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ABSTRACT

Configurable computing hardware has many advantages over both general-purpose

processors and application specific hardware. However, the difficulty of using this

type of hardware has limited its use. An automated system for Implementing Image-

processing applications In configurable hardware, called CHAMPION, Is under

development at the University of Tennessee. CHAMPION will map applications In the

Khoros Cantata graphical programming environment to hardware. A relatively

complex automatic target recognition (ATR) application was manually mapped from

Cantata to a commercially available configurable computing platform. This manual

implementation was done to assist in the development of function libraries and

hardware for use In the CHAMPION systems, as well as to develop procedures to

perform the application mapping. The mapping techniques used were developed in

such a way that they could serve as the basis for the automated system. Many

important considerations for the mapping process were identified and included in the

mapping algorithms. .
/

The manual mapping was successful, allowing the ATR application to be run on a

Wildforce-XL configurable computing board. The successful application

implementation validated the basic hardware design and mapping concepts to be

used in CHAMPION. Nearly a tenfold performance increase was realized in the

hardware implementation and performance bottlenecks were identified which should

enable even greater performance improvements to be realized in the automated

system. The manual implementation also helped to identify some of the challenges

that must be overcome to complete the development of the automated system.
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I. INTRODUCTION

A. Motivation

Since the first electrical computing devices were created in the 1940s, an ever-

increasing variety of computations has been done by electronic hardware. The

earliest computers calculated artillery tables and decrypted codes for the military.

There is now virtually no type of computation that is. not performed by computer at

least some of the time. Clearly, in the intervening years an extremely large number of

new applications for computing hardware have been deyeloped. The calculations

performed in these applications range from those that were previously done by hand,

such as accounting and scientific calculations, to entirely new sorts of computations

that can only be done by computer, such as digital image processing and complex

simulations. Regardless of the type of computation being done, the same basic

operations are used ubiquitously. For example, arithmetic operations, such as

addition and multiplication, and logical operations, such as Boolean ANDs and ORs,

are used for virtually all types of calculations. While the same operations are used

repeatedly, the type of hardware performing these basic operations can vary widely.

For many years, electronic hardware used for computation could be divided into two

main types, general purpose, and application specific. General-purpose hardware is

exemplified by microprocessors such as the Intel 80x86 family and the Motorola

68000 family, which serve as the main processing unit in most personal computers.

The architecture of these devices is fixed and includes specific hardware to

implement a limited, pre-defined, set of instructions. These microprocessors run

programs, which are lists of instructions to be executed that are stored in external



memoiy. New programs can be loaded into memory from disk or other storage as

needed. The software program determines the computation to be done, not the

hardware. Because their Instruction sets Include very general operations such as

arithmetic and logical operators, branching and recursion, and memory access, this

type of hardware can be programmed to perform any conceivable function. In fact, as

the work of Church and Turing shows, all computations can be performed by such a

general-purpose computer. However, general-purpose computers can be very slow at

performing certain kinds of operations, such as those Involving floating-point

calculations or complex mathematical functions. For this reason, most modern

computers have one or more coprocessors, which are application specific hardware

that performs certain functions very quickly. Examples Include math coprocessors

that perform floating-point calculations and other mathematical operations, and

graphics coprocessors that perform 3D rendering.

Application-specific computing hardware performs functions very quickly, but the

price of this speed Is limited flexibility. As their name Implies, this type of hardware

can only perform one function, or a group of closely related functions. The hardware

determines the type of computation to be done. They cannot be reprogrammed to

perform entirely new functions that were not anticipated and Included In the original

design. If application specific hardware Is needed to perform a new function, then a

new hardware design will have to be created. Since this type of computation

hardware Is generally Implemented as carefully designed Application Specific

Integrated Circuits (ASICs), creating a new design takes a great deal of effort and

knowledge. Since they are custom ICs, they are also veiy expensive to fabricate, and

it takes, week or months to design, a new ASIC and have It fabricated. Therefore,

application specific hardware Is only useful If the functions needed are" known In



advance and the requirements of the functions. they perform are not expected to

change during the useful lifetime of the hardware.

In spite of these drawbacks, application specific hardware is widely used whenever

speed is an important design consideration. By structuring the hardware to match

the problem, application specific hardware can often achieve computation speeds

several orders of magnitude faster than general-purpose hardware. This-high level of

performance is obtained by utilizing several techniques, including the performance of

operations in parallel: the organization of hardware for efficient data transfer, which

reduces delays while data is moved from place to place; and the utilization of

hardware structures that permit efficient data scheduling, reducing inefficiencies

introduced when computation is halted to wait for new data.

In recent years, a new class of computirig hardware has been gaining increasing

research interest. Configurable computing hardware has some of the advantages of

both general-purpose and application-specific hardware. This type of hardware may

be based on commercially available Field Programmable Gate Arrays (FPGAs), or on

ICs designed specifically for the purpose. In either case, this type of hardware

consists of a relatively large number of functional units with programmable

interconnections. The functionality of the hardware is determined by how the

interconnections between functional vmits are configured, and in most, but not all,

architectures, how the functional units themselves are configured. By changing the

configuration, the hardware can be made to perform a completely different function.

Since the configuration is specific to the application at hand, it is in effect a custom

computer for the particular design. For this reason, computing devices using

configurable hardware are often called Custom Computing Machines (CCMs).



The functional units in a CCM are usually relatively simple logical functions

equivalent to a few gates, or a few tens of gates. Some configurable computing

hardware has slightly more complex functional units such as small Arithmetic Logic

Units (ALUs). The functional units may be fixed in function, or their functionality

may be configurable. For instance, many FPGAs use Look-Up Tables (LUTs), for

which the output (or outputs) for every possible input can be programmed. In this

way, LUTs can implement any possible logical function of the inputs, giving great

flexibility. Most architectures also include flip-flops in each functional unit, to

register the outputs and allow for synchronous designs.

The interconnections between functional units provide much of the utility of most

configurable computing architectures. Programmable switches can selectively

connect tracks wired to the inputs and outputs of the functional blocks, allowing the

desired functions to be implemented. These interconnections are internal to the IC; if

multiple ICs are used in a CCM, then there are usually programmable

interconnections between the ICs as well.

Since the structure of the hardware has effectively been changed for the specific

function to be implemented, many types of computations can be performed by CCMs

at speeds close to those obtained using application specific hardware. In addition,

the configuration can be changed relatively quickly firom one function to another,

giving some of the same flexibility as general-purpose hardware. In effect,

configurable computing allows the benefits of both application-specific and general-

purpose computing to be present in the same hardware.

Despite these advantages, configurable computing hardware has not been widely

used. Perhaps the main reason is the difficulty involved in configuring this hardware
•4 ■ ' ,



to perform a specific function. A typical CCM may consist of several interconnected

FPGAs, as well as memory and other components. In order to map an application to

this hardware, the designer must first design the hardware configuration needed to

perform the necessary functions. This is usually done with either schematic capture,

or increasingly with a Hardware Description Language (HDL) such as VHDL or

Verilog. In either case; the designer ixiust understand digital design and be able to

separate an application into data processing and control elements. The design must

then be partitioned spatially, so that the design is spread across the resources

available on the FPGAs. If the design does not fit in the available FPGAs, then it

must also be partitioned temporally, by allocating- functional units to different

configurations of the same FPGA- In addition,, any configuration of the CCM itself

must be determined, and a program to communicate with a host computer must

usually also be created. While commercial tools exist to help wth parts of this

process, it still, requires a great deal of skill, knowledge of digital design, time, and

effort. These steep requirements have severely limited the potential users of this type

of hardware and prevented its widespread acceptance.

The development of methods to allow CCMs to be used more easily will make their

advantages available to more users; Ideally, tools will be developed to allow users

with no knowledge of digital design to use CCMs, just as users who know nothing

about the design of a microprocessor can use computers. The less important

knowledge of the underlying hardware is, the larger the pool of potential users of

CCMs will be. The current pool of users consists almost exclusively of researchers

and digital hardware engineers. If the use of CCMs is to spread beyond this limited

group, then much more research into better tools to use them will have to be done.



B. Research Objectives

Research at the University of Tennessee is currently underwa:y to develop an

automated system for mapping image processing applications in a graphical

programming environment called Khoros Cantata to configurable, computing

hardware. It is expected that this system, called CHAMPION, will help make the

power of configurable hardware more accessible to users who lack digital design

experience. It is also expected that the system will allow new applications to be

implemented in much less time than is required now, since many portions of

application mapping that must currently be done manually will be automated. The

work described in this thesis is a part of the overall research being conducted as part

of the CHAMPION project.

The authors research concerns the manual mapping of a complex application

running in Khoros Cantata to a commercially available CCM, the Annapolis Micro

Systems Wildforce-XL. A systematic method of doing this application mapping was

developed. The manual mapping used a library of parameterlzable hardware modules

developed concurrently for CHAMPION. The entire manual mapping was done with

the goals of CHAMPION considered at eveiy step. The resulting implementation was

thus quite different firom that which would have been developed if the only goal were

to implement the application in hardware. However, the goal of the research was not

just to simply implement the application in hardware, but to provide information on

the requirements of the implementation to the developers of the automated system.

The proposed benefits of performing a manual mapping were fourfold. First, to help

develop application-mapping methods that could be used to help design the

automated system by determining the requirements of the system and possible
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methods by which the mapping could be performed. Second, to help guide the library

development process by showing what types of library modules would be needed and

what the requirements of those modules should be. Third, to show thqt the mapping

methods and library modules developed could be used to implement a significant

application. Fourth, the successful implementation of the application would give

researchers measurements of the time required to manually map the application and

the performance of a manually mapped implementation.

The process of mapping an application from software to hardware is a complicated

one and there are many factors that had to be considered at each step of the

process. Some of these were readily apparent, such as ensuring that the hardware

chosen implements the same operations as the software application. Others were not

considered until the mapping process had begun. By performing a mapping

manually, all of the steps needed could be determined, and all of the factors that

needed to be considered could be identified. The mapping process was successful,

showing that the methods determined in the mapping process were viable, and could

be used as the basis for an automated system. The manual mapping also clearly

delineated the requirements for an automated system to perform the mapping

process.

There are hundreds of functions available in the Khoros C^tata toolboxes and in

publicly available extensions. Since not all of these could or should be included in

the CHAMPION system, decisions had to be made as to which functions would be

needed. Some of the decisions were obvious; simple arithmetic operators such as

addition, and the basic Boolean operators should definitely be included in a system

such as CHAMPION. Other choices were not as obvious. By determining the types of

functions needed to implement a real application, better decisions as to which
7



functions to Include could be made. The implementation process also helped

determine the requirements of the hardware implementing these functions. Design

details of the hardware modules such as control lines and I/O ports were determined

to large extent hy what would he necessary to make the initial application work.

In order to evaluate the effectiveness of the automated system, some idea of the timp

required to do a manual mapping is necessaiy. Only hy having information on the

time required for a manual implementation can the productivity gains provided hy

CHAMPION he measured. The manual implementation also provided information on

the performance of the application, in terms of the rate at which data can he

processed. While the performance of the applications mapped hy the automated

system is not a primaiy goal of the project, it is still valuable to he able to measure

any differences in performance between the results obtained hy CHAMPION and the

results obtained hy a human designer.

The manual implementation did provide the type of information that was expected,

as discussed above. This information should prove useful in the development of the

automated system. However, the development of the automated system is mostly

outside of the scope of the author's research and as such, will not he discussed in

detail in this paper. It is to he expected that later publications hy others working on

the CHAMPION system will provide more information on its development.

This chapter presented an introduction to the research covered hy this thesis.

Chapter II provides background information on configurable computing, Khoros

Cantata, and the CHAMPION project. Chapter 111 discusses the application to he

mapped and the CCM used to implement it. Chapter IV discusses the application

mapping process, including the libraries and procedures used. Chapter V gives the
8



results of the hardware implementation, including specific information on the final

implementation and its performance, as well as the time taken to complete it.

Chapter VI presents overall conclusions about the research.



II. BACKGROUND

A. Configurable Computing

To date, most research in configurable computing can be divided into three main

areas. The.first has been the development of configurable computing hardware. The

second has been the implementation of various types of applications on configurable

computing hardware. The third has been the creation of software to assist in the

implementation of applications on configurable computing hardware. All three of

these areas have helped determine which types of applications are best suited to

implementation on CCMs, and the benefits of running these applications on this type

of hardware as compared to either general-purpose or application-specific hardware.

Portions of each of these areas are relevant to the current research and will be

discussed in the following sections.

1) Hardware

Numerous configurable computing machines have been built by research groups.

More recently, commercial vendors have begim producing CCMs. While some

research groups have designed their ovm ICs for configurable computing, (e.g.,

PipeRench [1] and RaPiD [2]), most CCMs have been constructed using commercially

available FPGAs. A list of dozens of FPGA-based CCMs is given in [3]. Some of the

more significant FPGA-based CCMs include Splash 2 [4], DECPeRLe-1 [5], and the

Virtual Computer [6]. Versions of these CCMs, and CCMs derived directly from them,

are used today by many CCM researchers.

10



Many different CCMs have been built with the same FPGAs, especially those

produced by Xilinx, Inc. of San Jose, CaUfomia. Despite their use of the same

FPGAs, CCMs can vary widely in a number of other specifications. CCMs can vaiy in

the number and size of FPGAs used; the number of interconnections between the

FPGAs and whether or not these interconnections are configurable; the topology of

the interconnections; whether or not other resources are available in the CCM, such

as RAM or DSP chips; and how the CCM connects to an external host computer.

Table 11-1 shows some of the specifications for several different CCMs that use Xilinx

FPGAs and illustrates some of the differences between them.

Much of the research in CCMs has attempted to determine what kinds of CCM

architectures are most efficient, fastest, cheapest, and so forth. The answer to these

Table 11-1. Comparison of Four Xilinx FPGA-based CCMs.

DECPeRLe-1

Splash 2
(per array
board; up to 16
array boards
may be used)

Virtual

Computer

Wildforce-XL

(as used at UT-
Knoxville)

FPGA Family Xilinx XC3000 Xilinx XC4000 Xilinx XC4000
Xilinx

XC4000XL

Number of

FPGAs

(available for
computation)

16xXC3090 17xXC4010 52xXC4010
4xXC4013XL

1 X XC4036XL

Total Gate

Equivalents
96,000 170,000 520,000 88,000

RAM 4MB 8.5 MB 8MB 640 KB

Interconnection

Topology 4x4 Matrix

Linear Array
with

Programmable
Crossbar

Spherical

Linear Array
with

Programmable
Crossbar

Host Interface TurboChannel SUN S-Bus SUN S-Bus PCI Bus

11



questions usually varies depending on the characteristics of the applications that are

being run. For instance, some applications require the frequent storage of

intermediate results in RAM. If these applications were implemented on a

hypothetical CCM, denoted CCM-A, which has relatively low RAM access bandwidth,

than the performance would be lower than if they were run on another hypothetical

CCM, denoted CCM-B, which has higher RAM access bandwidth. However, CCM-B

might achieve its higher RAM access bandwidth by devoting more I/O pins on each

FPGA to memory interfacing, leaving fewer available pins for interconnection between

FPGAs. If CCM-A and CCM-B both have the same number and type of FPGAs, then

all else being equal, CCM-B will have less connectivity between FPGAs than CCM-A.

Another class of applications might require many interconnections between

functional units. These applications would fit better into CCM-A than into CCM-B,

using computation resources more efficiently in the former. For these and other

obvious reasons, there can be no one CCM architecture that is ideal for all
t

applications.

However, there are CCMs with architectures that seem to work relatively well for a

range of problems. CCMs are now available from commercial vendors such as

Annapolis Micro Systems and the Virtual Computer Company. These systems offer

many of the same features found on research CCMs including: multiple FPGAs on a

single board, state readback of processing elements for diagnostic purpose, direct

access to RAM from each FPGA, host I/O through a fast interface bus such as PCI or

VME, and pre-developed APIs for host interface code and hardware configuration.

These commercial CCMs can be used to implement fairly complex and demanding

applications.

12



Missing from these commercial offerings are the powerful tools necessary to make

these CCMs easy to use. Once again, the most pressing problem in configurable

computing seems to be the development of tools to efficiently use CCMs. Tool

development is lagging behind the development of configurable hardware, and seems

to be a limiting factor in its adoption, so there is currently somewhat less interest in

hardware development than in earlier years. Research does continue in various areas

of CCM hardware development. Recent research in architectures often involves the

integration of configurable hardware and general^purpose processors [7, 8, 9], or

DSP chips [10]. New architectures are also being developed to take advantage of

developments in commercial FPGA designs. Xilinx Corporation's new Virtex family,

which offers much higher densities than its other FPGAs, faster reconfiguration, and

partial reconfiguration, seems to be , of particular interest to the CCM community.

2) Applications

In addition to studying CCM hardware and the software tools needed to use it,

researchers have been investigating the types of applications that are well suited for

implementation on CCM hardware. CCM hardware is especially good at applications

that require the repeated application of simple operators on large amounts of data.

Performing operations in parallel and optimizing them so that the operations can be

performed at high speed is one of the primary ways that CCM architectures can

achieve good performance. If applications show some exploitable parallelism and use

relatively simple operators, then they may be good candidates for implementation

using a CCM.

Most configurable computing hardware is very inefficient at performing floating point

calculations. These calculations require large amounts of FPGA resources and run

relatively slowly. Applications requiring many floating-point calculations are not

13



usually good candidates for implementation on CCM hardware. In some cases,

however, an application originally developed using floating point numbers can be

implemented using fixed-point data representation without a significant degradation

of its performance. Determining the number,of bits necessaiy to represent data at

various stages of an application and the effect of changing floating-point

representations to fixed-point can be an important step in determining the suitability

of application to CCM implementation, and there has been increasing research on

this topic [11, 12].

Several application domains have proved particularly suitable to implementation on

CCMs. in particular, applications involving image and video processing [13, 14, 15],

communications [16, 17], and CAD applications [18, 19, 20], have been the subject

of recent research. Since image-processing applications have been widely

implemented on CCM hardware, image processing seemed to be a particularly

fruitful application domain for an automated system such as CHAMPION. The

availabiliiy of a widely used tool for image processing application development,

Khoros Cantata, made image processing even more attractive as the focus, for

CHAMPION and for the initial manual implementation presented in this paper.

Image processing applications are well suited for implementation on configurable

computing hardware, for several rea;sons. They involve relatively large amounts of

data. For example, one 640 x 480 image with 256 gray levels represents 300

kilobytes of data. If the images being processed come from a standard real timp

source at 30, frames/second, nearly 8 megab5d;es per second must be processed.

Many image processing operations require only simple arithmetic and logical

operations that are well suited to configurable hardware and avoid more complex

mathematical operators and floating point calculations that are more poorly suited.

Image-processing applications exhibit a high , degree of parallelism, in that the same

14



operations are often applied to each pixel in an image or portion of an image. In a

general-purpose computer, each operation on each pixel must he done sequentially,

which can be time consuming for large images. CCM implementations of image

processing applications can often he designed so that multiple pixels can be

processed simultaneously by arrays of functional units, greatly improving

performance. This kind of array processing has been widely used in application

specific VLSI designs [21] and much of this experience is transferable to CCM

designs.

3) Development Software

Ideally, software should he developed that would allow a user to capture their design

at a high level, without any consideration of digital design or the specific CCM

architecture being targeted. The high level design would then automatically be

converted into an equivalent hardware description and this hardware description

partitioned across the available resources. Finally, the software would generate the

host code and programming files to run the application on the targeted architecture.

This would allow a user to run their application on CCM hardware without having

any knowledge of digital electronics and without even being aware of the mapping

process taking place. Unfortunately, this is a very difficult task. No one has yet come

even close to meeting these specifications. Much research has been done into tools

that can perform parts of the application mapping process, however, and it

eventually should be possible to approach this hypothetical ideal case.

Much research has been performed recently to make it easier to run applications on

CCMs by allowing high level design information to be entered using general purpose

programming languages. Many papers [22, 23, 24, 25, 26, 27] have reported work on

systems to map programs in C or C++ to various types of configurable hardware.
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Since C is a widely used language, the ability to map applications from C to CCMs

shoiild greatly increase the number of people with the ability to utilize configurable

hardware. Other work has been done: mapping applications from other programming

languages to CCMs [28, 29, 30], All of these language-based efforts usually work

with subsets of the programming languages and require not only programming

ability, but also varying degrees of knowledge of the underlying hardware. These

efforts do increase the pool of potential users of CCMs, but mapping applications to

hardware with these tools is not completely automated and still requires significant

technical expertise.

There have been successful efforts to create tool suites specifically designed for

implementing designs on CCM architecture [31, 32]. This type of system provides

powerful tools to help the hardware designer create and test designs on CCMs. They

are intended for technical users, however, and aim more at increasing the efficiency

of the users, rather than widening the pool of potential users. Their primary goal is

not to isolate the user from detailed technical information about the hardware, but to

make access to that information easier and more useful.

Other systems have attempted to automate portions of the application mapping

process. For instance, one style of design for CCMs uses libraries of parameterlzable

modules that perform standard functions. A design can be created by combining

these modules in a design with the necessary interfacing and interconnections.

Several systems have been developed that are focused on creating, maintaining and

Implementing these libraries of niodules [33, 34). Again, these tools greatly assist the

hardware designer, but do not significantly lower the skill requirements for using

CCMs. . . .

16



One system that does make CCMs more accessible to users who are not necessarily

experienced hardware designers was developed at Virginia Tech [35]. It allows the

implementation of image processing applications by cormecting pre-designed

modules that perfomi common operations, such as filtering and thresholding, using

a schematic capture tool. These applications are then implemented on a configurable

computing engine developed at Virginia Tech, using a set of specific software tools.

The system is designed to work only with one specific architecture, however, and

many of the steps in the mapping process are manual. Nonetheless, the system does

greatly decrease the skill required to create CCM implementations of relatively

complex applications.

B. Khoros Cantata

Khoros is a software system from Khoral Research Incorporated (KRI). At the core of

Khoros is a set of toolboxes containing over 300 operators. These operators include

arithmetic operators for scalars, vectors, and matrices; image and signal processing

functions; data visualization and display operations; and many functions for

manipulating and examining sets of data. The operators can be run as stand alone

programs from the command line, or as functions called by a C or Fortran program.

In addition to the operators, Khoros defmes three robust data structures. The

geometry data model allows for representation and storage of complex geometric

structures, and allows for easy access to, and manipulation of these structures. The

color data model is used for the storage of color maps in a format that allows for easy

transformations of the color space. The polymorphic data model is the most flexible

data model. It is capable of storing multi-dimensional data including audio signals,
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images, video, vector spaces, or virtually any other type of data that can be

represented with up to three spatial dimensions and optionally one timp dimension.

While Khoros can be used by running commands manually, it is perhaps most

widely used -with its graphical programming environment called Cantata. Cantata

allows the user to create an application by drawing a graphical representation of it.

Each function in the Khoros toolbox is represented on the screen by a small icon

called a glyph. The glyph has an input terminal corresponding to each of the possible

inputs to the function and output terminals for each of the outputs. In addition,

each glj'ph has a pane, which is a set of interface- objects that allow the user to set
\

options for the operation of the glyph. Each of these objects corresponds directly to a

parameter that can be passed to each function on the command line.

Figure II-1 shows a simple Cantata workspace. A glyph for calculating the

trigonometric sine is shovm, as well as another glyph that reads in the input data.

The pane for the sine glyph is shown directly below the glyph itself. It has a text box

for the input and output filenames and radio buttons to select whether the sine or

arc sine is to be computed. The input filename is set automatically to be the same as

the output of the preceding glyph. In this case, the first glyph is set to read in a file

called /v4/levine/data.in. This filename is then passed to the sine glyph. The output

filename is automatically picked by Cantata, and corresponds to a temporary file.

This filename vnll be passed to any following glyphs, and the data in the file can be

further processed, written to another file, or displayed, depending on which glj^hs

are used. The user does not have to worry about the filenames for the inputs and

outputs, as they are chosen by Cantata. The user also does not have to be concerned

about the lype of data in the files; Cantata will take care of any conversions between

types necessary. It does not matter whether the input is one floating-point value or a
18
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Figure 11-1. Khoros Cantata Glyphs and Command Line Equivalent



three-dimensional array of double precision values.. In every case, Cantata

determines how to handle the data without user intervention.

As mentioned previously, anything in, Khoros can be done at the command line as

well as in Cantata. The command line equivalent to the two glyphs is shown at the

bottom of Figure II-1. Each parameter in the command line has a corresponding user

interface object in the glyph pane. On the command line, the user has to type each

parameter in manually. In Cantata, the parameters are generated automatically from

the settings in the glyph pane. Regardless of whether it is called from the command

line or from Cantata, the same software routine performs the desired operation on

the data.

The power of Cantata, like ofeer graphical programming environments, is that it

allows a user to simply draw a diagram of their application and have it run. They do

not have to worry about the details of how data is passed or where it is stored. They

do not have to be concerned about converting data from one data type to another.

They do not even have to compile their code. This means that users do not even have

to be conversant with traditional programming methods to quickly implement and

test their algorithms and ideas. Since Cantata can work on such a wide range of

data, users can test their applications using real data. The visual nature of Cantata

also makes it easy to modify an existing application by simply adding or removing

glyphs and changing connections.

Cantata can be used by users who may be skilled in their own area of expertise, but

who may not necessarily be able to program well enough to test their ideas. For

instance, a mathematician who is adept at creating algorithms for computer vision,

but might otherwise be limited by a lack of programming ability, can use Cantata to
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implement and test algorithms using real data. Cantata has become widely used

partly because of its ability to isolate users from the underl3dng technology and still

let them exploit the power of the computing platforms they are using.

C. CHAMPION

The goal of research currently being pursued at the University of Tennessee is to

produce a system, called CHAMPION, which will automatically map applications

implemented in Khoros Cantata to configurable computing hardware. This would

greatly increase the number of potential users of CCMs, as little or no knowledge of

hardware design would be required. Khoros Cantata was chosen as a front end to

CHAMPION due to its widespread use in the image processing community, and also

because it isolates the user from the technical details of the hardware doing the

computations. This is important because it will allow the same application to run on

a workstation or on configurable hardware without visible differences in the

application, as long as the CHAMPION libraries are used.

CHAMPION will require the creation of a set of libraries and a set of tools or

procedures. The libraries will consist of Cantata glyphs that are compatible with

hardware implementation and a corresponding hardware version of each of the

Cantata glyphs. As long as the user uses these CHAMPION glyphs to create their

Cantata workspace, CHAMPION should be able to convert the Cantata application

into a hardware implementation to be run on a CCM. The Cantata glyphs and the

corresponding hardware will perform the same operations, so the hardware

implementation should perform identically to the Cantata implementation. The

determination of the types of gljqjhs needed and how these will be implemented in
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hardware is an Important part of the development of CHAMPION, and will be guided

by the results obtained in the research presented in this paper.

In addition to the two sets of libraries, CHAMPION will require the development of a

set of tools to perform the application. Tools will need to be developed for each step

of the mapping process. First the Cantata workspace for the application must be

read and converted into an intermediate form for use by CHAMPION. Each glyph in

the Cantata workspace must be replaced by its hardware equivalent, and then the

hardware partitioned to fit the target architecture. The programming files for each

FPGA must be generated and the necessary code for the host processor must be

generated. Exactly what is required at each step of this process will be determined in

large part by the results of the manual implementation presented herein.
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III. PROJECT GOALS

The goals of this research project were to manually implement a significant Khorbs

Cantata application on configurable hardware, using glyph libraries and procedures

that will be usable in the context of the larger CHAMPION project. The specific

application chosen was an automatic target recognition applicatibn called START

and the specific CCM was a commercial product called the Wildforce-XL. Details of

the application and the hardware it was implemented on are presented in this

chapter. Details about the implementation process are presented in Chapter IV. and

the results of the implementation are presented in Chapter V.

A. START Application

A relatively complex image processing application that was well understood by the

author was desired for the first manual application implementation. Using a complex

application would provide several benefits. It would help identify more useful

hardware glyphs than would a simpler algorithm. Using an algorithm large enough

to require reconfiguration of the board would test that capability of the board and

require the determination of techniques to partition the design temporally as well as

spatially. Finally, using a complex algorithm would validate that the libraries and

procedures developed were sufficient to complete problems of a significant nature.

An Automatic Target Recognition (ATR) application developed by the author for a

digital image processing course was picked as the application to be implemented.

The application was named Simple, Two-criterion, Automatic Recognition of Targets,

or START. The application was not chosen for its merit as an ATR algorithm; rather it
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was chosen because it was sufficiently complex and because it was an existing

application developed by the author. This familiarity with the application allowed the

efforts of the author to be concentrated on the hardware implementation and not on

understanding the application to be implemented, or on devising a new one.

The START application uses a statistical algorithm to find regions in Forward-

Looking InfraRed (FUR) images where a target may exist and draws a box around

such regions. Algorithms of this sort are often used for target queuing: that is, they

automatically identify areas of possible interest for further examination by human

operators. The algorithm does not positively identify a target, nor does it identify the

type of target, as a true ATR algorithm does. It simply identifies segments of the

image as areas where there is a high probability of there being one or more targets.

The START algorithm was tested with FUR images from Colorado State University's

Fort Carson RSTA Data Collection. This is a freely accessible collection of image data

available over the Internet [36], Forty images were chosen from the entire set of

available images. The images chosen had corresponding color visual light images

available so that the actual location of targets could be determined more accurately,

as identifying targets in the FUR image can sometimes be difficult for a human

observer. The FUR images were taken of varied, generally hilly terrain, with either no

vehicles present, or up to four vehicles present. The vehicles used to represent

targets were an M60 main battle tank, an Ml 13 armored personnel carrier, an M901

anti-tank vehicle, and a GMC pickup truck. A representative FUR image is shown in

Figure 111-1(a).

Many variables were present in the image set. Vehicles varied in their distance fi-om

the sensors and in their orientation, greatly changing their apparent size and shape.
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(a) FLIR Image Used as Input to START Algorithm.

(b) Target Pixel Map from First Phase of START Algorithm.

□ □ □

(c) Output image from START Algorithm.

Figure HI-l. Sample Images from START Algorithm.



Vehicles were sometimes partially concealed by terrain features, which also

introduced variation in size and shape. The overall image contrast was variable, as

was the relative background intensity. These variables made the determination of

target regions challenging. A straightforward algorithm based on statistical

evaluation of two criteria was found to provide reasonably good results, however.

Areas of interest are assumed to have two characteristics. First, they must contain

pixels hotter than the surrounding terrain. In a FUR image, hotter pixels are

brighter or higher in numeric value. An area of interest must also contain pixels

having a high numerical value after the application of an edge detection filter. A high

numerical value indicates large gradient intensity between adjacent pixels, which

corresponds to a sharp temperature gradient between adjacent regions. Vehicles are

likely to exhibit sharp temperature gradients, either between the vehicle and the

surrounding terrain, or between different components of the vehicle, such as an

exhaust port and the chassis. An area of interest must satisfy these two different

criteria: it must contain hot pixels and it must contain pixels that exhibit large

gradients. These are the two criteria in the name Simple, Two-criterion, Automatic

Recognition of Targets.

While the core idea of the algorithm is relatively simple, many details of the START

algorithm are important to its success. First, the images are low-passed filtered

initially to remove noise, as image noise is generally high frequency in nature and

produces strong responses in edge detection filters. The threshold values for each of

the two criteria are specified as a certain number of standard deviations from the

mean. These values are important to the performance of the algorithm and were

determined empirically during processing of a large set of input images. The

intermediate binary images in the target identification process are low-pass filtered
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and then thresholded. This favors larger clusters of pixels and eliminates the

occasional falsely identified pixel.

1) First Phase
f

Figure II1-2 shows a block diagram of the first part of START algorithm, in which a

map of potential target pixels is generated. The input image is first low-pass filtered

to remove noise. The unfiltered input image is also passed to the second portion of

the algorithm through the connector marked "A". The low-pass filter is implemented

by convolving the image with the 3 x 3 mask shown here:

1  1 r

1  1 1

1  1 1

The resulting image is then divided by 8 to normalize the values. Since the actual

maximum multiplier from the mask is 9, dividing by 8 causes some intensity scaling

of the low-passed image. Since the relative pixel values remain the same, this has so

significant effect on the results. Dividing by 8 can be implemented by a simple right

shift, while dividing by 9 is much more expensive in terms of hardware, so the former

was chosen.

The filtered image is passed to a block that computes the mean and standard

deviation of the intensities of the pixels. These statistics are then used to check for

pixels that are more than two standard deviations above the mean. Pixels meeting

this criterion are given the value 1 and all others are giVen the value 0. This

produces a map of the pixels that meet the criterion of being relatively hot, since the

intensities are linearly proportional to temperature in a FUR image.

27



A

Sobel

Filter

Compute
Edge Stats

Check

Edge Stats

Low-Pass Filter

Check >= 4

Input
image

Low-Pass

Filter.

Compute
Intensity
Stats

I
Check

Intensity ,
-Stats

-► AND

Low-Pass Filter
Check >= 4

Mask Invalid
Target Region

B
Figure III-2. First Phase of START Algorithm.
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The low-pass-filtered image is also passed to a block that performs edge detection.

Ekige detection is essentially a high-pass filtering operation, which gives high values

to pixels with sharp gradients and low values to pixels with low gradients. The

particular edge detection method chosen uses the Sobel operators to approximate the

gradient. The Sobel operators are two 3 x 3 masks as shown here:

Sobel X operator =
-1 0 1

-2 0 2

-1 0 1

Sobel Y operator =
-1 -2 -1

0  0 0

1  2 1

The image is convolved separately with each of the two Sobel operators and then the

output image is computed as the sum of the absolute values of the responses, which

approximates the magnitude of the gradient response [37].

The statistics for the image after edge detection are then computed. The next block

then marks all pixels more than four standard deviations above the mean as 1 and

the remaining pixels as 0. This produces a pixel map of all pixels meeting the

criterion of having a high gradient value and thus being associated with a transition

between regions of greatly differing temperatures. This pixel map is then low-pass

filtered, without scaling. This gives each output pixel a value from 0 to 9,

representing the number of pixels in each 3x3 region that had the value 1 in the

pixel map. Pixels with values from 0 to 3 are marked as 0 and pixels with values 4

and above are marked as 1. This creates a new pixel map, which indicates where

clusters of pixels meeting the gradient criterion were located. This eliminates

insignificant temperature changes or changes involving veiy small objects. The

gradient criterion pixel map and the intensify criterion pixel map are then logically

AND'ed together. This produces a new pixel map with all pixels that meet both

criteria being marked as ones and all other pixels marked as zeros. This map then

has the clustering operation described previously applied. Next, regions along the
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edges of the image and In the immediate foreground are marked as zeros, since it is

known that these are not valid regions for targets to appear in, based on the camera

setup and geometiy. A final target pixel map is thus generated and output at

connector "B" of the flowchart in Figure III-2.

2) Second Phase

In the second phase of the algorithm, the target pixel map is used to identify target

regions and draw frames around these regions. A flowchart of the second phase is

shown in Figure III-3. The target pixel map enters the second phase flow chart

through the connector labeled "B". The next block determines whether there are any

pixels in the target map with value ,1; and if so, the column and row location of the

first such target pixel. This information is passed to two more blocks. The first block

marks a square frame centered around the first non-zero pixel found in the previous

block. These frame pixels are marked on a blank frame map, which consists of all

zeros. The second block masks all target pixels within 30 pixels of the first target

pixel found by setting those pixels value to zero. This ensures that only one target is

identified for every group of pixels corresponding to a particular vehicle in the FUR

image.

The masked target map is then passed to another block, which repeats the operation

of finding the first non-zero pixel. This information is passed to blocks that repeat

the firame marking and target masking operations. After six total repetitions of frame

marking, the frame mask is complete. The frame is a binary image with pixel values

of one everywhere a target frame should appear and pixel values of zero everywhere

else' The frame map may contain from zero to six frames, depending on the number

of target regions identified. A sample fi-ame map can be seen in Figure lit-1(b). This

fi-ame map corresponds to the input image shown in Figure III-1(a).
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The final step of the START algorithm is to combine the frame map and the original

image. The original image enters the flowchart through the connector marked "A".

The maximum intensity value in the image is found. This value will be used as the

value assigned to the frame pixels. By rising the maximum value for the frames, the

frame pixels will appear white, but without changing the apparent contrast of the

image when displayed. The next block simply replaces every pixel in the original

image for which the corresponding frame pixel is one with the maximum intensity

value. The pixels in the original image corresponding to zero pixels in the frame map

are unchanged. The resulting output image then consists of the original image, with

square white frames marked around the identified targets. A sample output image,

corresponding to the input image in Figure 111-1(a), is shown in Figure 111-1(c).

B. Wildforce Board

A commercially available CCM was chosen to implement the first application. Early

research efforts often required the design of a new CCM board to meet the

requirements of the research. As the field has matured, however, commercial

companies have begun to produce hardware that is flexible enough to be used for a

vdde range of research topics as well as commercial or industrial applications. The

Wildforce-XL board from Annapolis Micro Systems was chosen as the first

architecture used in the CHAMPION project arid was therefore the board available for

the manual implementation presented in this paper. The Wildforce-XL board is based

on technology licensed from the developers of Splash-2 [4] and like that CCM, uses

Xilinx XC4000 series FPGAs. This section will briefly describe the structure of the

XiUnx XC4000 series FPGA, as well as detailing the architecture of the Wildforce

board itself.
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1) XilinxFPGAs

The Xilinx XC4000 series FPGAs have been widely used for developing CCMs. These

FPGAs are in general use throughout the electronics industry, and are thus widely

available and relatively inexpensive. There are also many commercial tools available

for S5mthesizing designs for these FPGAs. Xilinx also has an extensive program for

supporting university researchers with free or low-cost hardware and software: 'Diese

facts, combined with their powerful and flexible design, explain the popularity of

Xilinx XC4000 series FPGAs with configurable hardware developers.

The basic functional unit of the Xilinx FPGA is the Configurable Logic Block (CLB). A

diagram of the CLB is shown in Figure 111-4 (Some details relating to RAM functions
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Figure II1-4. Xilinx 4000 Series FPGA Confxgurahie Logic Block.
Source: Xilinx, Inc. The Programmable Logic Data Book 1998. San Jose, CA, 1998. [38]

33



and cany logic are not included in this diagram). Each CLB has five main

components: two four-input function generators, one three-input function generator,

and two storage elements. Each of the function generators can be configured to

implement any possible function of three or four variables. The function generators

can be also combined to produce functions of up to nine variables. The two four-

input function generators receive their inputs from outside the CLB. The three input

function generator can use tiie outputs of the four-input function generators for up

to two of its inputs. The remaining input(s) must come from outside of the CLB. The

four-input function generators can also be configured to be used as RAM. with up to

32 bits of RAM in each CLB.

In addition to the function generators, there are two configurable storage units in

each CLB. These can be configured to act as D-fype flip-flops or level sensitive

latches. The inputs to the storage units can Idc configured to come from outside the

CLB or from any of the function generators. When used as flip- flops, they can be

configured to be clocked on either the rising or failing edges of the clock, and when

used as latches they can be configured to be transparent for either high or low clock

inputs. The storage elements also have configurable set/reset control and enables.

There are 16 multiplexers in each CLB. six with four inputs and ten with two inputs.

These multiplexers are configured to determine the functionality of the CLB. The

total functionality of the CLB is determined by the setting for the multiplexers and

the settings for the function generators, giving a great deal of flexibility and power in

each CLB. The configuration process for the FPGA sets the control inputs to eveiy

multiplexer with bits of SRAM. The values in the function generators are also stored

in SRAM. This means that the Xilinx FPGA must be reconfigured whenever the power

supply to the FPGA is removed and restored.
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Eveiy XUlnx 4000 series FPGA contains a square matrix of CLBs, surrounded by a

ring of Input/Output Blocks (lOBs). The JOB connect the CLBs to the pins of the

FPGA. The lOBs are configurable and can be programmed for different electrical

characteristics, use of registers, etc. Each FPGA has an extensive set of internal

routing tracks, and many blocks of programmable switches which can form

connections between the tracks and the CLBs and lOBs. Different FPGAs in the

XC4000 series have different numbers of CLBs, and differ in the exact

interconnections available internally and pins available externally.

Each FPGA configuration consists of individual settings for every CLB and lOB, and

settings for every programmable interconnection point. The total configuration

stream can reach nearly two million bits for the largest Xilinx FPGAs. In CCM

applicatioris, the configuration data is usually sent to the FPGA from a host

computer. The data can be sent to the FPGA serially or in parallel, at either 1 MHz or

8 MHz clock rates. Elven at the faster speed, configuring a large FPGA can take tens

or hundreds of milliseconds. The JOlinx XC4000 series FPGA cannot be partially

configured: that is, the entire FPGA must be reconfigured to change any of the device

settings.

2) Board Architecture

Annapolis Microsystems manufactures several different types of CCM boards. The

one used in this project is the Wildforce-XL board. It is a PCI-bus card, which uses

five Xilinx XC4000XL FPGAs for processing elements. The specific version of the

board used had 1 XC4036XL FPGA and 4 XC4013XL FPGAs available for processing.

A comparison of the resources in each FPGA is shown in Table III-l.
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Table III-l. Resources Available in FPGAs Used on WMforce-XL.

Lx)gic Cells CLB Matrix Tot^ CLBs Number of

Flip-Flops
Ekjuivalent
Gate Count

XC4013XL 1368 13 X 13 576 1536
10,000-
30,000

XC4036XL

Source: Xlllnx. In

3078 36 X 36 1296 3168
22,000 -
65,000

Annapolis Microsystems refers to the FPGAs on the Wildforce board as processing

elements. The XC4036XL FPGA is called a control .processing element and given the

designation CPEO. It differs from the other FPGAs in that it is larger, and also in that

it has control lines available for various resources on the board, such as the external

I/O interface and crossbar configuration register, that are not available to the other

FPGAs. The four XC4013XL FPGAs are given the designations PEl, PE2, PE3, and

PE4. These four processing elements are connected together in a linear array by a

36-bit systolic bus. All five FPGAs can be connected by the 36-bit crossbar, which

selectively allows connections between any of the processing elements. CPEO can

only connect to the other processing elements through the crossbar.

Each FPGA on the board has a small daughterboard associated with it, which can be

populated with memory or a Digital Signal Processing (DSP) chip. Each of the FPGAs

on the board used in this project had 32 KB of 32-bit SRAM on its daughterboard.

These daughterboards have a dual-port memory controller such that both the FPGA

and the host computer can access the SRAM.

The board also contains a PCI interface for communicating with the host computer,

and several FIFO registers to facilitate data transfer across the PCI bus. Figure 1II-5

shows a simplified block diagram of the Wildforce board. Since there are many
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resources available on the Wildforce board and many configurations of the crossbar

and other components, it was decided to use a constrained configuration of the

board for the initial manual and automatic implementations. This reduces the

problem complexity to a more manageable level. Eiventually the constraints on the

board utilization will be relaxed so that all of the power of the Wildforce-XL board will

be available in the automated CHAMPION system.

The constrained configuration of the board used in this project did not use any of the

FIFOs. All communication with the host was done through the SRAM associated Avith

each processing element. The crossbar was used only to provide a 36-bit path fi:om

CPEO to PEL The connections between processing elements are normally

bidirectional. For the constrained irnplementation, however, it was decided that the

direction of all connections between processing elements would be fixed so that all

signals would pass in one direction only. The board topology became a linear array,
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with all signals starting in CPEO passing to PEl. No signals could run from PEl back

to CPEO. Similarly, all signals from PEl ran to PE2, with no signals allowed to pass

back from PE2 to PEl. A diagr^ showing the configuration of the Wildforce-XL

board as used in this project is shown in Figure III-6.
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Figure III-6. Wik^orce-XL Board As Used.
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IV. IMPLEMENTATION

A. Cantata Implementations of START

1) Standard Cantata

The START algorithm was Inltiially developed for a graduate class in digital image

processing and was written in the MATLAB language. After the decision was made to

adopt the START algorithm for this project, it first had to be implemented in Cantata.

The first Cantata version used gl3^hs from the standard toolboxes supplied with the

Khoros software package. It took approximately eight days to successfully implement

the application in Cantata using the standard glyphs. The standard Cantata

implementation took 57 seconds to process one 256 x 256 image from the set of test

images.

Nineiy-nine total glyphs were needed to implement the algorithm. Only 20 different

gljrphs were needed, but many of these glyphs were used repeatedly. A list of the

glyphs used is shown in Table IV-1. Upon examination of the Cantata workspace, it

was apparent that some of the gl3rphs used could be implemented directly in

hardware and some could not be directly implemented in any practical manner. For

instance, the glyphs classified as arithmetic in Table FV-l, addition and absolute

value, are standard operators that can be easily implemented in hardware. The

glj^hs classified as Khoros specific, on the other hand, perform functions that are

specific to the data structures used in Khoros. Since these complex data structures

are not readily implementable in hardware, functions related to these data

structures have no direct hardware equivalent. Determining which glyphs had

39



Table IV-1. GUjphs Used in Standard Cantata Implementation of START.

Glyph Name Glyph Type Hardware Ekjuivalent? Times Used

6Read File File I/O Yes

Save File File I/O Yes 1
Right Shift Bitwise operator Yes 1
AND Bitwise operator Yes 1
OR Bitwise operator Yes 6
NOT Bitwise operator Yes 1
> = Comparison Yes 4
> Comparison Yes 7

Absolute Value Arithmetic Yes 2
Add Arithmetic Yes 8
Inset Geometric No 1

Pad Geometric No 18

Statistics Mathematical No 9

Convolve Mathematical No 5

Convert Type Data Handling No 5
Switch Data Handling Yes 6

Constant Data Handling Yes 15

Copy from Value Khoros Specific No 1

Insert Segment Khoros Specific No 1

Unmask Khoros Specific No 1

hardware equivalents and which did not was crucial to the eventual implementation

of the STAFTT algorithm in hardware.

Besides the addition and absolute value glyphs, other gl5q)hs that were clearly

readily implementable in hardware were the comparison operators and the bitwise

operators. The file I/O operators would not actually be accessing file structures on a

hard drive, but would be accessing data transferred to the COM hardware by the

host, and would thus perform an analogous function. They were therefore also

considered to have a hardware equivalent. The switch glyph performed a function

identical to that performed by a multiplexer, so it had a clear hardware equivalent.

The constant glyph simply generates a constant value, which can be done in

hardware by simply fixing wires to logical ones or zeros.
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Many other gl5T)hs had no clear hardware equivalent. The pad and inset gljrphs

performed geometric operations on a two-dimensional image. There was no directly

equivalent way to do these two-dimensional , operations in a hardware

implementation where the images would be streamed through in one dimension. The

statistics glyph presented a different problem. This glyph calls a Khoros routine that

can perform over 25 different statistical functions, from simple functions such as

mean, to much more complex fimctions such as skew and kurtosis. It would not be

efficient to create a hardware module that performed all of these functions if only one

or two yrere used in a given appUcation. Since the START application only needed the

mean and standard deviation functions, it made sense to have these be implemented

separately, using other hardware glyphs, rather than by a monolithic statistics block

capable of performing other operations. The convolve operator had a; problem similar

to the statistics glyph, in that its functionaiify was too broad. It could perform a

convolution of one image with a mask of any size and with any values. This sort of

flexibility can not be implemented efficiently in hardware. An efficient

implementation of convolution would have to have a structure specified by the mask

to be used, so a general-purpose convolution block had no direct hardware

equivalent. The convert type glyph converts data from one data type to another, such

as ft-om floating point to integer. Since the data types would have to be managed

quite differently in hardware than they are in software, there could be no glyph

performing this exact function in hardware. As mentioned previously, the three

glyphs that performed Khoros specific functions also had no hardware equivalents.

The implementation of the START algorithm in standard Khoros revealed several

problems. As Just discussed, many of the glyphs used in stand^d Khoros have no

exact hardware equivalent. The STAF?T algorithm would have to be implemented in

Cantata again, using only glyphs that had hardware equivalents. However, the
n  n 41 n



functionally of the ̂ yphs that did not have hardware equivalents would have to be

duplicated in some fashion that was compatible with glyphs that could be

implemented. This required the creation of glyphs to perform new functions that

would map directly to a hardware implementation.

2) Hardware Equivalent Cantata

After the problems with the standard Cantata implementation were identified,

development of a new Cantata implementation that would be more compatible with

hardware implementation was begun. Some portions of the original workspace

contained only hardware compatible gl5q)hs and could be retained, but in general,

tbe algorithm had to be re-implemented' from scratch. It took more than three weeks

to develop the hardware equivalent Cantata workspace, including the time taken' to

develop the custom glyphs.

The hardware equivalent implementation took 17 minutes and 34 seconds to process

one 256 x 256 image from the test image set. This is more than eleven times longer

than the standard Cantata version. Not only did the hardware equivalent version

have more glyphs than ilie standard version, but also some of the glyphs in the

hardware equivalent were custom glyphs. Due to the way that Cantata integrates

custom glyphs with the standard ones, custom glyphs are much slower.

The new implementation was identified as being hardware equivalent Cantata. It

contained a mix of standard Cantata! glyphs and glyphs that were designed especially

for this project and were linked to C programs that performed the desired functions.

The hardware equivalent Cantata version required a total of 305 glyphs, of 24

different types. The glyphs used are shown in Table lV-2. Many of the glyphs used

are in the standard Cantata toolboxes, although not all of these were used in the
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Table lV-2. Glyphs Used in Hardware Equivalent Cantata Implementation of ̂ART.

Glyph Name . Glvph Source In First Version ? Times Used

1
RAM Read Custom No
RAM Write Custom No 1
Convolution Stream Custom , No 4
Stream Max Custom No 7
Stream Sum Custom . . No 4
Row/Column Counter Custom , No 7
Add Khoros Yes 62
Subtract Khoros No 24
Absolute Difference Khoros No 4
Right Shift Khoros Yes 15
Left Shift Khoros No 3
Square Khoros No 4
Square Root Khoros No 2

■> = Khoros Yes 18
> Khoros Yes 12
<= Khoros No 12
< Khoros No 14
== Khoros No 24
AND Khoros Yes 50
NAND Khoros No 6
OR Khoros Yes 26
NOR Khoros No 1.
Clip. Khoros No 3
Constant Khoros Yes 1

standard Cantata implementation. This is because some of the ifunetions that were

performed by glj^Dhs that did not have hardware equivalents could be implemented
instead.by other standard Cantata glyphs, which did have hardware equivalents,
by combinations of these glyphs with custom glyphs.

or

All of the custom glyphs were needed because of differences in the way that image
data is represented in Cantata and the way it is represented in hardware. In the

standard Cantata implementation, the images are represented by two-dimensional
arrays of pixel values. Since the hardware implementation would use one-

dimensional streams of pixels, the mapping would be simplified if the hardware
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equivalent Cantata version used one-dimensional arrays of pixel values as well. This

required new Cantata glyphs that operated on one-dimensional streams of pixel

values, as well as glyphs to read and write these streams. These functions were

written in C and used to create new Cantata glyphs using the development tools

provided with the Khoros software package.

The hardware equivalent Cantata implementation was tested using the same suite of

FUR images used to test the standard Cantata implementation (These results are

discussed in Chapter V]. Due to slight differences in the way some calculations were

done, and the way data was represented, not all of the results were identical when

compared pixel by pixel. However, the results were identical when the targets

identified and missed were compared between the two versions. The hardware

equivalent version had the same effective functionality as the standard Cantata

version and so it was accepted as suitable for implementation in hardware.

B. Glyph Libraries

A major part of the development of the CHAMPION project is the creation of glyph

libraries. A set of hardware-equivalent glyphs for use in the Cantata environment

was needed for developing applications. These hardware equivalent glyphs were

identified by determining which ones were needed for implementing the START

algorithm. A corresponding set of hardware glyphs was also .needed to implement the

application on the CCM hardware. Further implementations of other applications will

expand the libraries available for CHAMPION. Much of the hardware glyph

development was done by another member of the CHAMPION team, Mr. Senthil

Natarajan. A more complete account of this aspect of the research may be found in
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his M.S. thesis, submitted in August 1999, to the University of Tennessee in

Knoxville.

1) Khoros Cantata Glyphs

The are many glyphs available in the toolboxes that come with Khoros. These range

from veiy basic operations such as addition and subtraction, to very complicated

ones such as kurtosis and fast Fourier transforms. All of the glyphs share common

code that provides support for the various Khoros data structures and for the

graphical user interface used in the Cantata environment. Built into each glyph is

code to support data transfer from one glyph to another, handling of different data

lypes and structures, and other low-level functions. The actual operations performed

by the glyphs are performed by separate programs that can be called from the

command line, as well as from Cantata. The glyphs thus represent fairly complex

software constructs, which is part of what gives Cantata its power and flexibility.

Unfortunately, as previously discussed, many of the standard Khoros glyphs do not

map veiy well to hardware. In addition, the complex software wrappers that provide

the sophisticated data handling of the glyphs abstract away some important

considerations for data transfer and synchronization that must be considered in

hardware. The standard hardware glyphs are too "high-level" for completely trouble-

free use in the CHAMPION system. By eliminating gl5^hs that cannot be

implemented in hardware and creating new ones specifically designed for use in

hardware implementations, and by making allowances for the different data handling

characteristics of Cantata and hardware, the problems with the standard Cantata

gl5^h libraries can be overcome.
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2) Hardware Equivalent Glyphs

A set of glyphs that could be used in CHAMPION had to be chosen. These included

standard Cantata gl3rphs that could be implemented in hardware, as well as custom

glyphs developed specifically for CHAMPION. While not every existing Cantata

workspace will have the potential to be mapped to hardware, the goal of the

CHAMPION project is to be able to map to hardware any Cantata workspace which is

entirely composed of hardware compatible glyphs. If the set of hardware compatible

glyphs is large enough, them most, if not all, workspaces that can be implemented in

Cantata can be implemented using hardware equivalent glyphs, and thus can be

mapped to hardware by CHAMPION.

The glyphs chosen to be used in CHAMPION had to not only be implementable in

hardware, but they also had to operate in Cantata in a manner equivalent to the way

the hardware glyphs would operate. For this reason, the Cantata glyphs used in

CHAMPION are called hardware equivalent glyphs. Many of the standard Cantata

glyphs were considered to be hardware-equivalent, even though they had more

functionality than the corresponding hardware. As long as the glyphs can produce

the same outputs as hardware when presented with the same inputs, they are

considered hardware equivalent, even if the Cantata version can handle a wider

range of inputs than the hardware versions.

Gljqjhs for many of the standard functions needed, such as basic arithmetic and

logical operators, could be supplied by the standard Cantata toolboxes. However,

those operations that depend on the geometry of the data needed to be created

especially for CHAMPION. This is because of the two-dimensional representation of

images used in Cantata, as coinpared to the one-dimensional representation of
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images in hardware. Custom gljrphs were created to perform functions on streams of

pixel images. These functions were needed to perform the types of operations that

are normally implemented with two-dimensional geometric operators in standard

Cantata. All of the custom hardware equivalent glyphs are listed in Table IV-2.

3) Hardware Glyphs

A hardware glyph is a block of hardware that performs a certain specific function

that corresponds directly to a hardware-equivalent glyph in the CHAMPION toolbox.

A hardware gl3q)h had to be developed for every hardware-equivalent gl3q)h used in

the START algorithm. The glyphs were developed in VHDL. This was' done to allow for

compatibility with CCMs other than the Wlldforce. By using VHDL. the behavioral

description of each glyph was independent of the specific FPGA on which it would be

implemented. The VHDL description of each glyph was parameterizable, meaning

that various characteristics of the glyphs, such as the number of bits in the input,

were specified as generics that could be changed as needed. This meant that one

VHDL template could be used to s)mtheslze many different instances of specific

glyphs. For instance, an addition glyph template could be used to synthesize adders

for inputs of 8 bits, 9 bits, or however many input bits were needed for a specific

application.

By using glyphs with characteristics that matched those needed by the application, a

more efficient use of hardware could be made. Using an 8-bit adder when two 5-bit

numbers are being added wastes nearly half of the resources used by the adder

gl5q)h. Each specific version of each glyph was synthesized and stored in a format

specific to the hardware being used. Since Xilinx FPGAs were used on the Wildforce

board, the specific glyph instances were synthesized into the Xilinx Netlist Format

(XNF) and stored in a library. In CHAMPION, if an application needs an instance of a
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glyph that does not yet exist In the library, the VHDL template can be used to create

it. The new glyph will then be kept in the Ubraiy in case it is needed in the future. In

this way, most of the glyphs needed by applications can be pre-synthesized, speeding

up the application mapping process, to the initial manual application, the library

was created with only the glyphs needed to implement START. By implementing

more applications, the library of pre-synthesized hardware glyphs will be enlarged.

All of the hardware gl5rphs were designed in such a way that any glyph can be

connected with any other glyph, assuming that the number of bits in the inputs and

outputs are equivalent. Special glyphs for padding and truncating bits can be used

to interface glyphs that otherwise could not be connected because of differing data

widths, to addition to data inputs and outputs, each hardware glyph had three

standard control lines associated with every data stream being input to or output

from the glyph. These control 'lines helped to emulate the data transfer

characteristics of Cantata glyphs. The three control lines were called Stream Valid

(SV). Pixel Valid (PV). and Data Valid (DV). Each hardware gljrph handled these three

control lines in a consistent way so that the meaning of the control lines was the

same throughout an entire hardware implementation.

Stream Valid was used to delimit the begitming and end of each stream of data. A

single stream of data consisted of one unit of data that was to be considered as a

whole, such as a single image, to Cantata, these units of data are transferred as one

single data structure. Since in hardware, these units are transfeired one data value

at a time, a way of delimiting one stream from another was needed. The SV control

line is normally LOW. When a new stream begins, the SV line associated with that

stream goes HIGH at the first pixel of the stream and goes LOW after the last pixel.

In other words, the SV line is HIGH whenever a stream is present and LOW whenever
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it is not. As long as least one clock cycle is inserted between successive streams, the

hardware glyphs could distinguish between them.

Pixel Valid was used to indicate if individual data values in a stream were actually

part of an image, or if they were meaningless data inserted as a spacer by a glyph

.  that could not produce a result every clock cycle. For instance, one method of

performing convolution in. hardware can only produce a value every nine clock

cycles. In this case, eight out of every nine data will have the PV line set LOW; only

the ninth data valu6, which corresponds to an actual pixel, will have the PV line set

HIGH. All of the data values will have the SV line set HIGH, however, as there is only

one stream of data present.

The Data Valid line is used to signal whether a particular data value contains data

that is valid. These are data values that do represent valid pixels, so the PV line is

HIGH, but the value stored in that pixel location may not be data that should be

used in further calculations. For instance, the pixels along the edges of an image

that has been convolved with a mask contain values that are not valid, as they are

the result of both the image and the, zero-padded edges. These border pixels could

skew statistical calculations involving the image, so they are marked by having the

DV line associated with these pixels LOW signaling that the data in these pixels is

invalid. Table rV-3 shows the different possible combinations of control lines and

their meanings.
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Table IV-3. Hardware Glyph Control Line Combinations and Meanings.

sv PV DV Meamng

0 X X
If SV is LOW, there is not a data stream present. The values of PV
and DV have no meaning in this case.

1 1 1

In this case, SV, PV, and DV are all HIGH, indicating that a valid
data stream is present, the current data represents a valid pixel
location, and the current data value is valid.

1 1 0
Since DV is LOW, the current data value is not valid, but it is a
valid pixel location and is part of a valid stream.

1 0 X

Since PV is LOW, the current value is not a valid pixel location. In
this case, the data is always invalid, so DV line has no meaning.
This data value is still part of a valid data stream.

C. Differences Between Cantata and Hardware

At first glance, an application in Khoros Cantata may seem veiy similar to a

schematic for a hardware design. Each gl5Th can be seen to represent a functional

block and the connections between glyphs can be seen to represent wires or buses

connecting the functional units. Unfortunately, upon closer examination things are

not quite that simple. The Khoros Cantata software takes care of many details that

are not apparent from the graphical workspace. Operations such as converting

between different data types, synchronizing data, and transferring blocks of data

between glyphs are handled by software wrappers in each glyph. In a hardware

design, these operations may need to be performed by specific hardware modules

that have no corresponding glyphs in the Cantata workspace. Three different types of

operations were found that were handled significantly differently in Cantata and in

hardware. These operations and the way they are handled are discussed in the next

three sections.

1) Data Transfer

In Cantata, data transfer from glyph to glyph is handled by the operating system. In

the most common operating mode, the data output by one glyph is written out to a
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temporaiy file using system functions. Hie Cantata system records the name of the

temporary file and passes it to the gl5rph(s) that will use that data as their input(s).

These succeeding glyphs then use system functions to read in the data. The actual

transfer method involves storage on a hard drive, and the entire file is transferred at

one time. The data is stored in one of the Khoros data structures.

In the type of implementation that is suited for operation in FPGA-based hardware,

data is transferred between glyphs one value at a time, rather than an entire block of

data. Instead of transferring an entire image, as in Cantata, only one pixel is

transferred at each clock cycle in hardware. The transfer method requires registers

to hold the data values as they are transferred between gl5q)hs. In some cases, data

must be stored in RAM as an intermediate type of storage between glyphs. Even if

data is stored in RAM, though, data is still transferred one value at time.

To prevent problems from occurring when mapping to hardware, this difference in

data transfer must be accounted for. If a hardware glyph operates on each value in a

stream individually, then this difference in data transfer will not matter. For

instance, a hardware equivalent glyph that adds a constant to each value in a stream

only needs to work with one value at a time. So the equivalent hardware glyph can

work with one data value at a time as well and the mapping will be simple. A

hardware equivalent glyph that needs every data value in a stream before it can

produce a valid output, such as a glyph for finding the sum of all the pixels in an

image, will not map to hardware easily, unless the hardware glyphs take the

differences in data transfer methods into account. By creating hardware gl5q)hs that

do not bring the output SV line HIGH until they have processed the entire input

stream, the mapping from Cantata is again made simple.
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2) Data Sjmchronization

In Cantata, each gl5rph is a separate C program that is called by the main routine.

These separate glyph routines are called whenever there is new data for all of their

inputs. If only some of the data needed is present, then the main routine will wait to

call the glyph routine until the missing data is also present. In this way, there are

never any data synchronization errors in Cantata. In the hardware implementation,

however, data must be synchronized because all of the hardware is synchronous and

processes whatever data is at the inputs at every rising clock edge.

In Figure IV-1(a), a simple network of two heirdware gl3^hs, designated X and Y, is

shown. Both glj^hs run off the same clock signal, as do all of the hardware gl5^hs in

every FPGA. If images A, B, and C all become available at the same time, then their

SV lines will go HIGH on the same clock cycle. When both input SV lines to glyph X

go HIGH, it can add the two inputs, which are the first pixel from image A and the

first pixel fi-om image B. On the next clock cycle, the SV line at the output of glyph X

will go HIGH, since it can output valid data. However, at the same time that the SV

lines for irrlages A and B go HIGH, the SV line for image C goes HIGH as well. One of

input SV lines for glyph Y is HIGH since it is the image C SV line, but the other input

SV line for glyph Y is the output SV line for gl5^h X, and it will not go HIGH for

another clock cycle. This means that the inputs to glyph Y are out of sync, and the

results in hardware will not be the same as the results obtained in Cantata.

To fix this problem, a delay buffer, D, needs to be inserted before one of the inputs to

glyph Y, as shown in Figure rv-l(b). Now the SV line for image C is delayed one clock

cycle before it reaches glyph Y, synchronizing it with the output of glyph X. The data

sjmchronization for ̂ 1 glyphs with more than one input must be checked and fixed

52



Clock

XImage A

Image B

Y

Image C

(a) Unsynchronized Glyphs.

Clock

Image A X

Image B

YD

Image C

(b) Glyphs Synchronized by Delay Insertion.

Figure IV-1. Data Synchronization Problem and Solution.
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throughout the entire application. If the correction factor needed is too large, than it

will be impractical to insert delay buffers to s)mchronize the data. Instead, the data

must be stored in RAM and synchronized by correct timing of the RAM read

operations. It is important to note that the glyphs inserted for data sjmchronization

do not appear in the original Cantata workspace. Instead, they are identified and

inserted during the mapping process, whether the mapping is done manually or

automatically.

3) Data Conversion/Operator Sizing

In Cantata, data conversion is handled automatically by the software. If the inputs to

a glyph are of different types, the mismatched data will be recast, using the standard

rules of the C language, adapted to prevent data loss. For instance, if an Integer is

added to a floating-point number, the result will be a floating-point number. If a

double precision number is added to single precision number, the result will be

double precision. This is easy to do in software, since eveiy operator can work on any

valid data type. For instance, one addition program can easily be made to work on

any kind of input data.

As discussed earlier, all of the hardware gljrphs are parameterized for the number of

input bits. There are also different gljrphs for signed and unsigned numbers, and

when floating point support is added to CHAMPION, there will be different glyphs for

floating point numbers. All of the glyphs are designed with the assumption that the

inputs will aU be of the same type. So two unsigned five-bit numbers can be added

together, but a five-bit number cannot be added to a six-bit number, and an

unsigned number cannot be added to a signed number. If the inputs to a glyph are

of different types, one of the inputs must be converted to match the other. Since

there are so many different possible combinations of input types, there is no way for
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the glyph to do this automatically. Part of the mapping process must therefore

include checking to see that all of the inputs are of the same type. If not, then one or

more inputs must be converted to correct the mismatch. This is done by inserting a

hardware glyph to perform the correct conversion. These conversion gljrphs do not

appear in the Cantata workspace. Just like the glyphs inserted for data

s5mchronization, they are not identified and inserted until the mapping process.

In addition to ensuring that data is converted to consistent types at the inputs of a

glyph, the glyph itself must also be of the correct size for the data being input. The

Cantata workspace will have the same adder glyph every place that addition is to be

performed, regardless of the type of data being added. In hardware, the addition

glyph selected must be chosen to match the type of numbers being added. If two five-

bit unsigned numbers are being added, an adder glyph for five-bit unsigned numbers

must be chosen from the library of pre-synthesized hardware glyphs. If that specific

adder glyph is not already in the library, it can be created using the VHDL template

for adder gl3T>hs. In this way, the correct glyph for the data can always be made

available. The information as to the specific adder being used does not exist in the

Cantata workspace. The mapping process must determine which specific hardware

glj^h is needed, based on the data being presented to it.

D. Mapping Procedure

Once the glyph libraries had been completed and the differences between Cantata

and hardware were understood, the development of the mapping process could

begin. A simple example, actually a portion of START, will be used to illustrate the
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steps involved in mapping from Cantata to hardware. The same techniques

demonstrated with the example were also used to map the entire START application.

1) Workspace Conversion

The first step in the process was to convert the Cantata workspace into a graph form

that could be manipulated more easily. The example hardware equivalent Cantata

workspace is shown in Figure lV-2. This workspace performs a simple low-pass

filtering operation. A one-dimensional stream of pixel values, representing a two-

dimensional image enters the workspace through the terminal labeled "IN." The

convstream glyph produces nine data streams from the input. For each pixel in the

input stream, nine pixels are output from the convstream glyph, representing the

eight neighboring pixels, and the original pixel itself. An entire stream representing

each of the neighboring pixels is generated by the glyph, with zeros inserted for any

pixel neighbor which falls outside the original image. These pixel neighbor streams,
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Figure lV-2. Example Hardware Equivalent Cantata Workspace - Low-Pass Filter.



along with the original stream, can be used to implement a convolution with a 3 x 3

mask. In the example, all of the streams are added together, and the result is divided

by eight. This is equivalent to convolution with the mask shown below:

1  1 1

1  1 1

1  1 1
8

This is the same low-pass filter operation described in section II1.A.1. The divide by

eight is implemented by a right shift of three places, and the output is clipped to a

value of 255, so that the data remains 8-bits wide. The equivalent graph form of this

workspace is shown in Figure IV-3. This graph form consists of a set of vertices,

which correspond to glyphs, and a set of edges, which correspond to the connections

between glyphs. The graph form is widely used for design automation and can easily

be stored and manipulated by computer, making it ideal for the automated system,

CHAMPION. For the manual implementation, the graph form was simply a

convenient representation that made the mapping process easier to visualize. The

graph form was produced manually by simply drawing the Cantata workspace as

IN I—

CONVSTREAM

>  RIGHT SHIFT 3

>  CLIP HIGH 2S5

^ OUT

Figure IV-3. Graph Form of Low-Pass Filter Workspace.
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seen on the workstation screen. In CHAMPION, the workspace data files wUl be

automatically converted to an internal data structure.

2) Data Sizing and Glyph Selection

The graph form is missing much of the information necessary to complete the

mapping process. The vertices, are identified by the type" of operation each one

represents, but there is no information associated with the edges. This is not a

problem in Cantata, since all data is tireated the same way. In hardware, however,

the number of bits wide each connection is must be known. This information must

be detenhined before the mapping process can continue.

The information about the vertices is also not complete. The type of gljrph is known

(e.g., addition, clip, etc.), but the exact version of the glyph is not known. As

discussed previously, it is not enough to know that an addition glyph is needed in

hardware; the input bit width of the glj^h (and possibly other parameters) must be

known as well. The process of filling in this information for both the vertices and

edges must proceed simultaneously, since the inputs to the glyphs determine which

specific glyph is needed, and the output of the glyph determines the width of the

input to the next gl3T»h.

The bit width of the data entering the workspace must be supplied by the user.

Other information, such as the size of the image being processed, may also be

required of the user. For the convstream glyph, both the image size and input size

must be supplied. Once these two pieces of information are known, the correct

version of the convstream glyph, convstream_8_256_256 can be selected from the

library, and the new designation associated with that vertex of the graph. Each

hardware glyph has an information file associated with it that contains, among other
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things, information about the size of the outputs of the gl3'phs. These information

files are referred to as INF files, due to the file e^ension used to designate them. By

referring to the INF file for the convstream_8_256_256 glyph, it can be determined

that all of its outputs are 8 bits wide. This infoimatiori is then associated with the

nine edges that represent the outputs of the glyph.

Next, the four adders to the immediate right of the convstream glyph can be

specified. Since their inputs are 8 bits wide, the add_8 glj^h is selected ft-om the

library, and that designation is added to the corresponding vertices. The INF file

indicates that the output of the add_8 glj^ph is 9 bits wide, so that information is

associated with the appropriate edges. This process is repeated for the next two

adders, which are to the immediate right of the four add_8 glyphs, and for the next

adder to the right of those. The appropriate edges are specified using information

from the INF files. All of the vertex and edge information determined so far can be
( t

seen in Figure IV-4. At this point, a problem arises. The last adder gets one of its

IN I—

8

/-

CONVSTREAM_8^2S6_256 -h^

■tM

/  ! ^ ADD.a

11

-i-

RIGHTSHIFTS

CLIP HIGH 255

-H OUT

Figure lV-4. Data Alignment Problem in Low-Pass Filter Graph.
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inputs from the convstream_8_256_256 glyph and the other from the add_10 glyph

to its right. These two inputs are supplied by edges with different widths. Since all of

the hardware glyphs have been designed to have all of their inputs be the samp

width, a glyph must be inserted to convert one of the inputs to be the same as the

other input. This can be done by inserting a pad_high_8_ll along the edge running

from the convstream_8_256_256 gljrph to the last adder. This glyph simply adds

three zeros to the left of the most significant bit of the input, producing an 11-bit

output.

The pad_high_8_l 1 glyph does not exist in the Cantata workspace; it must be added

during the mapping process to ensure that the data is in the correct form. Although

this glyph does not have an equivalent in Cantata, it is otherwise the same as the

other hardware glyphs. It exists in pre-compiled, XNF form, it has an associated INF

file, and it handles the control lines correctly. Its function is veiy simple, however,

and when the entire design is synthesized, it will be represented by a wiring directive

telling the FPGA place and route software to connect three of the inputs of the adder

to ground, representing logical zero. By treating it the same as any other glyph,

though, the mapping process is simplified, since all vertices can be treated

identically.

Once the pad glyph is added, the last adder can be specified and the annotation

process continued. The shift glyph shifts the data, but it does not change the

number of bits. Since we want the output to be that same width as the input, a

truncate_high_12_8 glyph must be added before the output. This is another data

conversion glyph, like the pad glyph. It has no corresponding glyph in the Cantata

workspace. It simply tnmcates the four most significant bits of the input. Since the

inputs have been clipped to 255, we know that the four high bits must be zero, so no
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information is lost. The data graph with complete annotation for glyph type and

connection width is shown in Figure IV-5.

3} Data S5nichronlzatlon

The next step in the mapping process is data synchronization. Each glyph takes a

certain number of clock cycles from the time it is presented with a valid data stream

to output a valid data stream. This value is the latency of the glyph. It can be

determined from the VHDL template and is stored in the INK file for the glyph. Each

edge is given a time value. The edge at the output of a glyph is given a timp value

equal to the input plus the latency of the glyph. By assigning the input to the graph

time value T = 0, and adding the latencies of each glyph in turn, data

synchronization errors can be found and corrected.

If the input in our example workspace is given the time value T = 0, we must next

look at the latency of the Convstream_8_256_256 glyph. Its INF file indicates that the

latency is 257 clock cycles. This means that all of the outputs will be given the timp

IN I—

CONVSTREAM_0_2S6_256

±75

±75
-i-T^

-i-T^

PAD.HIGH_8_11

11

-h

12

RIGHT_SHIFT_12_3

CUP_HIGH_12_ 25S

12

v-

TRUNCATE_HI6H_12_8

-h

*-►1 OUT

Figure IV-5. Low-Pass Filter Graph with Data Widths and Glyph Types Annotated.
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value T = 0 + 257 = 257. All of the adder glyphs have latency 1, so the outputs of all

of the add_8 glyphs will have time value T = 257 + 1 = 258. This process can be

continued in the same manner for the add_9, add_10, and pad_high_8_ll glyphs.

The graph with time annotations at this point can be seen in Figure lV-6. Each glyph

has been annotated with its latency.

There is a problem at the inputs to the add_l 1 glyph. One input has time value T =

257 and one input has time value T = 260. Since the time values are not equal, the

data will not be synchronized. To synchronize the data, a delay of D clock cycles

must be Inserted before the input with the lowest time value, where D is the

difference between the two time values. In this case, D = 260 - 257 = 3 clock cycles.

The delay can actually be added in either of two places. It can be added before or

after the pad_high_8_ll. In either case, the data synchronization problem will be

corrected. If it is added before the pad_high_8_l 1 glyph, the delay will have to buffer
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T=0

CONVSTREAM_8_256_256

Lb 257

PAD_HIGH_8_11

L.Q

V T=257
-i H

ADD_e

8 8

^  ►
8 8

8 8

LbI

T=258
ADD_9

Lb 1

T=258

T=258

Ts259

ADD_9

Lb1

> AOD.IO

LbI

12

■7^ R1GHT_SHIFTJ2_3

CUP_HIGHJ2_ 255

T=259

12

-i-

T=258
THUNCATE_HIGH_12_8

T=257
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Figure lV-6. Partiol Time Annotation for Low-Pass Filter Graph.
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data that is 8 bits wide. If the delay is added after the pad_high_8_l 1 glyph, it will

have to buffer data that is 11 bits wide. Since either position wiU work, it makes

sense to use the position that will use less hardware resources. It will require more

hardware to buffer 11 bit data than to buffer 8 bit data, so the delay glyph should be

added before the pad_hlgh_ll_8 glyph. Now that the data size and delay values are

known, the correct delay glyph can be specified. The delay_3_8 glyph can now be

added to workspace. The time value annotation process continues through the

remainder of the graph. Even though there are no more glyphs with more than one

input, and thus no potential for data sjmchronization errors, the latency for the

entire graph should be computed in case it is used as part of another, larger graph.

The completely annotated graph, which also shows the location of the delay glyph,

can be seen in Figure rV-7.
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Figure IV-7. Low-Pass Filter Graph wiih Complete Time Annotation.
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4) Partitioning

a) Background

At this point In the mapping process, the application graph Is essentially complete.

The original Cantata workspace has been converted Into a graph form, and the graph

has been annotated with the necessary Information to specify the glyphs and the

connections between them. The differences between Cantata and hardware have

been accounted for by Inserting glyphs to take care of data conversion and data

synchronization. Now the application must be partitioned to fit the available

hardware.

This partitioning takes the form of mapping the vertices and edges of the application

graph onto the vertices and edges of the hardware graph. Tfie hardware graph Is a

set of vertices representing the hardware resources and a set of directed edges

representing the connections between them. Each vertex has a number representing

the amount of hardware resources available In the vertex, measured in CLBs. Each

edge has a number representing the number of available one-bit connections. The

hardware graph for the Wlldforce-XL board as used In this project Is a simplified

version of Figure 111-6 and can be represented simply as shown below. If a different

\  /

CCM Is to be used, or a different configuration of the Wlldforce-XL board, than the

hardware graph would be changed correspondingly. In this way the partitioning

process Is not specific to the CCM architecture used.
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Assigning the glyphs of the application graph to the resources on the hardware is

called spatial partitioing. If the application graph does not fit on the hardware graph,

than the CCM board must be reconfigured. This produces, in effect, another identical

hardware graph onto which the remainder of the application graph can be mapped.

This reconfiguration process can be repeated as many times as is necessary for the

entire application graph to be mapped to hardware. This mapping to different board

configurations is called temporal partitioning, since the board configurations are not

present simultaneously; they exist at different points in time.

b) Constraints

As the glyphs of the applications graph are mapped to the hardware graph, several

constraints must be observed. First, the total number of CLBs used by the glyphs

mapped into each FPGA must not exceed the number of CLBs available in the FPGA.

The number of CLBs available in each FPGA is dependent on the board architecture

and is known in advance. This information is part of the hardware graph. The

number of CLBs used by each gl3^h is also known in advance. When the individual

glyphs are synthesized, the synthesis tool determines the number of CLBs used by

the glyph and this information is stored in the INF file. As each glyph is added to an

FPGA, a running total of the number of CLBs occupied must be kept to ensure that

the capacity of the FPGA is not exceeded.

The second constraint is that the number of edge connections in each direction is

not exceeded. As each glyph is assigned to an FPGA, connections from the glyph to

gljqjhs in other FPGAs must be made through the edges connecting the vertices of

the hardware graph. These edges have capacities, in terms of the number of bits that

they can cany from one vertex to another, in each direction. In the hardware graph

for the Wildforce-XL as used in this project, the capacity of the connection from one
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FPGA to the next is 36 bits in one direction and zero bits in the other direction. As

each gljT)h is added to an FPGA, the connection capacity used by connections to this

glyph must be calculated and checked to ensure that the available connection

capacity is not exceeded.

The third constraint is imposed by the architecture of the Wildforce-XL board. Each

FPGA on the board has one bank of associated SRAM. There is a dual-port memory

controller for each bank of SRAM. One port of the controller is used by the host

interface and one port is available to hardware in the FPGA. Since only one memeoiy

access port is available to the glyphs in the FPGA, the SRAM caimot be read and
\

written to at the same time. Given the design of the gl)^hs, only one gl3^h can

access the RAM in a given FPGA. This means that only one glyph that requires FPGA

access can be placed in each FPGA.

Reconfiguration imposes another consideration on partitioning. Whenever the board

is reconfigured, intermediate data streams must be stored in RAM while the

reconfiguration takes place. Then the intermediate data must be read out of RAM

once the newly configured board starts running again. This means that a RAM write

gl5q)h and a RAM read glyph must be inserted into the application graph whenever a

reconfiguration takes place. These glyphs take up resources and may affect the

partitioning. Since these glyphs must access RAM, this also means that there cannot

be any other glyphs that need to access RAM in the same FPGA, which can also

affect the partition.

c) Partitioning Algorithm

There are numerous methods of partitioning a graph. There are many papers

addressing various partitioning algorithms. An overview of these, with an extensive
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list of references can be found In [39]. The ones most commonly used are iterative

improvement methods that optimize the partition for some cost function. These can

often be computationally intensive. For the manual implementation, all that was

desired was one useable partition. Rather than use an automated partitioning

method, a simple partitioning heuristic was developed. A simple method was possible

since the Wildforce-XL board was being used in a simple linear array configuration.

If a more complicated configuration had been used, then a more complex partitioning

method would likely have been needed to produce an acceptable partition.

Partitioning was done at a macro level first. A macro is a set of hardware glyphs that

performs a specific function and that can be considered as one unit. The low-pass

filter used as an example earlier in this chapter is an example of a macro. Using

macros simplified the partitioning and synthesis of the application. A macro can be

considered to be a large gl3T)h for partitioning purposes, but a macro can be broken

down into individual gljrphs as needed to implement an efficient partitioning.

Starting at the source node of the graph, the object was to pack in as many

hardware glyphs as possible in to the first FPGA. If a glyph could not fit in the first

FPGA, it was placed in the next FPGA to the right, as seen in the hardware graph on

page 64. Similarly, if placing a glyph in one FPGA violated the connection constraint

or the RAM access constraint, it was placed in the next FPGA to the right, if a glyph

did not fit in this next FPGA, it was placed in the one after that, as always working

from left to right. Each glyph was taken in turn and placed in the first FPGA it could

fit in without violating any of the constraints. Once a glyph was placed, it was not

moved again. Once as much of the application as possible was placed on the

hardware graph, a reconfiguration was inserted and the remaining portion of the

application graph was placed on the new hardware graph. This process was repeated
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until all of the glyphs had been assigned to a particular configuration of a specific

FPGA.

5) Synthesis

Once partitioning was complete, it was necessary to create the programming files to

actually implement the desired hardware in the FPGAs on the Wfidforce-XL board.

The programming files are created by first producing a VHDL file representing the

hardware desired for each FPGA. Since the glyphs themselves are pre-synthesized, it

is only necessary to identify the glyphs used, the connections between gl5rphs, and

the cormections between glyphs and the other FPGAs. This can be done by using

structural VHDL. All of the behavioral information is in the pre-synthesized XNF files

for each glyph.

There are several other VHDL files supplied by the manufacturer of the Wildforce-XL

that specify the board architecture, internal interface logic for each FPGA, and global

signals present on the board. These files are combined by the synthesis tool with the

one file created for the specific application to produce an XNF file describing the

hardware to be implemented in the FPGA. One of these XNF files is required for each

configuration of each FPGA.

The Xilinx place and route software is then used to map the hardware description in

the XNF file to the specific resources available in each FPGA. This results in a

programming file which specifies the configuration of all the function generators and

storage units in the CLBs, as well as the configuration of all of the programmable

interconnections in the FPGA and the configuration of the lOBs. This programming

file can then be downloaded to the FPGA to specify its behavior. One programming

file is needed for every configuration of each FPGA.
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6) Host Code Generation

The Wildforce-XL bo^d used for this project was installed in a Sun workstation. The

workstation acts as a host for the Wildforce-XL board, and a program running on the

host takes care of certain functions necessary to enable the Wildforce to be used. The

manufacturer of the Wildforce-XL board provides a driver and set of function calls to

communicate with the board. These function calls must be used to create the host

program, a C program created and compiled by the user. This host program must

initialize the Wildforce board and download the necessary programming files for each

FPGA. The host program also stores data to the SRAM on the Wildforce and reads

result data back from the SRAM. The host program reads image files from the

workstation hard drive to be used as input to the application, and writes the

application results back to the hard drive as another image file. In some cases, the

formatting of the data must be changed when it is moved from SRAM to disk or vice

versa.

Each application will require a different host program, depending on the number of

reconfigurations, where data is transferred inside the application, and a number of

other factors. A small set of operations should be sufficient for most, if not all host

programs, however. In order to make it possible to generate this host code

automatically, a modular library was created by the author specifically for

CHAMPION. This libraiy contains all of the functions that would be needed to create

a host program. By calling these functions in series, a working host program can be

created. While this was done manually for this project, it is hoped that the modular

nature of this libraiy will enable the development of an automatic host code

generator as part of the CHAMPION system.
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A pseudo-code representation of the host program used for running the START

algorithm on the Wildforce-XL is shown in Figure IV-8. Each line of pseudo-code

corresponds to a function call or small section of standardized code. First, the input

data is read from the workstation hard drive and formatted for storage in SRAM.

Communications are established between the board and the host computer, and

theri the Wildforce-XL board and the crossbar are initialized. For each configuration

of the board, the board must be setup for configuration, and the programming flies

for that configuration must be downloaded. Any data needed is written to SRAM, and

then execution is started. When the hardware is flnished, it signals the host program

using a hardware interrupt. The host program then reads any necessaiy data from

SRAM and proceeds to the next configuration, if any. When the final configuration is

complete, the results can be written out to the workstation hard drive.
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MAIN {

read in input image from disk;
format input image for storage in SRAM;
open session with Wildforce board;
initialize Wildforce board;
configure crossbar;

// First Configuration
setup board for configuration;
download first set of programming files to FPGAs;
write input data to Wildforce SRAM;
signal board to begin execution;
wait for interrupt signaling completion of execution;
read intermediate data from Wildforce SRAM;

// Second Configuration
setup board for configuration;
download second set of programming files to FPGAs;
write intermediate data back to Wildforce SRAM;
signal board to begin executions-
wait for interrupt signaling completion of executions-
read intermediate data from Wildforce SRAM;

// Third Configuration
setup board for configurations-
download third set of programming files to FPGAs;
write intermediate data back to Wildforce SRAM;
signal board to begin executions-
wait for interrupt signaling completion of executions-
read intermediate data from Wildforce SRAM;

// Fourth Configuration
setup board for configurations-
download fourth set of programming files to FPGAs;
write intermediate data back to Wildforce SRAM;
signal board to begin executions-
wait for interrupt signaling completion of executions-
read results from Wildforce SRAM;

format result data for disk storages-
write out result image to disks-
close Wildforce board;

}

Figure IV-8. Pseudo-Code for START Host Program.
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V. RESULTS

The entire START application was successfully run . on the Wildforce board. Four

board configurations were required, an initial configuration and three

reconfigurations. Details of these configurations, the results of the running the

application and timing data will be presented in this chapter.

A. Configurations

The hardware equivalent Cantata workspace for the START application was

converted into graph form, as discussed in section IV.D.l. The glyph selection and

connection sizing procedure discussed in section IV.D.2 was then applied to the

graph. Finally, the data synchronization procedure described in section 1V.D.3 was

applied. The final application graph was then partitioned onto the Wildforce-XL

graph using the algorithm discussed in 1V.D.4

Due to the partitioning constraints presented in section IV.D.4.b, the entire

application could not fit in one configuration of the Wildforce board. In total, four

configurations were required. Only two configurations would have been necessary if

the number of CLBs needed was the only consideration. However, the constraint

preventing the placement of two hardware glyphs requiring RAM access in the same

FPGA made it impossible to use fewer than four configurations. The later portions of

the START algorithm require fireqiient RAM access and relatively less computation,

so the constraint on RAM access dominated the glyph placement.
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Due to the repetition of the label function, and the necessity of beginning each

configuration with a RAM read and ending with a RAM write, some of the FPGAs

ended up with the same glyphs from one configuration to the next. This meant that

not every FPGA needed to be reprogrammed every time. Figure V-1 shows which

FPGAs were programmed for each board configuration and the configuration used.

A close examination of the resources used in each configuration illustrates how

much the RAM access constraint dominated the placement process. Table V-1 shows

how many of each hardware resource were used in each FPGA configuration. The

total resources used by any of the FPGAs did not exceed 57%. This number was not

higher due to the use of CLBs as the only measure of hardware resources. Keeping

Configuration 1

Configuration 2

Configuration 3

Configuration 4

CPEO

CPEO.A
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PEX.L

PEX.L

PE3.B

PE3.C
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Figure V-1. FPGA Progrcvruning for Each Board Configuration.



Table V-1. Hardware Resource Usage for Each FPGA Configuration.

FPGA

Conflg.

CPEO.A

Calculated
OLE Usage

1159/1296
(89 %)

Actual

OLE Usage

1296/1296
(ICQ %)

Flip-Flop
and Latch

Usage

1853/2592
(71 %)

3-Input
FG Usage/
4-Input
FG Usage

242/1296
(18 %)/
1601/2592
(61 %)

I/O Pin
Usage

33/36
(92 %)

Total

FPGA

Resource
Usage %

3696/6480
(57 %)

PE1.A

452/576
(78 %) 566/576

(98 %)
600/1152
(52 %)

114/576
(19 %)/
691/1152
(59 %)

26/36
(72 %) 1405/2880

(49 %)

PE2.A

488/576
(85 %) 548/576

(95 %)
800/1152
(65 %)

84/576
(14%)/
559/1152
(48 %)

4/36
(11 %) 1443/2880

(50 %)

PEX.L
374/576
(65 %)

502/576
(87 %)

604/1152
(51 %)

53/576
(9 %)/
386/1152
(33 %)

8/36
(22 %) 1043/2880

(36 %)

PE4.A

52/576
(9 %) 75/576

(13 %)
108/1152
(13%)

11/576

(1 %)/
51/1152
(4 %)

N/A 170/2880
(6 %)

CPEO.B

32/1296
(2 %) 53/1296

(4 %)
45/2592
(1 %)

10/1296

(1 %)/
79/2592
(3 %)

5/36
(14 %) 134/6480

(2 %)

PEl.B

374/576
(65 %) 495/576

(85 %)
600/1152
(51 %)

53/576
(9 %)/
374/1152
(32 %)

8/36
(22 %) 1027/2880

(36 %)

PE2.B

63/576

(11 %) 90/576
(15%)

115/1152
(9 %)

30/576
(5 %)/
99/1152
(8 %)

26/36
(72 %} 244/2880

(8 %)

PE3.B

0/576

(0 %) 6/576

(1 %)
2/1152

(1 %)

0/576
(0 %)/
12/1152
(1 %)

8/36
(22 %) 14/2880

(1 %)

PEl.C

117/576
(20 %) 75/576

(13 %)
79/1152
(6 %)

12/576
(2 %)/
100/1152
(8 %)

26/36
(72 %)

191/2880
(7%)

PE3.C

97/576

(17%) 119/576
(20 %)

152/1152
(13%)

30/576
(5 %)/
121/1152
(10 %)

11/36
(31 %)

303/2880
(1 %)
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track of the number of each type of function generators and the storage units

separately would have made the resource tracking more exact, at the expense of

making partitioning more complex. For CPEO, it can be seen that the calculated CLB

usage was 89%, but the actual CLB usage was only 57%. This is because the CLB

usage figures from the synthesis tool do not reflect the fact one glyph may use more

of a specific hardware resource than another may. To take an extreme case, two

glyphs could both be identified as using 100 CLBs, with one using all of the function

generators in 100 CLBs and one using all of the storage units in 100 CLBs. The

partitioning algorithm would assume that 200 CLBs would be needed for these two

glyphs, when they could possibly be placed in only 100 CLBs, by sharing the

resources in those CLBs. This fact does not account for the very low resource

utilization in the later FPGA configurations, such as CPEO.B and PE2.B. These were

so low due to the RAM access constraint only allowed a very few glyphs to be placed

in each FPGA.

The first board configuration is shown in Figure V-2. The number of I/O lines used

by each signal leaving the FPGA is shown next to each signal. The number of CLBs

used in each FPGA is shown in the comer of the block representing the FPGA. Most

of the glyphs are shown as macros, to reduce the complexity of the graph. The actual

partitioning was done on an individual glyph level wherever necessary. Since this is

the first configuration and thus the beginning of the application, the input image

must be read in before anything else can be done. This means it must be read in

CPEO. This is done by a RAM read glyph, which is represented by the block labeled

"Input Image" in the figure. The first processing operation, low-pass filtering, was

implemented by a macro, also placed in CPEO. Two other large macros, for Sobel

filtering and for computing the intensity statistics, fit into CPEO. No other macros or
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Figure V-2. First Board Conflguration.

individual glyphs could fit into CPEO, as it was found that either the resource

constraint, the I/O constraint, or the RAM access constraint would be violated by the

addition of any more glyphs. Once it was placed and routed, all 1296 CLBs of CPEO

were used, although the actual resource usage was only 57%. Of the 36 I/O lines to

PEl, 33 were used.

PEl could hold two macros, for computing the edge statistics and checking the

intensity statistics, as well as one RAM buffer. Its calculated CLB usage was 78%,

although the actual resource usage was only 49%. PE2 and PE3 also reached fairly

high levels of calculated CLB usage, 85% and 65% respectively, although the actual

resource usage was much lower. The I/O usage was also well within the constraints.

Since at least one reconfiguration was needed,- a RAM ■write was needed and was

inserted into the application graph. It had to go into PE4, but because of the RAM
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access constraint, no other glyphs could be placed in PE4 with it, as any possible

gljrphs also needed RAM access. The calculated CLB usage of PE4 was thus only

13%. This is the first example of how the RAM access constraint prevented efficient

usage of all of the FPGA resources.

The second board configuration is shown in Figure V-3. The RAM access constraint

prevented the placement of the RAM buffer in CPEO, and the first glyph in the Find

First Target Pixel macro had too many I/O lines for placement in CPEO.

Consequently, the only glyph that could be placed in CPEO was the RAM read glyph.

This meant that only 2% of the hardware resources in the FPGA were used. PEl,

PE2, and PE^3 were utilized to a much higher degree, although the actual resource

utilization remained low. PE4 had the same problem as in the previous configuration

and was also underutilized.
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Figure V-3. Second Board Configuration.
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The third board configuration is shown in Figure V-4. The same RAM access

problems were also found in CPEO and PE4 as were found in the second

configuration. Due to the high number of RAM accesses required in the remainder of

the application graph, nothing could be placed in PE3, except for the RAM write

gl3q)h shown as placed in PEA. It was placed in PE>4 to be consistent with the other

configurations, simplifying the host code.

The fourth, and final, configuration is shown in Figure V-S. Due to the large number

of RAM access glyphs, as compared to other glyphs, the resource utilization for this

configuration was veiy low. liie aggregate resource utilization for the five FPGAs in

the fourth configuration was only 6%. While the START algorithm had perhaps an

unusually high number of operations requiring RAM access, the low resource usage

engendered by the RAM access constraint is a concern that wiU have to be addressed

in the CHAMPION system.
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B. Application Performance

1) Target Recognition

The entire test set of 40 images was run through the START application on the

Wildforce board. The targets identified, the targets missed, and the number of false

detections were recorded for each test image and compared to the results obtained

by running the same test images through the hardware-equivalent Cantata

implementation. The same results, were obtained from the hardware implementation

as were obtained from the hardware-equivalent Cantata implementation. These

results are shown in Table V-2. The implementation would not be considered

successful had the same results not been obtained in each implementation, so this

was an important result.
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Table V-2. Results from Cantata and Hardware Implementations of START.

Test

Image #
Original
Image

Filename

Targets
Detected

Targets
Present

False

Detections

Targets
Detected

Targets
Present

False

Detections

Cantata Implementation Hardware Implementation
1 novl0903.xv 3 4 0 3 4 0

2 novl0955.xv 2 4 0 2 4 0

3 novllOOO.xv 1 3 0 1 3 0

4 novll205.xv 3 4 0 3 4 0

5 novll230.xv 3 4 0 3 4 0

6 novll326.xv 2 3 0 2 3 0

7 novll329.xv 2 4 0 2 4  " 0

8 novll348.xv 3 4 0 3 4 0

9 novl 1350.XV 3 3 0 3 3 0

10 novll442.xv 3 3 0 3 3 0

11 novll445.xv 4 4 0 4 4 0

12 nov31001.xv 1 1 0 1 1 0

13 nov31003.xv 2 1 0 2 1 0

14 nov31007.xv 2 0 2 0

15 nov31025.xv 1 1 0 1 1 0

16 nov31102.XV 1 1 0 1 1 0

17 nov31110.xv 1 1 0 1 1 0

18 nov31112.xv 0 1 0 0 1 0

19 nov31115.xv 1 1 0 1 1 0

20 nov31300.xv 1 1 0 1 1 0

21 nov31301.xv 1 1 0 1 1 0

22 nov31304.xv 1 1 0 1 1 0

23 nov31337.xv 1 1 0 1 1 0

24 nov31339.xv 3 0 3 0

25 nov31342.xv 1 1 0 1 1 0

26 nov31345.xv 3 0 3 0

27 nov31447.xv 1 1 0 1 1 0

28 nov31452.xv 0 1 0 0 1 0

29 nov31530.xv 1 1 0 1 1 0

30 nov31535.xv 1 1 0 1 1 0

31 nov31545.xv 1 1 0 1 1 0

32 nov31546.xv 1 1 0 1 1 0

33 nov31550.xv 0 0 0 0

34 nov31553.xv 0 1 0 0 1 0

35 nov31602.xv 1 1 0 1 1 0

36 nov31604.xv 1 1 0 1 1 0

37 nov40857.xv 0 1 3 0 1 3

38 nov40903.xv 1 1 0 1 1 0

39 nov40905.xv 2 2 0 2 2 0

40 nov40907.xv 2 2 0 2 2 0
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2) Processing Time

The other test of the hardware implementation was how much faster it could process

images than the Cantata implementation. The host program was written to include

code to measure the time taken by each part of the process of running START on the

Wildforce-XL board, broken down into Wildforce-XL configuration time, data transfer

time (from the host RAM to and from the local RAM), and the actual hardware

execution time. The remaining time consisted of the Wildforce-XL setup time and the

time to actually run the host program. Timing varied according to server load, but

the average of 50 runs gave the following values:

Total time to process one image : 6770 ms

Board configuration time : 5159 ms

Host code run time +

Wildforce setup time ; 1544 ms

Data transfer time ; 34 ms

Hardware execution time ; 33 ms

These results are also_ shown graphically in Figure V-6. The time to process one

image is greatly dominated by the time needed to configure the board. The actual

time to process one image is only 33 milliseconds, as compared to the nearly seven

seconds needed for the entire execution. The hardware implementation was still

more than eight times faster than the standard Khoros implementation and 156

times faster than the hardware equivalent Cantata implementation. However, if the

reconfiguration time could be eliminated, the hardware implementation would be 36

times faster than the standard Khoros implementation and over six hundred times

faster than the hardware equivalent Cantata implementation. Finally, if the
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Figure V-6. Breakdown ojirrvage Processing Time for Hardware Implementation.

hardware was set up to process images sequentially, with no setup time or

configuration time necessary, then the hardware implementation would be over 1700

times faster than the standard Khoros implementation and over 32 thousand times

faster than the hardware equivalent Cantata implementation.
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VI. CONCLUSIONS

The START algorithm was successfully implemented on the Wildforce board using

the hardware gl3rphs and the implementation strategy developed for this project. This

is important not only in the context of this project, but in the larger context of the

CHAMPION project as well. This success validates the design choices that were made

as to the basic structure of the hardware glyphs, as well as the techniques used to

perform the mapping. This will help form a foundation for the development of the

automated system. Some performance issues were found, related to the high timp

cost of reconfiguration and the constraints placed on partitioning by the RAM access

constraint. The direction of future work on the CHAMPION project can be guided by

some of the results of this research. These conclusions will be discussed in greater

depth in the remainder of this chapter.

A. Gl5rph Libraries

The hardware equivalent glyph libraries were sufficient to implement a relatively

complex application in Cantata. Future application implementations will likely

require the addition of more glyphs .to the gljqjh libraries, thus expanding the range

of applications that can be executed in Cantata while maintaining hardware

compatibility. The hardware glyphs were shown to perform the same on the CCM as

the corresponding hardware equivalent glyphs did in Cantata. This shows that

despite the differences in execution between Cantata and hardware, the use of

glyphs in the two implementations can be made to be congruent.
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The hardware glyph design was shown to be satisfactory for use in CHAMPION

system. The concept of using parameterlzable VHDL templates to produce the

specific pre-synthesized glyphs needed proved to be a viable approach to the creation

of hardware glyphs. The control lines and other glj^rh interface details worked as

designed, allowing gl3T)hs to be easily and automatically connected together without

consideration of the specific glj^hs being connected.

One problem that arose with the hardware equivalent Cantata workspaces is that

they were much slower to execute than standard Cantata workspaces. A small part

of the problem was due to the larger number of glyphs needed in the hardware

equivalent workspaces. This may be alleviated by identifying common macros and

compiling them into single Cantata glyphs, which will run much faster than a

collection of smaller glyphs connected to perform the same function. This macro

approach would also make application development easier. Identifying useful macros

will require careful study of the application domain, however. The main reason that

the hardware equivalent workspaces were so much slower is related to the way that

Cantata handles custom glyphs. This problem is supposedly remedied in the newest

version of Khoros and it is hoped that updating to the new version will provide a

substantial increase in speed for the hardware equivalent workspaces.

One limitation of the current glyph libraries is that there is veiy little support for

control structures. The control in the START application is veiy limited, and it is

inherent in the data flow itself. To implement a wide range of applications, a method

of handling complex control structures in hardware must be designed, and a set of

corresponding hardware equivalent glyphs developed for Cantata. The

implementation of explicit control structures may require modifications of the

mapping process as well.
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B. Mapping Procedure

Tlie manual mapping procedure worked, although it was very tedious and time-

consuming. It took over 250 hours to complete the manual mapping, not including

the time spent developing glyphs and mapping procedures. All of the procedures in

mapping are, by design, well suited to implementation by computer program, so

automating the mapping process should be feasible. Some portions of the mapping

process may prove to require some human guidance, however, so complete

automation may not be achievable.

There are more sophisticated algorithms for data s)mchronization that can minimize

the number of delay buffers added and reduce the hardware complexity. AVhile these

are too complex to be implemented manually, it may be worthwhile to include these

in the automated system. Similarly, they are much more robust partitioning

algorithms that will work with a much wider range of hardware architectures and

produce better results than the simple heuristic method used here. An automated

partitioning method should probably track all of the FPGA resources separately in

order to achieve better hardware utilization than can be obtained by tracking CLBs
/

alone.

One portion of the automated mapping process that may require much more

investigation is the generation of host code. While the manual creation of host code

was done in a modular manner to aid in the automation of the process, the exact

mechanism by which the requirements of the host code will be determined is not

clear to this author. Portions of the host code generation may have to be guided to

some extent by the user. Different boards may have very different host interfaces and

thus very different host code requirements, making automation even more difficult.
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C. Performance

The performance of the hardware implementation was not as good as had been

hoped. This was due largely to the amount of time needed for reconfiguring the

Wildforce-XL board. This is a common problem in CCM architectures, although the

Wildforce-XL has a particularly long reconfiguration time. There are two ways to

reduce the total reconfiguration time; either the time per reconfiguration must be

reduced or the number of reconfigurations must be lessened. The time per

reconfiguration is determined by the architecture, so that cannot be changed except

by using a different CCM. The only way to reduce the reconfiguration time is thus to

minimize the number of reconfigurations needed.

Since reconfiguration time is a very large percentage of the total image processing

time, reducing the number of reconfigurations would have a substantial impact on

overall performance. Better partitioning could reduce the number of FPGAs needed,

but the limiting factor was RAM access. The START algorithm had 13 glyphs that

required RAM access. With five FPGAs available per configuration, that means that

at least 3 total configurations would be needed to limit the number of RAM access

glyphs per FPGA to one. Each configuration after the first requires two additional

RAM access gl3q)hs, so a total of 17 FPGAs are required to implement STAPtT. This

means that despite the very low resource utilization, the four total configurations

used, are the minimum needed for implementing START.

Clearly some way of having more than one RAM access glyph per FPGA would be

desirable. This will be difficult to do on the Wildforce-XL board without combining

multiple RAM access glyphs into one memory controller module, which would
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require some complicated graph, transformations and require data scheduling,

making the mapping process much more complex.

D. Future Work

Many challenges await the developers of CHAMPION. The glyph libraries must be

expanded to allow the implementation of a wider range of applications. The creation

of macros will have to be studied to determine which macros are. needed and how

best to implement their use into the mapping process. This may also be guided by

the implementation of new applications. The ability to utilize more complex control

structures will also likely be needed. This will require additional hardware

development and potentially changes in the mapping procedure.

The mapping process must be generalized for other COM, architectures and FPGA

types. New, more flexible,, partitioning algorithms must be implemented and the

partitioning process should be optimized to make more efficient use of hardware

resources. A method of automatically generating host code may also be needed.

However, even partial automation of the mapping process will greatly increase

designer productivity, although partial automation, as opposed to complete

automation, will limit the pool of potential users.

To increase the performance of applications on the Wildforce and similar CCMs, a

way around the RAM access constraint must be found. It is not clear what form the

solution to this problem may take. Additional performance gains may be realized if a

way can be found to exploit the implicit parallelism of applications, thus leveraging

one of the most important strengths of CCMs.
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Despite the many challenges remaining, the manual implementation of the START

application validated many of the basic components and concepts behind the

CHAMPION project, including the glyph library structure and design, as well as the

basic mapping and partitioning procedures. It is hoped that the research presented

herein will help provide some of the tmderpinnings for future successes by the

CHAMPION team at the University of Tennessee, and perhaps in some small way.

other researchers working on related problems.
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