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Abstract

There is a growing performance gap between computation and communication on modern
computers, making it crucial to develop algorithms with lower latency and bandwidth
requirements. Because systems of linear equations are important for numerous scientific
and engineering applications, I have studied several approaches for reducing communication
in those problems. First, I developed optimizations to dense LU with partial pivoting,
which downstream applications can adopt with little to no effort. Second, I consider two
techniques to completely replace pivoting in dense LU, which can provide significantly higher
speedups, albeit without the same numerical guarantees as partial pivoting. One technique
uses randomized preprocessing, while the other is a novel combination of block factorization
and additive perturbation. Finally, I investigate using mixed precision in GMRES for solving
sparse systems, which reduces the volume of data movement, and thus, the pressure on the
memory bandwidth.
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Chapter 1

Introduction1

Large systems of linear equations arise in many scientific and engineering applications [31,34,
50,88]. The scale of these problems strains even leadership-class supercomputers, with dense
problems containing millions of unknowns [34,88], sparse problems containing tens of billions
of unknowns [31,50], and some applications desiring the ability to solve even larger problems.
Thus, it is crucial to design and implement algorithms to solve these problems effectively on
modern clusters and supercomputers.

Unfortunately, there is a growing imbalance in performance between data movement and
arithmetic in modern hardware. For example, the new exascale Frontier supercomputer
at the Oak Ridge National Laboratory can do more than 100 double-precision floating-
point operations for every operand fetched from memory [85]. Future systems are expected
to be even more imbalanced, as suggested by the trend in top supercomputers shown by
Fig. 1.1. Additionally, the latency to access the main memory improves even slower than the
bandwidth [99]. Thus, saturating the memory bandwidth requires speculative out-of-order
execution that is expensive in terms of the transistor and energy budgets [59] and exposes
new security vulnerabilities [84]. In distributed settings, communication between nodes is
even more expensive. Thus, developing techniques to reduce the amount of communication
and data movement is increasingly important, even in algorithms that have historically been
compute-bound.

Because different algorithms provide significantly different performance characteristics,
I consider only a few key algorithms. First, I consider direct methods for dense, non-
symmetric systems, which are also often used for symmetric-indefinite systems. The primary
workhorse for these problems is Gaussian elimination with partial pivoting (GEPP), with

1Section 1.3 of this chapter reuses material from four of my published papers [92] (© 2020 Springer), [94]
(© 2021 IEEE), [91] (© 2022 IEEE), and [95]. Coauthors include Piotr Luszczek, Jack Dongarra, and Mark
Gates. Reused coauthor contributions are limited to textual improvements.
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the pivoting introducing a large amount of data movement. My work to improve dense,
direct solvers consists of two parts. The first part is techniques to improve the efficiency of
pivoting, including GPU-aware MPI and threshold pivoting. The second part is algorithmic
variants that completely remove pivoting, including randomized preprocessing and additive
modifications. Second, I consider iterative methods for sparse, non-symmetric systems. The
generalized minimal residual method (GMRES) is a major method for this class of problems
and also sees use in both dense [75] and symmetric [50] settings.

1.1 Notation

Most variable names follow Householder’s convention: matrices are capital letters; vectors are
lowercase Latin letters; scalars are lowercase Greek letters; and indices are lowercase Latin
letters between i and p. A notable exception is u, the floating-point unit roundoff.

Generally, the variables A, x, and b correspond to the standard linear system, Ax = b.
The real numbers are denoted R, with Rn and Rm×n being the corresponding n-dimensional
column vectors and m × n-dimensional matrices. The singular values of an n × n matrix
A are denoted σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A). Transposition and Hermitian-transposition
of a matrix A are denoted AT and AH , respectively. For blocked and tiled algorithms,
nb represents the block or tile size, while nt represents the number of blocks or tiles. All
indices are 1-based and inclusive.

1.2 Dense LU experiments: SLATE and Summit

My research on dense LU factorization focuses on the Software for Linear Algebra Targeting
Exascale (SLATE) library. SLATE is a dense linear algebra library targeting distributed,
heterogeneous systems [53]. It is being developed as a successor to ScaLAPACK at the
University of Tennessee as a part of the Exascale Computing Project. SLATE uses OpenMP
tasking for node-level parallelism and MPI for inter-node parallelism.

I primarily tested SLATE on the Summit supercomputer at the Oak Ridge National
Laboratory. The Summit supercomputer contains more than 4000 IBM Power System AC922
nodes, with each node containing two 22-core IBM POWER9 CPUs and six NVIDIA Volta
V100 GPUs. Each socket has one CPU core reserved for system overheads, such as the
operating system (Red Hat Enterprise Linux version 8.2). The GPUs provide most of the
computational power, with 7.8 TFLOP/s, 16 GiB of high bandwidth memory (HBM2), and
900 GB/s memory bandwidth per GPU. The CPUs for a given socket provide 540 GFLOP/s,
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256 GiB DDR4 memory, and 170 GB/s memory bandwidth (excluding the reserved core).
NVIDIA NVLink provides a bidirectional 50 GB/s within a socket. A dual-rail EDR InfiniBand
network connects the nodes with a non-blocking fat-tree topology. See the Summit user guide
for more details.2 In tests on Summit, the job launcher was always configured to assign all
21 cores and 3 GPUs of a socket to each process; threads were bound and distributed with
packed:21 and packed, respectively.

1.3 Literature Review

Because of the importance of communication in high-performance linear algebra codes and
their performance, the entire literature on the subject is quite extensive. To keep the size of
this review manageable, I limited its scope to pivoting schemes for dense LU factorization,
approaches to replace pivoting in dense LU factorization, and mixed-precision GMRES. Other
notable topics in the subject include 2.5D and 3D matrix algorithms [87], s-step methods [36],
and low synchronization schemes for orthogonalization [26].

1.3.1 Pivoting in LU Factorization

Most high-performance implementations of dense LU factorization ensure numerical stability
using partial pivoting. This scheme swaps rows during the factorization so that when a
column is factored, its diagonal element is at least as large as each of the sub-diagonal
elements. While examples with catastrophic errors have been known since Wilkinson’s work
in the 1960s [133], such problems are rare in practice [73,125]. Because partial pivoting is
usually robust, more expensive techniques, such as complete pivoting and rook pivoting,
are rarely used for dense problems. Unfortunately, pivoting introduces several overheads.
First, applying the pivots requires exchanging entire rows of the matrix across the network.
Second, computing the pivots requires doing a latency-heavy reduction for each column
of the matrix. Finally, the data dependencies introduced by pivoting reduce the available
parallelism; computing the pivots is interspersed with the left-panel triangular solve, while
the top-panel triangular solve is delayed until pivots have been applied to the corresponding
columns.

The simplest way to avoid the cost of pivoting is to simply omit it, i.e., to use Gaussian
elimination with no pivoting (GENP). Unfortunately, this is only numerically stable for
specific classes of matrices, such as those that are diagonally dominant, totally nonnegative,
or symmetric positive definite [71]. In general, the resulting error may be arbitrarily large due

2https://docs.olcf.ornl.gov/systems/summit_user_guide.html

4

https://docs.olcf.ornl.gov/systems/summit_user_guide.html


to unchecked growth; thus, other techniques are needed. (See Section 3.1 for more discussion
on element growth and its effect on accuracy.)

Various alternative pivoting schemes have been previously proposed to reduce the
communication. The most well-known of these is Gaussian elimination with tournament
pivoting (GETP) [65, 66]; its prominence is demonstrated by how frequently it is referred
to as “Communication Avoiding LU” or CALU. Tournament pivoting divides the matrix
into a 2d tiled layout and computes all of the pivots for a given block column in a single
reduction. To find the pivots of a block column with nb columns, the tiles are reduced
in a binary fashion, like a tournament bracket. Each step of the reduction concatenates
two tiles vertically, then applies a GEPP to find the best nb pivot rows. This reduction
requires significantly fewer messages than partial pivoting, which does a reduction for each
column sequentially. Recently, tournament pivoting has been combined with a 2.5D matrix
distribution and dynamic pivoting [54] in the COnf LUX algorithm [87].

Threshold pivoting is another strategy for reducing communication. Technically, it is not
a pivoting scheme itself but a modification of other pivoting schemes; however, I have only
considered it in conjunction with partial pivoting. For example, partial pivoting ensures that
at the kth step,

|A[k, k]| ≥ |A[j, k]| j = k, . . . , n. (1.1)

Threshold pivoting relaxes this constraint to

|A[k, k]| ≥ τ |A[j, k]| j = k, . . . , n (1.2)

where 0 ≤ τ ≤ 1. This allows the selection of a pivot that is not maximal in magnitude but
is preferable in other regards, such as data movement. Using threshold pivoting in dense
factorizations has received limited attention to date. The subject was primarily investigated
by Malard in 1991 [98], followed by Hoffman and Potma a few years later [76]. Both works
investigated the use of thresholded partial pivoting to reduce inter-process communication in
LU factorization on distributed systems and experimentally demonstrated both limited loss of
accuracy and significant performance improvements. Unfortunately, both works were limited
to τ ≥ 0.1 and random matrices of size n ≤ 4096. Malard also tested dynamic pivoting, which
changes the matrix distribution instead of exchanging rows between processes [54]. Dynamic
pivoting still must exchange rows for load-balancing, which Malard unsuccessfully tried to
improve using threshold pivoting. The only other known uses of threshold pivoting for dense
matrices are brief tests of either element growth [125] or accuracy [47]. Unfortunately, these
other experiments do not consider performance or matrices larger than n = 2048.
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In contrast to dense factorizations, threshold pivoting is heavily used in sparse
factorizations [43]. The cost of a sparse factorization directly depends on the number
of nonzero entries. Thus, it is beneficial to select pivots causing less fill-in even if (1.1) is
slightly violated. The literature for sparse factorizations includes a wide range of threshold
recommendations from 4−1 to 10−8; however, a threshold of 10−1 or 10−2 is commonly
recommended as a general-purpose guideline [43,77].

Finally, there are other, less popular, techniques. Dynamic pivoting, mentioned above,
discards the notion of a fixed matrix distribution [54]. Instead of exchanging rows across
the network, the ownership of the rows is exchanged, saving significant network traffic.
However, depending on the numerical structure, the trailing matrix may become imbalanced;
this requires transferring rows to rebalance the remaining work. Another approach is
pairwise pivoting which uses 2× 2 transforms that combine pivoting with the elimination of
subdiagonal elements [23,117]. Extending this to a block-wise algorithm gives incremental
pivoting, which eliminations one block of the column at a time [30]. Both pairwise and
incremental pivoting were initially developed for out-of-core solvers and later adapted for
parallel solvers. Their theoretical analysis and experimental results are worse than that of
partial pivoting [66,117,125], but there is not a strong consensus on whether these schemes
are robust enough in practice or should be avoided [41].

There are also several strategies to replace pivoting. Sections 1.3.2 and 1.3.3 go into detail
on two such strategies. Another interesting strategy to replace pivoting is a hybrid of the LU
and QR factorizations [48]. This algorithm attempts to factor each block column with GENP.
It then tests the stability and, if instability is detected, re-factors the block column with the
unequivocally stable QR factorization. Thus, in the best case, the factorization progresses as
per GENP but provides more robust behavior when GENP struggles. Unfortunately, this
has similar parallel dependences to GEPP in task-parallel implementations, which reduces
the available parallelism.

1.3.2 Random Butterfly Transforms

Random butterfly transforms (RBTs) are structured sparse matrices with random coefficients
that are closely related to the fast Fourier transform (FFT). Multiplying a matrix on both
sides by such transforms usually allows LU without pivoting to factor the matrix without
significant loss of accuracy. Loosely speaking, it “smears” the matrix’s nonsingularity so
that the leading principal submatrices are reasonably well conditioned. However, iterative
refinement is still often needed to compute a solution accurate to double-precision. See
Section 3.3 for a detailed description of this algorithm.
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The RBT approach was first proposed in 1995 by a set of tech reports by Parker and Lê [107,
108, 109]. They outline the approach and provide basic theoretical and experimental analysis.
They provided basic theoretical analysis showing that, in exact arithmetic, the transformed
linear system can be factored without pivoting with a probability of 1. Unfortunately, they
were unable to make any conclusions about the resulting element growth or the effects of
floating-point arithmetic. They then tested 11 matrices for sizes from n = 32 to n = 512.
The RBT solver provided similar solutions to LINPACK’s GEPP, except for the matrices
with large condition numbers. Due to fewer optimizations, their implementation performed
worse than LINPACK.

The RBT idea was then developed for actual performance in a series of papers by Baboulin
et al. The primary thrust of their work targets many-core and heterogeneous systems for
both non-symmetric and symmetric-indefinite problems [16, 17, 19, 21, 24, 123]. This work
included a number of modifications to improve performance, including

• the use of real-valued transforms instead of complex-valued ones,
• truncation of the transform recursion to a depth of 2,
• the use of iterative refinement, and
• the design of efficient RBT kernels.

Additionally, they explored the use of the RBT strategy for a distributed, symmetric-indefinite
solver [14], for sparse factorization [20], and for incomplete sparse factorization [18].

Recent work by Shen et al. combines RBTs with a modified version of the adaptive
cross approximation (ACA) algorithm [114]. The ACA algorithm takes advantage of low-
rank properties in the matrix’s off-diagonal to factor a dense matrix in O(n log(n)) time.
Unfortunately, their tests are limited to matrices that can be factored without pivoting and
they do not test the performance of a non-RBT, non-pivoted factorization (with or without
ACA), limiting the strength of their conclusions.

Additionally, there has been recent work on the theoretical properties of RBTs [110,111,
126]. Unfortunately, these works have focused on butterflies based on rotation matrices
instead of the butterflies based on block-Hadamard matrices which have been used in
performance-oriented works.

Butterfly matrices are not the only transform that has been proposed for replacing
pivoting. Pan et al. have explored a number of transforms, including ones based on Gaussian
matrices, circulant matrices, and subsampled random Fourier transforms (SRFTs) [103, 105].
Additionally, it has been proven that a matrix preconditioned with one or more Gaussian
matrices can be factored with GENP and have a high probability of a limited growth factor.
Furthermore, experimental results for various preconditioning matrices show numerical
errors of 10−10 to 10−15 with GENP, one step of iterative refinement, and matrices of size
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n = 256 to n = 4096. A related idea is to use additive preprocessing instead of multiplicative
preprocessing [104].

1.3.3 Additive Modifications in LU Factorization

Another alternative to pivoting is perturbing the matrix to one with better numerical
properties. Replacing pivoting with additive modifications was first suggested by Stewart
for sparse matrices [119]. There, small diagonal elements were modified before factoring the
corresponding column. When solving the system, the modifications were accounted for using
the Sherman-Morrison formula in a recursive fashion. Unfortunately, this approach has seen
limited use outside the optimization community [140]. An interesting variant of this approach
is to apply additive modifications, then correct them by adding extra rows and columns to
the matrix instead of using the Woodbury formula [8]. That is, the system Ax = b is replaced
with A + F1F2 F2

F1 I

 x

y

 =
b

0


where F1F2 modifies the appropriate diagonal elements. This variant is closely related to
the derivation of the Woodbury formula via the Schur complement [70]. Unfortunately, this
idea has not been explored deeply as the focus was on avoiding fill-in for sparse, symmetric
positive definite matrices with a few dense rows. Additionally, it complicates the matrix
allocation because the dimension of the matrix grows with the number of perturbations.

Relatedly, static pivoting applies additive modifications without any form of the Woodbury
formula and instead relies on iterative refinement to correct the perturbation [90]. As the
name implies, static pivoting also pre-permutes the matrix, trying to place large elements
on the diagonal before the factorization begins [44]. While iterative refinement can recover
minor errors, large errors can slow or even prevent convergence, especially ill-conditioned
matrices. Thus, there is a trade-off in the factorization’s backward error between the direct
perturbations to the matrix and the error induced by the growth factor.

1.3.4 Mixed-Precision Krylov Methods

The idea of using multiple precisions to improve performance, especially for systems of linear
equations, has been long known in the linear algebra community, going back to Wilkinson’s
work in the 1960s [133]. Recent years have seen an increase in the popularity of such
methods [1]. This has been driven, in part, by the increase in performance of reduced
precision arithmetic, especially the 16-bit formats used in deep learning.
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One approach to using multiple precisions in GMRES is to store the preconditioner
in reduced precision and keep the rest of the computation in full precision [56]. The
approximate nature of the preconditioner means that reducing the floating-point precision
has a limited reduction in quality. However, the reduced precision round-off errors can make
linear preconditioners act nonlinearly in full precision, making flexible GMRES (FGMRES)
necessary. One interesting version of this is to precondition a full-precision GMRES with a
reduced-precision GMRES (possibly with a preconditioner of its own) [15]. Reduced precision
preconditioners for GMRES have recently become popular with the development of the
GMRES-IR algorithm, which preconditions a restarted GMRES with an LU factorization
computed in 16-bit precision [32].

A similar idea is to use a low-precision GMRES within mixed-precision iterative
refinement [11,12,97,128,136,139]. Such a scheme computes only the residual and solution
in high precision. Unfortunately, this approach requires storing two copies of the matrix:
one in low precision that is accessed frequently and one in high precision that is accessed
infrequently. Recently, the GMRES-IR framework has been expanded in a way that includes
this strategy [6]. Chapter 4 explores this approach, including justification of the division of
precision and strategies to determine when to start the next outer iteration. Compared to
previous works, my work puts more emphasis on the mixed-precision GMRES as a unified
solver compared to the previous work, instead of merely viewing it as mixed-precision iterative
refinement with a new inner-solver. The most notable manifestation of this perspective is my
effort in finding effective restart strategies; other authors have limited themselves to restart
strategies based on only the inner iteration count. Note that other authors have built on the
work in Chapter 4 as they explored this strategy [97, 136,139], resulting in a fuzzy definition
of “previous work”.

There have also been mixed-precision variants of GMRES based on reducing the precision
of just the Krylov basis storage. The first reduces the precision of just the search space
in FGMRES [3]. This has a limited effect on the accuracy because the inexactness of
the preconditioner subsumes the added round-off error. A related variant for non-flexible
GMRES is compressed basis GMRES (CB-GMRES) [4]. CB-GMRES successfully provided a
speedup with the 32-bit floating-point version providing the best median speedup at 1.4 times.
However, the scheme requires custom, high-performance, mixed-precision kernels, which
increases the cost of implementation due to the limited availability of existing mixed-precision
routines. This approach fits within the broader memory accessor paradigm promoted by the
Ginkgo library [68].

There has recently been promising theoretical work for varying the working precision
as the iteration progresses in a non-restarted GMRES. Notably, part of this work shows
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that computing the Arnoldi process in finite precision still allows GMRES to converge at
approximately the same rate as exact-precision GMRES [61]. There exists further theoretical
work on reducing the accuracy of just the matrix-vector products in GMRES, and other
Krylov solvers, as the iterations progress [28,116,129].

Finally, GMRES using integer arithmetic has been explored [80]. While integer GMRES
did not involve a reduction in data movement, it does show GMRES achieving a full-precision
solution with limited iteration overhead when the solver uses an alternative data format.
Relatedly, there has been some work into storing parts of the solver in non-floating-point
formats, particularly in FGMRES and CB-GMRES [3,4]

Mixed precision approaches have also been used for other iterative solvers. Like GMRES,
mixed precision approaches include a reduced precision preconditioner [29, 46] and using
a reduced precision solver inside iterative refinement [11]. However, with Krylov methods,
iterative refinement discards the subspace at each restart. So, the strategy of “reliable updates”
has been proposed, which retains information about the Krylov subspace across restarts [37,
120]. Finally, there has been some experimental usage of alternate data representations, such
as data compression, in iterative solvers [5, 10,89].
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Chapter 2

Reducing Pivoting Overheads1

Because of the long history of GEPP, application developers will be wary to use other methods
until analysis and experimentation have proven they are reliable. So, optimizing partial
pivoting is still important, even in light of the techniques in Chapter 3. I have considered two
main strategies: optimizations for permuting the trailing matrix and threshold pivoting. The
former are direct software optimizations, while the latter introduces a controlled relaxation
of the pivoting constraints. These strategies can be combined, although they address the
same overhead (the cost to exchange rows).

2.1 Efficiently Permuting the Trailing Matrix

One of the overheads in partial pivoting is applying the permutation to the trailing matrices.
This is communication intensive in distributed memory environments and cannot be elided
from the critical path. Furthermore, techniques such as tournament pivoting do not address
these overheads since they still must pivot for most matrices. Because of its importance
I have investigated three optimizations for SLATE’s permuteRows routine: consolidating
inter-node communication to reduce latency costs, task-level parallelism, and GPU-aware
MPI. All three of these optimizations are part of the current version of SLATE.

The initial version of SLATE’s permuteRows was implemented similarly to Netlib’s
ScaLAPACK with each swap being applied separately. Algorithm 2.1 shows this approach
for a single block column. The main difference was that SLATE completely pivoted one
block column before starting the next, while ScaLAPACK treats the entire trailing matrix

1Section 2.1 reuses material from an unpublished class report for COSC 594 and Section 2.2 reuses material
from one of my published papers [91] (© 2022 IEEE). Coauthors for the published paper include Mark Gates,
Piotr Luszczek, and Jack Dongarra. Reused coauthor contributions are limited to the idea of threshold
pivoting, textual improvements, and improvements to Fig. 2.3.
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1: C ← the block column
2: nb ← the number of rows in the top tile
3: if C[1 : nb, :] is local then
4: for i = 1, . . . , nb do
5: p← pivot_list[i]
6: if C[p, :] is local then
7: Swap C[i, :] and C[p, :]
8: else
9: Copy C[i, :] to host

10: Send C[i, :] to and Recv C[p, :] from the owner of C[p, :]
11: Copy C[p, :] to GPU at memory location C[i, :]
12: else
13: for i = 1, . . . , nb do
14: p← pivot_list[i]
15: if C[p, :] is local then
16: Copy C[p, :] to host
17: Send C[p, :] to and Recv C[i, :] from owner of C[i, :]
18: Copy C[i, :] to GPU at memory location C[p, :]

Algorithm 2.1: SLATE’s original strategy for permuting rows in a block column on GPU
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as one block. This design is latency bound due to the small, sequential point-to-point
communications. Furthermore, when using GPUs, this latency also includes synchronizing the
device stream and transferring data between host and device. My strategy gathers all rows
touched by the set of pivots onto a single process, does all the swaps locally, then scatters the
rows back to their owners. Algorithm 2.2 describes this in more detail; note that R should be
stored sparsely since most rows are not involved in the permutation. This results in at most
two MPI latencies per remote process and two transfers between host and device. Figure 2.1
illustrates this effect on two processes.

The second optimization was a straightforward addition of task-level parallelism. Each
block column can be independently permuted, which provides a natural place to parallelize
the routine. Particularly, SLATE’s getrf routine already assumed that all tiles in the same
column belong to the same GPU. Thus, I used a separate task for each device; more tasks
are possible but require additional device streams.

The final optimization was the addition of GPU-aware MPI, which allows MPI to directly
access GPU memory instead of requiring the user to manually copy the data to the host [132].
This provides a few advantages. First, it allows the same internal host buffer to be shared
between the GPU API and MPI, reducing local data movement. Second, some hardware can
transfer data from the GPU straight to the network, reducing the amount of data movement
within a node. This is especially important on ORNL’s new Frontier supercomputer, where
the network cards are part of the GPUs; thus, sending data directly from the GPU is cheaper
than sending data from the CPU, let alone doing a round trip from GPU to CPU and back.

Experimental Results

To demonstrate the benefit of each of these optimizations, I tested them incrementally. These
experiments were performed on OLCF’s Frontier supercomputer since the GPU-aware MPI
provided by Summit does not provide a performance benefit. Because Frontier’s vendor MPI
(Cray MPICH) does not support GPU-aware MPI with multiple GPUs per process, I could
not test the second optimization (creating separate tasks for each GPU). Fortunately, this
optimization is the most straightforward of those discussed in this section.

Each node of Frontier contains a single 64-core “Optimized 3rd Gen EPYC” AMD CPU
and four AMD MI250X accelerators. Note that each MI250X accelerator contains two graphic
compute dies (GCDs), which act as independent GPUs albeit with a higher bandwidth
between the pair than with other accelerators. The GPUs provide most of the computational
power with 26.5 TFLOP/s and 1.6 TB/s memory bandwidth per GPU. See the Frontier user
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1: C ← the block column
2: nb ← rows in the top tile
3: if C[1 : nb, :] is local then
4: Receive remote rows from their owners into R
5: Copy R to GPU
6: for i = 1, . . . , nb do
7: p← pivot_list[i]
8: if C[p, :] is local then
9: Swap C[i, :] and C[p, :]

10: else
11: Swap C[i, :] and R[p, :]
12: Copy R to host
13: Send remote rows to their owners from R
14: else
15: for i = 1, . . . , nb do
16: p← pivot_list[i]
17: if C[p, :] is local then
18: Copy C[p, :] to R[p, :]
19: Copy R to host
20: Send R to the owner of C[0 : nb, :]
21: Receive R from the owner of C[0 : nb, :]
22: Copy R to GPU
23: for i = 1, . . . , nb do
24: p← pivot_list[i]
25: if C[p, :] is local then
26: Copy R[p, :] to C[p, :]

Algorithm 2.2: Optimized strategy for permuting rows in a block column on GPU
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(a) Sequential swapping

Rank 0 Rank 1

(b) Combined swapping

Figure 2.1: Communication patterns for applying a series of pivots on two ranks.
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guide for more details.2 The code was compiled using version 15.0.0 of the Cray compiler,
ROCm 5.3.0, Cray LibSci 22.12.1.1, and Cray MPICH 8.1.23. Eight cores were reserved for
the OS (SUSE Linux Enterprise Server version 15.4). SLATE was configured with –check n
–ref n –origin d –target d –nb 640 –ib 32 –lookahead 1 –panel-threads 1. The
default values were used for the precision (double), the process grid (8× 8), and the number
of right-hand sides (10). Random matrices (rand) with fixed seeds (1 and 2, respectively)
were used for both the matrix and right-hand side (respectively).

Figure 2.2 shows the effect of the optimizations on the performance to factor a matrix.
Because it better shows the benefit of GPU-aware MPI in permuteRows, I tested the
performance of SLATE’s Gaussian elimination with tournament pivoting (GETP). Each
configuration was run 3 times and plotted with 99 % confidence intervals. As shown by the plot,
coalescing the communication improves the performance more than threefold. GPU-aware
MPI also provides a useful speedup, but only of around 10 %. Remember that these results
include the entire cost to factor the matrix, so permuteRows itself will have a significantly
higher speedup.

2.2 Threshold Pivoting

Threshold pivoting is designed around relaxing the constraint on valid pivots so that it can
choose pivots requiring less communication. Recall that before factoring the ith column,
partial pivoting ensures that

|A[i, i]| ≥ |A[j, i]| j = i, . . . , n (2.1)

by conditionally swapping the ith row with one below it. Threshold pivoting relaxes this to

|A[i, i]| ≥ τ |A[j, i]| j = i, . . . , n (2.2)

where 0 ≤ τ ≤ 1 is a fixed parameter. This relaxation allows the selection of non-maximal
pivot elements that are otherwise preferable. When τ = 1, threshold pivoting is equivalent to
partial pivoting. On the other hand, when τ = 0, no numerical pivoting is applied. Threshold
pivoting is common in sparse factorizations, primarily to avoid fill-in [43]. I have instead
investigated using it to reduce data movement in dense factorizations.

Usually in a dense factorization, the matrix is distributed by a 2D block-cyclic mapping.
In such a distribution, the pivot belongs to the same process as the diagonal element if and

2https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
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only if the corresponding rows can be exchanged without communicating between processes.
So, the volume of communication can be fully determined using the distribution of just one
column, in particular the column being searched. This equivalency, and thus the following
theory, also holds for most other distributions; however, certain unusual distributions may
require a different analysis.

Using threshold pivoting to reduce the inter-process communication modifies only the
pivot search of partial pivoting. For clarity’s sake, denote the process that owns the current
diagonal element as the root process. First, each process finds its local maximum, as in partial
pivoting. Then, in the global reduction, the candidates from non-root processes are reduced
by a factor of τ , as shown in Fig. 2.3. Thus, the selected pivot is the largest element from
the root process if and only if that element satisfies (2.2). And, if the selected pivot is not
from the root process, then it is the global maximum.

Threshold pivoting can also reduce intra-process data movement by preferring the diagonal
row over other rows on the root process. This extends the above procedure by adding
another global reduction to check if the diagonal element already satisfies (2.2). A single
MPI_Allreduce can do these reductions simultaneously, so the added overhead will be
negligible [27]. Algorithm 2.3 shows this approach. The local panel search is unchanged
from a regular code, as per lines 3–5. The best local pivot candidate is α and its index is
ℓ. The threshold logic begins at line 6. On most processes, ℓ will be the argument for both
reductions. However, if A[j, j] satisfies (2.2) for the elements of the root process, j will be its
argument for the first reduction. Both reductions scale the non-root values by τ . If the first
reduction yields j, then row j is selected as the pivot. Otherwise, the result of the second
reduction is selected as the pivot.

In Algorithm 2.3, A[j, j] fulfills (2.2) if and only if it is the result of the first reduction
because of lines 8 and 11, respectively, for elements on the root process and on the non-root
processes. Similarly, the maximum element from the root process satisfies (2.2) if and only if
it is the result of the second maximization. Therefore, the selected pivot satisfies (2.2) while
minimizing data movement. Even though the reductions are identical unless the condition
in line 8 is false, that value is known by only the root process. So, always computing both
reductions minimizes the latency cost.

Finally, this approach can be further extended to deeper hierarchies, such as using the
network topology or distributing a column across multiple accelerators within a process. As
before, each communication layer has a corresponding maximization where the non-local
entries are penalized by a multiple of τ . Then, consider the reductions in order of cost. If
any maximization gave a local entry, take the first such entry. Otherwise, use the result
of the final reduction. As before, this gives a pivot with minimal cost that satisfies (2.2).
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Figure 2.3: Threshold pivoting for reducing inter-process data movement. © 2022 IEEE

1: procedure panel_search(A, j, τ)
2: I ← local indices of A[j:n, j]
3: ℓ← first entry in I; α← |A[ℓ, j]|
4: for i ∈ I do
5: if |A[i, j]| > α then ℓ← i; α← |A[ℓ, j]|
6: ℓ1 ← ℓ; ℓ2 ← ℓ
7: if j ∈ I then ▷ If this is the root process
8: if |A[j, j]| ≥ τ |A[ℓ, j]| then ℓ1 ← j
9: α1 ← |A[ℓ1, j]|; α2 ← |A[ℓ2, j]|

10: else
11: α1 ← τ |A[ℓ1, j]|; α2 ← τ |A[ℓ2, j]|
12: ℓ1 ← global_argmax(ℓ1, α1)
13: ℓ2 ← global_argmax(ℓ2, α2)
14: if ℓ1 = j then return ℓ1
15: else return ℓ2

Algorithm 2.3: Threshold Pivoting Panel Search © 2022 IEEE

19



Additionally, this can model the communication for complex matrix distributions by grouping
rows into layers based on the amount of communication required.

2.2.1 Theoretical Bounds for Threshold Pivoting

Gaussian elimination computes a solution, x̂, to the equation Ax = b such that

(A + ∆A)x̂ = b, ∥∆A∥∞ ≤ 3nu
1−3nu(1 + 2(n2 − n)ρ(A))∥A∥∞, ρ(A) = maxi,j,k |A(k)[i, j]|

maxi,j |A[i, j]|

where A(k) is the matrix after factoring k columns, ρ(A) is called the growth factor and u is
the unit roundoff for the floating-point format [71, Thm. 9.4, Lemma 9.6]. Because the n3

factor is pessimistic in practice [73,74], I focus on the growth factor.
The bound for the growth factor of threshold pivoting is similar to that of partial pivoting.

At step k, let α = maxij |A(k)[i, j]|. Then, the values computed in the kth Schur complement
have a magnitude of at most α + τ−1α. Applying this recursively gives

ρ(A) ≤ (1 + τ−1)n−1. (2.3)

This bound is tight and achieved with the matrix


τ 0 . . . 0 1
−1 τ . . . 0 1
... ... . . . ... ...
−1 −1 . . . τ 1
−1 −1 . . . −1 1


,

which is based on Wilkinson’s matrix with exponential growth in partial pivoting [134]. For
τ = 1 and τ = 0, (2.3) is a tight bound on the growth of partial pivoting and not pivoting,
respectively.

Ideally, for a given matrix, the growth with threshold pivoting would be bounded in terms
of the growth with partial pivoting. Unfortunately, this bound is exponential in the matrix
size and thus not meaningfully better than (2.3). Minor variations of Wilkinson’s matrix
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demonstrate the exponential relation. Let

Wαβ =



1 + α 0 . . . 0 1
−1 1 . . . 0 1
... ... . . . ... ...
−1 −1 . . . 1 1
−1− β −1 . . . −1 1


and Ωαβ =



−1− β −1 . . . −1 1
−1 1 . . . 0 1
... ... . . . ... ...
−1 −1 . . . 1 1

1 + α 0 . . . 0 1


.

These matrices differ only in the exchange of the first and last rows. Let 0 < τ < 1 and
0 < δ < max(τ−1 − 1, 1). Assume the diagonal element is selected as the pivot if it satisfies
the appropriate pivoting constraint, i.e., (2.1) or (2.2). Then, apply partial pivoting and
threshold pivoting to W0δ and Ωδ0. For both matrices, partial pivoting will exchange the
first and last rows at the first step (giving Ω0δ and Wδ0), while threshold pivoting will not
(leaving Wδ0 and Ωδ0). As shown below, the growth is exponential in n for Wδ0 and W0δ

but constant for Ωδ0 and Ω0δ. Hence, the growth of threshold pivoting is not meaningfully
bounded by that of partial pivoting and vice versa. These drastic differences likely relate
to Trefethen’s conjecture that exponential growth is rare for partial pivoting because such
growth “correspond[s] to unstable ‘modes’ that are themselves somehow unstable” [124].

Growth of Wδ0 and W0δ

First, consider Wδ0 and W0δ. Because the upper triangular parts of both are mostly zero,
δ appears in only the last column after the first Schur complement. So, the factorization
will not pivot, as per Wilkinson’s matrix. Because the δ in W0δ occurs in the last row, it
increases only the (n, n) element by δ. Thus, the growth of W0δ is

(1 + δ)−1(2n−1 + δ) ≈ 2n−1.

For Wδ0, all entries in the last column are (2 + δ)/(1 + δ) after the first Schur complement.
Then, the elements in the last column double at each step, as per Wilkinson’s matrix. Thus,
the growth of Wδ0 is

(1 + δ)−2(2 + δ)2n−2 ≈ 2n−1.

Growth of Ωδ0

Next, consider Ωδ0. Let Ω(k)
δ0 be the matrix after k steps of elimination on Ωδ0. For notational

simplicity, the indices are offset by k; i.e., the lower-rightmost element is always Ω(k)
δ0 [n, n].

Note that all entries in the first row of U are trivially −1. Furthermore, all entries of the
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first column of L are 1, except the last which is −1− δ. The first Schur complement gives

Ω(1)
δ0 =



2 1 . . . 1 0
0 2 . . . 1 0
... ... . . . ... ...
0 0 . . . 2 0

−1− δ −1− δ . . . −1− δ 2 + δ


.

For 2 ≤ k < i, j ≤ n, if no further pivoting occurs,

Ω(k)
δ0 [i, j] = det Ω(1)

δ0 [2:k ∪ {i}, 2:k ∪ {j}]
det Ω(1)

δ0 [2:k, 2:k]

by Schur’s identity [113].3 Because Ω(1)
δ0 [2:k, 2:k] is upper triangular, its determinant is 2k−1.

The bound for the numerator is separated into six cases, depending on the position of A[i, j] in
the matrix. The first three cases correspond to on, below, and above the diagonal, respectively,
in the leading principal part. The latter three cases correspond to on, below, and above the
diagonal, respectively, in the last row or column.

Case 1: i = j < n. Since Ω(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] equals the (k + 1)st leading principal

submatrix,
det Ω(1)

δ0 [2:k ∪ {i}, 2:k ∪ {j}] = det Ω(1)
δ0 [2:k + 1, 2:k + 1] = 2k.

Case 2: i < j < n. The last row is zero for all but the last element, which is one.
Expanding it gives

det Ω(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 1 det Ω(1)

δ0 [2:k, 2:k] = 2k−1.

Case 3: j < i < n. The ith row is zero. So,

det Ω(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 0.

Case 4: i = j = n. The last column is zero except for the last element, which is 2 + δ.
Expanding it gives

det Ω(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = (2 + δ) det Ω(1)

δ0 [2:k, 2:k] = (2 + δ)2k−1.

3This use for computing intermediate values of Gaussian elimination seems to have originated from
Grossman [67] with refinement from Gantmacher [52, p. 26].
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Case 5: i < j = n. The last column is zero. So,

det Ω(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 0.

Case 6: j < i = n. Adding (1 + δ)−1 times the last row to the first leaves the determinant
unchanged but makes the first row equal to eT

1 . Expanding this row gives 1 times the
determinant of a matrix with the same structure less the first row and column. Recursively
applying this procedure gives

det Ω(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 1 · det[−1− δ] = −1− δ.

Thus, in all six cases, the diagonal elements are either 2 or 2+ δ, and off-diagonal elements
are either 0, −2−k+1(1 + δ), or ±1. So, no pivoting will occur during the factorization. Hence,
the maximum element during the process is 2 + δ and

ρ(Ωδ0) = 2 + δ

1 + δ
≤ 2.

Growth of Ω0δ

Finally, consider Ω0δ. Its growth can be bounded similarly to that of Ωδ0. Again, let Ω(k)
0δ be

the matrix after k steps of elimination on Ω0δ, and assume its indices are offset by k. The
first Schur complement gives

Ω(1)
0δ = (1 + δ)−1



2 + δ 1 . . . 1 δ

−δ 2 + δ . . . 1 δ
... ... . . . ... ...
−δ −δ . . . 2 + δ δ

−1 −1 . . . −1 2 + δ


.

Let Ω(1∗)
0δ = (1 + δ)Ω(1)

0δ . For 2 ≤ k < i, j ≤ n, if no further pivoting occurs,

Ω(k)
0δ [i, j] = det Ω(1)

0δ [2:k ∪ {i}, 2:k ∪ {j}]
det Ω(1)

0δ [2:k, 2:k]
= det Ω(1∗)

0δ [2:k ∪ {i}, 2:k ∪ {j}]
(1 + δ) det Ω(1∗)

0δ [2:k, 2:k]
. (2.4)

by Schur’s identity [113]. Unlike Ωδ0, there are no zeros in Ω(1∗)
0δ that can be used to simplify

the determinants. However, we can introduce zeros, without changing the determinant, by
adding a scalar multiple of one row to another. The numerator is again divided into six cases,
with the first case addressing the denominator.
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Case 1: i = j < n. The sub-diagonal elements in the first column can be eliminated by
adding the first row times χ1 = δ/(2 + δ) to the subsequent rows, giving



2 + δ 1 1 . . . 1
0 2 + δ + γ1 1 + γ1 . . . 1 + γ1

0 −δ + γ1 2 + δ + γ1 . . . 1 + γ1
... ... ... . . . ...
0 −δ + γ1 −δ + γ1 . . . 2 + δ + γ1


where γ1 = χ1. Then, the sub-diagonal elements in the second column can be eliminated by
adding the second row times χ2 = (δ − γ1)/(2 + δ + γ1) to the subsequent rows, giving



2 + δ 1 1 . . . 1
0 2 + δ + γ1 1 + γ1 . . . 1 + γ1

0 0 2 + δ + γ2 . . . 1 + γ2
... ... ... . . . ...
0 0 −δ + γ2 . . . 2 + δ + γ2


where γ2 = γ1 + χ2(1 + γ1). Continuing the procedure gives multiples defined recursively by

χℓ = δ − γℓ−1

2 + δ + γℓ−1
, and γℓ = γℓ−1 + χℓ(1 + γℓ−1)

with χ0 = 0 and γ0 = 0. Note that

γℓ = γℓ−1(2 + δ + γℓ−1) + (δ − γℓ−1)(1 + γℓ−1)
2 + δ + γℓ−1

= δ + γℓ−1 + 2δγℓ−1

2 + δ + γℓ−1
.

If γℓ−1 = 0, then γℓ = δ/(2 + δ). And if γℓ−1 = δ, then γℓ = δ. Furthermore, it is
straightforward to show that the partial derivative of γℓ with respect to γℓ−1 is positive. Thus,
if γℓ−1 ∈ [0, δ], then γℓ ∈ [0, δ]. Hence, γℓ ∈ [0, δ] for all ℓ.

Because this elimination to triangular form leaves the determinant unchanged, we have

det Ω(1∗)
0δ [2:k ∪ {i}, 2:k ∪ {j}] =

k−1∏
ℓ=0

(2 + δ + γℓ) and det Ω(1∗)
0δ [2:k, 2:k] =

k−2∏
ℓ=0

(2 + δ + γℓ).

Substituting these equalities into (2.4) gives

Ω(k)
0δ [i, j] =

∏k−1
ℓ=0 (2 + δ + γℓ)

(1 + δ)∏k−2
ℓ=0 (2 + δ + γℓ)

= 2 + δ + γk+1

1 + δ
, and 2 + δ

1 + δ
≤ Ω(k)

0δ [i, j] ≤ 2.
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Case 2: i < j < n. The second case is similar to the first, except the lower-right element
starts as 1 and becomes 1 + γk−2 after eliminating the sub-diagonal elements. So,

Ω(k)
0δ [i, j] = 1 + γk−2

1 + δ
, and 1

1 + δ
≤ Ω(k)

0δ [i, j] ≤ 1.

Case 3: j < i < n. The third case is like the first two, except the lower-right element
starts as −δ and becomes −δ + γk−2 after eliminating the sub-diagonal elements. So,

Ω(k)
0δ [i, j] = −δ + γk−2

1 + δ
, and −δ

1 + δ
≤ Ω(k)

0δ [i, j] ≤ 0.

Case 4: i = j = n. The same process can be applied, except with the multiples for the
last row being scaled by δ−1. Hence,

Ω(k)
0δ [i, j] = (2 + δ + δ−1γk−1)

∏k−2
ℓ=0 (2 + δ + γℓ)

(1 + δ)∏k−2
ℓ=0 (2 + δ + γℓ)

= 2 + δ + δ−1γk−1

1 + δ
,

and
2 + δ

1 + δ
≤ Ω(k)

0δ [i, j] ≤ 3 + δ

1 + δ

Case 5: i < j = n. The fifth case is identical to the second, except for the last column,
and thus the numerator is scaled by δ. So,

δ

1 + δ
≤ Ω(k)

0δ [i, j] ≤ δ.

Case 6: j < i < n. Sub-diagonal elements in all but the last row can be eliminated without
changing the determinant similar to before. Because the final row is all −1, multiplying it by
1 + γℓ and adding it to the ℓth row zeros out the upper triangular part, but leaves 1 + δ on
the diagonal. So,

Ω(k)
0δ [i, j] = (1 + δ)k−2(−1)

(1 + δ)∏k−2
ℓ=0 (2 + δ + γℓ)

= −(1 + δ)k−3∏k−2
ℓ=0 (2 + δ + γℓ)

,

and
−(1 + δ)k−3

(2 + δ)k−1 ≤ Ω(k)
0δ [i, j] ≤ −1

(2 + 2δ)k−1 .

Hence, in all six cases, the off-diagonal elements are always strictly less than the diagonal
elements, ensuring that no pivoting occurs after the first step. Therefore,

ρ(Ω0δ) = (3 + δ)/(1 + δ)
1 + δ

= 3 + δ

(1 + δ)2 ≤ 3.
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2.2.2 Experimental Results

Both of the proposed thresholding strategies were implemented as modifications of SLATE’s
existing GEPP [86]. The existing options argument controls the threshold, demonstrating a
backward-compatible addition of threshold pivoting to an existing LU factorization code.

Ten matrices were tested, five random and five structured, all of order n = 225 000. The
random matrices were: (1) rand (entries uniformly distributed on [0, 1]), (2) rands (entries
uniformly distributed on [−1, 1]), (3) randn (entries normally distributed), (4) randb (entries
randomly selected from {0, 1}), and (5) rand+nI which is rand plus n times the identity
(making it diagonally dominant). The structured matrices are based on matrices from the
MATLAB gallery: (6) circul, (7) fiedler, (8) orthog, (9) riemann, and (10) ris.

Experimental Setup

Threshold pivoting was tested on eight nodes of the Summit supercomputer. Recent releases
of SLATE include the two-level threshold pivoting; the specific version used in these tests is
available at https://zenodo.org/record/6972268. The software stack included GCC 9.1.0,
CUDA 11.0.3, IBM Spectrum MPI 10.4.0.3-20210112, IBM ESSL 6.1.0-2, Netlib LAPACK
3.8.0, Netlib ScaLAPACK 2.1.0, and PAPI 6.0.0.1 [121].

Because MPI and BLAS libraries often initialize during the first call, warm-up tests of size
5000 were run before the reported tests. Hyperthreading was disabled with the smt1 mode.
Performance and accuracy were measured with SLATE’s test code; however, the accuracy was
scaled by n to compensate for a division by n in its calculation. The flags –origin h –target
d –seed 42 –seedB 24 –ref n –check y –nb 896 –ib 32 –panel-threads 18 –lookahead
3 –grid 4x4 –dim 5000,225000 were always used; the –matrix and –piv-thresh flags were
set as appropriate. The PAPI event ibmpowernv-isa-0000.System.energy11_input was
used to measure a node’s cumulative energy usage in millijoules (mJ).

Effects on Performance and Accuracy

First, I reduced just the inter-process exchanges with the approach from Fig. 2.3. Various
thresholds were tested on rand+nI, rand, and orthog. Each test ran three times, measuring
the time to solve a double-precision system of equations with ten right-hand sides. Figure 2.4
summarizes the result with the mean and 95% confidence interval. First, the relative times
for τ = 1 of rand and orthog compared to rand+nI (which does not pivot) imply that
slightly over half the time in the solve is spent exchanging rows. This supports the notion
that pivoting is costly. Next, consider how changing τ affected the performance for each
matrix. The rand+nI matrix was unaffected by the threshold; this is expected since partial
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Figure 2.4: Tradeoffs between performance and accuracy when avoiding just inter-process
row swaps. Each line has points for thresholds of 1 (slowest), 2−1, 10−1, 10−2, 10−4, 10−8,
and 0 (fastest) for that matrix. For rand, all but the first point overlap. © 2022 IEEE
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pivoting selects diagonal pivots for diagonally dominant matrices. The rand matrix received
a 46% speedup and a negligible effect on accuracy going from τ = 1 to τ = 2−1, but further
reductions in the threshold had little effect on either performance or accuracy. Even with
τ = 0, the time for the random matrix was 47% larger than for the diagonally dominant
matrix; this indicates that intra-node row swaps contribute a significant overhead. The
orthog matrix had significant reductions in accuracy as τ decreased and, for τ ≥ 10−4,
minimal increase in performance. However, the accuracy for τ = 2−1 was almost that of
τ = 1. So, for these matrices, τ = 2−1 does not degrade accuracy while sometimes improving
performance.

Because the best performances achieved for rand and orthog were significantly below that
of rand+nI, I repeated the previous experiment except avoiding both inter- and intra-process
row swaps using Algorithm 2.3. Figure 2.5 shows the results. Avoiding both types of data
movement allows the best-case performance to match that of the diagonally dominant case.
However, the error increased as the tolerance decreased. For rand, τ = 2−1 provided the
same accuracy and a 31% reduction in run time compared to partial pivoting, while τ = 10−2

provided the same performance and a 4-digit improvement in error compared to never
exchanging rows. This provides a useful selection of τ , depending on the relative importance
of performance and accuracy. On the other hand, orthog saw only a 6% improvement in
performance compared to partial pivoting for τ = 2−1, although the effect on accuracy was
still negligible. Even when the tolerance was still as low as τ = 10−4, the improvement was
merely 12%, but the error increased to 1.6 · 10−9. This demonstrates that threshold pivoting
will not consistently improve performance, although high accuracy was still obtained with
large tolerance values. Compared to Fig. 2.4, the results for τ = 1 had a slight reduction
in performance. However, because the corresponding confidence intervals overlap, this may
stem from system noise. Furthermore, the difference was only a few percent, so even if
the difference is entirely due to the increased complexity of pivot selection, the overhead is
inconsequential.

With the successes of τ = 2−1 and τ = 10−1 in the previous experiment, I compared
the performance and accuracy of the remaining matrices for those thresholds and τ = 1
(i.e., partial pivoting). For reference, I also factored rand+nI with SLATE’s non-pivoted LU
code; this routine has increased parallelism and better GPU utilization but risks catastrophic
numerical failure if the matrix is not diagonally dominant. Figure 2.6 shows the results. The
added random matrices behave similarly to rand. However, three of the added structured
matrices saw significant performance improvements with minimal reduction in accuracy,
unlike orthog. Furthermore, two of the three (circul and fiedler) achieved performance
equivalent to the diagonally dominant matrix for the smallest threshold. The last structured
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matrix (ris) was unaffected by the tested tolerance values; this likely stems from the entries
being very small except along the anti-diagonal, which limits the available pivots for the
moderate thresholds tested here. Interestingly, one matrix (circul) had higher accuracy for
τ = 2−1 than for τ = 1; this reflects the observation in Section 2.2.1 that the accuracy of
threshold pivoting can, on occasion, be better than that of partial pivoting.

These results indicate that a threshold of 2−1 or 10−1 is a reasonable, general-purpose
default that consistently achieves an accuracy close to partial pivoting. This aligns with the
conservative recommendations from the sparse-factorization literature. However, a threshold
of 10−2 is also commonly recommended for the general case, and recommendations for specific
applications can be much smaller, e.g., 10−8 [77]. This reflects a lower cost to pivot in dense
factorizations due to the full nonzero structure.

Effects on Energy Consumption

In light of the performance improvements, I tested the effect of this strategy on energy
consumption. Because the performance overhead of the intra-process exchanges was significant,
only the two-layer formulation was considered for the energy consumption. I provide the
results as the energy consumed to solve the system in megajoules (MJ). Another common
metric is the “flops per watt,” which is used by benchmarks such as the Green500 [49] list,
as well as supercomputing power consumption research [78, 96]. This metric divides the
performance in GFLOP/s by the average power usage in Watts, resulting in an efficiency
metric measured in (GFLOP/s)/W. However, for a fixed n, this is inversely proportional to
the total energy, so I provide only the latter. For the tested size, n = 225 000, using 1 MJ to
solve a system is equivalent to achieving 7.59 (GFLOP/s)/W.

Figure 2.7 shows the effect of varying τ on energy usage for the rand+nI, rand, and
orthog matrices (cf. Fig. 2.5), while Fig. 2.8 shows the effect of threshold pivoting on energy
for all ten matrices (cf. Fig. 2.6). The effect on energy consumption shows similar trends
as the effect on run time for both experiments, albeit with less relative improvement. The
lesser improvement likely stems from the inability to remove the energy usage of tasks by
parallelizing them, unlike the time to solution.
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Chapter 3

Replacing Pivoting1

Even with optimizations like those in Chapter 2, partial pivoting will always introduce some
overhead. First, even when no row exchanges are applied, detecting that requires a reduction
between the processes owning elements in the panel. Techniques like tournament pivoting can
help reduce the frequency, but they still must do a reduction for each block column. Second,
there are always matrices that require pivoting between processes (unless a less-scalable 1d
distribution is used). Dynamic pivoting can reduce the associated network communication,
but balancing the remaining work between processes can still require communication. Third,
the data dependencies from pivoting limit the available parallelism. Without pivoting, the
triangular solves to compute the next block-column of L and the next block-row of U can be
done simultaneously; pivoting forces them to be sequential. Furthermore, partial pivoting
complicates the computation of the block-column of L by interleaving the pivot search with
the triangular solve, resulting in memory-bound operations. Towards this end, I have also
explored two techniques to replace pivoting. The first randomizes the matrix so that GENP
can factor the matrix accurately. The second is a novel factorization that combines block LU
with additive modifications.

3.1 The Growth Factor

Element growth in LU and LU-like methods often leads to problematic cancellation errors,
and so it is crucial in understanding the backward error of these factorizations. Normally,

1Section 3.3 reuses material from one of my published papers [93] (© 2020 IEEE) and Section 3.4 reuses
material from another [95] (although Sections 3.4.3 and 3.4.6 are entirely new material). Coauthors include
Piotr Luszczek and Jack Dongarra. Reused coauthor contributions include high-level guidance, Fig. 3.6, and
textual improvements.
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growth is measured by Wilkinson’s growth factor , which is defined as

ρ(A) = max1≤k<i,j≤n |A(k)[i, j]|
max1≤i,j≤n |A[i, j]| . (3.1)

Then, solving Ax = b with Gaussian elimination gives a solution, x̂, such that

(A + ∆A)x̂ = b and ∥∆A∥∞ ≤ 3nu
1−3nu(1 + 2(n2 − n)ρ(A))∥A∥∞. (3.2)

where u is the floating-point unit roundoff [71, Thm. 9.4, Lemma 9.6]. In practice, the cubic
polynomial in n is not achieved; this is supported by probabilistic analysis [74, Thm. 3.7] and
analysis of other growth factors [7] (see Section 3.4.3). This leaves growth as the primary
concern. While (3.1) is the most commonly used, there are other ways to measure element
growth [7, 22]; a generalization of (3.1) for block LU is described in Section 3.4.3.

The Schur complement can be used to bound the growth. For any 1 ≤ k ≤ i, j ≤ n,

A(k)[i, j] = A[i, j]− A[i, 1:k]A−1[1:k, 1:k]A[1:k, j].

Taking maxij A(k)[i, j] and several triangle inequalities gives

ρ(A) ≤ 1 + max
k
∥A∥∞∥A−1[1:k, 1:k]∥∞ (3.3)

which provides a condition number-like value (and likewise for the 1-norm). Thus, growth
can only occur when leading principal submatrices have small singular values.

The bound (3.3) is reflected by the exponential growth of partial pivoting for Wilkinson’s
matrix. Wilkinson’s matrix has the form

W =



1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1
... ... ... . . . ... ...
−1 −1 −1 · · · 1 1
−1 −1 −1 · · · −1 1


.

Each leading principal submatrix is an ill-conditioned matrix of Turing [127, pg. 307]; the
inverses of the leading submatrices are a unit lower-triangular with subdiagonal elements
equal to 2i−j−1 [106]. Hence, ∥W [1:k, 1:k]∥∞ = 2k−1 and (3.3) implies ρ(W ) ≤ n2n−2, which
is an upper bound of the true growth of 2n−1.
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3.2 Implementation of GENP in SLATE

For both of the strategies to replace pivoting, the design of an efficient Gaussian elimination
with no pivoting (GENP) is critical for performance (GENP itself for the RBT solver and
the parallel structure for the additive solver). Towards this end, it is worth considering the
GENP code that I developed for the Software for Linear Algebra Targeting Exascale (SLATE)
library. Its structure resembles that of SLATE’s Cholesky factorization, except that both
the upper and lower parts are explicitly computed. Like SLATE’s other factorization, this
implementation uses a right-looking formulation, which allows the Schur-complements to be
computed as a series of highly parallel block outer products and allows a lookahead to reduce
the amount of work on the critical path.

Keeping with SLATE’s design, the algorithm is formulated using high-level blocks and
implemented by mapping those blocks and their dependencies to OpenMP tasks. Internode
communication is explicitly specified with MPI in the appropriate tasks. Figure 3.1 shows the
general structure of the parallel dependencies when the lookahead is 1. Each of these large
tasks calls MPI or other internal routines, which are parallelized in turn with dependency-less
tasks.

3.3 Random Butterfly Transforms

A butterfly matrix is a matrix of the form

B⟨n⟩ = 1√
2

R0 R1

R0 −R1

 ,

where R0 and R1 are n/2 × n/2, nonsingular, diagonal matrices [107]. Then, a random
butterfly transform (RBT), U ⟨n⟩, with depth d is a matrix of the form

U ⟨n⟩ =


B⟨n/2d−1⟩

1 . . . 0
... . . . 0
0 . . . B⟨n/2d−1⟩

2d−1

× · · · ×
B⟨n/2⟩

1 0
0 B⟨n/2⟩

2

× B⟨n⟩. (3.4)

Note that n must be a multiple of 2d; however, a linear system can be augmented with ones
on the diagonal and zeros on the off diagonals to add the necessary rows and columns to
the matrix. Figure 3.2 shows the sparsity pattern for butterfly matrices and the resulting
depth-two RBT. Additionally, (3.4) is a generalized form of the original definition of RBTs,
which is the case where d = log2(n) + 1 [107]. (B⟨1⟩ is defined to be a nonzero scalar.)
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(k+1)
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Figure 3.1: Task dependencies for GENP with a lookahead of 1. Dashed lines represent
dependencies between iterations.

(a) Sparsity pattern of B⟨n⟩. (b) Sparsity pattern of
diag

(
B⟨n/2⟩

1 ,B⟨n/2⟩
2

)
.

(c) Sparsity pattern of a depth-
two RBT.

Figure 3.2: Sparsity patterns of the last two terms of (3.4) and their product, a depth-two
butterfly. © 2020 IEEE
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For example, the structure of U ⟨4⟩ with a depth of 2 is

U ⟨4⟩ = 1
2


r1,1 r2,1

r1,1 −r2,1

r3,1 r4,1

r3,1 −r4,1




r1,2 r3,2

−r2,2 r4,2

r1,2 −r3,2

r2,2 −r4,2

 ,

where each ri,j is a scalar. The structure of RBT matrices is equivalent to the bit-shuffle
permutations performed by FFT matrices [107] that bear the butterfly name due to the data
transfer patterns they form [131]. This relation to FFT computational and communication
processes makes RBT matrices efficient to apply in practice. Additionally, if each nonzero in
the component butterfly matrices has magnitude one, the transform is unitary.

RBTs can be used to avoid pivoting by preconditioning the system. Let ⟨U⟩ and ⟨V⟩ be
RBTs. Then, the linear system Ax = b can be solved by the algorithm in Algorithm 3.1.2 If
a 2d × 2d, nonsingular matrix is preconditioned by a random, depth-d RBT, then GENP will
succeed with probability 1 [107]. However, previous work has noted that most matrices can
be preconditioned successfully with a depth-2 RBT if iterative refinement is also used [16].

It may appear that the RBTs could instead use butterflies of size 2k×2k for k = 1, 2, . . . , d,
which would reduce communication in distributed contexts. However, the conditions of the
leading, principal submatrices with dimension divisible by 2d do not change. Recall that
GENP is numerically safe if and only if each leading, principal submatrix is nonsingular and
well-conditioned [105]. So, this block diagonal form of RBT uses at most (k + 2d)2 elements
to generate the leading k × k principal submatrix. On the other hand, the form of RBT
described in (3.4) uses min(n2, k222d) elements when generating the same submatrix. So,
for a depth-2 RBT, about 16 times more elements affect moderately sized leading blocks,
and leading blocks with k ≥ n/4 are affected by all elements of the matrix. Thus, this later
form of RBT can prevent ill-conditioned leading principal submatrices for a wider variety of
matrices.

Packed Storage for Recursive Butterfly Transforms

Explicitly constructing the RBT matrices would triple the storage required for the linear
system. However, the structured sparsity can be used to reduce storage costs. Note that a

2While this discussion uses matrix transposition, it is also valid for RBT matrices in the complex domain,
either as written or after replacing the transpositions with conjugate transpositions.
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1: A′ ← U ⟨n⟩T × A× V⟨n⟩

2: b′ ← U ⟨n⟩T × b
3: L, U ← Apply GENP to A′

4: x′ ← U−1 × L−1 × b′

5: x← V⟨n⟩ × x′

Algorithm 3.1: Solving Ax = b with RBTs U ⟨n⟩ and V⟨n⟩. © 2020 IEEE
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butterfly matrix is equivalent to I I

I −I

×R,

where R is diagonal. So, only the m diagonal elements of an m×m butterfly matrix need to
be stored. Hence, a recursive butterfly transform of depth d and size n can be stored in an
n× d dense matrix where each column stores one term of (3.4). Because d ≤ log2(n) + 1≪ n,
recursive butterfly transforms introduce little additional storage when using packed storage.

Computation Cost of Recursive Butterfly Transforms

Similar to storing the matrix, utilizing the transform’s structure provides significant benefits
for RBT application. Let A be an m×m matrix, and let

B⟨m⟩
1 =

R0 R1

R0 −R1

 and B⟨m⟩
2 =

R2 R3

R2 −R3


be butterfly matrices stored in vectors w1 and w2 using the packed format. Then,

(B⟨m⟩
1 )T AB⟨m⟩

2 =
R0 R0

R1 −R1

A11 A12

A21 A22

R2 R3

R2 −R3

 = diag(w1) C diag(w2) (3.5)

where

C =
A11 + A12 + A21 + A22 A11 − A12 + A21 − A22

A11 + A12 − A21 − A22 A11 − A12 − A21 + A22

 .

Thus, transforming an m×m matrix requires 4m2 FLOP. Applying RBTs to both sides of
an n× n matrix can be broken down into (n/m)2 butterfly matrix applications of size m×m

and, thus, requires 4n2 FLOP. Hence, applying an RBT of depth d requires 4dn2 FLOP.
Similarly, an RBT in the packed format can be applied to a vector. Then, each transform

only requires O(n) FLOP for a total of O(dn) FLOP to apply a recursive butterfly transform
of depth d. Because d≪ n, the cost of transforming the vectors will be disregarded for the
rest of the paper.

In distributed settings, it is also important to consider the amount of inter-process
communication needed. Similar to computing the FLOP count, I start by considering the
cost of applying a single butterfly matrix to each side of an m×m matrix, A. First, note
that in the description above of applying a butterfly matrix to each side, each element, of
(B⟨m⟩

1 )T AB⟨m⟩
2 = (αij) depends on four elements in A: one element from either R0 or R1 and

one element from either R2 or R3. Specifically, the dependencies of α1,1, α1+m/2,1, α1,1+m/2,
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and α1+m/2,1+m/2 on A = (aij) are the elements in the same positions, i.e. a1,1, a1+m/2,1,
a1,1+m/2, and a1+m/2,1+m/2. Furthermore, the elements in R0 and R1 are shared across the
rows of the result, and the elements in R2 and R3 are shared across the columns. I only
consider the case where (B⟨m⟩

1 )T AB⟨m⟩
2 and A are distributed across the processes in the

same manner, which occurs when reusing the storage of A to hold the resulting transformed
matrix. Assume A is distributed in a 2D block-cyclic layout on a p× q process grid. Then
by gathering each set of four interacting elements onto a single process where one of those
elements already resides and returning them after doing the appropriate computation, up to
6m2 elements of the matrix, mp/2 elements of each R0 and R1, and mq/2 elements of each
R2 and R3 must be transferred.

Then, to expand this analysis to the entire transform, simply combining the individual
butterfly applications results in transferring 6dn2 elements of the matrix, np/2 elements of
each R0 and R1, and nq/2 elements of each R2 and R3. Note that it is possible to merge the
return of elements for one application with the gathering of elements for the next application.
With this improvement, it would be possible to reduce the upper bound on matrix element
transfers to 4dn2 + 2n2. However, because of the increase in algorithm complexity, I have not
implemented this improvement.

3.3.1 Implementing random butterfly transforms

I implemented and tested an RBT-based solver using SLATE. Given the recursive structure
of RBT, I implemented the application by applying one term of the product in (3.4) at a
time, albeit in a two-sided manner, to transform the matrix. Furthermore, the transformation
is simplified by applying one pair of butterflies at a time, as described in Section 3.3. This is
implemented as an elementwise operation on the four submatrices corresponding to each pair
of left and right butterflies. Because the matrices are distributed, each set of four elements is
sent to the node owning the upper left element to be transformed. Algorithms 3.2 and 3.3
show pseudocode for my two-sided RBT implementation.

The first procedure, RBT, breaks the transformation into individual butterfly applications.
The second procedure, RBT2tile, applies a single pair of butterflies where the matrices
and butterfly values are separated similar to the organization in (3.5). In a non-tiled code,
RBT2tile is equivalent to the omitted RBT2. However, as my implementation is tile-based
and distributed, I have an additional step to group appropriate sets of elements into tiles on
a single process before calling RBT2tile.

Unfortunately, the way the elements interact when applying an RBT rarely corresponds
to the tiles used to store the matrix data. So, I implemented support for transmitting partial
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1: procedure RBT(A, U , V )
2: d← depth(U)
3: for k from d− 1 to 0 do
4: bn ← 2k ▷ Number of butterflies
5: h← n/2k+1 ▷ Half a butterfly’s size
6: for bj from 0 to bn do ▷ Right butterflies
7: j1 ← 2bjh
8: j2 ← j1 + h ▷ Column indices for bj

9: j3 ← j2 + h
10: for bi from 0 to bn do ▷ Left butterflies
11: i1 ← 2bih
12: i2 ← i1 + h ▷ Row indices for bi

13: i3 ← i2 + h
14: A11 ← A[i1:i2, j1:j2]
15: A12 ← A[i1:i2, j1:j2]
16: A21 ← A[i2:i3, j2:j3]
17: A22 ← A[i2:i3, j2:j3]
18: U1 ← U [i1:i2, k]
19: U2 ← U [i2:i3, k]
20: V1 ← V [j1:j2, k]
21: V2 ← V [j2:j3, k]
22: RBT2(A11, A12, A21, A22, U1, U2, V1, V2)

Algorithm 3.2: High-level algorithm for applying a two-sided RBT. © 2020 IEEE
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1: procedure RBT2tile(A11, A12, A21, A22, U1, U2, V1, V2)
2: mb × nb ← dim(A11) ▷ Tiles are all the same size
3: for j from 0 to nb do
4: v1 ← V1[j]
5: v2 ← V2[j]
6: for i from 0 to mb do
7: u1 ← U1[j]
8: u2 ← U2[j]
9: a11 ← A11[i, j]

10: a12 ← A12[i, j]
11: a21 ← A21[i, j]
12: a22 ← A22[i, j]
13: A11[i, j]← u1v1(a11 + a12 + a21 + a22)
14: A12[i, j]← u1v2(a11 − a12 + a21 − a22)
15: A21[i, j]← u2v1(a11 + a12 − a21 − a22)
16: A22[i, j]← u2v2(a11 − a12 − a21 + a22)

Algorithm 3.3: Applying a single, two-sided butterfly transform to a set of four tiles. © 2020
IEEE
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tiles in a manner similar to previous work on distributed, RBT-based solvers [14]; however,
my approach differs in that I explicitly gather the elements into tiles defined by the size and
process of the upper left submatrix. The gathered tiles can then be treated as the application
of a single butterfly described in Section 3.3. Figure 3.3 shows an example of how elements
are gathered for the two-sided transformation of A,

B⟨n/2⟩
1 0
0 B⟨n/2⟩

2

T

A

B⟨n/2⟩
3 0
0 B⟨n/2⟩

4

 ,

when A is tiled into a 5× 5 grid of uniform size. Currently, my implementation does involve
duplicate transfers of the butterfly nonzeros to reduce the complexity of computing the indices
and managing storage lifetimes.

Note that if the size of the matrix can be controlled, it may be beneficial to adjust
the matrix size so that the transformation can be efficiently applied. For example, a 2D
block-cyclic distribution of an n× n matrix on a p× q process grid with tiles of size b× b

does not need to subdivide tiles to apply RBTs when 2pb and 2qb divide n. Furthermore,
for a butterfly depth of d, inter-process communication is unneeded when both 2d+1pb and
2d+1qb divide n.

Similar to previous work [16], I used a depth of two as the default, chose RBT elements of
the form exp(r/10) with r chosen from the uniform distribution [−1

2 , 1
2 ], and provide iterative

refinement. While a depth of two does not provide the probabilistic guarantee of a depth of
log2(n), it does not require the matrix size to be a power of 2 and has lower computational
overheads. The copy of the matrix for iterative refinement is always kept entirely on the
CPUs to increase the maximum problem size that can be stored in GPU memory. Because
a copy of the matrix is already needed to achieve the same accuracy as GEPP, there is
limited overhead to check the backward error of the solution provided by the RBT-solver.
So, problems that cannot be solved accurately with the RBT-solver can be re-solved with a
regular GEPP implementation.

3.3.2 Experimental Results

Using the implementation of the RBT-based solver described in Section 3.3.1, I tested its
accuracy and performance relative to SLATE’s GEPP implementation for double precision
on Summit. Because SLATE’s GEPP and GENP have both been significantly optimized
since this material was previously published [93], the experimental results were rerun for this
dissertation; thus, the configuration differs in a few places.
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Figure 3.3: Subtiles gathered for computing a layer of an RBT for butterflies of size n/2.
All submatrices of the same color are gathered onto the process owning the upper left entry
of the color for the computation. © 2020 IEEE
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First, consider the accuracy tests. The software stack included GCC 8.1.1, CUDA 10.1.243,
IBM Spectrum MPI 10.3.1.2, IBM ESSL 6.1.0-2, and Netlib LAPACK 3.8.0 (to provide
routines unsupported by ESSL). Summit was set to smt2 mode. Results were measured using
a modified version of SLATE’s tester. Tests were run with the flags --origin h --target
d --ref n --nb 832 --seed 96 --seedB 42 --ib 64 --lookahead 0. GEPP also used
the flags --panel-threads 20 --p 2 --q 8, and the depth and maximum iterations of
refinement were set as appropriate for the RBT solver. GEPP’s process grid of 2× 8 was
allocated such that the processes sharing a column were located on the same node. The flags
--dim, --matrix, and --matrixB were also used to control the test matrices.

Second, consider the performance tests. The software stack included GCC 9.1.0, CUDA
11.0.3, Spectrum MPI 10.4.0.3, ESSL 6.3.0, and Netlib LAPACK 3.9.1. Summit was run
in smt1 mode to disabling simultaneous multithreading. Results were measured using a
modified version of SLATE’s tester. The solvers’ parameters were tuned for performance.
Tests were run with the flags --ref n --origin h --target d --seed 42 --seedB 64
--ib 64 --lookahead 1 --grid 4x4. GENP also set --nb 512; the RBT solver was run
with same the flags as GENP as well as the --fallback n --depth 2 --itermax 0,1 flags.
GEPP also used the flags --nb 896 --panel-threads 16. The flags --dim, --matrix, and
--matrixB were also used to control the test matrices. A problem of size 10 000 was solved
before running the actual performance tests to ensure that the initialization of BLAS and
MPI was not included.

Accuracy Results

First, I tested the accuracy of the RBT solver in comparison to GEPP and GENP. I
tested matrices of size 100 000 and compared the normwise backward error, ∥r∥1/(∥A∥1∥x∥1),
in Table 3.1. Both the RBT solver and GENP were run with and without one step of
iterative refinement for the sake of comparison. The tested matrices are a subset of the
matrices previously used to test RBT-based solvers for problems of size 1024 [16], with a
minor adjustment to the last matrix. The elements of the first two matrices are uniformly
selected [0, 1] and [−1, 1], respectively. The third matrix has elements selected from a normal
distribution with mean 0 and standard deviation 1. The fourth matrix has elements selected
from 0 and 1 with equal probability. The fifth and sixth matrices come from MATLAB’s
gallery function. Note that |i− j| used in previous works is identical to fielder. The last
matrix is based on the matrix in Higham’s Matrix Computation Toolbox [72], except the
elements below the diagonal are halved to ensure GEPP pivots the matrix as intended. All
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Table 3.1: Normwise backward error of various solvers for matrices of size 100 000. NaN
indicates the solution was invalid due to division by zero or overflow. © 2020 IEEE

Matrix GEPP RBT Solver RBT Solver GENP GENP
refined refined

rand 1.23×10−15 2.97×10−17 6.43×10−12 2.67×10−17 4.10×10−12

rands 2.39×10−15 2.93×10−17 1.53×10−11 1.19×10−15 8.76×10−11

randn 1.77×10−15 3.29×10−17 6.68×10−12 3.23×10−17 1.71×10−11

randb 1.82×10−15 2.25×10−17 6.15×10−12 NaN NaN
fielder 3.03×10−18 2.92×10−19 1.73×10−17 NaN NaN
orthog 2.29×10−16 9.19×10−3 1.00×10−2 1.21×10−1 1.30×10−1

gfpp NaN 2.79×10−19 5.06×10−18 NaN NaN
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problems had a right-hand side selected from a normal distribution with mean 0 and standard
deviation 1.

As Table 3.1 shows, the RBT-based solver was able to solve all but one problem, including
all of the problems solvable by GENP and the example of exponential growth for GEPP.
The one matrix that the RBT-based solver had poor accuracy was the orthog matrix. This
matrix is constructed by setting the i, j element to

√
2/(n + 1) sin (ijπ/(n + 1)), which makes

it orthogonal and symmetric. Previous work showed success on this matrix for a size of
1024 [16] but not for a size of 30 000 [41] when using an RBT depth of 2 and 1 step of
iterative refinement. To understand the behavior of this matrix as the problem size grows,
I plotted the backward error, ∥r∥1/(∥A∥1∥x∥1), for varying problem sizes and RBT depths,
but otherwise as the first test, in Fig. 3.4 For the smaller depths tested, there appears to be a
problem size at which the depth loses effectiveness. However, depths of 4, 5, and 6 all started
losing accuracy at a similar point, which complicates the situation. I believe the sine-based
structure of this matrix causes the difficulties but have not been able to quantify the source
of the issue.

Performance Results

Next, I tested the performance of the RBT solver in comparison to GEPP and GENP. Because
of the increase in the complexity of inter-process communication, the RBT solver was tested
on two sets of sizes. First are problem sizes that allow the RBT communication to be done
as whole tiles, i.e., those that are multiples of 22 528 = 512× 4× 11. This first set of problem
sizes was also used for the GEPP and GENP performance. Second is problem sizes that are
smaller by 416 elements (half a tile width) than the first set of problem sizes. Figure 3.5
presents the performance in both TFLOP/s and seconds. This performance is computed
from the mean time to solution of 3 executions and a flop count of 2

3n3. Additionally, 99.9 %
confidence intervals are also included in the figure but are less than 1 TFLOP/s in each
direction for all but one case. Finally, the RBT-based solver was also tested without iterative
refinement to better understand the sources of overhead.

The RBT solver was successfully able to outperform GEPP. For problems of size greater
than 200 000, the tile-aligned RBT solver was between 1.40 and 1.82 times faster than the
best case of GEPP, and the non-tile-aligned solver was between 1.06 and 1.36 times faster.
For reference, GENP was between 2.23 and 2.73 times faster than the best case of GEPP for
those problem sizes, and the best case of GEPP was about twice as fast as GEPP on rand.

Next, consider the jagged performance of the RBT-based results. For the tile-aligned
problems, the fourth, eighth, and twelfth sizes were all aligned such that no communication
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was needed for RBT application. The RBT-based solver without refinement almost reached
the performance of GENP at these sizes with other sizes having worse performance. This
indicates that inter-process communication causes most of the cost to apply the transforms. So,
optimization efforts of the transform application should focus on inter-process communication.
By comparison, iterative refinement introduced a much smaller overhead.

3.4 LU with Additive Modifications

The growth factor bound (3.3) suggests that is desirable to monitor the singular values of the
leading principal submatrices to prevent large element growth. Unfortunately, computing
these singular values is prohibitively expensive. So instead, consider the Schur complements
of GENP. Factoring the kth diagonal, A[k, k], updates each A[i, j] in the trailing matrix by

A[i, j]← A[i, j]− A[i, k] A[k, k]−1 A[k, j] (k < i, j ≤ n).

Thus, small A[k, k] entries can result in significant element growth, which in turn can lead to
a large backward error [71]. Diagonal blocks with small singular values behave analogously.
To prevent this growth, I propose monitoring the singular values of the diagonal blocks and
modifying those having values below a predefined threshold. These modifications give rise to
a perturbed system with better numerical properties than the original one. The perturbation
can then be corrected collectively with the Woodbury formula3 [70,135] or iterative refinement.

3.4.1 Additive Modifications Algorithm

The core idea of this approach is to apply additive modifications during the factorization
when small entries occur on the diagonal instead of exchanging rows. A straightforward
way to do this is to perform the classic non-pivoted LU factorization and modify diagonal
entries whenever they dip below a preset tolerance. However, this results in a myopic view
of the matrix; the issues with one diagonal element can often be fixed using just the next
row, for example in a matrix where the leading 2-by-2 diagonal submatrix is [ 0 1

1 0 ]. Thus, I
use a block LU factorization where the diagonal blocks are factored with the singular value
decomposition (SVD). Then, I modify the singular values that are too small. However, the
SVD requires significantly more computation than an LU decomposition: 21n3 operations

3This formula has a variety of names, including the Bartlett-Sherman-Morrison-Woodbury formula and
the Sherman-Morrison-Woodbury formula. Hagar’s expository paper provides a history of the formula and
its repeated discovery [70].
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instead of 2/3n3—a 30× difference [58]. This limits the block size, nb, that can be used
without introducing significant overhead. Other rank-revealing factorizations, such as QR with
column pivoting, require significantly fewer operations; however, the SVD is a more robust
factorization, which helped me focus on the effects of the overall block-wise factorization and
the additive modifications. Section 3.4.6 explores the use of alternative factorizations. Note
that by using the SVD in this way, the final decomposition is not a regular LU factorization
(unless nb = 1) but a decomposition into lower and upper block-triangular matrices.

Additive modifications commute naturally with the preceding Schur complement updates
of the block LU factorization via the commutativity of matrix addition. Hence, the modified
LU factors are equivalent to the factors produced by applying all modifications before
beginning the factorization (ignoring the effects of numerical round-off). This is analogous to
using multiplication by a permutation matrix, P , to represent row pivoting: Ã ≡ PA. Thus,
Block elimination with additive modifications (BEAM) factorizes A into

L̃R̃ = Ã ≡ A + MUMΣMT
V (3.6)

where L̃ and R̃ are lower and upper block-triangular matrices, respectively, while MΣ is a
diagonal matrix containing the modifications. Note that I denote the upper block-triangular
factor as R̃ (“right”) instead of the usual Ũ (“upper”) to avoid confusion with the U factor of
the SVD. The columns of MU and MV are the left and right singular vectors corresponding
to the modifications in MΣ and padded with zeros to match the size of A. Thus, MU and
MV are tall-and-narrow matrices whose columns are a subset of a block-diagonal matrix.
Figure 3.6 visualizes these sub-matrix structures.

Because of the perturbations, the factored matrix Ã−1 often only provides the solution to
a nearby system, so a correction is needed to obtain the solution to the original system. I
considered two approaches for this correction: iterative refinement and the Woodbury formula.
While the former has a well-established formulation, the latter can take various forms. The
most general form of the Woodbury formula is

(A−BCD)−1 = A−1 + A−1B(C−1 −DA−1B)−1DA−1, (3.7)

although a simplified form is often used where C ≡ I [70]. The term C−1 −DA−1B is called
a capacitance matrix, and its inverse is the centerpiece of the Woodbury formula. Here, the
correction is formulated as

(A−MUMΣMT
V )−1 = A−1 + A−1MU(I −MΣMT

V A−1MU)−1MΣMT
V A−1
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instead of the more obvious

(A−MUMΣMT
V )−1 = A−1 + A−1MU(M−1

Σ −MT
V A−1MU)−1MT

V A−1

to avoid the need to invert the possibly ill-conditioned MΣ and to improve the conditioning
of the entire capacitance matrix. Section 3.4.2 discusses these numerical properties further.

Algorithm 3.4 outlines the BEAM method. While the algorithm is described with a
fixed block size, nb, it can easily be extended to a variable block size. In lines 6–15, BEAM
decomposes the diagonal block and applies any necessary modifications. Then, lines 16–19
proceed as per a regular blocked, non-pivoted LU factorization. Finally, BEAM computes
and factors the capacitance matrix if the Woodbury formula is needed. While computing the
capacitance matrix, I form and save the CR and CL matrices; this reduces memory accesses
at the cost of a slight increase in storage unless there are numerous modifications. In spite
of the factored capacitance matrix being denoted C−1, the inverse should not be formed
explicitly; instead, the factored form is preferable for numerical accuracy. I use GEPP to
factor this second matrix, but other methods could also work. The solve step simply applies
the block-triangular factors and possibly the Woodbury formula.

A key advantage of Algorithm 3.4 comes from the fact that it has the high-level structure
of a non-pivoted, block LU. Such structure provides more parallelism than partial pivoting
because the panel of L and panel of R can be updated simultaneously [41,93]. Furthermore,
it allows the trailing matrix update from one iteration to overlap with the panel updates
from a subsequent iteration.

To outperform GEPP, the overhead introduced by BEAM must be lower than that of
pivoting. To that end, I count the number of arithmetic operations used in the modifications
and Woodbury formula. Let n be the size of the system, m be the rank of the Woodbury
correction, nb be the size of the diagonal blocks, and ℓrhs be the number of right-hand sides.
(If the Woodbury formula is not applied, m = 0.) Because the factors’ diagonal blocks are full
instead of triangular, computing the Schur complement takes an extra n2nb +O(nn2

b) FLOP.
Thus, BEAM without the Woodbury correction takes

2
3n3 + 2n2ℓrhs + n2nb +O(nn2

b + nnbℓrhs) FLOP.

Next, building and factoring the capacitance matrix (via GEPP) takes an additional
2n2m + 2nm2 + 2

3m3 +O(nm) FLOP. Finally, the Woodbury formula requires two triangular
solves and two matrix multiplies. So, the Woodbury formula adds an extra

2n2m + 2nm2 + 2
3m3 + 4nmℓrhs + 2m2ℓrhs +O(n2 + nℓrhs) FLOP.
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1: procedure FactorBEAM(A, τ)
2: nt ← n/nb ▷ number of blocks in A
3: m← 0 ▷ number of modifications applied
4: A(0) ← A
5: for k = 1 : nt do
6: Uk, Σk, V T

k ← SVD(A(k−1)
k,k )

7: for i = 1 : nb do
8: if Σk[i] ≤ τ then ▷ is σi below tolerance τ
9: m← m + 1 ▷ Record modification

10: MΣ[m, m]← τ − Σk[i]
11: MU [:, m]← [0, Uk[:, i]T , 0]T
12: MV [:, m]← [0, Vk[:, i]T , 0]T
13: Σk[i]← τ ▷ Apply modification
14: L̃k,k ← Uk

15: R̃k,k ← ΣkV T
k

16: I ← {k + 1, k + 2, . . . , nt} ▷ trailing matrix indices
17: L̃I,k ← A

(k−1)
I,k R̃−1

k,k

18: R̃k,I ← L̃−1
k,k A

(k−1)
k,I

19: A(k)
I,I ← A(k−1)

I,I − L̃I,k R̃k,I

20: if m > 0 and using Woodbury formula then
21: CR ←MΣMT

V R̃−1

22: CL ← L̃−1MU

23: C ← I − CRCL

24: C−1 ← FACTOR(C) ▷ Using, e.g., GEPP
25: procedure SolveBEAM(b)
26: x← L̃−1b
27: if m > 0 and using Woodbury formula then
28: x← (I + CLC−1CR)x
29: x← R̃−1x

Algorithm 3.4: BEAM algorithm’s factor and solve steps. Subscripts for A, L̃, R̃ denote
submatrices in terms of matrix blocks, and nb denotes the block size.
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Hence, if nb, m≪ n, the arithmetic overhead compared to GENP should be negligible. While
this does not measure the cost of data movement, most of the added computations have high
data locality, especially compared to pivoting.

3.4.2 Theoretical Analysis of Key Condition Numbers

Because BEAM inverts Ã instead of A, it is crucial to understand the errors that arise when
solving Ãx = b in finite precision. First, the additive modifications guarantee that Ã and
its block principal leading submatrices are nonsingular, a prerequisite for the success of
non-pivoted block-LU factorizations. Thus, this algorithm (without the Woodbury formula)
computes a solution, x̂, that satisfies a nearby system,

(Ã + ∆Ã)x̂ = (b + ∆b), (3.8)

with
∥∆Ã∥2 ≤ η̃2(x̂)∥Ã∥2 and ∥∆b∥2 ≤ η̃2(x̂)∥b∥2; (3.9)

that is, η̃2(x̂) is the normwise backward error for the spectral norm. Then, combining (3.8)
with the definition of Ã from (3.6) gives

(A + MUMΣMT
V + ∆Ã)x̂ = (b + ∆b).

Thus, the backward error of x̃ for the original system Ax = b is

η2(x̂) ≤ max
(
∥MUMΣMT

V + ∆Ã∥2

∥A∥2
,
∥∆b∥2

∥b∥2

)
≤ τ̂ + η̃2(x̂). (3.10)

Hence, the forward error of x̃ can be bounded with only τ̂ , the backward stability of the block
factorization, and the condition number of A. Importantly, Ã need not be well conditioned.
Furthermore, the convergence of iterative refinement is also ensured when those three values
are sufficiently small [33]. Note that (3.10) implies that τ̂ may directly contribute to the
backward error when there are modifications but the Woodbury formula is not applied.

Unfortunately, an ill-conditioned Ã can still be problematic when using the Woodbury
formula because its forward error directly perturbs the capacitance matrix and, thus, the
correction. To help understand this condition number, I provide the following theorem, which
states that if the tolerance, τ̂ , is small relative to the reciprocal condition number of A, the
conditioning of Ã will be close to that of A. Interestingly, the condition of this theorem
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(τ̂κ2(A)≪ 1) appears related to the requirement implied by (3.10) for the solution to have
any digits of accuracy (τ̂κ2(A) + η̃2κ2(A)≪ 1).

Theorem 3.1. Let Ã = A + MUMΣMT
V where MU , MV each have orthonormal columns, and

MΣ is a diagonal matrix with positive entries of at most τ = τ̂∥A∥2. If τ̂κ2(A) < 1, then

κ2(Ã) ≤ σ1(A) + τ

σn(A)− τ
= κ2(A) 1 + τ̂

1− τ̂κ2(A)

where σ1(A) and σn(A) denote the largest and smallest singular values, respectively, and
κ2(A) = σ1(A)/σn(A).

Proof. By the triangle inequality,

σ1(Ã) ≤ σ1(A) + τ and σn(Ã) ≥ σn(A)− τ.

Suppose τ̂κ2(A) < 1, which implies σn(A)− τ > 0. Hence,

κ2(Ã) ≤ σ1(A) + τ

σn(A)− τ
= σ1(A) + τ̂σ1(A)

σn(A)− τ̂σ1(A) = κ2(A) 1 + τ̂

1− τ̂κ2(A) .

When applying the Woodbury formula, BEAM must also invert the capacitance matrix
as per (3.7). Thus, its condition number is also crucial in the analysis of this method. I start
by generalizing a lemma of Yip [137] to the full version of the Woodbury formula.

Lemma 3.2. Let ∥·∥p be any sub-multiplicative matrix norm. Denote the condition number
with respect to the Moore-Penrose pseudoinverse by κ+

p (A) = ∥A∥p∥A+∥p. Suppose that
Ã = A + UΣV T is nonsingular with U, V having full column rank and Σ being nonsingular.
Then,

κp(Σ−1 − V T Ã−1U) ≤ min
(
κ+

p (U)2, κ+
p (V T )2

)
κp(Σ)κp(AÃ−1)

≤ min
(
κ+

p (U)2, κ+
p (V T )2

)
κp(Σ)κp(A)κp(Ã).

Proof. To bound the norm of the capacitance matrix, we start by rewriting its expression.
Multiplying Ã− UΣV T = A on the left by Σ−1U+ and on the right by Ã−1U gives

(Σ−1 − V T Ã−1U) = Σ−1U+AÃ−1U. (3.11)

We next seek a similar expression for its inverse. Note that,

AÃ−1U = (Ã− UΣV T )Ã−1U = U − UΣV T Ã−1U.
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So, the columns of AÃ−1U are within the column space of U . Since UU+ is an orthogonal
projector onto that space [64], we have (UU+)AÃ−1U = AÃ−1U . Using this, we can verify
that

(U+ÃA−1UΣ)(Σ−1U+AÃ−1U) = I.

Combining this with (3.11) gives the desired inverse:

(Σ−1 − V T Ã−1U)−1 = U+ÃA−1UΣ.

Hence, the condition number can be bounded as

κp(Σ−1 − V T Ã−1U) = ∥Σ−1U+AÃ−1U∥p∥U+ÃA−1UΣ∥p

≤ κ+
p (U)2κp(Σ)∥AÃ−1∥p∥ÃA−1∥p.

A similar argument shows that

κp(Σ− UÃ−1V T ) ≤ κ+
p (V T )2κp(Σ)∥AÃ−1∥p∥ÃA−1∥p.

Using this lemma, the condition number for the capacitance matrix in the obvious form
of the Woodbury formula is bounded by

κ2(M−1
Σ −MT

V Ã−1MU) ≤ κ2(MΣ)κ2(AÃ−1).

As mentioned in Section 3.4.1, I instead formulate the Woodbury correction to get a tighter
bound on conditioning:

κ2(I −MΣMT
V Ã−1MU) ≤ κ2(AÃ−1).

The conditioning of this latter matrix can be further improved, particularly for the 2-norm.
The following theorem shows that if neither A nor Ã is ill-conditioned, the capacitance matrix
will have an excellent condition number.

Theorem 3.3. Suppose Ã = A + MUMΣMT
V where MU and MV each have orthonormal

columns, and ∥MΣ∥2 = τ . Additionally, let C = I −MΣMT
V Ã−1MU . Then,

κ2(C) ≤ (1 + τ∥Ã−1∥2)(1 + τ∥A−1∥2).
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If τ = τ̂∥A∥2 with τ̂ < 1, then the bound simplifies to

κ2(C) ≤ (1 + τ̂
1−τ̂

κ2(Ã))(1 + τ̂κ2(A)).

Proof. After substituting U = MU , Σ = I, and V T = MΣMT
V , Theorem 3.2 gives the bound

κ2(C) ≤ ∥AÃ−1∥2∥ÃA−1∥2. Since A = Ã−MUMΣMT
V and ∥MUMΣMT

V ∥2 = τ , a little algebra
shows that

κ2(C) ≤ (1 + τ∥Ã−1∥2)(1 + τ∥A−1∥2).

Suppose τ = τ̂∥A∥2 and τ̂ < 1. Then,

∥A∥2 = ∥Ã−MUMΣMT
V ∥2 ≤ ∥Ã∥2 + τ̂∥A∥2,

and so ∥A∥2 ≤ (1− τ̂)−1∥Ã∥2. Therefore,

κ2(C) ≤ (1 + τ̂∥A∥2∥Ã−1∥2)(1 + τ̂∥A∥2∥A−1∥2)

≤ (1 + τ̂
1−τ̂

κ2(Ã))(1 + τ̂κ2(A)).

3.4.3 Error Analysis of Block LU

After the analysis of Section 3.4.2, one critical concern remains: how backward stable is the
factorization of Ã? To my knowledge, no existing analysis of block LU applies to Algorithm 3.4.
The closest is by Demmel, Higham, and Schreiber [39], but the block LU they analyzed
differs from my factorization in two primary ways. First, the diagonal blocks are factored
with GEPP instead of the SVD. Second, the diagonal blocks of the lower block-triangular
factor are identity matrices instead of singular vectors. Towards that end, I provide a new
analysis of block LU general enough to apply to BEAM.

Because the analysis of block LU relies heavily on norm properties, I first review some
key definitions. While matrix norms are (strictly speaking) only defined for a single matrix
size, they are often treated as being independent of the matrix size, so that padding a matrix
with zeros does not affect its norm. For clarity, I refer to this as a family of norms. Formally,
for any partitioning of the matrix with I,J being the row and column indices, respectively,
of the blocks, let the norms of a given family satisfy

max
i∈I
j∈J

∥Ai,j∥ ≤ ∥A∥ ≤
∑
i∈I
j∈J

∥Ai,j∥. (3.12)
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This is satisfied by all of the usual norms, including those induced by vector ℓp norms, the
Schatten norms, and the element-wise norms. A matrix norm, ∥·∥α, is submultiplicative if
∥AB∥α ≤ ∥A∥α∥B∥α for all conformal matrices A and B. While some authors limit the term
“matrix norm” to submultiplicative norms, I make no such limitation, due to the use of the
max-norm in previous analyses [39, 133]. Submultiplicative norms include all operator norms
and the Frobenius norm. A matrix norm, ∥·∥α, is absolute if ∥A∥α = ∥|A|∥α for any matrix
A. Absolute norms include the max-norm, the 1- and ∞-operator norms, and the Frobenius
norm.

For the sake of generality, I define the blocks based on the list of the global (pointwise)
row/column for which each block starts, called I. For notational convenience, n + 1 is added
as the last element. For example, a fixed block size, nb, with nt = ⌈n/nb⌉ blocks gives

I = [1, nb + 1, 2nb + 1, . . . , (nt − 1)nb + 1, n + 1].

For simplicity, I index blocks of a matrix with subscripts, as exemplified by

Ai,j:k = A[Ii : Ii+1−1, Ij : Ik−1−1]

where Ii is the ith element of I. Then, block LU factorization is described by Algorithm 3.5;
this is the core factorization of Algorithm 3.4 but is extracted for clarity. Note that to
simplify notation, I index the blocks of A(k) from k to nt instead of 1 to nt − k + 1. Many
basic properties of pointwise LU have blockwise analogs, as outlined by Theorem 3.4.

Lemma 3.4. Consider the execution of Algorithm 3.5, assuming that a diagonal block can be
factored if and only if the block is nonsingular. Note that A(k+1) is only defined if the first k

iterations succeed. Then:

1. A(k+1) = A/A1:k,1:k.

2. The first k iterations of the factorization succeed if and only if the first k block leading
principle submatrices (A1,1, A1:2,1:2, . . . , A1:k,1:k) are all nonsingular.

Note that / (when applied to matrices) denotes the Schur complement.

Proof. The proofs all follow their pointwise equivalents. First, note that combining the steps
of iteration k gives

A(k+1) = A
(k)
k+1:nt,k+1:nt

− A
(k)
k+1:nt,k

(
A

(k)
1:k,1:k

)−1
A

(k)
k,k+1:nt

= A(k)/A
(k)
k,k

which is useful for proving both results.
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1: nt ← the size of I
2: A(1) ← A
3: for k = 1 : nt do
4: Lk,kRk,k ← A

(k)
k,k

5: Lk+1:nt,k ← A
(k)
k+1:nt,k R−1

k,k

6: Rk,k+1:nt ← L−1
k,k A

(k)
k,k+1:nt

7: A
(k+1)
k+1:nt,k+1:nt

← A
(k)
k+1:nt,k+1:nt

− Lk+1:nt,k Rk,k+1:nt

Algorithm 3.5: Block LU factorization of A.
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1. Assuming that the first k iterations of Algorithm 3.5 succeeded. Iteratively applying
the quotient formula [138, Thm. 1.4] gives

A(k+1) = A/A1:k,1:k.

2. By assumption, the first diagonal block can be factored if and only if it is nonsingular.
For the sake of induction, let k > 1 and assume that the first k diagonal blocks were factored.
Then, det(A1:k−1,1:k−1) ̸= 0. The first result implies A

(k)
k,k = A1:k,1:k/A1:k−1,1:k−1. By Schur’s

determinant formula, det(A(k)
k,k) = det(A1:k,1:k)/ det(A1:k−1,1:k−1) [113, pg. 217]. Hence, A

(k)
k,k

is nonsingular if and only if A1:k,1:k is nonsingular.

A Generalized Measure of Growth

Because of the block structure of the factorization, I found it useful to generalize Wilkinson’s
traditional growth factor. For any matrix norm, ∥·∥α, define

PI
α = max1≤k≤|I|∥A(k)∥α

∥A∥α

. (3.13)

For simplicity, when every block has size nb, denote the growth as P⟨nb⟩
α . Interestingly, the

growth is independent of how the diagonal blocks are factored (in exact arithmetic) since it
depends only on the Schur complements. Note that Wilkinson’s growth factor (i.e., (3.1))
equals P⟨1⟩

max [133] and that Amodio and Mazzia’s growth factor equals P⟨1⟩
∞ [7]. Barlow and

Zha’s growth factor is related to, but strictly greater than, P⟨1⟩
2 [22]; the difference arises

from their inclusion of elements from U in the numerator’s norm.
Because (3.13) is parameterized for both the blocking and the norm, I bound the

relation between different versions of this measure. Importantly, this allows relating the new
measurements by that of Wilkinson’s classic growth factor:

1
n
P⟨1⟩

max ≤ P(nb)
α ≤ nP⟨1⟩

max α ∈ {1, 2,∞, F}. (3.14)

Theorem 3.5. Let ∥·∥α and ∥·∥β be matrix norms. Then, the following relations between
growth factors hold:

1. If J ⊆ I, then PJ
α ≤ PI

α.

2. If µ−1∥A∥α ≤ ∥A∥β ≤ ν∥A∥α for any square matrix A, then (µν)−1PI
α ≤ PI

β ≤ µνPI
α.

Proof. The first result follows from the observation that, because all indices in J also occur
in I, all of the trailing matrices produced by the former must also occur by the latter. In
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other words,

PJ
α = maxj∈J ∥A/A[1 : j−1, 1 : j−1]∥α

∥A∥α

≤ maxi∈I∥A/A[1 : i−1, 1 : i−1]∥α

∥A∥α

= PI
α

The second result is a straightforward substitution of norm equivalencies.

However, (3.14) may be quite pessimistic for some matrices. So, it is also useful to directly
study the growth of (3.13). Similar to (3.3) for the pointwise case, the growth can be bounded
relative to the smallest singular values of the leading principal submatrices:

Pα ≤ 1 + max
k

[
∥A−1

1:k,1:k∥α min (∥Ak+1:nt,1:k∥α, ∥A1:k,k+1:nt∥α)
]

≤ 1 + max
k
∥A∥α∥A−1

1:k,1:k∥α. (3.15)

Backward Error

I begin by analyzing the backward error of the factorization itself. Because different inner
factorizations may be preferable to the SVD (see Sections 3.4.1 and 3.4.6), parameterized the
error of the block-wise operations.

Theorem 3.6. Let ∥·∥α be a submultiplicative norm. Apply Algorithm 3.5 such that for all
1 ≤ k ≤ nt,

A
(k)
kk = L̂kkR̂kk + E

(k)
11 , ∥E(k)

11 ∥α ≤ c
(k)
11 u∥A(k)

kk ∥α, (3.16)

A
(k)
kTk

= L̂kkR̂kTk
+ E

(k)
12 , ∥E(k)

12 ∥α ≤ c
(k)
12 u∥L̂kk∥α∥R̂kTk

∥α, (3.17)

A
(k)
Tkk = L̂TkkR̂kk + E

(k)
21 , ∥E(k)

21 ∥α ≤ c
(k)
21 u∥L̂Tkk∥α∥R̂kk∥α, (3.18)

A
(k+1)
TkTk

= A
(k)
TkTk
− L̂TkkR̂kTk

+ E
(k)
22 , ∥E(k)

22 ∥α ≤ c
(k)
22Au∥A(k)

TkTk
∥α (3.19)

+ c
(k)
22LUu∥L̂Tkk∥α∥R̂kTk

∥α,

where Tk = k + 1 : nt are the trailing blocks. Then, the computed factorization satisfies

∥A− L̂R̂∥α ≤ CAuPα∥A∥α + CLUu∥L̂∥α∥R̂∥α

where
CA ≤

nt∑
k=1

c
(k)
11 +

nt−1∑
k=1

c
(k)
22A and CLU ≤

nt−1∑
k=1

(
c

(k)
21 + c

(k)
12 + c

(k)
22LU

)
.
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Proof. When A is a single block, ∥E∥α ≤ c11uPα∥A∥α. So, assume there are multiple blocks.
Writing out the product A− L̂R block-wise gives

∥A− L̂R∥α = ∥E(1)
11 ∥α + ∥E(1)

12 ∥α + ∥E(1)
21 ∥α + ∥E(1)

22 ∥α + ∥A(2) − L̂T1T1R̂T1T1∥α

≤ (c(1)
11 + c

(1)
22A)uPα∥A∥α + (c(1)

12 + c
(1)
21 + c

(1)
22LU)u∥L̂∥α∥R̂∥α

+ ∥A(2) − L̂T1T1R̂T1T1∥α.

Continuing the iteration gives

CA ≤
nt∑

k=1
c

(k)
11 +

nt−1∑
k=1

c
(k)
22A and CLU ≤

nt−1∑
k=1

(c(k)
12 + c

(k)
21 + c

(k)
22LU).

This theorem can reproduce Amodio and Mazzia’s backward error analysis of pointwise,
partial pivoted LU [7, (4.1)]. Using the ∞-norm and a block size of 1, we have c11 = c12 = 0,
c21 = c22A = c22LU = 1, and P⟨1⟩

∞ equaling their measure of growth. Furthermore, we have
∥L̂∥∞ ≤ n and ∥R̂∥∞ ≤ P⟨1⟩

∞ ∥A∥∞. Thus, Theorem 3.6 gives

A = L̂R̂ + E where ∥E∥∞ ≤ (2n2 − n− 1)uP⟨1⟩
∞ ∥A∥∞ +O(u2), (3.20)

which is within a factor of 4 of their bound. Furthermore, because P⟨1⟩
∞ ≤ nP⟨1⟩

max (by
Theorem 3.5), (3.20) also gives Wilkinson’s classic normwise backward error bound [133, Chap
3, (16.13)]. Note that this change of norms explains why the polynomial is a factor of n

smaller in Amodio and Mazzia’s error analysis compared to Wilkinson’s. Furthermore, redoing
Theorem 3.6 and the analysis of pointwise LU for the (non-submultiplicative) max-norm gives

∥E∥max ≤ O(n2)uP⟨1⟩
max∥A∥max.

which indicates that one factor of n in the cubic polynomial from the classic analysis is due
to mixing the ∞-norm with the implicit max-norm. This also helps explain why the cubic
polynomial is pessimistic in practice: If |E| has a similar numerical structure to |A|, then
∥E∥∞/∥E∥max should be close to ∥A∥∞/∥A∥max, so the conversion factor will usually be less
than or approximately 1. Combining this with recent probabilistic analysis [74, Thm. 3.7]
provides some justification of the long-known fact that the polynomial is closer to n in
practice [133, pg. 108].

Next, I bound the backward error of block-triangular solves. To ensure the bound has
the correct structure for any submultiplicative norm, ∥·∥α, I introduce the quantity µα. This
quantity is the smallest value such that for any u, v ∈ Rn there is a matrix, M , such that
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u = Mv and ∥M∥α = ∥u∥α/∥v∥α. This value trivially equals 1 for Schatten norms (notably
the spectral norm and the Frobenius norm). Furthermore, it can be shown that this quantity
is 1 for the max-norm and for operator norms induced by ℓp vector norms (notably the
operator 1- and ∞-norms). However, for some norms, the quantity can be larger than 1.
For example, consider the elementwise 1-norm, ∥·∥sum, which equals the sum of element
magnitudes and is submultiplicative. Then, µsum = n.

Theorem 3.7. Let ∥·∥α be a submultiplicative norm and let

µα = max
u,v∈Rn

v ̸=0

min
M∈Rn×n

u=Mv

∥Mv∥α

∥M∥α∥v∥α

bound the norm of a mapping between an arbitrary pair of vectors. Assume that L̂ is a lower
block-triangular matrix and that

(L̂kk + E
(k)
L1 )ŷk = b

(k)
k ∥E(k)

L1 ∥α ≤ c
(k)
L1 u∥L̂kk∥α (3.21)

b
(k+1)
Tk

+ E
(k)
L2 = b

(k)
Tk
− L̂Tkkŷk ∥E(k)

L2 ∥α ≤ c
(k)
L2 u

(
∥b(k)

Tk
∥α + ∥L̂Tkk∥α∥ŷk∥α

)
(3.22)

with Tk = k + 1 : nt being the indices of the trailing blocks. Then,

(L̂ + E)ŷ = b where ∥E∥α ≤ µα

(
nt∑

k=1
c

(k)
L1 + 2

nt−1∑
k=1

c
(k)
L2

)
u∥L̂∥α +O(u2).

An analogous result holds for upper block-triangular matrices.

Proof. Writing out the product b− L̂ŷ block-wise gives

∥b− L̂ŷ∥α ≤ ∥E(1)
1 ∥α∥ŷ1∥α + ∥E(1)

L2 ∥α + ∥b(2)
2:nt
− L̂2:nt,2:nt ŷ2:nt∥α

≤ c
(k)
L1 u∥L̂11∥α∥ŷ1∥α + c

(k)
L2 u(∥b(2)

T1 ∥α + ∥L̂T11∥α∥ŷk∥α) + ∥b(2)
T1 − L̂T1T1 ŷT1∥α (3.23)

Note that ∥b(2)
T1 ∥α ≤ ∥b(2)

T1 − L̂T1T1 ŷT1∥α + ∥L̂T1T1 ŷT1∥α. Thus, (3.23) can be simplified to

∥b− L̂ŷ∥α ≤ (c(k)
L1 + 2c

(k)
L2 )u∥L̂∥α∥ŷ∥α + (1 + c

(k)
L2 u)∥b(2)

2:nt
− L̂22ŷ2:nt∥α.

Continuing the iteration gives

∥b− L̂ŷ∥α ≤
(

nt∑
k=1

c
(k)
L1 + 2

nt−1∑
k=1

c
(k)
L2

)
u∥L̂∥α∥ŷ∥α +O(u2).
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By the definition of µα, there exists an error matrix E such that Eŷ = b − L̂ŷ and
∥E∥α∥ŷ∥α ≤ µα∥b− L̂ŷ∥α. Therefore,

∥E∥α ≤ µα

(
nt−1∑
k=1

c
(k)
L1 + 2

nt∑
k=1

c
(k)
L2

)
u∥L̂∥α +O(u2).

As with the factorization, Theorem 3.7 is able to recreate the backward error analysis of
pointwise triangular solves, albeit with a larger coefficient.

Theorems 3.6 and 3.7 can be combined to bound the backward error of a full, block-wise
solve. While Theorem 3.6 can be tightened to use ∥|L̂||R̂|∥α instead of ∥L̂∥α∥R̂∥α, the use of
the triangular solves in the following corollary cannot be similarly tightened.

Corollary 3.8. Let ∥·∥α be a submultiplicative norm Apply Algorithm 3.5 with the assumptions
of Theorem 3.6 and Theorem 3.7. Then, there exists a matrix E such that (A + E)x̂ = b with

∥E∥α ≤ CAuPα∥A∥α + CLUu∥L̂∥α∥R̂∥α,

CA ≤
nt∑

k=1
c

(k)
11 +

nt−1∑
k=1

c
(k)
22A, and

CLU ≤ µα

nt∑
k=1

[
c

(k)
R1 + c

(k)
L1

]
+

nt−1∑
k=1

[
c

(k)
21 + c

(k)
12 + c

(k)
22LU + 2µα

(
c

(k)
L2 + c

(k)
R2

)]
.

These theorems raise the question of whether ∥L̂∥α∥R̂∥α can be bound in terms of ∥A∥α.
A simple bound is

∥L̂∥α∥R̂∥α ≤ min
[
κα(L), κα(R)

]
∥A∥α + ∥E∥α

when the norm is submultiplicative and E is the error from Theorem 3.6. However, the
condition numbers of the computed factors provide minimal insight into how the algorithm is
affected by its inputs. To improve that bound, I focus on the case where the diagonal blocks
of L are orthogonal and the norm is unitarily invariant since that is the primary interest for
BEAM. An analogous theorem holds for, e.g., permutation matrices with the 1- or ∞-norms.
Note that this bound improves on the bound of Demmel et al. [39, pg. 182], replacing the
pointwise growth factor cubed with the blockwise growth factor squared (in addition to
applying to a more general formulation of block LU).

Theorem 3.9. Let ∥·∥α be submultiplicative and unitarily invariant and assume the diagonal
blocks of L are all unitary. Then,

∥L∥α∥R∥α ≤
(
n + ntPακα(A)

)
ntPα∥A∥α.
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Proof. Bounds for both of the factors follow the work of Demmel et al. [39, pg. 182]. First,
consider ∥R∥α. Note that ∥R1,2:nt∥α = ∥L−1

11 A1,2:nt∥α ≤ Pα∥A∥α. Then,

∥R∥α ≤ ∥R1,1:nt∥α + ∥R2:nt,2:nt∥α = Pα∥A∥α + ∥R2:nt,2:nt∥α. (3.24)

Iterating this process on the trailing matrices gives ∥R∥α ≤ ntPα∥A∥α.
Next, consider ∥L∥α. Starting similarly, we have

∥Lk+1:nt,k∥α = ∥A(k)
k+1:nt,kR−1

kk ∥α = ∥A(k)
k+1:nt,k(A(k)

kk )−1Lkk∥α = ∥A(k)
k+1:nt,k(A(k)

kk )−1∥α.

Blockwise inversion shows that −(A(k+1))−1A
(k)
k+1:nt,k(A(k)

kk )−1 = (A(k))−1
k+1:nt,k. So,

∥A(k)
k+1:nt,k(A(k)

kk )−1∥α ≤ ∥A(k+1)∥α∥(A(k))−1
k+1:nt,k∥α ≤ Pα∥A∥α∥A−1∥α ≤ Pακα(A).

Using the triangle inequality and unitary invariance, the norm of any of the diagonal blocks
of L is bounded by the block’s size. Thus,

∥L∥α ≤
nt∑

k=1
∥Lk,k∥α +

nt∑
k=1
∥Lk+1:nt,k∥α ≤ n + ntPακα(A)

Therefore, ∥L∥α∥R∥α ≤
(
n + ntPακα(A)

)
ntPα∥A∥α.

Theorems 3.6 to 3.8 can also be redone in a component-wise manner to replace the difficult
∥L∥α∥R∥α term with an easier |L||R| term and to avoid the measure µα from Theorem 3.7.
Unfortunately, component-wise theory cannot be used when the inner factorization is based on
the SVD or QR factorization because those factorizations are not component-wise stable [71,
Sec. 19.7].

This analysis shows that block LU is backward stable if the growth is limited and the
component block routines are also adequately backward stable. Because the SVD and
the QR routines discussed in Section 3.4.6 are backward stable, the growth factor is the
primary concern, as in pointwise LU. More analysis is needed to understand how the additive
modifications of BEAM affect the growth factor.

3.4.4 Experimental Results

To investigate the numerical stability, scalability, and performance of BEAM, I implemented
it in SLATE and evaluated it on the Summit supercomputer. My implementation follows
Algorithm 3.4 and uses a high-level structure based on that of SLATE’s GENP routine (see
Section 3.2). However, I separated BEAM’s algorithmic block size from the distribution tile
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size (the former always being smaller than the latter in these experiments). For simplicity,
my code does not support an algorithmic block to be split across multiple tiles of SLATE
and will truncate the last block in a tile to fit. But all the experiments align the block and
tile sizes so that truncation only happens in the last tile. After the factorization is complete,
the capacitance matrix is built and factored. While my theory defines τ in terms of ∥A∥2,
this is expensive to compute in practice. So, my experiments instead used the Frobenius
norm, τ = τ̂∥A∥F , which is closely related.

Because BEAM’s factors are blockwise triangular instead of pointwise triangular, I had
to implement a GPU routine for batched, block-triangular solves to apply the diagonal tiles
of the factors. I used a recursive formulation similar to the MAGMA [2] and KBLAS [35]
libraries. Because the diagonal blocks come from the SVD, these inverses can be realized by
a matrix multiplication and sometimes a diagonal scaling. While cuBLAS’s batched GEMM
routine was effective for the trailing-matrix updates, its performance was lacking for small
block sizes due to the subsequent copy or scale operation. For such cases, I implemented a
custom routine that combined the multiplication and the copy to improve cache reuse and
avoid extra kernel launch overheads. To reduce the effort in performance tuning, I used part
of MAGMA’s matrix-multiplication routine in my kernel.

Experimental Setup

The tester was compiled with GCC 9.1.0, CUDA 11.0.3, IBM Spectrum MPI 10.4.0.3, IBM
ESSL 6.1.0, Netlib LAPACK 3.8.0, and Netlib ScaLAPACK 2.1.0. I set the smt1 flag (dis-
abling simultaneous multithreading) and started MPI with jsrun -n 16 -a 1 -c 21 -g 3
-b packed:21 -d packed which allocates 16 processes, each bound to a single socket and its
GPUs. For all experiments, I configured the tester with --origin h --target d --ref n
--grid 4x4 --panel-threads 20 --seed 1 --seedB 2 --matrixB randn --nrhs 1. I
also set the --matrix, --dim, and --check flags as appropriate for the experiment. For
GEPP, I also set --nb 768 --ib 64 --lookahead 1. For GENP and BEAM, I set --nb 512
--lookahead 2 --ib 64, except for the experiment described in Section 3.4.4 which changed
the last argument as appropriate for BEAM. This configuration gives a 2D block-cyclic
distribution with a 4×4 process grid and blocks of size 512 or 768, as indicated by --nb. Note
that SLATE’s ib parameter corresponds to the nb value discussed in this paper; SLATE’s nb
corresponds to the larger blocks used to distribute the matrix.

All tests were preceded by extra tests of size n = 5000 (with the otherwise identical
configuration) to ensure that the results were not influenced by software initialization costs. To
measure the effects of system noise, I ran each performance test three times and computed the
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mean and 95% confidence interval. Except for svd_geo, the error and number of modifications
were the same between the different runs. Due to minor non-determinism in SLATE’s QR
factorization, there is slight variability between runs in the entries of svd_geo. However, this
variability is small and does not affect my conclusions or analysis, so I just present the error
values and number of modifications from the first run.

To understand how the BEAM algorithm behaves across various linear systems, I used
seven random and eight structured matrices in these tests. Table 3.2 describes these matrices.
I chose a right-hand side with each element randomly taken from the normal distribution.
The matrix generator was always seeded with 1 for the matrices and with 2 for the right-hand
sides so that the test problems can be reproduced.

Accuracy was measured with the infinity-norm backward error:

η∞(x) = ∥b− Ax∥∞

∥A∥∞∥x∥∞ + ∥b∥∞
. (3.25)

Correspondingly, iterative refinement was terminated when this error was less than or equal
to
√

n times the unit roundoff (∼3.5× 10−14 when n = 105) or after 30 iterations. I selected
this criterion based on the accuracy of GEPP (see Table 3.3).

Baseline Accuracy and Performance Experiments

First, Table 3.3 compares the accuracy of BEAM against GEPP and GENP for varying values
of tolerance τ̂ . The matrices were of size 105, with a blocking factor of 64 for BEAM. The
reported error is the infinity-norm backward error of (3.25). Most importantly, the error of
BEAM with the Woodbury correction is smaller than or approximately equal to that of GENP
for all but one case (orthog with τ̂ = 10−10). Furthermore, BEAM with Woodbury correction
has a significantly smaller error than GENP for most matrices and only incurs NaN values for
one matrix, zielkeNS. (Those NaN values resulting from growth-induced overflow and are
easily detected in the residual of iterative refinement.) These results demonstrate the ability
of BEAM to provide better numerical stability than GENP. Moreover, the error was smaller
than 10−10 for many of the matrices. This implies that the iterative refinement should often
converge quickly to double-precision accuracy [33]. While τ̂ = 10−6 leads to modifications for
most matrices, only five of the fifteen matrices required more than ten modifications when
τ̂ ≤ 10−8 (one of which was accurately solved without any modifications when τ̂ = 10−10).
This indicates that the proposed approach is likely effective for a large class of matrices.
Additionally, many linear systems saw a significant improvement in accuracy compared to
GENP, even without modification. Thus, even just applying an SVD factorization to invert
the diagonal blocks increases the stability of a non-pivoted factorization.
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Table 3.2: Tested Matrices

Name Description
rand Random elements uniform on [0, 1]
rands Random elements uniform on [−1, 1]
randn Random elements normally distributed
randb Random elements of 0 or 1
randr Random elements of -1 or 1
rand+nI rand plus nI (called rand_dominant in SLATE)
svd_geo Random matrix with singular values geometrically spaced from 10−8 to 1
chebspec From MATLAB’s gallery function
circul From MATLAB’s gallery function
fiedler From MATLAB’s gallery function
kms From MATLAB’s gallery function
orthog From MATLAB’s gallery function
riemann From MATLAB’s gallery function
ris From MATLAB’s gallery function
zielkeNS Zielke’s non-symmetric matrix (a = 1) [141]
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Table 3.3: Accuracy of BEAM without iterative refinement compared to GEPP and GENP.

τ̂ = 10−6 τ̂ = 10−8 τ̂ = 10−10

GEPP GENP # Corr. Uncorr. # Corr. Uncorr. # Corr. Uncorr.
Matrix Error Error Mods. Error Error Mods. Error Error Mods. Error Error

rand 2×10−14 3×10−9 126 2×10−13 2×10−7 2 2×10−12 4×10−11 0 5×10−12 5×10−12

rands 3×10−14 3×10−10 59 7×10−13 2×10−7 0 3×10−12 3×10−12 0 3×10−12 3×10−12

randn 4×10−14 3×10−10 57 7×10−13 2×10−7 0 2×10−12 2×10−12 0 2×10−12 2×10−12

randb 3×10−14 NaN 89 4×10−13 2×10−7 0 2×10−12 2×10−12 0 2×10−12 2×10−12

randr 3×10−14 NaN 60 5×10−13 1×10−7 0 1×10−12 1×10−12 0 1×10−12 1×10−12

rand+nI 2×10−14 1×10−14 0 1×10−14 1×10−14 0 1×10−14 1×10−14 0 1×10−14 1×10−14

svd_geo 5×10−15 1×10−10 47 424 8×10−14 5×10−7 9 072 2×10−13 4×10−9 127 2×10−12 2×10−11

chebspec 3×10−16 8×10−10 3 198 3×10−16 5×10−7 0 2×10−16 2×10−16 0 2×10−16 2×10−16

circul 2×10−17 1×10−14 2 9×10−16 5×10−7 0 1×10−15 1×10−15 0 1×10−15 1×10−15

fiedler 2×10−18 NaN 98 440 3×10−15 7×10−7 92 188 4×10−15 5×10−9 0 4×10−15 4×10−15

kms 2×10−16 2×10−16 0 5×10−16 5×10−16 0 5×10−16 5×10−16 0 5×10−16 5×10−16

orthog 3×10−15 5×10−5 47 216 4×10−7 1×10−6 21 420 2×10−5 2×10−5 1 022 6×10−4 3×10−4

riemann 2×10−14 5×10−13 43 6×10−16 8×10−7 0 1×10−14 1×10−14 0 1×10−14 1×10−14

ris 3×10−15 1×10−1 49 980 3×10−9 3×10−5 49 977 3×10−6 2×10−6 49 973 7×10−5 5×10−5

zielkeNS 2×10−19 NaN 1 594 NaN NaN 1 594 NaN NaN 1 594 NaN NaN
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Table 3.4: Performance of BEAM (using iterative refinement) compared to GEPP and GENP with 95% confidence intervals.

τ̂ = 10−6 τ̂ = 10−8 τ̂ = 10−10

Matrix GEPP (s) GENP (s) Itr. Corr. (s) Itr. Uncorr. (s) Itr. Corr. (s) Itr. Uncorr. (s) Itr. Corr. (s) Itr. Uncorr. (s)
rand 49.6±0.8 6.5±0.8* 1 13.7±0.8 3 10.9±0.8 1 10.7±0.8 1 10.2±0.8 1 10.2±0.8 1 10.3±0.8

rands 49.4±1.4 6.6±1.4* 1 12.2±1.4 3 10.7±1.4 1 10.3±1.4 1 10.3±1.4 1 10.2±1.4 1 10.2±1.4
randn 49.6±1.4* 6.5±1.4* 1 12.2±1.4 3 10.7±1.4 1 10.2±1.4 1 10.2±1.4 1 10.2±1.4 1 10.2±1.4
randb 49.6±1.1 6.5±1.1* 1 12.8±1.1 4 11.0±1.1 1 10.2±1.1 1 10.2±1.1 1 10.2±1.1 1 10.2±1.1
randr 50.0±2.4 6.6±2.4* 1 12.1±2.4 5 11.3±2.4 1 10.2±2.4 1 10.3±2.4 1 10.1±2.4 1 10.2±2.4

rand+nI 24.9±0.2 6.5±0.2 0 10.0±0.2 0 10.0±0.2 0 10.0±0.2 0 10.0±0.2 0 10.1±0.2 0 10.0±0.2
svd_geo 49.1±2.6 6.6±2.6* 1 44.2±2.6 30 17.9±2.6* 1 24.9±2.6 30 17.9±2.6* 1 13.6±2.6 1 10.2±2.6

chebspec 31.3±0.7 6.5±0.7* 0 21.2±0.7 30 17.8±0.7* 0 9.8±0.7 0 9.9±0.7 0 9.9±0.7 0 9.9±0.7
circul 31.4±0.9 6.5±0.9 0 10.3±0.9 3 10.5±0.9 0 9.8±0.9 0 9.8±0.9 0 9.8±0.9 0 9.9±0.9

fiedler 39.1±0.6 6.6±0.6* 0 76.3±0.6 30 17.7±0.6* 0 71.9±0.6 30 17.7±0.6* 0 9.8±0.6 0 9.8±0.6
kms 24.0±0.4 6.6±0.4 0 9.7±0.4 0 9.8±0.4 0 9.7±0.4 0 9.8±0.4 0 9.8±0.4 0 9.8±0.4

orthog 50.5±1.2 6.5±1.2* 2 43.9±1.2 2 10.5±1.2 3 30.6±1.2 2 10.5±1.2 24 25.6±1.2 24 16.1±1.2
riemann 42.2±0.7 6.6±0.7* 0 11.6±0.7 30 17.8±0.7* 0 9.9±0.7 0 10.0±0.7 0 10.0±0.7 0 10.0±0.7

ris 39.0±0.8 6.6±0.8* 1 44.5±0.8 3 10.6±0.8 1 44.6±0.8 2 10.5±0.8 2 45.2±0.8 2 10.5±0.8
zielkeNS 38.5±0.6 6.6±0.6* 0 19.8±0.6* 0 9.8±0.6* 0 19.8±0.6* 0 9.8±0.6* 0 19.7±0.6* 0 9.8±0.6*

*Error larger than 2−53√n ≈ 3.5× 10−14.
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The results become more nuanced when considering BEAM without Woodbury correction.
For τ̂ = 10−10, the uncorrected solver behaved similarly to the corrected one. For larger
tolerances, however, there is a significant gap between the two, particularly for τ̂ = 10−6.
This indicates that the perturbation of the uncorrected modification becomes the dominant
source of error when τ̂ ≳ 10−8. This aligns with both the τ̂ term in the normwise backward
error bound of (3.10) and the recommended tolerance when applying scalar updates without
correction [90]. In contrast, when the Woodbury correction was applied, increasing the
tolerances always saw similar or better accuracies. This suggests that the error in the
corrected case comes from the presence of small diagonal singular values and the resulting
growth and not from applying the modifications or the Woodbury correction process.

Table 3.4 augments Table 3.3 by showing the time to solve the linear systems of equations
(again with n = 105). Up to 30 steps of iterative refinement were used for BEAM but not for
GEPP or GENP. To clarify where iterative refinement was unsuccessful, I marked the cases
which failed to achieve convergence criterion for iterative refinement (η∞(x) ≲ 3.5× 10−14).
Furthermore, I provide the number of refinement iterations, with 30 being the limit.

First, note that by using iterative refinement, BEAM achieved an error of less than 2−53√n

for almost all cases. As above, zielkeNS’s failure involved excessive growth generating NaN
values. For the remaining failures, BEAM produced a non-NaN solution, but iterative
refinement failed to converge to full accuracy. These cases included svd_geo, chebspec,
fiedler, and riemann with larger tolerances (and many modifications) but without Woodbury
correction. These matrices are all ill-conditioned, which limits the ability of iterative
refinement to converge when the inner solution is only moderately accurate [33]. For example,
κ∞(fiedler) = 2n(n − 1) ≈ 2 × 1010 [122, pg. 159], so iterative refinement can only be
expected to converge to full accuracy when η∞(x) ≲ 5 × 10−11. Furthermore, this further
supports the implication of both (3.10) and Theorem 3.1 that τ̂ should be chosen such that
τ̂κ2(A)≪ 1. Interestingly, these systems were successfully solved when using the Woodbury
formula, despite the dire implication of Theorems 3.1 and 3.3 that τ̂κ2(A) ≲ 1 can lead to
a large forward error. The only other cases with a high iteration count were orthog and
τ̂ = 10−10, with and without Woodbury correction. While this matrix is orthogonal and
perfectly conditioned, the factorization is of very low quality, almost certainly due to a large
growth factor.

BEAM outperformed GEPP in all cases except fiedler and ris with many modifications
and the Woodbury formula. Furthermore, most cases show a large speedup, particularly when
the Woodbury formula was not applied. (Although, for cases that failed to converge, the
speedup is, of course, a moot point.) Unfortunately, BEAM had, at best, about two-thirds
the performance of GENP. The block factorization seems to be the predominant source of
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errors, with iterative refinement only adding a significant overhead when many iterations are
applied (cf. Section 3.4.4 and Tables 3.5 and 3.6).

Interestingly, in cases for which it converged, BEAM without Woodbury correction
outperformed the corrected version in all cases. Furthermore, when τ̂ = 10−10, BEAM
without Woodbury correction converged in all but the zielkeNS case. Combining this
observation with (3.10) and Table 3.3 suggests that the Woodbury formula is unnecessary for
small tolerances. Furthermore, comparing the τ̂ = 10−6 and τ̂ = 10−10 columns of Table 3.4
shows that in all but one case, smaller tolerances give similar or better performance than
larger tolerances. The one exception is orthog without the Woodbury formula, likely due to
the excessive growth.

Effect of Tolerance Choice

I next investigated the tradeoff in performance and accuracy for a larger variety of tolerance
values and blocking sizes on select matrices without iterative refinement. Tables 3.5 and 3.6
show the results. Matching Tables 3.3 and 3.4, the matrix sizes are all n = 105. Furthermore,
the number of modifications and error in Tables 3.5 and 3.6 for τ̂ = 10−6, 10−8, 10−10

correspond to the values in Table 3.3; however, the run times differ from Table 3.4 due to
the omission of iterative refinement. While GEPP and GENP do not have the algorithmic
blocking parameter nb of BEAM, they implement cache-blocking with a similar structure
and a block size of 64.

Both rand+nI and rand matrix types saw BEAM significantly outperform GEPP for all
configurations. However, as mentioned earlier, BEAM performed worse than GENP, even
when no corrections were applied. Moreover, smaller block sizes performed slightly better,
likely due to increased arithmetic for the SVDs and block-triangular solves. For rand+nI,
all configurations resulted in no modifications and the same accuracy. For rand, on the
other hand, increasing the tolerance above 10−10 increased the accuracy when the Woodbury
correction was applied but decreased the accuracy when it was not, with the number of
modifications increasing in both cases. Given the number of modifications introduced when
τ̂ ≤ 10−6, a tolerance of 10−8 or 10−10 is a better choice, particularly when not applying the
Woodbury correction. Finally, increasing the block size reduced the number of modifications
and increased the accuracy in all but one case.

The structured matrices provided more interesting results. As in the previous tables,
BEAM applied numerous modifications to the orthog matrix for all of the tested
configurations. Increasing the blocking factor helped the accuracy, although it also increased
the number of modifications. The best tradeoff between performance and accuracy seems
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Table 3.5: Tradeoffs between performance and accuracy on select random matrices for tolerance values of {10−4, 10−6, 10−8,
10−10, 10−12} and block sizes of {32, 64, 128} without iterative refinement.

nb = 32 nb = 64 nb = 128
Corr. # Mods. Time (s) Error # Mods. Time (s) Error # Mods. Time (s) Error

ra
nd

_
do

m
in

an
t

GEPP - - - - - 25.1±0.5 2×10−14 - - -
GENP - - - - - 6.7±0.4 1×10−14 - - -

τ̂ = 10−4 Y 0 9.8±0.2 1×10−14
0 9.8±0.1 1×10−14

0 10.9±0.3 1×10−14

N 9.6±0.1 1×10−14 9.6±0.3 1×10−14 10.8±0.4 1×10−14

τ̂ = 10−6 Y 0 9.5±0.4 1×10−14
0 9.7±0.1 1×10−14

0 10.9±0.2 1×10−14

N 9.5±0.2 1×10−14 9.7±0.4 1×10−14 10.8±0.1 1×10−14

τ̂ = 10−8 Y 0 9.5±0.2 1×10−14
0 9.8±0.1 1×10−14

0 10.9±0.2 1×10−14

N 9.5±0.3 1×10−14 9.7±0.1 1×10−14 10.9±0.2 1×10−14

τ̂ = 10−10 Y 0 9.6±0.3 1×10−14
0 9.7±0.4 1×10−14

0 11.0±0.3 1×10−14

N 9.4±0.2 1×10−14 9.6±0.2 1×10−14 10.8±0.1 1×10−14

τ̂ = 10−12 Y 0 9.4±0.4 1×10−14
0 9.7±0.2 1×10−14

0 10.8±0.2 1×10−14

N 9.5±0.2 1×10−14 9.8±0.2 1×10−14 10.8±0.2 1×10−14

ra
nd

GEPP - - - - - 50.0±0.6 2×10−14 - - -
GENP - - - - - 6.7±0.4 3×10−9 - - -

τ̂ = 10−4 Y 8 798 24.5±1.2 4×10−14
8 397 23.7±0.9 2×10−14

8 206 24.7±0.8 9×10−15

N 9.5±0.2 6×10−5 9.7±0.3 5×10−5 10.9±0.2 4×10−5

τ̂ = 10−6 Y 138 13.0±0.3 5×10−13
126 12.9±0.3 2×10−13

122 14.0±0.1 1×10−13

N 9.5±0.2 2×10−7 9.7±0.3 2×10−7 10.7±0.3 2×10−7

τ̂ = 10−8 Y 2 10.1±0.2 3×10−12
2 10.2±0.1 2×10−12

1 11.2±0.2 1×10−12

N 9.5±0.3 1×10−9 9.7±0.5 4×10−11 10.8±0.2 2×10−10

τ̂ = 10−10 Y 0 9.6±0.5 7×10−11
0 9.8±0.2 5×10−12

0 10.7±0.4 1×10−12

N 9.5±0.2 7×10−11 9.8±0.2 5×10−12 10.8±0.2 1×10−12

τ̂ = 10−12 Y 0 9.4±0.3 7×10−11
0 9.7±0.2 5×10−12

0 10.7±0.1 1×10−12

N 9.5±0.3 7×10−11 9.7±0.3 5×10−12 10.7±0.2 1×10−12
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Table 3.6: Tradeoffs between performance and accuracy on select structured matrices for tolerance values of {10−4, 10−6, 10−8,
10−10, 10−12} and block sizes of {32, 64, 128} without iterative refinement.

nb = 32 nb = 64 nb = 128
Corr. # Mods. Time (s) Error # Mods. Time (s) Error # Mods. Time (s) Error

or
th

og

GEPP - - - - - 50.2±1.2 3×10−15 - - -
GENP - - - - - 6.6±0.3 5×10−5 - - -

τ̂ = 10−4 Y 48 493 43.6±2.3 6×10−8
49 065 44.0±2.5 5×10−11

49 314 45.3±1.7 2×10−11

N 9.6±0.4 1×10−4 9.8±0.1 1×10−4 10.5±0.3 1×10−4

τ̂ = 10−6 Y 44 980 41.8±2.0 1×10−6
47 216 43.1±1.7 4×10−7

48 470 44.8±2.0 8×10−8

N 9.6±0.2 1×10−6 9.7±0.2 1×10−6 10.7±0.3 1×10−6

τ̂ = 10−8 Y 1 239 18.8±0.3 4×10−4
21 420 29.6±1.1 2×10−5

46 159 43.5±2.2 2×10−7

N 9.5±0.2 4×10−4 9.7±0.3 2×10−5 10.7±0.3 2×10−7

τ̂ = 10−10 Y 987 18.1±0.4 4×10−4
1 022 18.2±0.2 6×10−4

1 121 19.9±0.4 4×10−4

N 9.5±0.1 5×10−4 9.7±0.2 3×10−4 10.6±0.0 5×10−4

τ̂ = 10−12 Y 846 18.0±0.7 5×10−4
873 18.2±0.3 2×10−4

892 19.2±0.5 5×10−4

N 9.5±0.2 1×10−4 9.6±0.6 3×10−4 10.5±0.2 5×10−4

zi
el

ke
N

S

GEPP - - - - - 39.5±0.3 2×10−19 - - -
GENP - - - - - 6.7±0.3 NaN - - -

τ̂ = 10−4 Y 96 875 89.4±3.7 NaN 95 313 89.1±4.2 NaN 95 313 90.3±1.8 NaN
N 9.3±0.5 7×10−5 9.7±0.2 7×10−5 10.8±0.2 7×10−5

τ̂ = 10−6 Y 3 156 21.2±0.9 NaN 1 594 19.4±0.7 NaN 813 19.1±0.3 NaN
N 9.3±0.2 NaN 9.6±0.1 NaN 10.7±0.3 NaN

τ̂ = 10−8 Y 3 156 21.0±0.9 NaN 1 594 19.5±0.7 NaN 813 19.1±0.3 NaN
N 9.3±0.4 NaN 9.5±0.3 NaN 10.7±0.3 NaN

τ̂ = 10−10 Y 3 156 20.9±0.7 NaN 1 594 19.4±0.4 NaN 813 19.2±0.0 NaN
N 9.4±0.5 NaN 9.6±0.1 NaN 10.6±0.2 NaN

τ̂ = 10−12 Y 3 156 20.9±0.5 NaN 1 594 19.5±0.7 NaN 813 19.2±0.3 NaN
N 9.3±0.6 NaN 9.5±0.2 NaN 10.6±0.3 NaN

74



to be for tolerances of 10−6 or 10−8 (depending on the block size) without the Woodbury
correction. Unexpectedly, a smaller block size led to fewer modifications; I suspect this is due
to element growth in the later diagonals. For zielkeNS, only τ̂ = 10−4 without the Woodbury
formula produced a non-NaN solution and the block size had little effect on the performance
or the accuracy. For τ̂ = 10−4, all three block factor sizes resulted in the modification of
about 95% of the diagonal singular values, whereas for smaller tolerance values, the number
of modifications was just slightly larger than the number of blocks.

Scaling Results

Finally, Fig. 3.7 compares the performance of the different solvers as the size varies for the
rand+nI, rand, and orthog matrices. BEAM achieved speedups from 4× to almost 5× for
the three matrices compared to GEPP applied to rand. BEAM was configured with an
algorithmic blocking factor size of nb = 64 and a tolerance of τ̂ = 10−8. BEAM with iterative
refinement ran out of GPU memory for n = 250 000 due to the extra copy of the system matrix.
Note that a diagonally dominant matrix, such as the rand+nI, is the best-case scenario for
the performance of GEPP because the selected pivots already reside on the diagonal and
the memory traffic of exchanging rows is avoided (though I still perform the pivot search
for each column). For the large matrices, BEAM reached 80% of GENP’s performance for
rand+nI and rand, as the former required no modifications and the latter required just a few
modifications. Without the Woodbury correction, BEAM also performed similarly on orthog.
However, with the correction, the performance dropped to approximately that of the best-case
for GEPP. Adding iterative refinement slightly reduced the overall performance, but BEAM
still outperformed the best-case scenario of GEPP by 84% to 162% on the rand+nI and rand
matrices. Without the Woodbury formula, BEAM performed almost as well on orthog as
on rand with speedups of 70% to 144%. With the Woodbury formula, BEAM performed in
the range of GEPP, between 40% and 112% faster than the GEPP’s performance on rand
(which is close to its performance on orthog, as per Table 3.4). These speedups for orthog
are particularly promising because most approaches struggle to accurately outperform GEPP
on this matrix, especially for large sizes [41, 91,93,105].

3.4.5 Parameter Selection

The success of BEAM depends heavily on both the tolerance and whether to apply the
Woodbury formula. The block size also matters but, based on Tables 3.5 and 3.6, to a
lesser extent; I suggest starting with the size of cache-blocking for non-pivoted LU or slightly
larger. Below, I analyze in detail considerations for choosing the threshold and whether to
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Figure 3.7: Performance of BEAM for three matrices compared with GEPP and GENP.
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use the Woodbury formula. But as a starting point, I suggest τ̂ = min(1
2κ2(A), 10−8) and no

Woodbury formula. For most applications, however, various configurations should be tested
on the linear systems produced by representative domain problems.

For the Woodbury formula, recall that in Table 3.4 and Fig. 3.7, the corrected solver
never outperformed the corresponding uncorrected one. However, a few ill-conditioned cases
failed to converge without the Woodbury formula, while all cases converged when using
the Woodbury formula (except for zielkeNS, which overflowed for both). Furthermore, as
noted before, Table 3.4 indicates that using the Woodbury formula can enable convergence
when τ̂κ2(A) ≥ 1. Thus, the Woodbury formula appears to be preferable for ill-conditioned
matrices. And iterative refinement already measures the quality of the factorization. So, I
suggest initially skipping the Woodbury formula. Then if iterative refinement fails to converge
within, e.g., five iterations, use the Woodbury formula in subsequent iterations.

For selecting τ̂ , I first wish to draw attention to the importance of the inequality
τ̂κ2(A)≪ 1. For BEAM without a Woodbury correction, (3.10) implies that this inequality
is a prerequisite to proving that the solution has at least one digit of accuracy and that
iterative refinement can converge to full backward accuracy. For BEAM with a Woodbury
correction, this is necessary to show that Ã is well conditioned using Theorem 3.1. Finally,
the experimental results demonstrated that violating this inequality can lead to a failure of
BEAM without the Woodbury formula. Although, the experimental results also failed to
show a similar result when the Woodbury formula was applied. Thus, there may be a subtle
interaction between the perturbations and the resulting Woodbury correction that leads to
better stability than the existing analysis suggests.

Beyond ensuring τ̂κ2(A)≪ 1, there are a few relative concerns in the selection of τ̂ . First,
consider the omission of the Woodbury correction. Recall that in Table 3.4, the smallest
tolerance (i.e., 10−10) outperformed the largest tolerance (i.e., 10−6) in all but one case.
Furthermore, the added perturbations become overwhelmed by the roundoff perturbations
when 10−10 ≲ τ̂ ≲ 10−8 (depending on the matrix). Thus, a small tolerance, such as the
square root of unit roundoff, is preferable. Next, consider the inclusion of the Woodbury
correction. Here the number of modifications becomes relevant in addition to their magnitude.
Unfortunately, I know of no way to determine a priori the number of modifications that will
result from a given tolerance. However, Table 3.4 suggests that, like in the uncorrected case,
smaller tolerances usually result in better performance. Thus, I recommend starting with a
similar tolerance to the uncorrected case.
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3.4.6 Alternative block factorizations

The high cost of the SVD limits the block size that can be used without adding significant
overhead. Thus, it is of interest to consider cheaper factorizations. Besides the SVD, most
rank-revealing factorizations are based on the QR factorization, and I have focused on that
family of factorizations. The most common is QR with column pivoting (QRCP), which
factors the matrix one column at a time, pivoting the column with the largest magnitude to
the front at each step.

Unfortunately, there are certain types of matrices for which QRCP completely fails to
detect the small singular values [82]. The QLP factorization is designed to address these
deficient cases [118]. QLP first applies a QRCP to the matrix, then applies an LQ factorization
to the resulting R factor. (The second factorization can include row pivoting to improve
stability, although just for specific counterexamples.) Because it takes the form of the first
few steps of the QR algorithm for computing the SVD [79], QLP provides significantly more
accurate approximations of the singular values than QRCP.

On the other side of the coin, QRCP (and thus QLP) requires computing the norm of
each column at each step of the factorization. This significantly decreases the arithmetic
intensity of the factorization. Recently, the pivoting avoiding QR factorization (PAQR) has
been proposed to avoid this overhead [115]. PAQR only computes the norm of a column
immediately before that column is factored; then, if the column is too small it is pivoted to
the end of the matrix.4

To understand the ability of these alternatives for the block factorization, I implemented
BEAM using Julia [25]. Because QLP and PAQR address different aspects of the factorization,
I tested a few combinations of those methods. Table 3.7 lists the tested block factorizations.
Most of the tested matrices are discussed elsewhere. The main exception is kahan+randn,
which deliberately exposes the weakness of QRCP by replacing the 64× 64 leading principal
submatrix of randn with Kahan’s matrix [82]. Table 3.8 shows the accuracy for problems of
size n = 2000 with a block size of nb = 64, tolerance of τ = 10−6∥A∥F , and the Woodbury
formula. The tolerance for PAQR was set to that of BEAM.

The first five test matrices were all accurately factored with BEAM, regardless of the inner
factorization. But, as Table 3.3 indicates, these problems can all be solved with moderate
accuracy without any perturbation. Thus, there are no problematically small singular values
to detect. The kahan+randn matrix is the first interesting result; because of the leading
Kahan matrix, the one-sided QR-style factorizations could not detect the small singular value.

4The original PAQR algorithm completely discards the deficient columns. However, this would introduce
an additional, unnecessary perturbation in the context of BEAM.
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Table 3.7: Factorizations tested within BEAM.

Factorization Description
SVD The canonical measure of the singular values.

QRCP The traditional rank-revealing QR.
QR The traditional QR factorization without rank-revealing properties.

PAQR The new PAQR algorithm.
QLP QRCP followed by the transposed algorithm on the R factor.
QLQ QLP without the column or row pivoting.

PAQLP QLP with PAQR and its transpose replacing QRCP.
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Table 3.8: Spectral norm backward error of BEAM for different block factorizations.

Matrix GEPP GENP SVD QLP PAQLP QLQ QRCP PAQR QR
randn 1×10−14 5×10−12 9×10−14 9×10−14 9×10−14 1×10−13 8×10−14 9×10−14 9×10−14

randb 6×10−16 NaN 4×10−15 5×10−15 5×10−15 7×10−15 5×10−15 5×10−15 5×10−15

randn+nI 7×10−16 8×10−16 1×10−15 6×10−16 5×10−16 5×10−16 5×10−16 5×10−16 4×10−16

chebspec 3×10−18 2×10−8 6×10−18 5×10−18 1×10−17 6×10−18 4×10−18 3×10−18 5×10−18

fiedler 1×10−17 NaN 5×10−16 2×10−16 5×10−16 4×10−16 2×10−16 4×10−16 4×10−16

kahan+randn 1×10−14 5×10−1 7×10−13 7×10−13 7×10−13 7×10−13 7×10−6 3×10−5 2×10−5

orthog 8×10−15 1×100 5×10−9 7×10−9 2×10−7 7×10−7 2×10−8 2×10−3 1×100

ris 9×10−16 1×100 2×10−10 1×10−10 2×10−10 7×10−11 3×10−10 7×10−1 1×100

zielkeNS 5×10−19 NaN 8×10−4 8×10−4 8×10−4 8×10−4 NaN NaN NaN
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On the other hand, the two-sided QLP-style factorizations correctly detected the deficiency
due to the second orthogonal transform. The zielkeNS matrix was similar. The orthog
matrix benefited more from column pivoting. For that problem, QRCP outperformed the
other block factorizations except for SVD and QLP. Although, for the other factorizations,
there was still a noticeable benefit of using the QLP-style factorizations instead of the QR-
style ones. The ris matrix was similar to orthog, except QRCP was slightly worse than the
QLP-style factorizations.

3.5 Comparing RBT and BEAM

Because RBT and BEAM were both able to significantly outperform GEPP, the natural
question is how they compare with each other. First, they try to limit growth in different
ways. RBT works at a global level to even out the nonsingularity. BEAM, on the other
hand, focuses on just the diagonal blocks and perturbing them to be manageable. Thus, the
two approaches likely have different weaknesses, although Tables 3.1 and 3.3 show that both
methods struggle on orthog and ris. Combining the two approaches would likely provide
a more robust solver than either of them alone. Second, the have significantly different
performance profiles. Most of BEAM’s overhead occurs in correcting any modifications, while
RBT’s main overhead is transforming the system matrix. Thus, BEAM’s performance will
vary depending on the numerical properties, while RBT’s performance is determined more by
the matrix’s distribution. This means that the performance of the RBT solver will be easier
to predict a priori.

3.5.1 Experimental performance

To better understand how the two approaches compare, I tested them both on Summit. Both
used iterative refinement and terminated the iterations with the ∞-norm backward error
was less than unit round off. While threshold pivoting was not explicitly compared, the best
case performance of GEPP provides an upper bound on its performance. BEAM used the
Woodbury correction and a block size of 64. To show the case where BEAM requires a large
correction, that solver was also tested with orthog. RBT was not tested with orthog since
Table 3.1 shows that iterative refinement does not improve the solution.

The test configuration matched that of the RBT performance experiments from
Section 3.3.2. The software stack included GCC 9.1.0, CUDA 11.0.3, Spectrum MPI
10.4.0.3, ESSL 6.3.0, and Netlib LAPACK 3.9.1. Summit was run in smt1 mode to disabling
simultaneous multithreading. Results were measured using a modified version of SLATE’s
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tester. The solvers’ parameters were tuned for performance. Tests were run with the
flags --ref n --origin h --target d --seed 42 --seedB 64 --ib 64 --lookahead 1
--grid 4x4. GENP also set --nb 512; the RBT solver was run with same the flags as
GENP as well as the --fallback n --depth 2 flags. GEPP also used the flags --nb 896
--panel-threads 16. BEAM also used the flag --addtol -1e-8 to match Section 3.4.4.
The flags --dim, --matrix, and --matrixB were also used to control the test matrices. A
problem of size 10 000 was solved before running the actual performance tests to avoid
measuring the first-time initialization costs of BLAS and MPI.

Figure 3.8 shows the result of this experiment. Overall, BEAM with only a few
modifications is comparable to RBT aligned to the tiles. The unaligned RBT performs
worse, but BEAM with a high-rank Woodbury correction performs the slowest—close to the
best case of GEPP. However, it’s worth recalling that the worst case of BEAM is on a matrix
that the RBT solver cannot solve.

Because the good cases of BEAM and RBT are similar, I look at them in more detail. For
small problem sizes, the performance of the two are very close which suggests the performance
is dominated by iterative refinement and other startup costs. RBT is the most competitive
for medium sizes, while BEAM matches RBT’s no-communication case for large sizes. This
indicates that BEAM’s overheads scale better with problem size than RBT’s overheads.
BEAM’s overheads (when the number of modifications is small) come from the extra work to
process the diagonal tiles and should be O(n). RBT’s overheads come from managing the
large tile-wise communication and should be O(n2).
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Chapter 4

Mixed Precision GMRES1

The generalized minimal residual method (GMRES) is a go-to Krylov method for solving
sparse, non-symmetric systems of linear equations. Like most sparse, iterative solvers, GMRES
is memory bound. Thus, developing techniques to reduce data movement will directly improve
its performance. Solving the problem in single precision instead of double precision reduces
the data movement by up to a factor of two, depending on the kernel. However, this limits
the achievable accuracy, particularly for ill-conditioned problems. Thus, I have investigated
selectively reducing parts of the method to single precision to improve performance while
retaining double-precision accuracy. Algorithm 4.1 shows the formulation of GMRES used in
this work.

While GMRES can be implemented with various orthogonalization schemes, I have focused
on two: modified Gram-Schmidt (MGS) and classical Gram-Schmidt with reorthogonalization
(CGS2). Often, MGS is recommended due to its stability and low operation count. However,
CGS2 can be more efficient on distributed and GPU-accelerated systems, despite doubling the
operation count, by consolidating the dot-productions into two synchronizations [51]. (See
the results in Section 4.3.2.) Additionally, CGS2 provides better numerical stability [55, 102],
which may compensate for the reduced precision.

4.1 Numerics of Mixed-Precision GMRES

To develop mixed-precision algorithms, we must understand how various parts of the solver
affect the final accuracy. First, note that restarted GMRES is equivalent to iterative refinement
where the error correction is computed by non-restarted GMRES. This equivalence can be

1This chapter reuses material from two of my published papers [92] (© 2020 Springer) and [94] (© 2021
IEEE). Coauthors include Piotr Luszczek and Jack Dongarra. Reused coauthor contributions are limited to
high-level guidance and textual improvements.
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1: A ∈ Rn×n; x0, b ∈ Rn; M−1 ≈ A−1

2: for k = 1, 2, . . . do
3: zk ← b− Axk ▷ FP64
4: If ∥zk∥2 is small enough, stop ▷ FP64
5: rk ←M−1zk ▷ FP32
6: β ← ∥rk∥2; s0 ← β; v1 ← rk/β; V1 ← [v1] ▷ FP32
7: j ← 0
8: loop until the restart condition is met
9: j ← j + 1

10: w ←M−1Avj ▷ FP32
11: w, h1,j, . . . , hj,j ← orth(w, Vj) ▷ MGS or CGS2
12: hj+1,j ← ∥w∥2; vj+1 ← w/hj+1,j; Vj+1 ← [Vj, vj+1] ▷ FP32
13: for i = 1, . . . , j − 1 do

14:

[
hi,j

hi+1,j

]
←
[

αi βi

−βi αi

]
×
[
hi,j

hi+1,j

]
▷ FP32

15:

[
αj βj

−βj αj

]
← rotation_matrix

([
hj,j

hj+1,j

])
▷ FP32

16:

[
hj,j sj

hj+1,j sj+1

]
←
[

αj βj

−βj αj

]
×
[
hj,j sj

hj+1,j 0

]
▷ FP32

17: H ← {hi,ℓ}1≤i,ℓ≤j; s← [s1, . . . sj]T
18: uk ← VjH

−1s ▷ FP32
19: xk+1 ← xk + uk ▷ FP64

20: procedure MGS(w, Vj)
21: [v1, . . . , vj]← Vj

22: for i = 1, 2, . . . , j do
23: hi,j ← vi

T w ▷ FP32
24: w ← w − vihi,j ▷ FP32
25: return w, h1,j, . . . , hj,j

26: procedure CGS2(w, Vj)
27: h← V T

j w ▷ FP32
28: w ← w − Vjh ▷ FP32
29: g ← V T

j w ▷ FP32
30: w ← w − Vjg ▷ FP32
31: [h0,j, . . . , hj,j]T ← h + g ▷ FP32
32: return w, h1,j, . . . , hj,j

Algorithm 4.1: Restarted GMRES in mixed precision with left preconditioning [112] ©
2021 IEEE
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seen by noting that lines 6–18 of Algorithm 4.1 are equivalent to a non-restarted GMRES
with a right-hand side of r and an initial guess of 0; the remaining lines are equivalent to
iterative refinement. This structure suggests that A, b, xk, and rk should all be computed
and stored in high precision [32]. Furthermore, it implies that the outer iteration can correct
moderate floating-point errors in the solution update, uk [33, 81]. This analysis suggests
using reduced precision for lines 6–18 (including the orthogonalization procedure) and high
precision for the rest of the algorithm.

Existing theoretical analyses further justify this combination of precisions. First, single-
precision GMRES is backward stable to single precision under moderate assumptions [42,101].
Furthermore, mixed-precision iterative refinement is backward stable to high precision as
long as the inner-solver is backward stable to low precision and the matrix is reasonably
conditioned [33]. Thus, Algorithm 4.1 should be backward-stable to full precision for most
problems. However, this analysis ignores the possibility of restarting before achieving single-
precision accuracy, a significant issue in practice due to the growing Krylov basis.

To understand the case in which GMRES is restarted before the inner-precision accuracy is
reached, it is useful to investigate the effect of round-off error on the convergence. Recent work
shows that MGS-GMRES initially converges at approximately the same rate regardless of
whether the inner products of MGS are computed in finite or exact arithmetic [61]. However,
that work assumes the rest of the process is computed exactly. Toward this end, I provide
the following theorem, which says that finite-precision CGS2-GMRES converges at almost
the same rate as its exact counterpart until a particular accuracy is reached. This implies
that for restarted GMRES, if full-precision GMRES can converge, then reduced-precision
GMRES should either converge similarly or reach the backward error threshold. In the latter
case, iterative refinement will produce a backward stable solution [33]. In the former case,
similar behavior is expected, but differences in vector directions could result in differences
after restarting.

Theorem 4.1. Let x
(f)
j and x

(e)
j be the solutions computed by j iterations of non-restarted

GMRES in finite and exact precision, respectively, with u being the unit roundoff of finite
precision. Let b be the right-hand side and p be the maximum number of nonzeros per row
of A. Also let c1(n, j) ∈ O(nj) and c4(n, j) ∈ O(n2j3) be the same low-order polynomials as
Giraud et al.’s error analysis of CGS2 [57]. Suppose u < 10−3 and c4(n, j)uκ2(AV

(f)
j ) < 1
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with V
(f)

j being the computed Krylov basis. Let δ+ = (1 +
√

u)1/2 and δ− = (1−
√

u)1/2. Then,

∥b− Ax
(f)
j ∥2 ≤ δ2

+δ−2
− ∥b− Ax

(e)
j ∥2

+
(
δ+γpj1/2 + c1(n, j)u

)
δ+δ−1

− ∥A∥F∥x(W )
j ∥2

+
(

9δ+j + c1(n, j)
δ− − γjj1/2δ+

)
u∥A∥2∥x(f)

j ∥2

+
j1/2δ+∥A∥F∥x(f)

j ∥2

δ− − γjj1/2δ+

(
γp + γj + (γj + 9ujγj + 9uj1/2)δ+δ−1

− (2 + γp)
)
.

where x
(W )
j is the solution computed by j iterations of a particular weighted-GMRES,

respectively.

Proof. Let · (f) denote values computed by finite-precision GMRES and ·(e) denote values
computed by exact GMRES. By line 3 in Algorithm 4.1, we can assume x0 = 0 without loss
of generality.

We start with Arnoldi’s procedure. In finite precision, it produces V
(f)

j+1 and H
(f)
j such

that
AV

(f)
j + Ej = V

(f)
j+1 H

(f)
j , and V

(f)
j+1

T
V

(f)
j+1 = I − F (4.1)

where

Ej = [E1v1, E2v2, . . . , Ejvj] + ∆H

|Ei| ≤ γp|A| for i = 1, . . . , j [71],

∥∆H∥2 ≤ c1(n, j)u∥A∥2 [57, (25)],

c1(n, j) ∈ O(nj3/2).

So, ∥Ej∥2 ≤ γp∥|A|∥2∥|V (f)
j |∥2 + c1(n, j)u∥A∥2. By the assumption on the conditioning of

AV
(f)

j , we have ∥F∥2 ≤
√

u [57, Thm. 2, (32), and (38)]. Thus, there exists a symmetric
positive definite matrix W such that V

(f)
j+1

T
WV

(f)
j+1 = I and κ(W ) ≤ (1 +

√
u)/(1−

√
u) [60,

Lemma 2]. Hence,

δ− ≤ σ1(V (f)
j+1) ≤ σ1(V (f)

j ) ≤ σj(V (f)
j ) ≤ σj+1(V (f)

j+1) ≤ δ+

and
∥H(f)

j ∥2 ≤
(

δ+
δ−

(1 + γp) + c1(n, j)u
)
∥A∥F .
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The final computed solution is x
(f)
j = V

(f)
j+1y

(f)
j + δx with |δx| ≤ γj|V (f)

j ||y
(f)
j | [71]. Then,

∥y(f)
j ∥2 ≤

(
δ− − γjj

1/2δ+
)−1
∥x(f)

j ∥2

and
∥b− Ax

(f)
j ∥2 ≤ ∥b− AV

(f)
j y

(f)
j ∥2 + ∥Aδx∥2.

Combining this with the Arnoldi process error from (4.1) gives

∥b− AV
(f)

j y
(f)
j ∥2 = ∥V (f)

j+1(βe1 −H
(f)
j y

(f)
j )∥2 + ∥Ejy

(f)
j ∥2.

Thus, by the W -orthogonality of V
(f)

j+1,

∥V (f)
j+1(βe1 −H

(f)
j y

(f)
j )∥2 ≤ ∥W −1/2∥2∥W 1/2V

(f)
j+1(βe1 −H

(f)
j y

(f)
j )∥2

≤ δ+∥βe1 −H
(f)
j y

(f)
j ∥2.

Next, consider the least squares problem solved by lines 13–18 in Algorithm 4.1. Let G
(f)
i

and Gi be the computed and exact Givens rotation matrices to eliminate the subdiagonal
elements of H

(f)
j , and let R(f) and R be the resulting computed and exact triangular

matrices. Furthermore, let Q be the product of the G
(f)
i matrices, and let q(f) and q be

the computed and exact values of QT βe1. Note that Gi, R and q may differ from the
corresponding values computed by exact GMRES. Thus, ∥R(f) − R∥2 ≤ 9uj∥H(f)

j ∥2 and
∥q(f) − q∥2 ≤ 9ujβ [71, Lemmas 19.8, 3.6, and 3.4]. So,

∥βe1 −H
(f)
j y

(f)
j ∥2 ≤ ∥q(f) −R(f)y

(f)
j ∥2 + 9ujβ + ∥(R(f) −R)y(f)

j ∥2

Then, y
(f)
j satisfies

(R(f) + ∆R)y(f)
j = q(f)[1:j]

where |∆R| ≤ γj|R(f)|. So,

∥q(f) −R(f)y
(f)
j ∥2 =

∥∥∥∥∥∥
 ∆Ry

(f)
j

q(f)[j + 1]

∥∥∥∥∥∥
2

≤ ∥∆Ry
(f)
j ∥2 + |q(f)[j + 1]|

=
(

min
y
∥βe1 −H

(f)
j y∥2

)
+ 9ujβ + γj∥|R(f)|∥2∥y(f)

j ∥2

Additionally, ∥|R(f)|∥2 ≤ (j1/2 + 9j3/2u)∥H(f)
j ∥2.
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Next, we bound this minimization. Note that for any y ∈ Rj

∥βe1 −H
(f)
j y∥2 = ∥W 1/2V

(f)
j+1(βe1 −H

(f)
j y)∥2

≤ δ−1
− ∥b− V

(f)
j+1 H

(f)
j y∥2 ([60, (35)])

≤ δ−1
−

(
∥b− AV

(f)
j y∥2 + ∥Ej∥2∥y∥2

)
.

Additionally,
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y
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∥∥∥

2
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(∥b− AV

(f)
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2

≤ δ+∥x(W )
j ∥2

where x
(W )
j is the solution computed exactly by j iterations of W -weighted GMRES. So,

min
y

(∥b− AV
(f)

j y∥2 + ∥Ej∥2∥y∥2) ≤ min
y

(∥b− AV
(f)

j y∥2) + δ+∥Ej∥2∥x(W )
j ∥2.

Because exact W -GMRES computes miny(∥b− AV
(f)

j y∥2),

min
y
∥b− AV

(f)
j y∥2 ≤ δ+

δ−
∥b− Ax

(e)
j ∥2.

Finally, combining the preceding inequalities gives

∥b− Ax
(f)
j ∥2 ≤ δ2

+δ−2
− ∥b− Ax

(e)
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+
(
δ2

+δ−1
− γpj1/2 + δ+δ−1

− c1(n, j)u
)
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+
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Note that x
(f)
j and x

(e)
J are equivalent to uk from Algorithm 4.1 when GMRES is restarted

after j iterations. When u = 2−24, ∥x(e)
j ∥2 ≈ ∥x(f)

j ∥2 ≈ ∥x(W )
j ∥2, j3/2u ≪ 1, and p3/2u ≪ 1,

this can be simplified to

∥b− Ax
(f)
j ∥2

∥A∥F∥x(f)
j ∥2 + ∥b∥2

≲ 1.1
∥b− Ax

(e)
j ∥2

∥A∥F∥x(e)
j ∥2 + ∥b∥2

+ (4j3/2 + 30j + 3pj1/2 + 3c1(n, j))u.

The low-order polynomials c1 and c4 can quickly become onerous for realistically sized
matrices. Fortunately, this bound is worse than will occur in practice. First, they assume
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round-off error will always accumulate without cancellation. However, recent probabilistic
analysis of dot-products has shown that the relative error is almost always bounded by u

√
n,

compared the worst-case bound of un [74]. Second, the error bounds assume that the dot
product is summed sequentially. However, parallel reductions use tree structures, which incur
lower round-off errors [71].

4.1.1 Numerical Experiments

To support the analytic conclusions, I ran a series of numerical experiments. The precisions
of the various storage and arithmetic types within GMRES were templated to allow exploring
the effect various terms have on the rate of convergence. The Kokkos performance portability
library with the OpenMP backend was used for parallelism [45]. To maximize flexibility,
custom mixed-precision kernels were used for the fundamental linear algebra building blocks.
All of the tested matrices came from the SuiteSparse collection [38] and were stored in
compressed sparse row (CSR) format. The right-hand sides were generated from random
solution vectors with entries uniformly distributed between 0 and 1. An incomplete LU (ILU)
was used as the preconditioner.

To verify the analysis of Section 4.1, I first tested the effect of each variable by storing it
in single precision while the rest of the solver remained in double precision. Figure 4.1 shows
the normwise backward error after each inner iteration as if the solver had terminated for the
airfoil_2d matrix. This matrix has 14 214 rows, 259 688 nonzeros, and a condition of 1.8×106.
In the figure, the “Refinement Variables” include the matrix when used for the residual,
the right-hand side, the solution, and the vector used to compute the unpreconditioned
residual; the “Correction Variables” include the matrix when used to compute the next
Krylov vector, the unpreconditioned residual, the Krylov vector being orthogonalized, the
orthogonal basis, the upper triangular matrix from the orthogonalization process, and the
vectors to solve the least-squares problems with Givens rotations. The convergence when
storing the preconditioner in single precision was visually indistinguishable from the double-
precision baseline and omitted from the figure for the sake of clarity. Each solver was
restarted after 300 iterations. All of the solvers behaved the same until reaching single
precision, where all but the baseline stopped improving. After restarting, reduced-precision
“correction variables” still allowed the accuracy to continue improving to double-precision
accuracy (after a second restart). On the other hand, reduced-precision “refinement variables”
limited the solver to single-precision accuracy.

The convergence test was repeated with two mixed-precision solvers that reduced the
precision of multiple variables. The first used double precision only for computing the residual
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Figure 4.1: Rate of convergence when reducing the precision of individual variables for
the airfoil_2d matrix when restarting every 300 iterations. Left uses MGS and right uses
CGS2. © 2020 Springer
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and error correction, i.e., it used single precision for lines 6–18 of Algorithm 4.1. The second
was more limited, using single precision only to store A for computing the next Krylov vector,
the preconditioner M−1, and the Krylov basis Vj from Algorithm 4.1; these three variables
contain most of the “correction variable” data. Figure 4.2 shows the normwise backward error
after each inner iteration for using single, double, and mixed precisions with the airfoil_2d
matrix. Both variants were able to achieve double-precision performance after two restarts.
(Section 4.3 further shows the success of the first variant on almost every tested matrix.)
Note that while limiting the use of mixed precision increases the improvement achieved before
stalling, this improvement is small and does not reduce the importance of appropriately
restarting. Additionally, reducing the precision of just the largest variables (i.e., the “limited”
configuration) requires several mixed-precision kernels, while the aggressive mixed-precision
implementation can be implemented using uniform-precision kernels and just two extra vector
copies per restart.

One interesting observation was that the number of iterations before improvement stalled
was approximately the same after each restart. However, the improvement in the relative
residual was larger in the first outer iteration than the subsequent ones (see, for example, the
MGS plot in Fig. 4.3). Table 4.1 displays the number of iterations before stalling after the
first three restarts in the mixed-precision MGS-GMRES. Stalling was defined here to be the
Arnoldi residual norm improving by less than a factor of 1.001 on the subsequent 5% of inner
iterations per restart. This behavior appears to also hold for CGS2 but was not quantified
because the Arnoldi residual continues to decrease even after the true residual reaches single-
precision accuracy when using CGS2. I am unaware of any previous observations of this effect.
I suspect that the errors accumulate similarly in each set of iterations, resulting in a similar
number of iterations before convergence stalls. However, because the residual after restarting
is (up to floating-point error) orthogonal to the previous Krylov subspace, it is likely that
the first outer iteration is dominated by large eigenvectors while latter outer-iterations are
dominated by smaller eigenvectors. However, because the convergence pattern of GMRES
can be quite arbitrary [63], I doubt this trend holds for all linear systems.

4.2 Restart Strategies

Due to its connection with iterative refinement, the mixed-precision approach of Algorithm 4.1
depends on restarting often enough. For many problems, memory constraints or the increasing
computations for orthogonalization will force a restart before the inner iterations have
saturated low precision. However, for some systems, GMRES can produce a highly accurate
solution in just a few iterations; in these cases, only restarting after a fixed number of
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Figure 4.2: Rate of convergence when reducing the precision of several variables for the
airfoil_2d matrix when restarting every 300 iterations. Left uses MGS and right uses CGS2.
© 2020 Springer

Table 4.1: Number of iterations until the improvement stalls in mixed-precision MGS-
GMRES © 2020 Springer

Iterations Iterations Iterations Iterations
Matrix per Restart for 1st Stall for 2nd Stall for 3rd Stall

airfoil_2d 300 137 141 142
big 500 360 352 360

cage11 20 7 7 8
Goodwin_040 1250 929 951 924

language 75 23 21 21
torso2 50 28 27 25
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inner iterations will cause the improvement to stall as the round-off error overwhelms any
meaningful updates. On the other hand, the rate of convergence for GMRES relates to the
approximation of the eigenvalues of A in the Arnoldi process [130]. Thus, restarting too
often will increase the number of iterations to converge. Toward this end, I have investigated
four restart strategies for mixed-precision GMRES. Loe et al. [97] have pointed out that
this analysis focuses on maximizing the subspace dimension before restarting but that the
increasing cost of orthogonalization causes GMRES to often benefit from restarting before
memory limits are reached. Thus, these strategies should be used in addition to a similar
iteration limit to double-precision GMRES.

Two important observations about the orthogonalization scheme affect the discussion of
specific restart strategies. First, the Krylov basis vectors usually become linearly dependent
when GMRES reaches the working-precision accuracy for, e.g., MGS [102], while they remain
numerically orthogonal for, e.g., CGS2 [55]. Second, the norm of the Arnoldi residual (i.e.,
the residual for GMRES’s least-squares problem) approximates the norm of the residual of
the original preconditioned linear system of equations and is computed every iteration (sj+1

in Algorithm 4.1) [112, Proposition 6.9]. However, this approximation is only accurate until
the working precision is reached [62]. The explanation is unknown, but the Arnoldi residual
usually decreases past the true residual if and only if linearly independent vectors continue
to be added to the Krylov basis [62]. Hence, the choice of orthogonalization scheme affects
restart strategies based on the Arnoldi residual norm.

Our first restart strategy derives from the observation in Section 4.1.1 that convergence
appears to stall after a similar number of inner iterations in each outer iteration. While this
is not helpful for determining the first restart, it can be used for subsequent restarts either
to trigger the restart directly or as a heuristic for when to start monitoring more expensive
metrics. In my experiments, I use the following strategy to select the first restart when using
this approach.

The second restart strategy is to monitor the Arnoldi residual norm until it improves
by a particular amount. The simplest threshold is a fixed, scalar multiple, such as 10−6. If
this norm stops decreasing when floating-point accuracy is reached, such as with MGS, this
criterion might not be met before improvement stalls. Thus, the threshold must be chosen
carefully when using MGS. More advanced threshold selections may be effective but have not
been explored.

Inspired by the problematic case of the second strategy, the third strategy is to detect
when the Arnoldi residual norm stops improving. Obviously, this approach is only usable if
the norm stops decreasing when GMRES has stalled (i.e., for MGS but not CGS2). However,
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GMRES can have periods of no residual improvement during normal operation [63], which
may cause premature restarts.

The final strategy is to detect when the orthogonalized basis becomes linearly dependent.
It relates to the third strategy but uses an approach developed by Paige [100]. He and
others have conjectured that MGS-GMRES converges to machine precision when the Krylov
basis loses linear independence [101,102]. For the basis matrix computed in the kth inner
iteration, Vk, let Sk = (I + Uk)−1Uk, where Uk is the strictly upper part of V H

k Vk. Then,
the basis is linearly dependent if and only if ∥Sk∥2 = 1 [100]. This matrix can be computed
incrementally, appending one column per inner iteration, requiring 2nk + 2k2 FLOP per
iteration. Estimating the 2-norm with i iterations of the power method requires an additional
i(2k2 + 3k) FLOP by utilizing the strictly upper structure of the matrix.

4.2.1 Restart Experiments

To investigate the effectiveness of various restart strategies, I reused the experimental setup
from Section 4.1.1.

First, consider the restart strategy based on a fixed improvement of the Arnoldi residual
norm. Figure 4.3 shows the convergence of GMRES on the airfoil_2d matrix for various
restart thresholds. For MGS, when the threshold is too ambitious, mixed-precision GMRES
stalls before reaching it. Thus, this tolerance must be chosen conservatively, making it difficult
to select a matrix-independent threshold. Compare Fig. 4.4, which shows the same test
applied to the big matrix with 13 209 rows, 91 465 nonzeros, and an L2 norm of 4.4× 107.
The smallest successful threshold is two orders of magnitude less than that of airfoil_2d.
Furthermore, the failed mixed-precision cases reiterate the observation from the end of
Section 4.1.1 that the relative improvement decreases in the later outer iteration. Unlike
MGS, CGS2 provided reliable convergence for all tolerances, with an aggressive tolerance
usually providing faster overall convergence.

Next, consider the 2-staged approach, where the iteration count of the first restart is used
to trigger the subsequent restarts. As mentioned before, the first restart was triggered by
the relative improvement in the Arnoldi residual norm. Figure 4.5 show the convergence
of this approach for the airfoil_2d matrix. Because only the choice of the first restart is
important, more ambitious thresholds were tested than in Figs. 4.3 and 4.4. This two-staged
approach performed a bit better than the simple threshold except when the first restart was
not triggered. Figure 4.6 repeats this for the big matrix. Note how the same thresholds
were used for the big test as the airfoil_2d test but were still able to converge and even
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Figure 4.3: Rate of convergence for the airfoil_2d matrix when restarting mixed-precision
GMRES after a fixed improvement in the Arnoldi residual norm. Left uses MGS and right
uses CGS2. Vertical ticks indicate when restarts occurred. © 2020 Springer

Figure 4.4: Rate of convergence for the big matrix when restarting mixed-precision GMRES
after a fixed improvement in the Arnoldi residual norm. Left uses MGS and right uses CGS2.
Vertical ticks to indicate when restarts occurred. © 2020 Springer
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Figure 4.5: Rate of convergence for the airfoil_2d matrix when restarting mixed-precision
GMRES after a fixed improvement in the Arnoldi residual norm for the first iteration and
the same number of iterations thereafter. Left uses MGS and right uses CGS2. Vertical ticks
to indicate when restarts occurred. The rate of convergence using just a fixed improvement
threshold of 10−5 is added for comparison’s sake. © 2020 Springer
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Figure 4.6: Rate of convergence for the big matrix when restarting mixed-precision GMRES
after a fixed improvement in the Arnoldi residual norm for the first iteration and the same
number of iterations thereafter. Left uses MGS and right uses CGS2. Vertical ticks to indicate
when restarts occurred. The rate of convergence when restarting on a fixed improvement of
10−5 in the Arnoldi residual norm is added for comparison’s sake. © 2020 Springer

98



outperform the previous tests with matrix-specific thresholds. This demonstrates reduced
sensitivity to the threshold.

Finally, consider restarting based on the loss of orthogonality in the basis. Because
CGS2 retains a high degree of orthogonality [55], this strategy was evaluated with only
MGS-GMRES. Figure 4.7 shows the rate of convergence when restarting based on the norm
of the S matrix. The spectral norm was computed using ten iterations of the power method.
Additionally, the Frobenius norm was tested as a cheaper alternative to the spectral norm,
although it does not provide the same theoretical guarantees. Interestingly, when using the
spectral norm, a value of 0.5 was not detected until improvement had stalled for a noticeable
period. Furthermore, even the larger Frobenius norm did not reach 1 until the improvement
had visually stalled for a few dozen iterations. The cause of this deviation from Paige’s
theoretical results [100] is unknown but deserves further investigation.

4.3 Performance Experiments

Finally, I looked at the effect of reduced precision on performance. Additionally, by testing
a larger variety of matrices, these tests further support the previous convergence results.
The experiments are divided into CPU tests and GPU tests. Both sets of tests used various
matrices from the SuiteSparse collection [38] in CSR format. Convergence was determined
by the Frobenius-norm backward error:

∥b− Ax∥2

∥A∥F∥x∥2 + ∥b∥2
≤ 10−10.

To measure variability, each test was run five times for CPU experiments or three times
for GPU experiments. Speedups were computed with the median runtimes of each solver;
error bars show the minimum and maximum speedup. The runtimes include any time spent
constructing the preconditioner or copying the matrix to low precision.

These experiments were run on machines with two Haswell 10-core Intel® Xeon® CPU
E5-2650 v3 @ 2.30GHz processors. The GPU-accelerated experiments used a node with a
single NVIDIA V100 GPU. Each CPU core had a 32 KiB L1 instruction cache, a 32 KiB
L1 data cache, and a 256 KiB L2 cache. Each socket had a shared 25 MiB L3 cache, and
the entire node had 32 GiB of memory. The V100 card has 80 streaming multiprocessors, a
128 KiB L1 cache for each multiprocessor, a 6 MiB shared L2 cache, and a 16 GiB memory.
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Figure 4.7: Rate of convergence for the airfoil_2d matrix when restarting based on
Paige’s S matrix. Left uses the spectral norm and right uses the Frobenius norm; both use
MGS. Vertical ticks to indicate when restarts occurred. © 2020 Springer
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4.3.1 CPU experiments

The first set of performance experiments considered CPU performance. Additionally, I tested
the effectiveness of mixed precision both when the iteration limit forces a restart before
single-precision accuracy is achieved and when GMRES converges without restarting. These
experiments used an ILU preconditioner.

These experiments used Kokkos version 2.9.00 [45], KokkosKernels version 2.9.00,
Intel C++ Compiler version 2018.1, Intel MKL version 2019.3.199, and Intel Paral-
lel Studio Cluster Edition version 2019.3. Kokkos used the OpenMP backend with
OMP_NUM_THREADS=20 OMP_PROC_BIND=spread OMP_PROC_BIND=places. The right-hand
sides were generated from solution vectors with elements uniformly distributed on [0, 1).

I first tested the performance improvement when the iteration limit forces GMRES to
restart before reaching single-precision accuracy. For each of the tested systems, I computed
the number of iterations for the double-precision solver to satisfy the convergence criterion
without restarting. Then, the performance tests restarted after half that many iterations.
For MGS, mixed precision took the same number of iterations as double precision on all
but three systems; two took fewer iterations for mixed precision (ecl32 and mc2depi) while
the last took more (dc1). For CGS2, one additional system took more iterations for mixed
precision (big). Figure 4.8 shows the speedup of the mixed-precision implementation and
the single-precision ILU implementation relative to the double-precision implementation for
each of the tested matrices. For the mixed-precision implementation, the geometric mean of
the speedup was 19% and 24% for MGS and CGS2, respectively. For the single-precision
ILU implementation, those means were both 2%.

The second set of performance tests shows what happens when GMRES is not forced to
restart often enough for mixed precision. All of the matrices with an inner-iteration limit of
less than 50 in the first experiment were tested again with an iteration limit of 50 iterations.
For mixed-precision GMRES, the first restart could also be triggered by the Arnoldi residual
improving by a factor of 10−6, and subsequent restarts were triggered by the same number of
inner iterations. To ensure the mixed-precision solver was not given any undue advantage,
the other two solvers’ performance was taken as the best time from three restart strategies:
(1) the same strategy as mixed-precision GMRES; (2) after the Arnoldi residual improved
by a factor of 10−8; or (3) just the iteration limit. Figure 4.9 shows the results. For the
mixed-precision implementation, the geometric mean of the speedup was -4% and 0% for MGS
and CGS2, respectively. When just the preconditioner was reduced in precision, those means
were 2% and 1% respectively. The matrices for which mixed-precision reduced performance
were exactly those for which the double-precision implementation did not restart.
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Figure 4.8: CPU performance when GMRES is restarted in half the number of iterations
needed in double precision. Top plot uses MGS and bottom uses CGS2. © 2020 Springer
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4.3.2 GPU experiments

To test the performance of mixed-precision GMRES on GPUs, I implemented a restarted
GMRES using the Kokkos [45], cuBLAS, and cuSPARSE libraries. To limit expensive memory
transfers between CPU and GPU, all computation is done on the GPU and only the high-level
control flow is done on the CPU. To understand the general effects of mixed precision, various
matrices and preconditioners were tested.

Because of the high performance of GPUs, these experiments use matrices with at least
one million nonzero elements. For a given preconditioner, I used only matrices where the
double-precision implementation converged in fewer than 300 restarts. When SuiteSparse
provided a file ending with _b, the first column was used as the right-hand side. Otherwise,
the right-hand side was computed from a solution with elements randomly selected from the
uniform range [0, 1). Table 4.2 shows the tested matrices. In addition to structural properties,
the table contains lower bounds of the condition numbers of these matrices, computed by
testing forward error vectors of LSQR [13]. Many of the moderately ill-conditioned matrices
reached the iteration limit before satisfying the convergence criterion, so they may have worse
conditioning than these lower bounds imply.

I tested the mixed-precision approach with a variety of preconditioners that range from
simple and cheap to highly effective but expensive. They are:

1. no preconditioner,
2. a scalar Jacobi preconditioner,
3. an ILU preconditioner, and
4. an ILU preconditioner using Jacobi iterations for the triangular solves.

The first three are standard techniques, but the fourth deserves a comment. Sparse triangular
solves have little parallelism, resulting in poor GPU utilization. In contrast, Jacobi iterations
process each row in parallel, allowing for better GPU performance [9]. Because the focus is
on how well the mixed-precision approach works for different types of preconditioners, the
preconditioners are not compared with each other. Furthermore, all preconditioners were
constructed in double precision to ensure the same preconditioner is used, particularly for ILU.
In addition to testing double-precision GMRES and the proposed mixed-precision GMRES,
I also tested single-precision GMRES and double-precision GMRES with a single-precision
preconditioner.

Average speedups were computed as the inverse of the geometric mean of the normalized
mixed-precision times. Combined with a limit of 100 inner iterations before restarting, three
restart strategies were tested:

1. just the inner-iteration limit;
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Table 4.2: Properties of tested matrices. †Condition estimator reached 200 000 iterations
without satisfying the convergence criterion. © 2021 IEEE

Condition RHS
Matrix Rows Nonzeros Lower Bound Provided

af_0_k101 5.0× 105 1.8× 107 5.5× 105 † yes
af_shell9 5.0× 105 1.8× 107 1.2× 106 † yes

apache2 7.2× 105 4.8× 106 3.0× 106 † no
atmosmodj 1.3× 106 8.8× 106 6.4× 103 yes

BenElechi1 2.5× 105 1.3× 107 1.3× 106 † yes
bone010 9.9× 105 4.8× 107 1.6× 106 † no

Bump_2911 2.9× 106 1.3× 108 7.5× 106 † no
cage13 4.5× 105 7.5× 106 1.1× 101 no
cage14 1.5× 106 2.7× 107 9.6× 100 no

crankseg_1 5.3× 104 1.1× 107 1.4× 107 † no
CurlCurl_2 8.1× 105 8.9× 106 4.1× 105 † no
CurlCurl_4 2.4× 106 2.7× 107 3.4× 105 † no

ecology2 1.0× 106 5.0× 106 3.2× 107 † no
F1 3.4× 105 2.7× 107 7.1× 105 † yes

FEM_3D_thermal2 1.5× 105 3.5× 106 2.5× 103 no
G3_circuit 1.6× 106 7.7× 106 6.0× 106 † no

hood 2.2× 105 9.9× 106 3.8× 105 † no
language 4.0× 105 1.2× 106 5.9× 102 no
marine1 4.0× 105 6.2× 106 3.8× 105 † yes
mc2depi 5.3× 105 2.1× 106 1.3× 1014 no

ns3Da 2.0× 104 1.7× 106 5.6× 102 yes
parabolic_fem 5.3× 105 3.7× 106 2.1× 105 † yes

poisson3Db 8.6× 104 2.4× 106 2.6× 103 yes
pwtk 2.2× 105 1.2× 107 6.9× 105 † no

rajat31 4.7× 106 2.0× 107 4.0× 106 no
stomach 2.1× 105 3.0× 106 2.9× 101 no

t2em 9.2× 105 4.6× 106 2.2× 105 † no
thermal2 1.2× 106 8.6× 106 1.5× 106 † yes

tmt_unsym 9.2× 105 4.6× 106 2.3× 108 † no
torso2 1.2× 105 1.0× 106 2.0× 101 no
torso3 2.6× 105 4.4× 106 9.5× 101 no

venkat01 6.2× 104 1.7× 106 1.3× 105 † yes
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2. the residual approximation improving by a factor of 10−10; and
3. the residual approximation improving by a factor of 10−6 for the first restart and the

same number of inner iterations is used after that.
Mixed-precision GMRES was only tested with the third strategy while the other implementa-
tions were tested with each. In the latter cases, the strategy with the smallest median was
plotted; this ensured that the baseline was not penalized by the choice of restart strategy.

First, the results for unpreconditioned GMRES are shown in Fig. 4.10. The average
speedups for the mixed-precision approach were 18 % for MGS and 61 % for CGS2.
Furthermore, it provided a speedup for most of the tested matrices and, with CGS2, almost
doubled the performance for many of the matrices; only a few matrices saw a slowdown. The
single-precision implementation satisfied the target accuracy on only 17 or 16, respectively,
of the 23 problems and had average speedups of 0 % and 35 % on the remaining problems.
Table 4.3 shows the total number of inner iterations for each test; note that mixed precision
required noticeably more iterations in only a few cases. An interesting exception is rajat31,
which needed significantly fewer iterations for reduced precision; I speculate that the floating-
point error happened to perturb the Krylov subspace to better contain the solution. For the
matrices with comparable iteration counts, mixed precision with CGS2 can almost achieve a
2× speedup on many of them; however, some obtained only modest speedups. These reduced
speedups correlate with the matrices having many nonzeros per row relative to the size of
the basis; thus, accessing matrix indices is still a substantial portion of the data moment. As
per Table 4.2, even matrices with a condition number larger than 107 could be solved more
efficiently with the mixed-precision approach, although this may depend on the right-hand
side. Finally, the matrices with SuiteSparse-provided right-hand sides behaved similarly to
those with generated right-hand sides.

Second, Fig. 4.11 shows the results for a scalar Jacobi preconditioner. The average
speedups for mixed precision were 12 % and 50 % for MGS and CGS2, respectively. The
single-precision implementation failed to satisfy the target accuracy in 11 of the 30 problems;
the remaining problems had average speedups of −8 % (i.e., a slowdown) and 23 %, respectively.
Using single precision for just the preconditioner led to one failure and provided an average
slowdown of 8 % for both orthogonalization schemes on the successful matrices. For MGS,
there were five matrices where the mixed-precision implementation failed to outperform
double precision; for CGS2, mixed precision improved performance for all matrices except
language. The total number of inner iterations on a given matrix was mostly consistent for
different configurations, as is shown in Table 4.4. Like the unpreconditioned case, better
speedups were achieved on matrices with few nonzeros per row relative to the size of the
basis.
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Figure 4.10: GPU performance of unpreconditioned GMRES. Top plot uses MGS and
bottom uses CGS2. © 2021 IEEE
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Table 4.3: Inner iteration counts for unpreconditioned GMRES. © 2021 IEEE

Double Mixed Single
Matrix MGS CGS2 MGS CGS2 MGS CGS2

apache2 21 400 21 400 21 500 21 500 29 200 29 300
atmosmodj 200 200 300 300 300 300

cage13 30 30 30 30 45 45
cage14 30 30 30 30 30 30

crankseg_1 6 300 6 200 6 300 6 300 7 300 5 900
CurlCurl_2 9 900 9 900 9 900 9 900 12 300 12 300
CurlCurl_4 21 100 21 100 21 100 21 100 26 400 26 400

ecology2 900 900 900 900 1 800 1 800
F1 29 200 29 200 29 200 29 200 - -

FEM_3D_thermal2 300 300 300 300 - -
G3_circuit 28 200 28 200 27 500 28 200 29 200 -

language 29 29 58 58 145 87
mc2depi 10 400 10 200 12 100 12 900 19 500 19 500

ns3Da 1 400 1 400 1 400 1 400 - -
parabolic_fem 3 500 3 500 3 500 3 500 4 100 4 100

poisson3Db 300 300 300 300 - -
rajat31 4 000 4 000 2 900 2 000 1 700 2 500
stomach 300 300 300 300 300 300

t2em 4 800 4 800 4 800 4 800 5 100 5 100
thermal2 21 100 28 500 25 600 28 500 - -

tmt_unsym 500 500 500 500 500 500
torso2 80 80 80 80 - -
torso3 200 200 200 200 300 300
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Figure 4.11: GPU performance of GMRES with a scalar Jacobi preconditioner. Top plot
uses MGS and bottom uses CGS2. © 2021 IEEE
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Table 4.4: Inner iteration counts for GMRES with a scalar Jacobi preconditioner. © 2021
IEEE

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR

af_0_k101 18 200 14 300 16 800 14 900 19 800 12 700 - -
af_shell9 21 000 20 500 22 700 23 600 27 600 28 400 - -

apache2 11 700 11 700 10 400 10 900 9 800 8 500 16 700 17 200
atmosmodj 200 200 300 300 300 300 300 300

bone010 14 600 19 000 19 100 21 500 25 600 28 200 - -
Bump_2911 3 500 3 500 4 100 3 900 4 100 4 100 16 400 16 600

cage13 22 19 22 22 22 22 33 33
cage14 22 22 22 19 22 22 22 22

crankseg_1 800 800 800 800 800 800 1 300 1 200
CurlCurl_2 1 500 1 500 1 500 1 500 1 500 1 500 1 500 1 500
CurlCurl_4 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900

ecology2 800 800 800 800 800 800 1 600 1 600
F1 3 600 3 600 3 300 3 600 3 600 3 800 - -

FEM_3D_thermal2 60 60 60 60 60 60 - -
G3_circuit 1 100 1 100 1 100 1 100 1 100 1 100 1 200 1 200

hood 3 900 3 900 4 100 4 100 4 100 4 000 - -
language 29 29 58 58 58 58 145 87
mc2depi 11 000 10 600 13 200 - 12 600 12 200 - -

ns3Da 14 300 14 400 14 800 14 600 15 000 14 900 - -
parabolic_fem 3 600 3 600 3 700 3 700 3 700 3 700 4 400 4 400

poisson3Db 400 400 400 400 400 400 - -
pwtk 13 500 18 400 15 700 16 600 17 700 20 200 - -

rajat31 600 600 700 700 700 700 700 800
stomach 130 100 130 100 130 130 130 130

t2em 4 800 4 800 4 800 4 800 4 800 4 800 5 100 5 100
thermal2 21 400 25 300 25 400 25 500 22 700 25 500 29 800 -

tmt_unsym 500 500 500 500 500 500 500 500
torso2 56 47 56 56 56 56 - -
torso3 134 100 100 100 134 134 134 134

venkat01 96 96 96 96 96 96 96 96
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Next, Fig. 4.12 shows the results for an ILU preconditioner. The average speedup for
mixed precision was −9 % and −7 % for MGS and CGS2, respectively (i.e., a slowdown).
For the single-precision preconditioner, the speedups were instead −8 % and −9 %. The
single-precision implementation failed to produce an accurate enough solution to 7 of the
problems; the remaining problems had average speedups of −11 % and −10 %, respectively.
There are a few factors that contribute to the slowdowns. First, the sparse triangular solves
have limited parallelism for the GPU to exploit; this results in poor utilization of the GPU
bandwidth, which limits the benefit of reducing the size of the data. Furthermore, the poor
performance of the triangular solves causes them to make up a large part of the performance.
Second, because the factorization is always done in double precision, it is a fixed cost in the
performance. Third, because of the effectiveness of the preconditioner, double precision can
solve most problems without restarting; however, the mixed-precision implementation must
always restart at least once. These restarts incur overhead from extra computation and from
reducing the rate of convergence for some matrices. Table 4.5 shows the relevant iteration
counts and that the baseline can converge without restarting for 11 out of the 29 matrices.

Finally, Fig. 4.13 shows the results for an ILU preconditioner with five Jacobi iterations
for triangular solves. The speedup was 8 % and 13 % for MGS and CGS2, respectively.
Additionally, the single-precision preconditioner was able to achieve some improvement
overall, with speedups of 3 % and 4 %, respectively. The single-precision implementation
failed to produce an accurate enough solution to three of the problems; the remaining problems
had average speedups of 4 % and 4 %, respectively. Note that while the triangular solves have
been improved, the other factors limiting the improvement of the regular ILU preconditioner
remain. Table 4.6 shows the iteration counts and that the baseline needed to restart on only
5 of the 13 matrices.

There does not appear to be any previous experimental performance comparisons between
MGS and CGS2 on modern GPUs. As this work tested both schemes, it was natural to
compare them; Table 4.7 does so in the context of the overall GMRES performance. In
spite of requiring twice as much work, CGS2-GMRES provides better performance than
MGS-GMRES. Recall that MGS requires j dot-products alternated with j vector additions
for the jth inner iteration while CGS2 requires only four matrix-vector products. Thus,
CGS2 launches fewer kernels, which reduces overhead; furthermore, high GPU utilization
is easier to obtain with large kernels than with small ones. The better speedup for mixed-
and single-precision implementations likely comes from reductions in the cost of the kernel’s
execution making the kernel launches more costly relative to the total time. Similarly, when
GMRES uses a cheaper preconditioner, it spends a higher percentage of its runtime doing
the orthogonalization, which results in a larger performance difference. Thus, the traditional
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Figure 4.12: GPU performance of GMRES with an ILU preconditioner. Top plot uses MGS
and bottom uses CGS2. © 2021 IEEE
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Figure 4.13: GPU performance of GMRES with an ILU preconditioner using five Jacobi
iterations for triangular solves. Top plot uses MGS and bottom uses CGS2. © 2021 IEEE
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Table 4.5: Inner iteration counts for GMRES with an ILU preconditioner. © 2021 IEEE

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR

af_0_k101 4 500 4 400 5 500 7 700 5 200 6 600 7 700 7 800
af_shell9 2 200 2 200 2 200 2 200 2 400 2 500 - -

apache2 600 600 600 600 800 800 700 700
atmosmodj 82 82 82 82 200 164 200 164

BenElechi1 3 900 4 300 4 600 4 500 4 200 4 500 - -
bone010 1 200 1 200 1 200 1 200 1 200 1 200 2 200 4 700
cage13 7 7 8 8 8 8 12 12
cage14 7 7 7 7 8 8 8 8

crankseg_1 200 200 200 200 200 200 400 300
CurlCurl_2 600 600 600 600 600 600 700 700
CurlCurl_4 1 400 1 400 1 400 1 400 1 400 1 400 1 700 1 700

ecology2 200 200 200 200 200 200 300 300
F1 1 000 1 000 1 000 1 000 1 000 1 000 - -

FEM_3D_thermal2 10 10 12 12 12 12 - -
G3_circuit 200 200 200 200 300 300 300 300

language 9 9 14 14 14 14 28 42
marine1 300 300 300 300 300 300 300 300
mc2depi 1 700 1 700 1 600 1 600 1 700 1 700 1 800 1 700

ns3Da 200 200 200 200 200 200 - -
parabolic_fem 800 800 800 800 800 800 900 900

poisson3Db 100 100 174 174 174 174 - -
rajat31 10 10 9 9 18 18 18 18
stomach 17 17 18 18 20 18 20 18

t2em 600 600 600 600 600 600 600 600
thermal2 4 800 5 100 5 100 5 100 5 200 5 100 5 700 5 700

tmt_unsym 200 200 200 200 200 200 200 200
torso2 11 11 12 12 12 12 - -
torso3 35 35 48 48 48 48 48 48

venkat01 12 12 12 12 12 12 12 12
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Table 4.6: Inner iteration counts for GMRES preconditioned with ILU using five Jacobi
iterations for triangular solves. © 2021 IEEE

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR
cage13 7 7 8 8 8 8 12 12
cage14 7 7 8 8 8 8 8 8

language 9 9 14 14 14 14 21 35
ns3Da 200 200 200 200 200 200 - -

parabolic_fem 800 800 800 800 800 800 900 900
poisson3Db 100 100 174 174 174 174 - -

stomach 21 21 22 22 22 22 22 22
t2em 800 800 800 800 800 800 800 800

thermal2 5 100 5 100 5 000 5 100 5 100 5 100 5 700 5 800
tmt_unsym 200 200 200 200 200 200 200 200

torso2 11 11 12 12 12 12 - -
torso3 48 48 64 64 64 64 64 64

venkat01 16 16 16 16 16 16 16 16

Table 4.7: Average speedups of CGS2-GMRES over MGS-GMRES on GPU. © 2021 IEEE

Double Mixed Single
Preconditioner Speedup Speedup Speedup

Identity 36% 87% 181%
Jacobi 34% 79% 116%

ILU 4% 7% 4%
ILU with Jacobi 8% 13% 4%
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guidance to prefer MGS over CGS2 does not hold for GPUs without support for fusing the
dot product’s reduction into other kernels.

4.4 Conclusions

This work demonstrates that selectively reducing precision is an effective way to improve the
performance of GMRES. A common concern when discussion mixed-precision GMRES is
whether the reductions in accuracy will result in significantly more iterations. However, both
theoretical and experimental results indicate that this is not at issue for most problems. On
the other hand, a carefully selected restart criterion is important to ensure GMRES restarts
before improvement stalls; otherwise, the iteration count will be inflated by unusable work.
A natural question is whether the better stability of CGS2 can partially compensate for
reduced precision compared to MGS; Section 4.3.2 shows that for most problems, there is
little difference in iteration count. However on GPU systems, CGS2 is preferable anyways,
due to its higher performance.

There have been several publications on mixed-precision GMRES since content from this
chapter was published [4,97,136,139]. Three of them directly build on my work [97,136,139],
while the last one proposes an alternative combination of precisions called CB-GMRES [4].
The latter reduces the precision less aggressively, changing just the storage of the Krylov
basis. I expect that there are fewer cases of poor convergence compared to my approach.
Furthermore, because CB-GMRES modifies only the storage of one matrix, it can easily
support alternative data representations like posits [69] or SZ compression [40]. However,
because of the larger reduction in data movement, I expect Algorithm 4.1 to outperform
CB-GMRES using single-precision as the reduced precision in most cases. Unfortunately,
there have been no serious comparisons of the two approaches. All of the other work on
mixed-precision GMRES has used the trivial restart strategy based on the number of inner
iterations [4, 12, 97, 136, 139], even those written after the publication of Section 4.2’s content.
When GMRES converges quickly, this can result in many wasted iterations. All three of
the subsequent works using Algorithm 4.1 have explicitly noted a significant increase in the
number of iterations for quickly converging problems but did not consider using an alternative
restart strategy [97,136,139].
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