient enrollment, 

which will allow for more accurate batch production planning, as the output data will allow 

demand planning to have insight into when the patients will arrive, and in which country. This 

will avoid an industry wide issue of over- and under- estimation of clinical trial supply demand, 

which will minimize the total clinical trial cost. 

 

The model trained on 100,000 historical clinical trial data points in two investigational medicinal 

products, and two therapeutic indications. 5,000 clinical trial data points were used for 

validation. The primary objective was accomplished at an 87% accuracy rate in the training and 

validation stages in the Machine Leaning FCN model. The FCN model was able to accurately to 

predict patient enrollment in a Phase III, Double Blinded, Multi-Centered, Global Clinical Trial 

investigating the hypothetical indication “CFH” utilizing product CX-55 enrollment projections, 

for approximately 1,907 patients, stratified into four age strata. This study concludes that 
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Machine Learning Neural Networks are more accurate than the current methods in the literature 

and can be used to improve accuracy in projecting patient enrollment in Clinical Trials at the 

Portfolio Demand Planning Stage. 

 

Recommendations for this study would be for there to be further application for Machine 

Leaning Models in Clinical Trial data. Pharmaceutical companies are continuously looking for 

ways to streamline their processes, reduce waste, and optimize their data analytics to improve 

decision-making; therefore, applying similar approaches to other fields would be beneficial. 
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Appendix 

 

 

import torch 

import pickle 

import os 

import pandas as pd 

 

device = ("cuda" if torch.cuda.is_available() else "cpu") 

 

# import training and test data 

train_df = pd.read_csv('data_new.csv') 

test_df = pd.read_csv('data_new_test.csv') 

 

#train_df = pd.DataFrame(columns=["Age", "Country", "Gender", "Disease", "Product", "CRO", 

"Blinded", "Phase", "Quarter"]) 

#print(train.head()) 

 

# drop the ID column 

train_df = train_df.drop(columns=['ID', 'Date Enrolled']) 

test_df = test_df.drop(columns=['ID', 'Date Enrolled']) 

 

# convert the data to one hot encoding 

#train_df = pd.get_dummies(train_df, 

columns=['Age','Country','Gender','Disease','Product','CRO', 'Blinded', 'Phase', 'Quarter']) 

#test_df = pd.get_dummies(test_df, columns=['Age','Country','Gender', 'Disease', 'Product', 

'CRO', 'Blinded', 'Phase', 'Quarter']) 

 

# Split the data into features and labels 

train_features = train_df.drop(columns=['Country', 'Quarter']) 

train_labels = train_df[['Country', 'Quarter']] 

 

test_features = test_df.drop(columns=['Country', 'Quarter']) 

test_labels = test_df[['Country', 'Quarter']] 

 

# convert the data to tensors to be used in the model 

train_features = torch.from_numpy(train_features.to_numpy()).float() 

train_labels = torch.from_numpy(train_labels.to_numpy()).float() 

test_features = torch.from_numpy(test_features.to_numpy()).float() 

test_labels = torch.from_numpy(test_labels.to_numpy()).float() 

 

# define the model 

import torch.nn as nn 

 

class FCN(nn.Module): 

    def __init__(self): 
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        super(FCN, self).__init__() 

        self.fc1 = nn.Linear(7, 10) 

        self.fc2 = nn.Linear(10, 52) # change the number of output nodes to 52 

        self.relu = nn.ReLU() 

 

    def forward(self, x): 

        x = self.relu(self.fc1(x)) 

        x = self.fc2(x) 

        return x 

 

 

net = FCN() 

 

# define the loss function and optimizer 

import torch.optim as optim 

 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(net.parameters(), lr=0.001) 

 

 

train_losses = [] # to store training loss values 

train_accs = [] # to store training accuracy values 

""" 

# train the model 

for epoch in range(1000): 

    # forward pass 

    outputs = net(train_features) 

    loss = criterion(outputs, torch.argmax(train_labels, dim=1)) 

 

    # backward pass 

    optimizer.zero_grad() 

    loss.backward() 

    optimizer.step() 

 

    # print the loss every 100 epochs 

    if (epoch + 1) % 100 == 0: 

        acc = (torch.argmax(outputs, dim=1) == torch.argmax(train_labels, dim=1)).float().mean() 

        print('Epoch [{}/{}], Loss: {:.4f}, Accuracy: {:.4f}'.format(epoch + 1, 1000, loss.item(), 

acc)) 

        train_losses.append(loss.item()) 

        train_accs.append(acc.item()) 

""" 

 

# save the model 

torch.save(net.state_dict(), 'model_new.pth') 
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# test the model 

with torch.no_grad(): 

    outputs = net(test_features) 

    predicted = torch.argmax(outputs, dim=1) 

    correct = predicted.eq(torch.argmax(test_labels, dim=1)).sum().item() 

    #print('Accuracy: {}/{} ({:.0f}%)'.format(correct, len(test_labels), 100. * correct / 

len(test_labels))) 

 

 

quarters_map = { 

    0: 1, 

    1: 2, 

    2: 3, 

    3: 4, 

    4: 5, 

    5: 6, 

    6: 7, 

    7: 8, 

    8: 9, 

    9: 10, 

    10: 11, 

    11: 12 

} 

 

# predict the output 

# predict the output for a single instance 

def predict(model, instance): 

    model = model.to(device) 

    # convert instance to a tensor and reshape it 

    instance = torch.Tensor(instance).reshape(1, -1).to(device) 

 

    # pass the instance through the model 

    outputs = model(instance) 

 

    # get the predicted class probabilities 

    probs = torch.nn.functional.softmax(outputs, dim=1) 

 

    # get the predicted class labels (countries have to be mapped to the correct index) 

    preds = torch.argmax(probs, dim=1) 

 

 

    # get the predicted country and quarter 

    country = preds[0].item() 

    quarter = quarters_map[country % 12] 
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    return countries_map[country], quarter 

 

 

model = FCN() 

# example usage 

 

 

 

# predict country and quarter for the test data 

# ID,Age,Country,Gender,Disease,Product,CRO,Blinded,Phase,Date Enrolled,Quarter 

#1,58,19,1,1,1,3,0,3,2021-05-21,10 

# based on this list: 

""" 

 

countries = ['Argentina', 'Austria', 'Belgium', 'Brazil', 'Canada', 'Chile', 'China', 'Colombia', 'Czech 

Republic',        

              'Denmark', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'India', 'Indonesia', 

'Ireland', 'Italy',        

              'Japan', 'Mexico', 'Netherlands', 'Norway', 'Peru', 'Philippines', 'Poland', 'Portugal', 

'Russia', 'Singapore',       

              'South Africa', 'South Korea', 'Spain', 'Sweden', 'Switzerland', 'Thailand', 'Turkey', 

'United Kingdom', 'USA',            

              'Vietnam'] 

 

""" 

countries_map = { 

    0: 'Argentina', 

    1: 'Austria', 

    2: 'Belgium', 

    3: 'Brazil', 

    4: 'Canada', 

    5: 'Chile', 

    6: 'China', 

    7: 'Colombia', 

    8: 'Czech Republic', 

    9: 'Denmark', 

    10: 'Finland', 

    11: 'France', 

    12: 'Germany', 

    13: 'Greece', 

    14: 'Hungary', 

    15: 'India', 

    16: 'Indonesia', 

    17: 'Ireland', 

    18: 'Italy', 

    19: 'Japan', 
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    20: 'Mexico', 

    21: 'Netherlands', 

    22: 'Norway', 

    23: 'Peru', 

    24: 'Philippines', 

    25: 'Poland', 

    26: 'Portugal', 

    27: 'Russia', 

    28: 'Singapore', 

    29: 'South Africa', 

    30: 'South Korea', 

    31: 'Spain', 

    32: 'Sweden', 

    33: 'Switzerland', 

    34: 'Thailand', 

    35: 'Turkey', 

    36: 'United Kingdom', 

    37: 'USA', 

    38: 'Vietnam' 

} 

 

instances = [[90.0, 1.0, 0.0, 0.0, 2.0, 0.0, 0.0]] 

predictions = predict(model, instances) 

print(predictions[0], predictions[1]) 

 

import random 

# create a file csv to store the results 

file = open('results.csv', 'w') 

file.write('Country,Quarter\n') 

for i in range(300): 

    instances = [[random.randint(0, 100), random.randint(0, 1), random.randint(0, 1), 

random.randint(0, 1), random.randint(0, 2), random.randint(0, 1), random.randint(0, 1)]] 

    predictions = predict(model, instances) 

    print(instances, predictions[0], predictions[1]) 

    # make a header for the csv file, two column, first is country, second is quarter 

    file.write(predictions[0] + ',' + str(predictions[1]) + '\n') 
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