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, ABSTRACT , , ,

An efficient and statistically reliable random number generator is one of the most

important requirements for effective Monte Carlo simulation. The latest trend in supercomputing

being towards parallelization, a random number generator was designed that will allow the

generation of several uncorrelated streams of random numbers in parallel.:

This is achieved by the division of one period of a good, serial random hurfibef generator

into intervals of uniform length, one interval per processor. The serial random number generator

chosen was the Marsaglia - Zaman random number generator which is a long period composite

random number ;generator combining a.linear congrueritial sequence with a lagged Fibonacci

sequence. The mathematical relation between distantly separated seed values in each of the

sequences was considered and a method was developed to obtain values from the Marsaglia -

Zaman sequence spaced from each other by the length of a specified interval called the jump

distance. Program's implementing the algorithm were written in G and Fortran. Seed values

obtained from the programs can be used to initialize different processors to use different portions

of the Marsaglia - Zaman sequence.

The seed values obtained by looping through all the randoih numbers m a section of the

Marsaglia - Zaman sequence were shown to be identical to the seed values obtained from the

developed algorithm. The execution tiiiie for the developed method was shown to increase only

as the order of log2(j""^P'distance).;
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Chapter 1

Introduction

Random numbers are one of the most important components involved in computer

simulations of natural phenoniena using Monte Carlo methods [1]. Coniputer simulations find

increasing use in the creation of computer models, from weather forecasting in meteorology to

molecular modeling in pharmaceutical resea,rch. Possibilities for new applications open

constantly. Improvements in the method of production of random numbers are therefore of

particular interest to the scientific computing community.

The computation intensive applications of simulation often necessitate the use of

supercomputers. The current trend in supercomputing is toward massive parallehzation. Most ,

^modern supercomputers depend on the use of several processors executing in parallel to achieve

very high, execution speeds. The limiMion of clock speeds imposed by physics on serial

computers has been the most important reason for this trend. Furthermore, parallehzation has

become increasingly effective as it gets ever more fine-grained. For example, vector

supercomputers perform one operation on multiple pieces of data concurrently, and thereby

exploit the opportunities for parallehzation found in most computer programs.

The efforts at the architectural level are matched by efforts at the software level.

Programming methods aim at achieving faster execution by dividing tasks into smaller parts that

run independently or with very little communication. Software libraries like parallel virtual

machine ( FVM ) [2], and message passing interface (MPI ) [3] have capabilities for interprocess



communication that make parallel programming architecture independent. They enable a uniform

distribution of tasks among the various processors. The user also strives for efficient use of

processor time through maximal overlap of communication with computation. Concepts like

multithreading allow parallelization at more fundamental levels, closer to the underlying

operating system and the hardware. .

With the increasing use of parallel programming methods, it is of interest to investigate

better and more efficient parallel random number generators. The problem of generating random

numbers in parallel is more involved than it is with the serial case. Not only must each individual

random number stream satisfy the necessary statistical properties, but the different streams should

also be uncorrelated with each other. All the numbers taken together must pass the necessary

statistical tests as a whole.

The motivation for the current research was the acceleration of the Integrated Tiger

Series (ITS) codes produced by Sandia National Laboratories for the simulation of radiation

transport phenomena [4]. The ITS codes are under current use at the Arnold Engineering

Development Center's DECADE test facility. The ITS codes find use in setting up tests and

evaluating results at the test facility, which is a nuclear weapons effects simulator that tests the

effects produced by intense high energy radiation on various materials. Nevertheless, the results

presented here are applicable to any parallel computational code that employs random number

generation. Also, the method developed is architecture independent and may be implemented on

heterogeneous networks.

The ITS codes work by performing Monte Carlo random walks on various particles like

photons, electrons and protons. A Monte Carlo random walk tracks the motion of a particle

through a medium, given information about the various properties of the particle and of the

medium that can affect the.motion [5,6]. The exact path that is followed by the particle is not



deterministic, and therefore probabilistic methods are used to solve the problem. This necessitates

the extensive use of random numbers in the simulation. The object of this research was therefore

to develop and test an efficient and statistically sound parallel random number generator that may

be used in simulations such as those described above.

Current approaches toward parallel random number generation are mostly based on the

generation of a different initial seed value for each processor. Each processor then runs the same

serial random number generator starting with its seed. Each processor then has separate control

over the execution flow. In most parallel processing systems, communication between processors

is very costly. With each processor generating all the random numbers it needs, time need not be

spent transporting random numbers between processors.

Most parallel random number generators are based on commonly, used sequential random

generators such as linear congruential generators, lagged Fibonacci generators and, feedback shift

register generators. All random number generation algorithms start to repeat the same sequence

beyond a certain number of values and hence cannot be used to produce more than a certain

number of "random" terms. This is called the period of the sequence. One way to distribute one

period of a random number sequence between n processors would be to allow the first processor

to generate the first, the (« + 1)"', the (2« + 1)*, etc. terms of the sequence, while allowing the

second processor to generate the second, the (« + 2)"', the (2n + 2)*, etc. terms of the sequence

and so on. This procedure however slows down the process of random number generation, since

the process of jumping through the random number sequence by n terms complicates most

commonly used random number generating algorithms.

The most commonly adopted procedure is therefore to split a single period of a sequential

generator into large equally sized sections. Each processor can then generate terms from one such



section, given as a seed the starting value of that section. Thus each processor uses the same

sequential random number generating algorithm, but produces independent sequences.

The problem here is one of jumping through the sequence by a very large number to

generate the seeds, without having to compute all the intermediate values. This problem has been

investigated for several generators, like the generalized feedback shift register generator [7], and

the lagged Fibonacci generator [8], but not to the knowledge of the author, for linear congruential

generators containing an additive term.

Most approaches in parallel random number generation focus on the use of a single

random number generating algorithm. The approach in this research however, was to use two

unrelated sequences, and then to combine values obtained by sequential progression through the

two different sequences; a composite random number generator approach discussed by Marsaglia

and Zaman [9]. In order to do this, it is necessary to be able to jump through both the sequences

efficiently. The manner in which this is achieved is the essence of the research.

Algorithms were developed and coded in C and Fortran that could jump through the

period of the composite random number generator by any arbitrary stride length. They were then

tested over a sequence of length and correct operation was verified by actually looping

through all the random number numbers in the sequence. Some statistical tests like the uniform

distribution, sequential distribution, runs-up and runs-down chi-squared tests were also performed

on the random number generator.

Various sequential random number generating algorithms exist, and their applicability to

parallel random number generation vary. The linear congruential generator and the lagged

Fibonacci generator, which are the focus of this research are discussed in detail and the

considerations involved in parallelizing them are looked at. The problem of parallelization is then

tackled, and procedures are developed and implemented to solve the problem. This is followed by



the execution and testing of the programs written in C and Fortran. The result is the development

of a parallel random number generator that combines efficiency with statistical soundness.



Chapter 2

Background

Some of the most popular algorithms used in random number generation are linear

congruential generators, lagged Fibonacci generators, multiplicative generators, shift register

generators, feedback shift register generators, and cellular automata generators. The algorithms

used by some of these standard random number generators are now discussed.

The most widely used of all generators are the linear congruential generators and lagged

Fibonacci generators. These are looked at in detail later. Shift register generators shift the

contents of a register containing the current term by a fixed number of positions, and then

exclusive or the shifted value with the original value. This value may again be shifted in the

opposite direction and the exclusive or operation carried out with the unshifted value to obtain the

next term of the random number sequence. A feedback shift register generator is a bitwise

exclusive or operator, that obtains the next bit of the sequence through the exclusive or of bits

lagging the current bit by specified distances. The specific distances are obtained by finding

binary primitive polynomials. Primitive polynomials of large degrees are not hard to find in the

binary case, and so it is possible to obtain extremely large periods, of the order of 2^°" with

feedback shift register generators. Lastly, a cellular automata generator obtains the next term of

the sequence by modifying each bit position according to a certain rule, depending on a pre

defined neighborhood of the bit.

In addition to the linear generators considered so far, non-linear generators also prove

useful in many instances. An example is the multiplicative congruential generator. This type of
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generator multiplies two terms of the generator preceding the current term to obtain the current

term. The advantage of multiplicative generators is that they pass even the most stringent

statistical tests [8], but they do not cycle through all possible values for the sequence, and need a

special choice of seed values.

Parallel random number generation often involves generating seeds to initialize various

processes, which then proceed to use a serial random number generator to generate the necessary

values. It is found that compared to using a single random number generator within each process

as in most approaches, combining two very different random number generating algorithms

results in a random sequence with much improved statistical properties and period.

The Marsaglia - Zaman random number generator [9] uses this property. It achieves long

periods with good statistical properties by combining a linear congruential sequence with a

lagged Fibonacci sequence. This causes the resulting random number sequence to have excellent

statistical properties, and results in a period that is the product of the periods of the constituent

generators, of the order of 2'°°. To parallelize the Marsaglia - Zaman generator, it is necessary to

find a way to skip through the constituent sequences efficiently.

Linear Congruential Generators

Linear congruential generators have the general form

Xi+i = axi + b (modM). (2.1)

where a, b, Xi, and X/+; are integer constants in the range { 0, 1, ..., M-1 }, where the integer Mis

called the modulus of the generator. Xf+j and Xj are the (/ +1)"' and terms of the linear

congruential sequence respectively. Xo is defined to be the seed of the sequence and must be

specified before the generator can be used. The choosing of the values for a and b are dependent

on ensuring the maximum possible period of recurrence for the sequence. This maximum period



; is bound theoretically to M. It is permissible to use values for a and b that result in a less than

maximal period. However, the flexibility of obtaining the maximal period for any choice of seed

will be lost in this case. .

Since vve desire as long a period is possible, it would be useful to make the value of M as

large as possible. However, the size of M is restricted by the word size on the computer. If is

possible tp have M greater than what is allowed by the word size, but this would be accompanied

by considerable overhead in the process of generating the random number sequence. Since

efficiency is one of the prime considerations, most linear congruential generators have A/ less

thap or equal to 2^, where p is the number of bits in one word. Having M exactly equal to 2^

results in d simplification of the implementation, since the overflow of the multiplication and

addition operations automatically performs the modulus operation. Since most computing

platforms have a word size of 32 bits, Mmay preferably be choseh equal to 2^^.

. Another importafit reason to choose Af to be 2^, is the fact that some architectures store

integers in two's compleihent notation. In a 32 bit computer this means, values from 0 to 2^' - 1

are considered positive, while values from 2^' to 2^^ - 1 are considered negative. This difference

in representation does not make a difference to the produced sequence if M= 2^^. To see how

this is so, a negative number can be fe-^written asjc, ̂ 2^^ where jc,- would be the value of the

integer in unsigned representation. Then, v

x,+/= { o(x,-2^^) + A} ! . (mod2^^) (2.2)

::Xi+i = {axi - + . (mod2^^) (2.3)

:i> Xi+i = {axi + b} (mod 2^^) (2.4)



which is the same value that would have been obtained by unsigned representation. Since

portability requires the values produced by the random number generator to remain unchanged

while moving from one architecture to another, the necessity oif.choosing M= 2^ is apparent.

In choosing the exact values for a and b the following theorem [10] is helpful:

For M= 2^®, the generator (2.1) has full period ? = A/if and only if, ,

1 (mod4 )and gcd(M, i)= 1 (2.5)

This implies b should be an odd constant, while a should be one greater than a multiple of

4. b can be chosen to be any odd constant. However, not all values of a that satisfy the above

mentioned condition are acceptable. The exact value chosen for a is critically responsible for

determining the statistical quality of random numbers generated. Experience and experiment are

probably the only ways available to choose awalue for a that results in satisfactory statistical

properties. The linear congruentiaj generator chosen for implementation in this thesis is,

jc,+/ = 69069x,+ 1013904243 (mod2^^) (2.6)

. Linear congruential generators can also be designed with, 6 = 0. However, these

generators need a prime modulus and cannot use a yalue for M that equals the wordsize of the

computer. This creates additional computational overhead in terms of introducing an explicit

modulus operation, in place of the automatic modulus operation that happens through overflow,

when Mis equal to the word size of the computer. Also, when parallelizing a linear congruential

generator with i = 0, care must be taken to not split the sequence at certain critical distances,

failing which large correlations are introduced [11,12]. These considerations make it desirable to

choose an odd integer value for .

Jumpingthroughacertainnumberoftermsofalinearcongruential sequence when 6 = 0 ,

is not Very difficult since, x„ = (mod M), and a" ( mod M) can easily be computed as is seen



later. However jumping through a linear congruential sequence that also involves an additive term

introduces additional complexity, and this problem is looked at in the process of developing the

parallel version of the Marsaglia - Zaman generator.

Lagged Fibonacci Generators

Lagged Fibonacci generators have the general form,

■ Xi = ajXi.j + a2Xi^2+ +^kXi-k (modM) (2.7)

Here <3/.. ̂  0, and a;, 02, , a^, are integer constants that may take on both positive and

negative values. M is the modulus of the addition and multiplication operations. The terms of the

sequencexq,Xj, ... , can take on integer values in the range { 0, 1, 2, ... , M-1 }. As can be seen

from the expression, it is necessary to store the last k values of the sequence at any time in order

to compute the (k + 1 term. The greater the number of terms of the sequence that are stored,

greater is the period that can be achieved by the random number generator. The maximum

possible period of a Fibonacci generator M*; - 1. This is because the total number of combinations

that can be represented using k numbers of modulus M is given by M'', and the combination of

zeroes for all k values cannot be used.

As in the case of the linear congruential generator, we seek to choose coefficients Oj, ... ,

Ok such that the period of the generator is maximum possible, namely A/*" - 1. The following

theorem [13], is used to determine the coefficients:

A necessary and sufficient condition for the generator (2.7) to achieve maximal period

when M is prime is that its characteristic polynomial

fix) = / - a/ x"~' - a2 - ... - a^-i x-a^ (2.8)

where Uk ̂  0 ( mod M), be primitive.

10



In order forf(x) to be primitive, it is required that the order off be equal Xohf - \. The

function is said, to be of order / if / is the smallest positive integer .for which f(x) divides a:' - 1. It

is possible to find a primitive polynomial of degree k by generating values for aj, , a* at

random and then testing for the primitivity of the resulting function. Testing for primitivity

requires computing the prime factorization of (A/; - 1) / (M- 1). This problem is intractable for

large k, and this poses a limitation on the number of preceding terms that may be included in the

lagged Fibonacci generator.

As before, the additional benefit of choosing coefficients that result in the maximum

period is the flexibility of choosing any set of seeds to initialize the random number generator.

Irrespective of the choice of seed values, the period of the generator will always be maximal. It is

not possible to guarantee the statistical quality of any arbitrary maximal period sequence.

Experimental verification must play.a role in making the final choice of coefficients for the

random number generator. • ,

Unlike the linear cbngruential generator that.can use a value of Mequal to the word size ,

on the computer, the lagged Fibonacci-generator uses a.prime modulus. This is usually a prime

number smaller than the wprd size of the computer, to simplify the computations. While the

rriodulus operation for the linear corigruential generator was automatically .performed through

overflow, it must be performed as a separate opefation for the lagged Fibonacci generator. This

means that riiultiple precision arithmetic-is needed to handle overflow and to perform the modulus

operation.This however is very computation intensive. Fortunately, it is possible to design good

lagged, Fibonacci generators that use only tvyo non-zero coefficients, each of those being equal to

±1 .'Alsoj fhie Value of Mis chosen so that its bit representation uses one less bit than the wordsize'

on the computer. Then for this case overflow does not occur, and the modulus operation is a one

11



step subtraction or addition operation. One such lagged Fibonacci generator is chosen for

implementatation in this thesis. It is given by,

jc, = jc,_3 - x/_, mod (2^'-69) (2.9)

In order to parallelize a lagged Fibonacci generator, it is necessary to be able to jump

through the sequence by a very large value, without having to loop through the sequence. In order

to achieve this, a matrix representation of the lagged Fibonacci generator is used. Then the

term of the sequence could be obtained asx„ = D" * xq ( mod M), where x„ and xg are column

matrices, each containing k consecutive terms of the lagged Fibonacci sequence, with the terms in

x„ succeeding the corresponding terms in xg by n terms. 2) is a square matrix containing the

coefficients of the lagged Fibonacci generator. For the previously chosen lagged Fibonacci

generator, the matrix product is.

/

0 1 0
(  \

Xq

= 0 0 I Xl

a 0 2147483578, KXjJ

It may be recognized that the value 2147483578 is -1 mod (2^' - 69). The method of raising D to

a very large power is described by Jun Makino[8].

Thus to achieve the parallelization of the Marsaglia - Zaman generator, it is now

necessary to find a technique to be able to jump through a linear congruential sequence involving

an additive term, and to implement a procedure to solve the problem. Also necessary is the

implementation of a procedure to raise a given square matrix to a very large power, modulo the

prime integer M.

12



Chapters

The Procedure

The linear congruential generator

The equation for the linear corigruential sequence is given by equation (2.1) reproduced

here for convenience,

Xi+i = aXi + b (modM) (3.1)

Given the i''' term in the sequence, it is necessary to develop a procedure to find the term

of the sequence that occurs after a specified number of other terms, namely the (/ + n)^ term of

the sequence. It is possible to derive by analogy the term after jc,-, through consideration of the

expressions for the second, third, and such terms following x,.

Xi+2 = axi^i + b'. (modM) (3.2)

=> Xi+2 = a{ax, + b) + b ^ (mod M) (3.3)

Xi+2 = + b{a +1) ( mod M) (3.4)

Similarly,

Xj+s = aXi+2 + b (mod M) (3.5)

Xi+3 = a{(^Xi + b{a + \)) + b (modM) (3.6)

Xi+3 = <^Xi +b{ci^ + a + \) (modM) (3.7)

Then,

13



=> JC/+„ = cfxi + bid''' + d^^ + ... + a + \) (modM) (3.8)

jc,+„ = cTxi + hcTlia - 1) (mod M) (3.9)

It needs to be remembered that n can be a very large value, say of the order of 2^", and

may even be much greater. The first problem in the evaluation of expression (3.9) is finding cf. It

would be impractical to attempt to multiply a with itself n times, and a faster way to evaluate a" is

necessary. If b„,b„,.i... bo is the binary representation of n, then

q" = ...bo (3.10)

^  ̂{2"'b„ + r-'b^,+ ...+2'b, + 2''bo) (3.11)

=> «"=( ...( ( )^ )^ ...cfi' )^ (3.12)

, It is not possible to evaluate the actual value of d' and then compute the modulus, since

the actual value of a" is extremely large. Hence the modulus operation needs to be performed

intermediate to each squaring or multiplication operation. Thus it is necessary to fu-st multiply

with itself and find the modulus, then multiply the result by c^"^' and find the modulus, then

multiply the result with itself and find the modulus once more, and so on.

But in order to determine the modulus that may be used, it is necessary to consider

equation (3.9), which may be rewritten as,

jc,+„ = (a"jc/) mod M + ibcPlia - I)) mod M (3.13)

The addition in the expression (3.13) and in subsequent expressions is understood to be

modulus M. Then expression (3.13) can be furthur expressed as.

Xi+„ = iicP mod M) x,) mod M+ b ^  -modAf
^a-\

modM (3.14)

14



Xi+„ = ((o" mod M) xi) mod M +

—  M(fl-l) + (a" modM(a-l))
M(a -1)

a-l
-modM

V

modM (3-15)

Here the expression shown within the braces [ J, refers to the largest integer smaller

than or equal to the enclosed expression. Then,

Xi+„ = ((a" mod M) x,) mod M +

M(a-l)
a

M(a-l)

a-l a-l
modM (3.16)

Xi+n = ((«" mod M) xi) mod M +

// \

a
iVL

/ J J
a-l

modM (3.17)

The part of the expression marked by the arrowhead becomes zero since an integer

multiple of Mmodulo Mis zero. Also,

a" modM(a-l)

a-l

and so the mod Mthat follows may be dropped.

Hence , the expression (3.17) becomes

Xi+n = ((o" mod M) xi) mod M + b

-<M (3.18)

^a" modM(a-l)^
a-l

modM (3.19)

15



Hence to evaluate equation (3.9), it is necessary to calculate 2 values for a"; one with a

modulus of Musable in the first occurance of a" and the other with a modulus of Mia — 1), usable

in the second occurance of d'. Then, the value of cP obtained in the first instance is multiplied

with jc, modulo M, and the value of d' obtained in the second instance is first divided by (a - 1)

and then multiplied by b modulo M The two terms are then summed modulo M to obtain the

Xi+„"' term of the linear congruential sequence.

The lagged Fibonacci generator

The general form of the lagged Fibonacci generator is given by equation (2.2) reproduced

here for convenience.

Xi = aiXi^i + a2Xi^2+ nnn + akXi.ki^odM) (3.20)

This sequence may be represented in matrix form as.

^x ^

X:i-k+2

^i-k+3

-^f-1

V  y

^ 0 1

0  0

0  0

0  0

^k-\

0

1

0

0  0^

0  •; 0

1  0

ak-2 "k-3 n - a
\ J

^ X ^^i-k

^i-k+\

^i-k+2

X,_2

V ^'-1 J

(3.21)

The equation (3.21) expresses the value of x,- in terms of the previous k values of the

Fibonacci^sequence. A similar matrix representation to determine the value ofx,+; from the

previous k values can be written as.

Xi-k+2 "

^i-k+3

^i-k+i

V ■^'+1

I

0  0

0  0

0  0

0

1

0

0

0

1

^A-1 '^k-2 "k-3 •a\

f

J

^i-k+2

^i-k+3

X:(-1

V  y

(3.22)
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It can be seen that the value of the square matrix remains unchanged in equations (3.21)

and (3.22). Also, the column vector to the right on equation (3.22) is the same as the column

vector to the left on equation (3.21). Substituting the value for the column vector from equation

(3.21) into equation (3.22),

^i-k+2

^i-k+i

^i-k+4

V ^'+1 y

0 -1 0 0 0^

0  0 1 0 0

0  0 0 1 0

^i-k

^i-k+\

^i-k+2

0  0 0 0

yOk o,k-\ ^k-2 ^k-2

1 Xi-2

V ^--1 y

(3.23)

This procedure can be extended to jump through the sequence by any arbitrary number of

tenns by raising the square matrix to the particular power. Thus,

^ r■^i-k+n

^i-k+ii+]

^i-k+n+2

^i+ii-2

V ^i+n-i J

^0
0

1

0

0  0

Qu Oi.

0 0 0^ H < X ^■^i-k

1 0 0 ^i-k+I

0 1 0
+ ^i-k+2

0 0 ""■"l Xi-2

^k-2 ^k-3

(3.24)

The square matrix, which is denoted by D, can be raised to a large power n in a manner

analogous to the method used to raise a to the power n in the case of the linear congruential

generator, that is

D"= ( ... ( (2)'''" )2 )2 J)bi )2 j)bo ^ (3.25)

where b„,^, b„,-2 ... bo is the binary representation of n.

The modulus operation again needs to be carried out during each matrix multiplication or

squaring operation. The only modulus that is used in this case is M, which for a lagged Fibonacci

generator is usually a prime number as already discussed.
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Program Implementation

In the implementation of the algorithm for jumping through the linear congruential

generator sequence, the primary concern is portability and not efficiency. The reason efficiency is

not a prime criterion is that the procedure will be called only once for each process, at the time of

invocation of the process. It is only the random number generator, which is called by the process

a very large number of times in the course of problem execution, for which efficiency is

important. Hence the complexity of the procedure to initialize the seed for each process does not

make a significant difference to the execution time of the program.

The implementation here is on a computer with a word size of 32 bits, but it is useful to

ensure that the program makes no assumptions about word size, so that portability is not a

problem. Though the linear congruential generator will probably have a modulus of the form iP, it

is advisable to implement the program so that any generator of any modulus could be used. Also,

the program must be able to perform modulo operations with a modulus greater than the word

size of the computer, because of having to calculate the value of cT modulo M{a - 1). These

considerations suggest that the program be written to perform variable length arithmetic with

arbitrarily large numbers and arbitrarily large modulus. The best method to achieve this is

through the use of character strings, since they may be of arbitrary length and can represent

arbitrarily large values. In order to achieve easy manipulation of the stored value it is helpful to

store the number in its binary representation as a string composed of 'O's and 'I's. Though this is

wasteful of memory, it makes the program simpler than would be the case if each character were

used to store 8 bits of the number. This is especially true in Fortran that does not have means for

efficient bit level manipulation of variable values.

Hence, all problem inputs for the program are in the form of a string of '0' and ' 1'

characters that denote the bit representation of the input. All numerical calculations are also
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performed using bitwise operations on the string of bits. The advantages of string representation

also extend for the lagged Fibonacci generator. Since these generators usually use a prime

modulus, the modulo M operation is not performed automatically and hence multiplication will

produce numbers greater than the word size on which the modulus operation will have to be

performed through integer division. So here too it is necessary to have variable length arithmetic.

An additional restriction on the string representation is that the first character of the string

should always be '1'. The program treats any string beginning with '0' as an error condition. In

addition to preventing inefficiency of representation and computation, this enables the value of

two numbers to be compared by string size. If both numbers have the same string size, then the

bits can be compared starting from the first bit position to decide which number is greater. An

outcome of this method is that the number 0 is represented as a null string.

The program derives great advantage from modularization, and the organization of

specific tasks in specific modules all of which are interdependent on each other. The main tasks

involved in the program involve the performance of mathematical operations on binary strings.

By creating a library of functions for performing such mathematical operations, string operations

can be performed in a straightforward manner.

The basic string operations to be performed constitute the following; addition with or

without a modulus, multiplication with or without a modulus, subtraction, and integer division.

Addition with or without a modulus can easily be performed by the same function. For the

multiplication operation, the C implementation performs multiplication with or without a

modulus in one function through the use of recursion. If the function is called with a modulus, it

performs suitable operations and then calls itself without a modulus, and so the need for a

separate function is eliminated. The Fortran implementation however needs separate functions for

the two multiplication operations. An additional string comparison function that compares the
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numerical value of two strings and determines the larger value is needed in the process of ,

implementing all the other functions. These functions are self sufficient for performing all the

variable length arithmetic required. The code listing for the C version is listed in appendix A, and

the Fortran version is in appendix B. They are also ayailable on the world wide web at

"http://www.utsi.edu/cs/parallelmg".' . ,

Program usage ^ .

,  The program has to be called with a statement of the form,

•  ' n n ranjump (''is, "OS ) ;

for the C version, and a statement of the form,

RANiTMPC. IS, OS' )- ' . '; n n n

for the Forfran version. The first parameter denotes an array of A+1. string variables that contain

the old seed values, and the second parameter denotes an array of A+1 string vmables that contain,

the new seed values displaced from the old.seed values by the jump distance.fixed within the

program. ^ ,

The value of k, and the jump distance n should also be defined within the function. Other

values that must be defined to describe the linear congmential generator part are the values of a,

b, and the modulus M Siniilarly, the values that.must be defined to describe the lagged Fibonacci

generator part are the values of the coefficients a/, ..., a*, and the modulus M " . '

Program working .

The codes are now described-in detail to sho\y the method of solution of the problem. The

part of the program leaping through the Imear congmential sequencers self explanatory in hoW a"

is computed modulo Afand modulo M(a ~ 1). The two terms of the. expression (3 .1) are computed

as. discussed, and their sum modulo M gives the required new seed value. The part of the progr^ '

n  ■- ■ •' ' ■ ■ ■■ V ■■ ■ ■ ■ • ' ■ ' ' . . 20



leaping through the lagged Fibonaeci sequence initializes matrix D using the values of the

coefficients ai, 02,..., Ok. A separate procedure - "product" in the C version, "PRODCT" in the

Fortran version - is used that performs the matrix multiplication operation modulo M given two

square matrices of specified size k. Then raising the matrix D to the power n becomes a

straightforward task. In the C version, memory for matrix D is allocated dynamically, and for a

generator with lag k, the size of the matrix needs to be k by k. The library of functions

implementing the mathematical operations are examined next. Only the C version of function and

variable names are referenced in the description. The Fortran versions of these names can be

inferred fi-om the code.

The multiplication function "mult":

The "mult" function has as input the character strings containing the two operands and

the modulus and provides the value of the product as output. In case the product needs to be

computed without a modulus operation, a null string is passed for the modulus. Since zero can

never be a valid modulus, this representation is convenient. The procedure then checks if either of

the operands is zero or invalid. If so, a product value of zero is returned. Otherwise, the procedure

first initializes an extra string variable "op" to hold the value of the multiplicand, and then shifts

"op" one bit to the left during each step of the multiplication. Another variable "prod" holds the

partial product at any stage of the multiplication. The procedure then examines each bit of the

multiplier, starting from the most significant bit. If the bit is a ' 1', then "op" is added to "prod",

otherwise "prod" remains unchanged. The variable "op" is then shifted one bit to the left. When

all the bits of the multiplier have been processed, the final product is in "prod". If a modulus

operation is required, the the remainder of the integer division of the product by the modulus is

calculated to obtain the final result.
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Of note is the fact that it is necessary to use separate string variables for internal

calculation of the product, namely "prod" and for the function parameter that is used to output the,

product, namely "prodo". This is because if the user were to call the function with the product

string variable also being one of the multiplicands, modifying the.value of the product variable

within the function would result in losing the value of the concerned operand that the function is

using'to calculate the product. ' ^ •

The integer division faction "intdiv": • \

The integer division function, also used by the multiplication operation for calculation of

the modulus, has the dividend and divisor as the ihpute and the result of the integer division as the

output. The "quotient" string variable is, initialized to zero. The function first checks to see if the

divisor is zero, and if so returns after printing an error message. If the dividend is zero, the

function returns without doing anything further. Otherwise, the function stores the first i bits of

the dividend in a variable named "sub", where i is the. number of bits in the divisor. If "sub" is

. less than the divisor, then one more bit from the dividend is added at the end.

,  The function then subtracts the value of the divisor from "sub", and adds a ' 1' at the end

of "quotient". The next bit from'the dividend is added at the end of "sub". In the case when "sub" ,

is a null string and next bit added from the dividend is zero, the string length of "sub" has to be

readjusted back to zero. So long as the value of "sub" remains less than the dividend, additional

bits from the dividend if available, are added to the end of "sub" with additional zeroes being .

added to the end of "quotient". If and when the value of "sub" becomes greater than the divisor,

the subtraction is again cairried but and the process repeated. The process ends when all the bits

from the dividend have been exhausted, and consequently the value of "sub" remains less than the

value of the divisor. The fmal value of the quotient is now available for output.
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The addition function "sum

The addition function has the two operands and the modulus of addition as the input, and

the sura as the output. The modulus string is made empty when addition without a modulus is

necessary. The function uses the variable "res" to store the value of the sum. The length of the

sum string is initialized to be one greater than the length of the longer of the two operands. The.

bits are added from the least to the most significant bit of the larger operand, with the carry over

bit being stored after each addition. In the C implementation, the characters '0' and '1' may be

treated as integers according to the value of their internal representation, and so addition and

subtraction may be directly performed with the character constants. The two functions, "CHAR"

and "ICHAR" are used to achieve the same objective in Fortran. If a modulus was specified when

the function was invoked, the magnitude of the summation is compared with the modulus, and if

the sum is larger, the modulus is subtracted from it. An implicit assumption that the operands

passed to the function are less than the modulus is justifiably made. The final result of addition is

copied into the output string parameter.

The subtraction function "subt

The subtraction function receives two operands, the first of which is assumed to be

greater than or equal to the second. The difference is then passed out as the result of the

subtraction. The function does not take a modulus parameter. The simplifying assumptions are

made since the subtraction function is never used in any context where negative numbers need to

be handled. The function initializes the length of the difference variable to the length of the first

operand. The second operand is then subtracted from the fost operand, from the least to the most

significant bit. The borrowed bit is stored in a separate variable. At the end of the subtraction, if

the borrowed bit is still' 1', the function prints an error message to show the negative result.
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There may still be leading zeroes in the result; These are removed and the final result is copied

into the output string parameter..

The string comparison junction "strmag": .

^ The string comparison function takes two operands as input and returns a value of one if

the first operand is greater than or equal to the second. Otherwise, zero is returned. The function

first compares the length of the two strings to decide the greater. If the lengths of the two strings

are equal, then the C version compares the strings bit by bit. The next to most sigriificant bits are

compared first, since it is already known that the most significant bits, both being 1  ,■ are the

same. In case the next to most significant bits are also equal, the bits following them are

compared to make the decision and so on. If both operands are equal, a value of one is returned. ,

In the Fortran version, there is the inbuilt capacity for comparing strings, which achieves the

same effect as the bit by bit comparison automatically.

This completes the description of the implementation and operation of the code, and the

rationale behind the same. It is desired to test the results obtained by the implementation next, and

this is continued in the next chapter. , '
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Chapter 4

Results

The first test that must be performed is the verification of the "ranjump" procedure. This

involves checking to see that the procedure actually does what it is meant to do, which is to split

up a sequence of values from the Marsaglia - Zaman generator into arbitrary length sub

sequences.

The period of the Marsagia - Zaman generator is of the order of 2'". This is too long a

period to test, and so a part of the sequence, say of length equal to iP', is considered for the test.

The usage of the program in a typical parallel programming context may need the division of the

sequence into 4 or 8 or 16 sub-sequences. Three test programs were written to demonstrate this

use. The first test program divided up the chosen sequence of length 2^^ into 4 sub-sequences, the

second test program divided it into 8 sub-sequences, and the third divided it into 16 sub

sequences. The initial four seeds are set to randomly chosen 32 bit string values, namely

"11100101000011101001010110110100",

"1110110001011111011001000110011",

"1110001101101100110011001110", and

"10101111001001000111010111111110".

These were then passed to "ranjump" along with the variables allocated for the return of

the output seed values. The jump distance was set to

2^^ / 4 = 2^°, for the first test program,

2^^ / 8 = iP, for the second test program, and

.  2^^ /16 = iP, for the third test program.
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As has already been discussed, changing the jump distances is only a matter of changing

the single constant value that fixes the jump distance within the "ranjump" procedure. The output

seeds obtained after the jump are saved and again passed to "ranjump"; this time as input seed

values. The output seeds obtained after that are again saved, and this is continued three times. The

initial set of seeds along with the output seeds obtained after each of three iterations could then be

used to initialize four different processors, on four different subsequences of the Marsaglia —

Zaman sequence. Similarly, the second and third test programs serve to simulate the operation for

using the Marsaglia - Zaman generator to launch parallel programs using eight and sixteen

processors respectively.

Another set of test programs are written to loop through the Marsaglia - Zaman sequence

with the same initial set of four seed values. The seed values are fed to the program as the

unsigned 32-bit integers 3842938292, 1982837299, 238472398 and, 2938402302. These are the

integer equivalents of the binary strings listed previously. The random numbers obtained after

looping through the sequence the appropriate number of times are printed as output. Correct

operation is verified from the fact that the binary string values obtained at specified distances

from the initial seed values through the jumping test programs, are equivalent to the respective

integer values obtained through the looping programs. The binary string and integer values

obtained through jumping and looping for the test cases of sequence division by four, eight and

sixteen are compared in tables (4.1), (4.2) and (4.3).

The speed up achieved is demonstrated by comparing the time taken by the jumping

programs, with the time taken by the looping programs in table (4.4). The time taken by the

jumping program is proportional to the number of processors, since "ranjump has to be called

once for each processor. It may be recognized that even the huge differences in time taken by the

jumping and looping programs are not really representative when sequence lengths much greater

than 2^^ are considered, since the time taken by the looping program will increase as the order of
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,  Table 4.1 : Splitting a sequence of length 2 into 4 equal parts

,  Jump distance
from initial seeds

Seed values produced by jumping
( Output in binary format ,)

Seed values

produced by
looping
( Output in

decimal format)

0

(Initial seed ,
values )

11100101000011,101001010110110100
111011000101111101lOOlOOOllOOll
1116001101101100110011001110

1010111100100jOOOl11010111111110

3842938292

1982837299

238472398

2938402302

n 2'° ,

100101000011101001010110110100
10111010101001100100101001100
1111110110100111101101101110010

100011lOOOOOlOlOOOlOOl100001111

621712820 n

391432524 .

2127813490

1191514895

2*2^°'

110010100001110100101,0110110100
1110101010011001101011100101010

1000061,001000100100100001101100
IIOIOOIOIOIOO6IOOII6O6I10100101

1695454644

1967970090

1092765804

1766928805

-3*2^°

lOlOOlOlOOOOlllOiOOlOlOllOl10100
1000000011010000011101100010100

1000011ioi110110111100000010001
1101110110110100000111001111616

2769196468

1080572692 ,

1136359441;
1859784314
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Table 4.2 : Splitting a sequence of length ip- into 8 equal parts

Jump distance
from initial seeds

Seed vdues produced by jumping
(. Output in binary format)

Seed values

produced by
looping
( Output in

decimal format)

0
(Initial seed ,

values)

lllOOlOlOODOlllOlOOlOlOllOllOlOO
1110110001011i11011001000110011
1110001101101 idonooiiooii 10-
10101lllOOlOOlOOOlllOlOlllllllip

3842938292

1982837299 .

238472398

2938402302

101000011101001010110110100
110100101101011010101111110011

110000001101lOOlOl1001100110100
1010110110011100110110001000110

84841908

884321267

.1617736500
1456368710

100101000011101001010110110100

10111010101001100100101001100

1111110110100111101101101110010

100011100000101000 i OOl100001111

621712820

391432524

2127813490

1191514895 ,

loooioiooooiiioiooioioiidi 10100.
lOOlOlllOOOOlOlOl10110000110100
11iioooioooiiiiii1101110011110
iioooiooiolOol10011 111lobooioi

1158583732

1267035188

1011350430 :

824811397

4*2^' -,/■
1100101000011101001010110110100 .
lllOiOlplOOl1001101011100101010
1000001001000100100100001101100
11010010101000100110001ibiooioi

1695454644
1967970090

.1092765804
1766928805

■  - ; 5*2^® ■

looooioiooooiiioiooioioiioiioioo
lOllOOlOOPllOlOlOOOOlOOOll
110010111000101111001111010010
11000110011101IpOl110010101011

2232325556.
46715939 ;
853734354
832412843

^  6*2^'' ,
10100101000011101001010110110100
1000000011010000011101lOpPlOlOO
100001110111011011110000001OOP1
.1loi1101101loioooopi11001111010

2769196468
1080572692
1136359441
1859784314

•  ■ ■■

,11000101000011101001010110110100
lOlOHlOllllOlMOllOM
,10010111i1110100010011000110000
1111110100011,010001000101110001

3306067380 .
2866651
1274684976
2123174257
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Table 4.3 : Splitting a sequence of length 2 into 16 equal parts

Jump distance
from initial seeds

Seed values produced by jumping
( Output in binary format)

Seed values

produced by
looping
( Output in

decimal format)

0

(Initial seed
values )

11100101000011101001010110110100

1110110001011111011001000110011

1110001101101100110011001110

10101111001001000111010111111110

3842938292

1982837299

238472398

2938402302

228
11110101000011101001010110110100

110010001111110010100100110000

1010110101100110010001000011111

1101100010101101010110101111111

4111373748

843000112

1454580255

1817619839

2*2^®

101000011101001010110110100

110100101101011010101111110011

1100000011011001011001100110100

1010110110011100110110001000110

84841908

884321267

1617736500

1456368710

3*2^®

10101000011101001010110110100

11011001111100000010111110

1000111101011110111100111101100

1110001110010100001010111010010

353277364

57131198

1202682348

1909069266

4*2-^

100101000011101001010110110100

10111010101001100100101001100

1111110110100111101101101110010

1000111000001010001001100001111

621712820

391432524

2127813490

1191514895

5*2^®

110101000011101001010110110100

10001001111111011000010100100

1100100101100000100100010110100

10111101100111010010000010010

890148276

289386660

1689274548

397648914

6*2^^

1000101000011101001010110110100

1001011100001010110110000110100

111100010001111111101110011110

110001001010011001111110000101

1158583732

1267035188

1011350430

824811397

7*2^®

1010101000011101001010110110100

1100101101101000011001110000100

1001110101011110010110010010011

1111110111001001111000111010110

1427019188

1706308484

1320103059

2128933334

29



, Table 4.3 (Continued):

Jump distance
from initial seeds

Seed values produced by jumping :
( output in binary format)

Seed values

produced by
looping
( Output in

decimal format)

/■, 8*2^^ .
11001010000111010.01010110110100
1110101010011001101011100101010 ,
100000100 i 000100100100001101100
1101001010100010011000110100101

1695454644
1967970090
1092765804
1766928805

•  9*2^®'

lllOlOlOOOdlHOlOOlOlOl 10110100
111010000111101101100110011011
1011001 lldooioi 10100010101101
i101100100001110110010011110 ,

1963890ld0
975100315 ,
376531117
227601566

lOOOOlOlOOOpl1101001010110110100
10110010001101010000100011
iiooiGiTioooioiinooi 111010010,
110001i do11 Id i100 i11001010id11

2232325556
46715939
.853734354 ...
832412843 .

11*2^®

looioiorooooii101001010110110100 '
llOlllOOOOOllUlQOOlllOllp .
11011000010111looooioiooioioiOi;. ;
iqioiiioiooiiooooiio.ioiiiioii

2500761012
57703542
1815022165,
366153083 . ,

■ ■ 12*2?^' - .
10100101000011101001010110110100, ,
1000000011010000011101100010100
1000011101110110111100000010001
1101110110110100000111001111010

2769196468 .
1080572692 , :

.1136359441
1859784314

■  ; 13*2^^ „ ■
loiioioioodol1101001010110110100
llliooiodll10100000011010011101 ;
lodooonool 100001 iiQioiool 10000
1011001010110010101110110110111

3037631924
2033845917
1100510512
1499028919

,14*2^®, •

i1000101000011101001010110110100
1010111011110111011011,
1001011111llOlOOOlOOIlOOOl10000
1111110100011010001000101110001

3306067380
2866651
1274684976
2123174257

15*2^V
11010101000011101001010110110100
111011111001looooioiooiiiiii11
IIIIIOOOOOIIOIOIOIIIOOOIII .
1111101100010000000001110001

3574502836
1004934399
65066439
263258225-
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Table 4.4 : Comparison of execution times for jumping and looping algorithms on
a Sparc station 10

Number of

processors

Execution time (seconds) for
jumping algorithm

Execution time (seconds) for
looping algorithm

4 25 4452

8 57 5195

16 117 5593
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the jump distance while the time taken by the jumping aigrorithm will increase only as the order

,  of log2Gump distance). n -

,. In order to detenh ine the statistical quality of the random numbers, the "standard tests" of

random number generation are first.carried out; The standard tests include the distribution test,

' the serial test, and the runs up or runs down test. These tests measure the quality of the random

number sequence by measuring the probability that a "perfectly random", random number

. generator would produce a random, sequence similar to that produced by the random number

generator under test. This closeness to real randomness is measured through what are called chi-

squared values. A random number generator on being tested several times, will generally yield

chi-squared values that have between 0.05 and 0.95 probability, of being produced. Additional

tests are needed to examine the statistical distribution of several of the chi-squared values

produced by the random number generator. n

Also, it may be noted that since many of the tests require real random numbers.uniformly

distributed in the range [0,1 ], the 32-bit integers are converted to real form by a transformation of

theform,. "

Rea}_random_number = 0.5 + 2.3283064365e-10 * Iriteger_random_number

if the integer is signed, or a transformation of the form

n  Real_random£number= 2.3283064365e-10'*Integer_random_number

if the integer is unsigned, The statistical tests show a satisfactory performance on the part of the

developed random number generator. Details on how the statisticaf tests are carried out and how

the results obtained from the tests me interpreted, are discussed in appendix C.

The battery of tests called DIEHARD, developed by Marsaglia [14], was also used to test

'  ' the Marsaglia ̂  Zaman generator. The results obtained along with brief descriptions a,bput the

tests, are also presented in Appendix C. The generator performs well oh almost every test except

the DNA test, which suggests that the pairs of bits (32,31) , (31,30) ,...', (19,18) may be mutually



correlated. Considering the stringent nature of this set of tests, the performance of the generator

on the whole is satisfactory.
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Chapter 5

Conclusions

It was desired to develop an efficient and statistically sound parallel random number

generator that could be used in applications as Monte Carlo simulation. The possibility of using

the Marsaglia - Zaman generator, and developing it for parallel application, was considered. It

was realized that the problem of parallelization involved parallelizing the two components of the

Marsaglia - Zaman generator, namely the linear congruential component and the lagged

Fibonacci component, both of which were discussed in detail.

The mathemetical relations connecting terms distantly seperated in these sequences were

analyzed. This enabled the development of a mechanism to jump through the two sequences. The

problem of implementation and data representation was addressed and the chief objective of

portability was achieved. Both C and Fortran code were written for the task. Also, the program

was written to allow easy modification of the used linear congruential and lagged Fibonacci

generators. Any linear congruential or lagged Fibonacci generator with any number of

coefficients and any modulus could be used simply by changing a few constant parameters

declared at the start of the program. Jump distance can also be similarly altered.

Proper operation of the developed jumping algorithm was tested and the large

improvement in execution time compared to actually looping through the sequence was

demonstrated for a sub-sequence of the Marsaglia - Zaman generator of length 2^1 It was also

seen that the proportional increase in execution time with jump distance for the looping program

makes looping impossible for practical seed separation distances of the order of 2®°. Only the
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jumping algorithm with logarithmic increase in execution time is practical for such a jump

distance.

Future work could attempt application of the system for jumping through linear

congruential and lagged Fibonacci sequences to other random number generating algorithms

based on these sequences. The exponentiation of the matrix of lagged Fibbonacci coefficients 'D'

could be speeded up by exploiting some inherent redundancies [8], thereby making the "ranjump"

procedure faster. Also improving the efficiency of the program through bit level manipulation

may be considered, though this may require a sacrifice of portability.

Many current parallel random number generating algorithms resort to the use of a single

algoritlim like lagged Fibonacci or shift register generators, but with a large number of

coefficients to achieve very long periods [15, 7]. These do not take advantage of the additional

statistical soundness and efficiency, as well as very long periods made possible by the

combination of two simple but drastically different algorithms as does the Marsaglia - Zaman

generator. Also the generation of seeds for the above mentioned algorithms is usually done with a

linear congruential sequence. Though this ensures seeds will not be reused until all seeds are

exhausted, it does not allow for even distribution of the period among the various processors.

Hence among the various options available for parallel random number generation, the

Marsaglia - Zaman parallel random number generator is presented as a useful method of

generating random numbers for parallel applications.
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finclude <stdio.h>

#include <math.h>

#include <string.h>
ttinclude <stdlib.h>

#include <inalloc.h>

void ranjump{ char'**is, char **os )
{

/* Constants to be altered when using a different linear
congruential or lagged fibonacci sequence */

/* Number of coefficients of lagged Fibonacci sequence */
const int k = 3;

char /* Coefficients of linear congruential sequence */
a[256] = "10000110111001101",
b[256] = "111100011011101111001101110011",

/* Modulus of linear congruential sequence */
modl[256] = "100000000000000000000000000000000",

/* Coefficients of lagged Fibonacci sequence. Initialize
these in the first executable statements of the code.

Allocate space for k coefficients by setting the first
index of af[][] equal to k. */
af[3][256], n ,

/* Modulus of lagged Fibonacci sequence */
mod2[256] = "1111111111111111111111110111011",

/* Jump distance ' */
n[256] = "10000000000000000000000000000";

/* Variables to be used in the computation */

int i, j;
"char ***D, ***G, aminusl[256], a_x_mod[256],

a_n[256] = "1", a_power_n[256] = "1", terml[256], term2[256];

/* Functions called */
I

void product ( char ***, char ***, char ***, char *, int
void mult ( char *, char *, char *, char *
void intdiv ( char *, char *, char *
void subt ( char char *, char *
void sum ( char *, char *, char *, char *

/* Initialization for coefficients of lagged Fibonacci'
generator n n ' */

strcpy ( af [0], "1" ) ;
•  strcpy ( af[l], "" .) ;

strcpy { af[2], "1111111111111111111111110111010" ) ;

/* Jumping through the Linear Congruential sequence */
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i = 0;

subt ( aminusl, a, "1" ) ;
mult ( a_x_mod, aminusl, modi, "" );

while ( i < (int)(strlen(n) - 1) ) {
if ( n[i] == '1' )

{
mult ( a_power_n, a_power_n, a, modi );
mult • { a_n, a_n, a, a_x_mod );

}
mult ( a_power_n, a_power_n, a_power_n, modi );
mult { a_n, a_n, a_n, a_x_mod );
i++;

}

if ( n[strlen(n)-1] == '1' )

mult ( a_power_n, a_power_n, a, modi );
mult- ( a_n, a_n, a, a_x_mod );

}

mult ( terml, a_power_n, is[0], modi );
subt ( a_n, a_n, "1" ); .

n intdiv ( term2, a_n, aminusl, ) ; // {a'^n - 1) / {a - 1)
mult ( 't0rm2, term2, b, modi );
sum ('os[0], terml, term2, modi );

/* Jumping through the lagged Fibonacci sequence */

D = (char ***) malloc ( k -* sizeof(char **) ) ;
G = (char ***) malloc ( k * sizeof(char **) );
for ( i = 0; i < k; i++ ) {

D[i] = (char **) malloc n( k * sizeof(char *) );
G[i] = (char **) malloc ( k * sizeof(char *) );

}
for ( i = 0; i < k; i++ ) {

for ( j = 0; j < k; j++ ) {
D[i][j] = (char *) malloc ( 256 * sizeof(char) );
G[i][j] = (char *) malloc ( 256 * sizeof(char) );

}

for ( i = 0; i < k; i++ ) {
for ( j = 0; j < k; j++ ) {

if ( i == k-1 )

{
strcpy ( D[i] [j], af[j] );

}
else if ( j == i+1 )

{
strcpy ( D[i][j], "1" );

}
else

{
strcpy ( D[i][j],, "" ) ;
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for ( i = 0; i < k; i++ ) {
for ( j = 0; j < k; j++ ) {

if ( i == j )

{
strcpy ( G[i][j], "1" );

}
else

{
strcpy ( G[i] [j], "" ) ;

}

}

}

i = 0; ,

while ( i < (strlen(n) - 1) ) {
if ( n[i] == '1' ) product(G,G,D,mod2,k);
product(G,G,G,mod2, k) ;
i++;

if ( n [strlen (n) -1] ==■' ' 1' ) ' • ' ' , '
product(G,G,D,mod2,k);

for ( i = 0; i < k; i++ ) "{
terml[0] = '\0' ;
for ( j = 0; j < k; j++ ) {

mult ( term2, G[i] [j], is[j+l], mod2 ) ;
sum ( terml, terml, term2, mod2 );

}
strcpy ( os[i+l], terml ); .

for ( i = 0; i < k; i++ ) {. •
for ( j = 0; j'< k; j++ ) {

free ( D[i] [j] ) ;
free ( G[i] [j] );

}

J  . ■ ■
for { i = 0; i < k; i++ ) {

free ( D[i] );
free ( G[i] ) ;

free ( D );
free ( G- ) ;

return;

void product ( char ■***?, char char ***N, char *mod, int d
{
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char ***prod, temp[256];
int i,j,k;
void mult( char *, char *, char *, char * );
void sum ( char *, char *, char *, char * );

prod = (char ***) malloc ( d * sizeof(char **) );

for ( i = 0; i < d; i++ )

prod[i] = (char **) malloc ( d * sizeof(char *) );

for ( i = 0; i < d; i++ )
for ( j =0; j < d; j++ )

prod[i][j] = (char *) malloc ( 256 * sizeof(char) );

for ( i = 0; i < d; i++ )

{
for ( j =0; j < d; j++ )

{
prod[i][j][0] = '\0';
for ( k = 0; k < d; k++ )

{
mult ( temp, M[i][k], N[k][j], mod );
sum ( prod[i][j], prod[i][j], temp, mod );

}

}

}

for ( i = 0; i < d; i++ )
for ( j =0; j < d; j++ )

{
strcpy ( P[i][j], prod[i][j] ) ;
free ( prod[i][j] );

}

for ( i = 0; i < d; i++ )

free ( prod[i] );

free ( prod ); • n

return;

void mult ( char *prodo, char *opl, char *op2, char *mod )
{

int i,k;
char diff[256], intprod[256], prod[256], op[256];
void sum ( char *, char *, char *, char * );
void subt ( char *, char *, char * ) ;
void intdiv ( char *, char *, char * ) ;

if (opl[0] == '0' M op2[0] == '0' I
opl[0] == 'XO' I op2[0] == 'XO')

{
prodo[0] = 'XO';
return;
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}

prod[0] = '\0';

k = strlen (opl);
for ( i = 0; i <= k; i++ )

op [i] = opl [i] ;

for { i = strlen(op2) - 1; i >= 0; i— )
{

if ( op2[i] == '1' )
sura ( prod, prod, op, "" );

op[k], = '0' ;
op[++k] = '\0' ;

}

if ( raod[0];!= '\0' )

{
intdiv ( diff, prod, mod );
rault ( intprod, diff, mod, "" );
subt ( prod, prod, intprod );

for ( i = 0; i <= (int)strlen(prod); i++ )
prodo[i] = prod[i];

return;

void intdiv( char•*quotiento, char *dividend, char *divisor
{

char quotient[256];
char sub[256];

int i,j,q,n;
void subt( char *, char *, char * );

int strraagcmp( char^ *, char'* );

n = strlen(dividend);

quotient[0] = '\0';
q = 0;

if ( divisor[0] == '\0' )

{
printf("Division by zero error!\n"),•
return;

}
if ( dividend[0] == '\0' ) return;

for ( i = 0; i < (int)strlen(divisor) ; i++)
sub[i] = dividend[i];

j = i;
sub[i] = '\0';
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if (strmagcmp(sub,divisor) =- 0)
{

sub[i] = dividend[j];
sub[++i] = '\0';

j++;
}

while (strmagcmp(sub,divisor) == 1}
{

subt(sub,sub,divisor);
quotient[q] = '1';
quotient[++q] = '\0';

i = strlen(sub);

sub[i] = dividend[j] ;
if ( sub[0] == '0' ) i—;

n sub[++i] = '\0';
n  j++;

while ((strmagcmp(sub,divisor)==0)&&(j<=n))
{

quotient[q] = '0';
quotient.[++q] = '\0';
sub[i] = dividend[j];
if ( sub[0] == '0' ) i—;
sub[++i] = '\0';

j++;

}

}

for ( i = 0; i <= (int)strlen(quotient); i++ )
quotiento[i] = quotient[i];

return;

}

void sum(char *reso, char *opl, char *op2, char *mod)'
{

char res[256];

int i, j, 11, 12, 1, carry;
.  void subt ( char *, char *, char'* );

int strmagcmp ( char *, char * );

if (opl[0] == '0' I op2[0] == '0') n
{

printf("Error.\n");
return;

J  '

11 = strlen(opl);
12 = strlen(op2);
1 = (11>12)711:12;

res[l+l] = '\0';
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carry = 0;
for ( i = 11-1, j = 12-1; (i>=0) || (j>=0) ; i—, j— )
{

if (i<0)

{
res[l] = op2[j] + carry;

}
else

{  if (j<0)
{

res[l] = opl[i] + carry;

}
else

{
res[l] = opl[i] + op2[j] - '0' + carry;

}

}

if (res[l] > '1')

{
res[l] -= 2;

carry = 1;

}
else

{

}

1—;

carry = 0;

1 = (11>12)?11:12;

1++;

if ( carry == 1 )

res[0] = '1';

}
else

{
for (1=0;i<l;i++)

res [i] = res[i+1];

}

// modulus part
if (mod[0] != '\0')

{
if (strmagcmp(res,mod) == 1)

subt( res, res, mod );

}

for (i=0; i <= (int)strlen(res); i++
reso [i] = res[i];

return;
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void subt ( char *reso, char *opl, char *op2 )
{

char res[256];

int i, j, 11, 12, borrow;

11 = strlen(opl);
12 = strlen(op2);
res[ll] = 'XO';

if (opl[0] == '0' I op2[0] == '0' I 11 < 12)
{

printf("Error.\n");
return;

borrow = 0;

for ( i = 11-1, j = 12-1; i >= 0; i—, j— )
{

if (j<0)

Ise

res[i] = opl[i] - borrow;

res[i] = ( opl[i] + '0' ) - op2[j] - borrow;

f  (res [i] < ' 0')

res [i] += 2;
borrow = 1;

else

borrow = 0;

if ( borrow == 1 )

{
printf("Negative result!\n") ;

for ( i = 0; res[i] == '0'; i++ );

for ( j = i; j <= (int)strlen(res); j++ )
reso[j-i] = res[j];

return;

int strmagcmp(char *one, char *two)
{
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int i ;

int 11,12;

11 = strlen(one);

12 = strlen(two);

if (11>12) return(l);
if (11<12) return(O);

for (i=0;i<ll;i++)

{
if (one[i] > two[i]) return(l);
if (one[i] < two[i]) return(O);

}

return(l); // Equal
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SUBROUTINE RANJMP ( IS, OS )
CHARACTER *(*) IS(*), 0S(*)

C

C

IMPLICIT LOGICAL (A-Z)

Constants

INTEGER K

PARAMETER ( K = 3

CHARACTER

DATA A

B

MODI

M0D2

N

AF(1)

AF(2)

AF(3)

^256 A, B, MODI, AMINUS, AXMOD, AF(K), M0D2, N
/  '10000110111001101 • /,
/  '111100011011101111001101110011 ' /,
/  '100000000000000000000000000000000 ' /,
/  '1111111111111111111111110111011 ' /,
/  '11111111111111111111111111111111 ' /,
/  '1 ' /,
/  • ' /,
/  '1111111111111111111111110111010 ' /

c

c

c

c

Variables

INTEGER I, J, LENGTH

CHARACTER *256 D(K,K), G(K,K), STORE(K,K),
:  APN, APOWN, TERMl, TERM2

DATA APN / '1 ' /,
:  APOWN / '1 ' /

Linear Congruential Part

1 = 1

CALL SUBT ( AMINUS, A, '1 ' )
CALL MULT ( AXMOD,. AMINUS, MODI, ' ' )
LENGTH = INDEX ( N, ' ' ) - 1

100 • IF ( I .GE. LENGTH ) GOTO 199
"IF ( N(I:I) .EQ. '1' ) THEN

CALL MULT ( APOWN, APOWN, A, MODI )
CALL MULT ( APN, APN, A, AXMOD )

ENDIF

CALL MULT ( APOWN, APOWN, APOWN, MODI )
CALL MULT ( APN, APN, APN, AXMOD )
1 = 1 + 1

188 GOTO 100

199 IF { N(LENGTH:LENGTH) .EQ. '1' ) THEN
CALL MULT ( APOWN, APOWN, A, MODI )
CALL MULT ( APN, APN, A, AXMOD )

ENDIF

CALL MULT ( TERMl, APOWN, IS(1), MODI )
CALL SUBT ( APN, APN, '1 ' )
CALL INTDIV ( TERM2, APN, AMINUS )
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CALL MULT ( TERM2, TERM2, B, MODI )
CALL SUM ( 08(1), TERMl, TERM2, MODI )

C  Lagged Fibonacci part
C

DO 299 I = 1, K

DO 299 J = 1, K

IF ( J .EQ. I+l ) THEN

D(I,J) = '1 •

ELSE

•  D(I,J) = ' '

ENDIF

IF ( I .EQ. K ) THEN •

D(I,J) = AF(J)

ENDIF nn

299 CONTINUE

DO 399 I = 1, K

DO 399 J =,1, K

IF ( I .EQ. J ) THEN

'g(I,J) = '1 '
ELSE

G(I,J) = ' •

ENDIF

399 CONTINUE

400 IF ( I .EQ. LENGTH ) GOTO 499

IF ( N(I:I) .EQ. '1' ) THEN

CALL PRODCT ( G, G, D, STORE, M0D2, K )

ENDIF

CALL PRODCT ( G, G, G, STORE, M0D2, K )

1 = 1 + 1

GOTO 400

499 CONTINUE

IF ( N(LENGTH:LENGTH) .EQ. '1' ) THEN

CALL PRODCT ( G, G, D, STORE, M0D2, K )
ENDIF

DO 599 I = 1, K
TERMl = ' '

DO 699 J = 1, K
CALL MULT ( TERM2, G(I,J), IS(J+1), M0D2 )

CALL SUM ( TERMl, TERMl, TERM2, M0D2 )

699 CONTINUE

OS(I+l) = TERMl

599 CONTINUE

END

SUBROUTINE PRODCT ( P, M, N, PROD, MOD, D )

CHARACTER*(*) P(*), M(*), N(*), PROD(*), MOD
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INTEGER D n

CHARACTER*256 TEMP

INTEGER I, J, K

DO 199 I = 1, D

DO 199 J = 1, D

PR0D(I+(J-1)*D) = ' '

DO 199 K = 1, D

CALL MULT ( TEMP, M(1+(K-1)*D),

:  N{K+(J-1)*D), MOD )

CALL SUM ( PR0D(1+(J-1)*D), PROD(1+(J-1)*D),

:  TEMP, MOD )

199 CONTINUE

DO 299 1 = 1, D

DO 299 J = 0, D-1
P(1+J*D) = PR0D(1+J*D)

299 CONTINUE

END

SUBROUTINE MULT ( PRODO, OPl, 0P2, MOD )

CHARACTER,*!*) PRODO, OPl, 0P2, MOD

INTEGER 1, K

CHARACTER*256 DIFF, INTPRD, PROD, OP

IF ( 0P1-(1:1) .EQ. • ' .OR. 0P2(1:1) .EQ. ' ' ) THEN

PRODO = ' '

RETURN

ENDIF

PROD = • ' .

K = INDEX ( OPl, ' ' J.
OP = OPl

DO 188 1 = 1NDEX{0P2,' ')-l, 1, -1

IF { 0P2(1:1) .EQ. '1' ) THEN

CALL SUM ( PROD, PROD, OP, ' ' )

ENDIF

OP(K:K) = '0'

K = K + 1

188 CONTINUE

IF { MOD(1:1) .NE. ' ' ) THEN

CALL INTDIV ( DIFF, PROD, MOD )
CALL MULTl ( INTPRD, DIFF, MOD )

CALL SUET ( PROD, PROD, INTPRD )

ENDIF

PRODO = PROD

END
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SUBROUTINE MULTl ( PRODO, OPl, 0P2 )
CHARACTER*(*) PRODO, OPl, 0P2

INTEGER I, K

CHARACTER*256 PROD, OP

IF ( 0P1(1:1) .EQ. ' • .OR. 0P2(1:1) .EQ. ' ' ) THEN
PRODO = ' ' ,

RETURN

ENDIF

PROD = ' '

K = INDEX { OPl, ' ' )

OP = OPl

DO 188 I = INDEX(0P2,' ')-l, 1, "1
IF ( 0P2{I;I) .EQ. '1' ) THEN

CALL SUM ( PROD, PROD, OP, ' ' )
ENDIF

OP(K:K) = '0'

K = K + 1

188 CONTINUE

PRODO = PROD

END

SUBROUTINE INTDIV ( QUOTO, DIVID, DIVIS )
CHARACTER*(*) QUOTO, DIVID, DIVIS

CHARACTER*256 QUOT, SUB

INTEGER I, J, Q, N

INTEGER STRMAG

N = INDEX ( DIVID, ' ' ) - 1
QUOT = ' '

Q = 1
SUB = ' '

IF ( DIVIS(1:1) .EQ. ' ' ) THEN
PRINT *, 'Division by zero error!'
RETURN

ENDIF

IF ( STRMAG( DIVID, DIVIS ) .EQ. 0 ) THEN
QUOTO = ' '

RETURN

ENDIF

J = INDEX ( DIVIS, ' ' )
SUB = DIVID ( 1 : J-1 )

IF ( STRMAG( SUB, DIVIS ) .EQ. 0 ) THEN
SUB(J:J) = DIVID(J:J)
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J = J + 1

ENDIF

100 CALL SUBT( SUB, SUB, DIVIS ).
QUOT(Q':Q) = '1''
Q = Q + 1
I = INDEX(SUB, ' ')

,  SUB(I:I) = DIVID(J:J)
J = J + 1

IF ( SUB(1:1) .EQ. '0' ) THEN
SUB (1:1) = • '

ELSE

1 = 1 + 1

ENDIF

110 IF ( STRMAG( SUB, DIVIS ) .EQ. 1 ) GOTO 100
IF ( J .GT. N+1 ) GOTO 199

QUOT(Q:Q) = '0'

Q = Q + 1
SUB(I:I) = DIVID(J:J)
J = J + 1 '

IF ( SUB(1:1) .EQ. '0' ) THEN
SUB(1:1) = ' '

ELSE

1 = 1 + 1

ENDIF

GOTO 110

199 CONTINUE

QUOTO ="QUOT

END

SUBROUTINE SUM ( RESO, OPl, 0P2, MOD )
CHARACTER*(*) RESO, OPl, 0P2, MOD

CHARACTER*256 RES

INTEGER LI, L2, L, CARRY

INTEGER STRMAG

LI = INDEX( OPl, ' ' ) - 1
L2 = INDEX( 0P2, ' ' ) - 1
L  = MAX (L1,L2)

RES = ' '

CARRY = 0

100 (  LI .LE. 0 .AND. L2 .LE. 0 )  GOTO 199

IF ( LI .LE. 0  ) THEN

RES(L:L) = CHAR ( n I CHAR (0P2(L2;L2)) + CARRY ) "

ELSEIF ( L2 .LE. 0 ) THEN

RES(L:L) = CHAR ( I CHAR (0P1(L1:L1)) + CARRY )

ELSE

RES(L:L) = CHAR ( I CHAR

I CHAR

(OPl(L1:L1)) +
('0') + CARRY :

ICHAR (OP2(L2:L2))

1

ENDIF
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IF ( RES(L:L) .GT. '1' ) THEN
RES(L:L) = CHAR ( ICHAR { RES{L:L) ) - 2 )
CARRY = 1

ELSE

CARRY = 0

ENDIF

L = L - 1

LI = LI - 1

L2 = L2 - 1

188 GOTO 100

199 IF ( CARRY .EQ. 1 ) THEN
RES = '1' // RES

ENDIF

IF ( M0D(1:1) .NE. ' ' .AND. STRMAG ( RES, MOD ) .EQ. 1 ) THEN
CALL SUBT { RES, RES, MOD )

ENDIF

RESO = RES

END

SUBROUTINE SUBT ( RESO, OPl, 0P2 )
CHARACTER*(*) RESO, OPl, 0P2

CHARACTER*256 RES

INTEGER LI, L2, BORROW

INTEGER STRMAG

LI = INDEX ( OPl, ' ' ) - 1
L2 = INDEX ( 0P2, ' ' ) - 1
RES = ' '

IF ( STRMAG ( OPl, 0P2 ) .EQ. 0 ) THEN
PRINT *, 'Error... Negative Result!'
RETURN

ENDIF

BORROW = 0

100 IF ( LI .EQ. 0 ) GOTO 199
IF ( L2 .LE. 0 ) THEN

RES(LI:LI) = CHAR ( ICHAR( OPl(LI;LI) ) - BORROW )
ELSE

RES(LI:LI) = CHAR ( ICHAR(OPl(LI:LI)) - ICHAR(0P2(L2:L2)) +
;  ICHAR( '0' ) - BORROW )

ENDIF

IF ( RES(LI:LI) .LT. '0' ) THEN
RES(LI:LI) = CHAR ( ICHAR (RES(LI:LI)) + 2 )
BORROW = 1

ELSE

BORROW = 0

ENDIF

LI = LI - 1

L2 = L2 - 1
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188 ' GOTO 100

199 LI = INDEX { RES, '1' )

IF { LI .NE. 0 ) THEN
RESO = RES(LI:)

ELSE

RESO = ' '

ENDIF

END

INTEGER FUNCTION STRMAG ( ONE, TWO )
CHARACTER*(*) ONE, TWO

INTEGER.LI, L2

LI = INDEX ( ONE, ' ' ) - 1
L2 = INDEX ( TWO, ' ' ) - 1

IF ( LI .GT. L2 ) THEN
STRMAG = 1

ELSEIF ( LI .LT. L2 ) THEN
STRMAG = 0

ELSEIF ( ONE .GE. TWO ) THEN
STRMAG = 1

ELSE

STRMAG = 0

ENDIF

END
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APPENDIX C

STATISTICAL TESTS
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The equidistribution test:

The equidistribution test tests the uniformity with which the random numbers produced

by the generator are distributed over their range. The test is implemented here as follows. The

range from 0 to 1 is divided into 100 intervals of width 0.01 each. 10,000 random numbers

uniformly distributed in [0,1] are generated. Each random number is counted into one of the

hundred intervals by multiplying the number by a hundred and considering the integer part of the

result. If the random number generator truly produces uniformly distributed numbers, then each

of the 100 intervals must have a count of about 100. The chi-squared value of the distribution is

then calculated using the formula,

2  k if
N MV k

where A: = 100 is the number of intervals, Xi is the actual count of numbers found in bin i, andN =

10,000 is the total count of the random numbers generated.

The test is repeated 1000 times in the same manner with different sets of 10,000 random

numbers, and the value of is computed for each test. The mean and standard deviation of the

1000 x^ values thus obtained are calculated. The expected and obtained values of the mean and

standard deviation with the arbitrarily chosen seed values of 1982837299, 238472398,

2938402302, 3842938292, are as follows.

Mean :

Expected value = 100.000

Obtained value = 99.124

Standard Deviation :

Expected value =14.142

Obtained value =13.470
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The 1000 values for are divided into 100 bins. The first bin counts the number of

values obtained that have a probability of occurrence that is 0.01 or less. The second bin counts

the number of x^ values having a probability of occurrence between 0.01 and 0.02, and so on.

Since a particular value of x^ may occur with equal probability in any of the equiprobable bins,

we expect a uniform distribution of the values among the'bins. This distribution is plotted if

figure (C.l). The x-axis is continues and represents the continuously varying value of x^ They-

axis is discrete and represents the count of values obtained in each bin. Since the expected

value in each bin is 10, a graph of expected count against x^ would be a straight line parallel to

the X-axis and intercepting they-axis at a count of 10. The actual distribution is seen to be

scattered around this mean value as is to be expected. The 1000 x^ values are next themselves

subjected to another x^ test. The overall chi-squared value thus obtained is given by,

10

where Bj represents the number of x^ values in bin j. The overall chi-squared value also has 99

degrees of freedom. For the particular choice of seed values made, the overall chi-squared value

for the Marsaglia - Zaman generator is found to be 104.00. This is a perfectly acceptable value

from a x^(99) distribution.

The serial test:

The serial test attempts to measure any coirelation between successive numbers in the

random number sequence. In other words, each random number should be perfectly independent

of other random numbers in its neighborhood. 10,000 pairs of random numbers are generated and

distributed in a two dimensional array of bins, with 10 bins to each dimension. Both random

numbers in each pair are multiplied by 10, and the integer parts of the result give the indices of

60



2
0

1
5

.
2
0 1 I*

 1
0

(
D =
3
c
r
o tl
H

n

Lr

ru

n

J
 J
 

I 
L

J
 L

J
 L

6
0

8
0

1
0
0

1
2
0

1
4
0

Fi
gu

re
 (C

.l
):

 Di
st
ri
bu
ti
on
 o
f t

he
 1
00
0 

va
lu

es
 o
f t

he
 e
qu
id
is
tr
ib
ut
io
n t

es
t



the bin into which the pair is to be counted. The expected count in each of the 100 bins is

therefore 100. The chi-squared value for the test is given by,

k  k k2  ̂ t

Xii - -
k^J

where A: = 10, is the number of bins in each dimension, N= 10,000 is the total count of all the

bins, and xy is the observed count value in the bin with indices i andy. Though the test is applied

here to two consecutive random numbers, it can be extended to larger groups of random numbers.

1000 of these tests are carried out to obtain 1000 values for The mean and standard deviation

of these 1000 values with the same choice of seed values as the equidistribution test are as

follows.

Mean :

Expected value = 100.000

Observed value = 98.973

Standard Deviation :

Expected value = 14.142

Observed value = 14.036

The 1000 values are divided into 100 equiprobable bins as for the equidistribution test.

The plot of the distribution against value is shown in figure (C.2). It is seen that the

distribution fluctuates around the mean value of 10 per bin as expected. An overall chi-squared

value is again calculated as for the equidistribution test. This value is found to be 82.600 for the

particular seeds chosen. It is a reasonable value for a sample from a x^(99) distribution.

Runs up and runs down test:

The runs up and runs down tests count respectively, the number of consecutively

increasing or decreasing values found in the distribution. A sequence of continuously increasing

or decreasing numbers is called a run, and the length of the runs can vary from one to the number
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of random numbers in the sequence. The probability of a run of a certain length occurring can be

calculated, and this helps find the expected number of runs of any given length.

The test is carried out with N = 10,000 for the Marsaglia - Zaman generator. Seed values

chosen for the first run are 1982837299, 238472398, 2938402302, and 3842938292. Seed values

chosen for the second run are 487113490, 1092832391, 832801293, and 1233298109. For these

seed values, the number of runs up and runs down observed and expected are shown in table

(C.l).

It is not possible to apply a test directly using the estimated and obtained values of the

number of runs-up and runs-down. This is because the runs are not independent of each other, and

each run affects the runs adjacent to it. However, it is possible to possible to get an asymptotic

chi-squared value as,

^ IX fe - E(R,)y^j -e(Rj )>,
N 1=1 j=l

where R, is the observed count of runs of length /, and E{Ri) is the estimated count of runs of

length i. The estimated count is given by,

EiR,)^E(R',)-E(R',,,)

where R) stands for the count of the number of runs of length 1 or greater. The expected value of

this count is calculated using the formula,

^  (/ + l) /!

The terms a,j stand for the elements of the inverse of the covariance matrix which is obtained by

calculating the covariance of the count of the number of runs of length i, with the count of the

number of runs of length j, for \ ̂  i J ̂ r. Here r stands for the length of the maximum length

run, all runs of length greater than r being grouped into the count for run r. In the test conducted
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Table 4.1 ; Runs up and runs down tests

Length of

run

Number

of runs-up

observed

Number

of runs-

down

observed

Expected

number of

runs-up /

runs-down

RUN 1

1 1689 1687 1667

2 2040 2061 2083

3 926 898 916

4 286 285 263

5 51 56 57

^ 6 9 12, 10

RUN 2

1 1599 1662 1667

2 2142 2151 2083

3 891 916 916

4 251 241 263

5 77 47 57

^6 9 14 10
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here r is chosen to be six. The value of the elements of the covariance matrix are calculated from

the expressions,

Co^>{R„R\)= CoviR!, ,R\)-Cov{r:,,,
Cov(R„R„,)=Cov(R„R'„,)-Cov(R„R'„,,,),

and

CoviR',,R\,)=-
E(R\)+ f{l,m,n): / + w < «,

[E{R\)-E(R,)E{R\,)-.l + m>n,

where t = mca {I ,m],s = l + m, and ) =

f  5:(1-/w)+/ot 2s
+ 2
''i-H -s-2^m-s^ -l^trP' +l

+

V j! y
 -

(/ +1) (/w +1)

In calculating the covariance matrix, care should be taken to substitute R'r in place of Rr

in calculating the covariance of run r with other runs or with itself. The asymptotic chi-squared

values are found to be.

Run 1 :

V  =3 200runs up

Vnmsdomi ~ 2.253.

Run 2 :

Probability = 0.217

Probability = 0.108

Vruiisup - 7.785.

runs down;,„= 4.165.

Probability = 0.747

Probability = 0.344

The probability values correspond to the probability that the obtained value of F is a sample from

a  distribution, as it is expected to be.

This completes the discussion on the standard tests. The performance of the generator has

been shown to be good on all the standard tests considered. Other special and more stringent tests

are also available. The only limitation in designing the special tests is the availability of a way to

predict the performance of a "truly" random sequence of numbers subjected to the test, and to

estimate under exactly what conditions, a random number generator under test can be said to have
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failed the test. One such set of stringent tests is "DIEHARD". The results of testing the random

number generator with "DIEHARD" are summarized in the following extract from the output of

the program. The random numbers are provided to "DIEHARD" in a file called "ranintb.32".
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NOTE: Most of the tests in DIEHARD return a p-value, which
should be uniform on [0,1) if the input file contains truly-
independent random bits. Those p-values are obtained by
p=F(X), where F is the assumed distribution of the sample
random variable X often normal. But that assumed. F is just
an asymptotic approximation, for which the fit will be worst
in the tails. Thus you should not be surprised with
occasional p-values near 0 or 1, such as .0012 or .9983.
When a bit stream really FAILS BIG, you will get p's of 0 or
1 to six or more places. By all means, do not, as a
Statistician might, think that a p < .025 or p> .975 means
that the RNG has "failed the test at the .05'level". Such

p's happen among the hundreds that DIEHARD produces, even
with good RNG's. So keep in mind that " p happens".

This is the BIRTHDAY SPACINGS.TEST

Choose m birthdays in a year of n days. List the spacings
between the birthdays. If j is the number of values that
occur more than once in that list, then j is asymptotically
Poisson distributed with mean m''3/(4n). Experience shows n
must be quite large, say n>=2'^18, for comparing the results
to the Poisson distribution with that mean. This test uses

n=2''24 and m=2'^9, so that the underlying distribution for j
is taken to be Poisson with lambda=2''27/(2''26) =2. A sample
of 500 j's is taken, and a chi-square goodness of fit test
provides a p value. The first test uses bits 1-24 (counting
from the left) from integers in the specified file.

Then the file is closed and reopened. Next, bits 2-25 are
used to provide birthdays, then 3-26 and so on to bits 9-32.
Each set of bits provides a p-value, and the nine p-values
provide a sample for a KSTEST.

BIRTHDAY SPACINGS TEST, M= 512 N=2**24 LAMBDA= 2.0000

Results for ranintb.32

For a sample of size 500: using bits 1 to 24, Mean = 2.036
duplicate number number

spacings observed expected
0 63. 67.668

1 144. 135.335

2 134 . 135.335

3 83. 90.224

,  4 41. 45.112

5 22 . 18 . 045

6 to INF 13. 8.282

Chisquare with 6 d.o.f. = 5.40 p-value = .506125
p values were found similarly for tests using bits 2 to 25, 3 to 26
upto 9 to 32.
The 9 p-values were

.506125 .220544 .513211 .412704 .025586

.291103 .066305 .340122 .641447

A KSTEST for the 9 p-values yields .869347
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THE OVERLAPPING 5-PERMUTATION TEST

This is the 0PERM5 test. It looks at a sequence of one mill
ion 32-bit random integers. Each set of five consecutive
integers can be in one of 120 states, for the 5! possible or-
derings of five numbers. Thus the 5th, 6th, 7th,...numbers
each provide a state. As many thousands of state transitions
are observed, cumulative counts are made of the number of
occurences of each state. Then the quadratic form in the
weak inverse of the 120x120 covariance matrix yields a test
equivalent to the likelihood ratio test that the 120 cell
counts came from the specified (asymptotically) normal dis
tribution with the specified 120x120 covariance matrix (with
rank 99). This version uses 1,000,000 integers, twice.

0PERM5 test for file ranintb.32

For a sample of 1,000,000 consecutive 5-tuples,
chisquare for 99 degrees of freedom=136.092; p-value= .992007
0PERM5 test for file ranintb.32

For a sample of 1,000,000 consecutive 5-tuples,
chisquare for 99 degrees of freedom= 93.783; p-value= .370658

This is the BINARY RANK TEST for 31x31 matrices. The leftmost

31 bits of 31 random integers from the test sequence are used
to form a 31x31 binary matrix over the field {0,1}. The rank
is determined. That rank can be from 0 to 31, but ranks< 28
are rare, and their counts are pooled with those for rank 28.
Ranks are found for 40,000 such random matrices and a chisqua
re test is performed on counts for ranks 31,30,29 and <=28.

Binary rank test for ranintb.32
Rank test for 31x31 binary matrices:
rows from leftmost 31 bits of each 32-bit integer
rank observed expected (o-e)'^2/e sum

203 211.4

.0

28

29 5078 5134 ,

.335179

.611052

.335

. 946

30

31

22925

11794

23103.0

11551.5

1.372143

5.089753

2.318

7.408

chisquare= 7.408 for 3 d. of f.'; p-value= .943280

This is the BINARY RANK TEST for 32x32 matrices. A random 32x
32 binary matrix is formed, each row a 32-bit random integer.
The rank is determined. That rank can be from 0 to 32, ranks
less than 29 are rare, and their counts are pooled with those
for rank 29. Ranks are found for 40,000 such random matrices

and a chisquare test is performed on counts for ranks 32,31,
30 and <=29.

Binary rank test for ranintb.32
Rank test for 32x32 binary matrices:
rows from leftmost 32 bits of each 32-bit integer'
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rank observed expected (o-e)''2/e
29

30

31

32

231

5165

23081

11523

211.4

5134.0

23103.0

11551.5

1.813725

.187059

.021039

.070436

•sum

1.814

2.001

2.022

2.092

chisquare= 2.092 for 3 d. of f.; p-value— .520544

This is the BINARY RANK TEST for 6x8 matrices. From each of
six random 32-bit integers from the generator under test, a
specified byte is chosen, and the resulting six bytes form a
6x8 binary matrix whose rank is determined. That rank can be
from 0 to 6, but ranks 0,1,2,3 are rare; their counts are
pooled with those for rank 4. Ranks are found for 100,000
random matrices, and a chi-square test is performed on
counts for ranks 6,5 and <=4.

Binary Rank Test for ranintb.32
Rank of a 6x8 binary matrix,
rows formed from eight bits of the RNG-ranintb.32
b-rank test for bits 1 to 8

OBSERVED EXPECTED

r<=4 981 944.3

r =5 21851 21743.9

r =6 77168 77311.8
p=l-exp(-SUM/2)=

The b-rank-test is repeated for bits
25 to 32. p is found for each test.
These should be 25 uniform [0,1] random variables:

(0-E)^2/E SUM
1.426 1.426

.528 1.954

.267 2.221

67065

2 to 9, 3 to 10 and so on upto

.670646

.659341

.212144

. 528217

.376459

.955596

.652131

.555781

. 052615

.793129

.218858

.314140

.669843

-.806658

.309774

665258

,407926

, 158414

.003447

, 831839

, 667737

, 132801

.839626

.898659

, 994243

brank test summary for ranintb.32
The KS test for those 25 supposed UNI's yields
KS p-value= .207604

THE BITSTREAM TEST

The file under test is viewed as a stream of bits. Call them
bl,b2,... . Consider an alphabet with two "letters", 0 and 1

n and think of the stream of bits as a succession of 20-letter
"words", overlapping. Thus the first word is blb2...b20, the
second is b2b3...b21, and so on. The bitstream test counts
the number of missing 20-letter (20-bit) words in a string of
2'"21 overlapping 20-letter words. There are 2^20 possible 20
letter words. For a truly random string of 2^21+19 bits, the
number of missing words j should be (very close to) normally
distributed with mean 141,909 and sigma 428. Thus
(j-141909)/428 should be a standard normal variate (z score)

that leads to a uniform

twenty times.

;0,1) p value. The test is repeated
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THE OVERLAPPING 20-tuples BITSTREAM TEST, 20 BITS PER WORD, N
words

This test uses N=2'^21 and samples the bitstream 20 times.
No. missing words should average 141909. with sigma=428.
tst no 1: 141907 missing words, -.01 sigmas from mean,
p-value= .'49783
p-values obtained by repeating the test 20 times:
.49783 .82660 .58480 .64892 .59660

.52298 .23349 .14423 .02720 .50995

.25775 .74552 .02413 .14583 .72720

.24362 .95344 .38304 .60921 .06611

The tests'OPSO, OQSO and DNA

OPSO means Overlapping-Pairs-Sparse-Occupancy
The OPSO test considers 2-letter words from an alphabet of
1024 letters. Each letter is determined by a specified ten
bits from a 32-bit integer in the sequence to be tested. OPSO
generates 2^21 (overlapping) 2-letter words (from 2^21+1
"keystrokes") and counts the ,number of missing words that
is 2-letter words which do not appear in the entire sequence.
That count should be very close to normally distributed with
mean 141,909, sigma 290. Thus (missingwrds-141909)/290 should
be a standard normal variable. The OPSO test takes 32 bits at
a time from the test file and uses a designated set of ten
consecutive bits. It then restarts the file for the next de

signated 10 bits, and so on.

OQSO means Overlapping-Quadruples-Sparse-Occupancy
The test OQSO is similar, except that it considers 4-letter

words from an alphabet of 32 letters, each letter determined
by a designated string of 5 consecutive bits from the test
file, elements of which are assumed 32-bit random integers.
The mean number of missing words in a sequence of 2''21 four-
letter words, (2'^21'+3 "keystrokes"), is again 141909, with
sigma = 295. The mean is based on theory; sigma comes from
extensive simulation.

The DNA test considers an alphabet of 4 letters;: C,G,A,T,
determined by two designated bits in the sequence of random
integers being tested. It considers lO-letter words, so that
as in OPSO and OQSO, there are 2''20 possible words, and the
mean number of missing words from a string of 2''21 (over
lapping) ro-letter words (2^21+9 "keystrokes") is 141909.
The standard deviation sigma=339 was determined as for OQSO
by simulation. (Sigma for OPSO, 290, is the true value (to
three places), not determined by simulation.

OPSO test for generator ranintb.32 using bits 23 to 32
■No. missing words = 142085, Equiv normal variate = .606,
p-value = .7277
p-values obtained by repeating test using bits 22 to 31, 21 to 30
and so on upto bits 1 to 10 are:
.8707 .4954 .8317 .7918 .7808 .4529 .9077 .8509 .2693 .7898 .9995
.9411 .6874 .2278 .1008 .5489 .6029 .9473 .8729 .1354 .4216 .8386
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OQSO test for generator ranintb.32 using bits 28 to 32
No. missing words = 141699, Equiv normal variate = -.713,
p-value = .2379
p-values obtained by repeating test using bits 27 to 31, 26 to 30
and so on upto bits 1 to 5 are:
.1519 .9902 .2728 .2475 .5347 .3797 .3064 .4323 .4766 .9255 .8667
.5735 .3759 .4901 .3992 .2638 .1307 .9250 .6487 .1943 .3605 .2605
.6538 .8069 .0946 .3823 .3940

DNA test for generator ranintb.32 using bits 31 to 32
No. missing words = 1034559, Equiv normal variate = *******,
p-value= 1.0000
p-values obtained by repeating test using bits 30 to 31, 29 to 30
and so on upto bits 1 to 2 are:
1

1

1

. 0000

.0000

. 0000

,0000 1.0000 1.0000 1.0000

0000 1.0000 1.0000

. 9952 . 6402 . 9210

1.0000

.0501

.5020

.5629

.2364

.0291

. 0148

.2943

.1165

.7519

.2364

.8910

. 6280

.9564

.4773

.1549

. 9305

This is the COUNT-THE-1's TEST on a stream of bytes.
Consider the file under test as a stream of bytes (four per
32 bit integer). Each byte can contain from. 0 to 8 I's,
with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let
the stream of bytes provide a string of overlapping 5-letter
words, each "letter" taking values A,B,C,D,E. The letters are
determined by the number of I's in a byte:: 0,1,or 2 yield A,
3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E. Thus
we have a monkey at a typewriter hitting five keys with vari
ous probabilities (37, 56, 70, 56, 37 over 256). There are 5'^5
possible 5-letter words, and from a string of 256,000 (over
lapping) 5-letter words, counts are made on the frequencies
for each word. The quadratic form in the weak inverse of
the covariance matrix of the cell counts provides a chisquare
test:: Q5-Q4, the difference of the naive Pearson sums of
(OBS-EXP)''2/EXP on counts for 5- and 4-letter cell counts.

Test results for ranintb.32

Chi-square with 5'^5-5'^4=2500 d.of f. for sample size:2560000
Results fo COUNT-THE-1's in successive bytes:

chisquare equiv normal p-value

byte stream for ranintb.32 2485.16 -.210 .416887
byte stream for ranintb.32 2515.64 .221 .587527

This is the COUNT-THE-1's TEST for specific bytes.
Consider the file under test as a stream of 32-bit integers.
From each integer, a specific byte^ is chosen , say the left
most:: bits 1 to 8. Each byte can contain from 0 to 8 I's,
with probabilitie 1,8,28,56,70,56,28,8,1 over 256. Now let
the specified bytes from successive integers provide a string
of (overlapping) 5-letter words, each "letter" taking values
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:: A,B,C,D,E. The letters are determined by the number of I's,
:: in that byte:: 0,1,or 2 > A, 3 > B, 4 > C, 5 > D,
:: and 6,7 or 8 > E. Thus we have a monkey at a typewriter
:: hitting five keys with with various probabilities:: 37,56,70,
::' 56,37 over 256. There are 5-^5 possible 5-letter words, and
:: from a string of 256,000 (overlapping) 5-letter words, counts
:: are made on the frequencies for each word. The quadratic form
:: in the weak inverse of the covariance matrix of the cell
:: counts provides' a chisquare test:: Q5-Q4, the difference of
:: the naive Pearson sums of (OBS-EXP)''2/EXP on counts for 5-
:: and 4-letter cell counts.

Chi-square with 5'^5-5'^4=2500 d.of f. for sample size: 256000
For bits 1 to 8, chisquare = 2479.93, equiv normal = -.284,
p-value = .388269
p-values obtained by repeating test using bits 2 to 9, 3 to 10 and
so on upto bits 25 to 32 are:
.573226 .672089 .128618 .576059 .051137 .415^17 .191874 .100567
.334250 .747734 .342461 .944903 .199425 .816901 .935848 .863812
.411844 .712764 .508716 .845426 .350002 .735914 .713542 .926592

:  : THIS IS A PARKING LOT TEST :

:: In a square of side 100, randomly "park" a car a circle of :
:: radius 1. Then try to park a 2nd,- a 3rd, and so on, each :
:: time parking "by ear". That is, if an attempt to park a car :
:: causes a crash with one already parked, try again at a new :
:: random location. (To avoid path problems, consider parking :
:: helicopters rather than cars.) Each attempt leads to either :
:: a crash or a success, the latter followed by. an increment to :
:: the list of cars already parked. If we plot n: the number of :
:: attempts, versus k:: the number successfully parked, we get a:
:: curve that should be similar to those provided by a perfect . :
:: random number generator. Theory for the behavior of such a ;
:: random curve seems beyond reach, and as graphics displays are ;
:: not available for this battery of tests, a simple characteriz ;
:: ation of the random experiment is used: k, the number of cars ;
:: successfully parked after n=12,000 attempts. Simulation shows ;
:: that k should average 3523 with sigma 21.9 and is very close
:: to normally distributed. Thus (k-3523)/21.9 should be a st-
:: andard normal variable, which, converted to a uniform varia-
:: ble, provides input to a KSTEST based on a sample of 10.

CDPARK: result of ten tests on file ranintb.32
Of 12,000 tries, the average no. of successes should be 3523
with sigma=21.9
test 1 - Successes: 3509 z-score: -.639 p-value: .261324
p-values obtained by repeating the test 9 more times:
.794438 .607947 .500000

.921543 .481790 .392053

.323972 .572463 .500000

square size = 100, Avg. no. parked = 3525.800,
Sample sigma = 12.584
KSTEST for the above 10 p-vales: p = .571172
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THE MINIMUM DISTANCE TEST

It does this 100 times:: choose n=8000 random points in a
square of side 10000. Find d, the minimum distance between
the {n'-2-n)/2 pairs of points. If the points are truly inde
pendent uniform, then d^2, the square of the minimum distance
should be (very close to) exponentially distributed with mean
.995 . Thus 1-exp (-d''2/. 995) should be uniform on [0,1) and
a KSTEST on the resulting 100 values serves as a test of uni
formity for random points in the square. Test numbers=0 mod 5
are printed but the KSTEST is based on the full set of 100
random choices of 8000 points in the 10000x10000 square.

This is the MINIMUM DISTANCE test

for random integers in the file ranintb.32

Sample no. d'^2 avg equiv uni

5 2.5587 2.2404 .923582

10 1.2101 1.5214 .703634

15 .2147 1.2754 .194066

20 1.4283 1.1883 .761988

25 .0912 1.0207 .087594

30 1. 6336 1.0923 .806364

35 1.2613 1.0981 .718498

40 . 6804 1.1366 .495307

45 .8529 1.2228 .575638

50 . 1311 1.1856 .123479

55 .5743 1.1740 .438539

60 .3058 1.1867 .264567

65 . 3740 1.1796 .313302

70 .7902 1.1945 .548046

75 1.1124 1.1619 .673061

80 . 5055 1.1514 .398339

85 . 8237 1.1276 .562990

90 . 9028 1.0971 .596392

95 .0301 1.0912 .029771

100 .1171 1.0892 .111026

MINIMUM DISTANCE TEST

Result of KS test on

p-value= .848977

for ranintb.32

20 transformed mindist''2 ' s ;

THE 3DSPHERES TEST

Choose 4000 random points in a cube of edge 1000. At each
point, center a sphere large enough to reach the next closest
point. Then the volume of the smallest such sphere is (very
close to) exponentially distributed with mean 120pi/3. Thus
the radius cubed is exponential with mean 30. (The mean is
obtained by extensive simulation). The 3DSPHERES test gener
ates 4000 such spheres 20 times. Each min radius cubed leads
to a uniform variable by means of 1-exp (-r^3/30.), then a.

KSTEST is done on the 20 p-values.

The 3DSPHERES test for file ranintb.32

sample no: 1 r''3= 14.229 p-value= .37768
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sample no: 2 r''3= 10.512 p-value= .29559
Test is similarly repeated a total of 20 times.
A KS test is applied to those 20 p-values.
3DSPHERES test for file ranintb.32 p-value= .213839

This is the SQEEZE test

Random integers are floated to get uniforms on [0,1). Start
ing with k=2'^31=2147483647, the test finds j, the number of
iterations necessary to reduce k to 1, using the reduction
k=ceiling(k*U), with U provided by floating integers from
the file being tested. Such j's are found 100,000 times,
then counts for the number of times j was <=6,7,...,47,>=48
are used to provide a chi-square test for cell frequencies.

RESULTS OF SQUEEZE TEST FOR ranintb.32
Table of standardized frequency counts { (obs-exp)/sqrt(exp) )^2
for j taking values <=6,7,8,...,47,>=48:
-1.5 . 9 -.1 -1.3

o

t—1

1.6

.1 . 9 1.2 .9 1.5 .1

.2 -.7 .8 -.9 .0 -.2

-.6 -.2 -.7 -.2 .2 -.1

. 4 -.8 -.8 .2 -.3 1.8

.3 -1.1 .3 .5 -.2 -1.0

.0 1.5 .1 -.7 -.6 -1.0

-1.1

Chi-square with 42 degrees of freedom: 28.847

z-score= -1.435 p-value= .061124

The OVERLAPPING SUMS test

Integers are floated to get a sequence U(l) ,U(2) , ... of uni
form [0,1) variables. Then overlapping sums,

S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are formed.
The S's are virtually normal with a certain covariance mat
rix. A linear transformation of the S's converts them to a

sequence of independent standard normals, which are converted
to uniform variables for a KSTEST. The p-values from ten
KSTESTs are given still,another KSTEST.

p-values for ten tests are :
.896026 .309515 .690461 .233085 .178876

.576975 .629410 .544685 .890147 .486059

Results of the OSUM test for ranintb.32

KSTEST on the above 10 p-values: .224907

This is the CRAPS TEST. It plays 200,000 games of craps, finds
the number of wins and the number of throws necessary to end
each game. The number of wins should be (very close to) a
normal with mean 200000p and variance 200000p(1-p), with
p=244/495. Throws necessary to complete the game can vary
from 1 to infinity, but counts for all>21 are lumped with 21.
A chi-square test is made on the no.-of-throws cell counts.
Each 32-bit integer from the test file provides the value for
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the throw of a die, by floating to [0,1), multiplying by 6
and taking 1 plus the integer part of the result.

Results of craps test for ranintb.32
No. of wins:

Observed = 98637, Expected = 98585.86
z-score = .229, pvalue= .59046
Analysis of Throws-per-Game:
Chisq = 14.09 for 20 degrees of freedom, p= .17432

Throws Observed Expected Chisq Sum

1 66529 66666.7 .284 .284

2 37637 37654.3 .008 .292

3 27144 26954.7 1.329 1.621

4 19173 19313.5 1.022 2. 643

5 13775 13851.4 .422 3.064

6 10028 9943.5 .717 3.782

7 7276 n  7145.0 2.401 6.183

8 5217 5139.1 1.182 7.364

9 3682 3699.9 .086 7.451

10 2630 2666.3 .494 7. 945

11 1919 1923.3 .010 7. 955

12 1352 1388.7 .972 8.926

13 984 1003.7 .387 9,314

14 741 726.1 .304 9. 618

15 547 525.8 .852 10.470

16 381 381.2 .000 10.470

17 285 276.5 .259 10.729

18 193 200.8 .305 11.034

19 147 146.0 . 007 11.041

20 93 106.2 1.644 12.685

21 267 287.1 1.409 14.094

SUMMARY FOR ranintb.32

p-value for no. of wins: .590461

p-value for throws/game: .174323
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