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ABSTRACT 

The accuracy of artificial intelligence techniques in estimating air quality is contingent upon a 
multitude of influencing factors. Unlike our previous study that examined PM2.5 over whole Europe 
using unbalanced spatial-temporal data, the focus of this study was on estimating PM2.5 specifically 
over the Czech Republic using more balanced dataset to train and evaluate the model. Moreover, 
the spatial autocorrelation between PM2.5 measurements was taken into consideration while 
building the model. The feature importance while developing the Extra Trees model revealed that 
spatial autocorrelation had greater significance in comparison to commonly used inputs such as 
elevation and NDVI. We found that R2 of the 10-CV for the new model was 16% higher than the 
previous one. Where R2 reached 0.85 with RMSE=5.42 µg/m3, MAE=3.41 µg/m3, and bias=-0.03 
µg/m3. The developed spatiotemporal model was employed to generate comprehensive daily maps 
covering the entire study area throughout the period 2018–2020. The temporal analysis showed that 
the levels of PM2.5 exceeded recommended limits during the year 2018 in many regions. The 
eastern part of the country suffered from the highest concentrations especially over Zlín and 
Moravian-Silesian Regions. Air quality improved during the next two years in all regions reaching 
promising levels in 2020. The generated dataset will be available for other future air quality studies. 
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INTRODUCTION 

Atmospheric Particulate Matter (PM) with a diameter smaller than or equal to 2.5 microns 
(PM2.5) is small enough to be inhaled deeply in the lungs and are able to reach the bloodstream 
and reduce the immune system's capacities [1]. The exposure of high PM2.5 levels could cause 
serious health problems especially in densely populated areas that produce enormous amounts of 
pollution into the atmosphere due to increased combustion sources and human activities [2]. PM has 
an effect on mortality even at concentrations that are in compliance with the European annual 
regulation [3]. In Europe, around 300,000 premature deaths are caused by PM annually and more 
than 330 billion Euros of economic cost, that encouraged the Directive 2008/50/EC to limit the yearly 
average of PM2.5 to 20 µg/m3 since the first of January 2020 [4]. 

In this study, we focused on the Czech Republic (CZ). Based on previous studies, CZ suffered 
from low air quality in some regions throughout last decades. The estimated additional social costs 
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resulting from the poor air quality in Ostrava city for children aged 0-15 amounted to approximately 
20 million Euros per year [5]. In 2012 winter, the mean value of PM2.5 over Ostrava was 159 
µg/which caused a smog episode [6]. When studying causes of air pollution in Teplice within the 
framework of the Teplice Program, initiated around 1970, researchers found that around 70% of 
PM2.5 fine particles came from the local heating sources that used brown coal with a high SO2 
content [7]. As a result of this discovery, the Czech government supported a transition from coal to 
natural gas for local heating in mining districts in 1994 [7]. The north-eastern part of CZ that shares 
borders with Poland, which is highly polluted due to its long history of coal mining, heavy industry, 
traffic infrastructure and the dense population [8]. In 2018, around 1.2% of the CZ's total area, which 
is home to roughly 6.1% of the population, exceeded 25 µg/m3 [9]. Approximately 20% of households 
in CZ use individual heating systems that burn solid fuels [10]. During 2013 winter in the residential 
district of Mladá Boleslav, wood burning was found to be the primary source of PM10 mass, with 
coal combustion following as the second most significant source [11]. Coal remains a key energy 
source in CZ, accounting for one-third of the country's total energy supply in 2019 [12]. Coal also 
accounted for 46% of the country's electricity generation and more than 25% of residential heating 
[12]. The Czech government is currently exploring strategies for removing coal from its energy mix, 
including potential timelines for this transition. To support this effort, the government established a 
Coal Commission in 2019, which presented its recommendations in December 2020. The 
Commission advised that coal should be phased out no later than 2038 [12]. The data from April 
2018 to March 2019 collected in the Moravian-Silesian Region has verified that during the winter 
season, the inflow of PM cross-border pollution from Poland is a key factor contributing to air pollution 
levels [13]. 

In recent decades, numerous studies have utilized the capabilities of artificial intelligence (AI) 
in estimating PM2.5 concentrations. These studies have focused on developing various types of 
models to increase the limited spatial coverage that is provided by PM2.5 ground monitors. Covering 
more auxiliary data as inputs helped to improve the performance of the models when compared to 
the typical interpolation methods which rely solely on the observations from the monitors [14]. The 
auxiliary inputs for the models usually include a combination of satellite data, meteorological 
modeled data, topography, and land cover data. Satellite-based Aerosol Optical Depth (AOD) is a 
valuable indicator of aerosol levels in the Earth's atmosphere and since PM2.5 is a type of aerosol, 
there is generally a positive correlation that made AOD a crucial factor in predicting PM2.5 levels 
[15,16]. Meteorological data such as the planetary boundary layer height (PBLH) that is the vertical 
extent of the lowest part of the Earth’s atmosphere, Relative Humidity (RH) which represents the 
total amount of water vapor that exists in the atmosphere relative to the maximum amount water 
vapor that air can hold at particular temperature, the Total Column Water Vapor (TCWV) that is the 
measurement of the total amount of water vapor present in the vertical column of the Earth’s 
atmosphere, Wind Speed (WS), Temperature (T), Total Precipitation (TP), and Evaporation (E) have 
shown that significance varies depending on the region when PM2.5 is estimated [14,17,18]. 
Moreover, a few studies considered the Spatial Autocorrelation (SA) of PM2.5 when developing 
predictive models. Inspired by the first law of geography which proposes that all features present on 
a geographic surface have a connection with each other, and that geographic entities have a 
stronger association with nearby entities as compared to those that are located far away [19].  In a 
study spanning from 1999 to 2016, the yearly average PM2.5 levels in Chinese cities exhibited a 
typical autocorrelation [20]. In another study, including SA improved the performance of the Random 
Forest (RF) model and decreased the Root Mean Square Error (RMSE) by ~18% when estimating 
PM2.5 over Sichuan Basin in 2019 [21]. Adding the spatial lag variable (SLV) as a virtual input in the 
neural network model for estimating the yearly PM2.5 concentrations increased the coefficient of 
determination (R2) by ~9% [22]. 

In this study, we aimed to estimate the concentrations of PM2.5 over the CZ during the years 
2018, 2019, and 2020. CZ is a landlocked country that covers an area of 78870 square kilometres 
located in central Europe bordering Germany, Poland, Slovakia, and Austria. 
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MATERIALS AND METHODS 

Dependent variable and primary independent variables 

Daily PM2.5 concentrations for 2018, 2019, and 2020 were collected from the Czech 
Hydrometeorological Institute (CHMI). The total number of stations and observations after 
removing the outlier values were 54 and 54,495 respectively. The number of observations per year 
is 18330 in 2018, 18022 in 2019, and 18144 in 2020. 

 

Fig. 1 - Study area with ground stations. The red dots represent the stations that were used to test 
the model and the green dots represent the stations that were used to train the model 

We explored the following data as primary inputs in our study, AOD data over CZ was 
collected from the Geo-Harmonized Atmospheric Dataset for Aerosols (GHADA) which is a full 
coverage dataset over Europe with 1 km spatial resolution that was built based on the MCD19A2 
MODIS product [23] and modelled AOD from Copernicus Atmosphere Monitoring Service (CAMS) 
[24]. This dataset showed good results when validated with NASA’s Aerosol Robotic Network 
(AERONET) observations [25]. Meteorological data like PBLH, WS calculated based on the u and 
v wind components, temperature at 2m (T2m), TP, E, TCWV, and RH were collected from the 
European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis [26], and then 
reprojected to the grid using the bilinear interpolation; monthly NDVI from the MODIS MOD13A3 
product [27]; the percentage of artificial surfaces and air pollution resources for each 1km2 cell 
were calculated from the CORINE Land Cover (CLC) of 2018 which was built based on ortho-
rectified satellite images with a spatial resolution ranging from 5-60 m, and were aggregated to 100 
m; Open Street Map (OSM) data was processed to calculate the total road lengths (RL) within 
each cell of the grid; elevation (H) was extracted from the Japan Aerospace Exploration Agency 
(JAXA) digital surface model [28], and population data was estimated from the monthly Visible 
Infrared Imaging Radiometer Suite (VIIRS) nighttime lights of 2019 [29]. The linear analysis 
between the primary inputs and PM2.5 showed that PBLH and T2m were the most negatively 
correlated variables to PM2.5 with Pearson correlation of -0.25 and -0.22 respectively. NDVI, 
TCWV, WS, RH, H, and TP also had negative correlations with PM2.5. Whereas, E, AOD, NL, and 
RL had positive correlations with PM2.5. The following table shows the primary data that was used 
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in our study. All primary data was reprojected to the European Terrestrial Reference System 1989 
(EPSG:3035) with a grid of 1 km2 that covers the study area using bilinear interpolation for 
meteorological data and the cubic convolution for the elevation model. 

Tab. 1 - The primary inputs that were explored in this study 

Name Variable Unit 
Spatial 

resolution 
Source 

Aerosol optical depth AOD - 1 km GHADA 

Meteorological 

Planetary boundary 

layer height 
PBLH m 

0.1˚×0.1˚ ERA5-Land 

Wind speed WS m/s 

Temperature at 2m T2m K 

Total precipitation TP mm 

Evaporation E mm 

Total column water 

vapor 
TCWV Kg/m2 

Relative humidity RH % 0.25˚×0.25˚ ERA5 

Land cover 

Normalized 

Difference 

Vegetation Index 

NDVI - 1 km MODIS MOD13A3 

CORINE Land 

Cover 
CLC - 100 m Corine LC 2018 

Road length RL m ~10 m Open street maps 

Topography H m ~30 m JAXA 

Population NL nW/cm2/sr 500 m VIIRS 

Model development 

A machine learning algorithm was used with feature engineering techniques that were 
applied to train the PM2.5 predictive model.  

We used the Extra Trees (ET) algorithm which is an ensemble learning method that 
combines the predictions of several decision trees to make the final prediction [30]. It is an 
extension of the widely used RF algorithm where in both, the final prediction is the majority of 
predictions in classification problems and the arithmetic average in regression problems. ET 
reduces overfitting by introducing additional randomness during the construction of the trees and it 
uses the entire dataset while training without performing any pruning which decreases the required 
time for training compared to the RF that applies pruning techniques. A deeper explanation of this 
algorithm was provided in our previous work [25,31]. 

Feature engineering and model training 

The temporal inputs were represented by the radian day and the year. The radian day will 
help the model understand the cyclic nature of time and enables it to capture the seasonal patterns 
in the data. Whereas, adding the year will capture long-term trends that occur over the years of the 
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study period. The spatial inputs were represented by longitude, latitude, and elevation. Adding the 
spatial inputs will allow the model to capture the inherent spatial heterogeneity in the data. In 
addition to the mentioned inputs, SA of the dependent variable was calculated based on the 
training set. We used the Local Moran Index (LMI) that was based on the foundation of the Moran’s 
I statistic [32]. LMI is a spatial autocorrelation statistic used in geography and other disciplines to 
identify local clusters or spatial patterns of similar or dissimilar values in a dataset [33]. Positive 
values for LMI indicate that the observation at the station is a part of a cluster of similar 
observations from surrounding stations and vice versa, the magnitude of the LMI value represents 
the strength of SA [34]. For each day of the study period, LMI was calculated for each station 
considering the closest three neighboring stations using the K-nearest neighbors (KNN) weight 
matrix with k=3. 

𝑳𝑴𝑰𝒊 =  
𝒛𝒊−𝒛̅

𝝈𝟐  ∑ [𝒘𝒊𝒋(𝒛𝒋 − 𝒛̅)]𝒏
𝒋=𝟏,𝒊≠𝒋      (1) 

Where, Zi is the value of the observation at the location i; z ̅ is the average value of z with the 

sample number of n; zj is the value of the observation at all other stations where i≠j; σ2 is the 

variance of the observation z; and wij is the weight matrix for the locations i and j. 
The whole dataset was split into a training set (80% of the dataset) and a test set (20% of 

the dataset), Figure 1 represents the distribution of the stations. LMI was calculated based on the 
training set only to assure that the test set remains unseen for the model. The feature importance 
for each input was calculated and based on that some features were removed to generalize the 
model and to reduce complexity. CLC, OSM, and population had low importance because these 
inputs are not real time data. Figure 2 shows feature importance of the primary inputs in the 
training set. 

 

Fig. 2 - Feature importance calculated based on the training data. 

The widely used grid search technique with 10-fold Cross Validation (10-CV) was used for 
hyperparameters tuning. In this process, the training data was split into 10 equal-sized folds, where 
each fold was used as a validation set while training the model on the remaining 9 folds. We 
employed R2, the RMSE, and the Mean Squared Error (MAE) as evaluation matrices. R2 measures 
the proportion of variance in PM2.5 that can be explained by the model. RMSE quantifies the average 
difference between the predicted and observed PM2.5 values. MAE measures the average absolute 
difference between the predicted and observed PM2.5 values. Utilizing these three metrices together 
is commonly used in regression problems to provide a comprehensive evaluation of the model. The 
maximum depth of the trees, the minimum number of samples required to split an internal node and 
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the minimum number of samples required at a leaf node were the main parameters to fine-tune the 
model. While applying the 10-CV on the training data, we tested how the performance will drop when 
excluding some inputs. We found that NDVI did not noticeably affect the performance of the model 
and it was excluded as well. 

Model validation 

This section was dedicated to the validation process to assess the reliability and accuracy of 
our findings. 

Validation on the test set 

We tested the model on the test set that was taken from the stations in unseen locations for 
the model. This validation showed the model ability to predict values in new locations that were not 
used to generate the LMI. The model showed good results when estimating PM2.5 in the new 
locations with R2 = 0.86, RMSE=5.61 µg/m3, and MAE=3.37 µg/m3. 

Validation on all data 

It is a common approach in PM2.5 studies to apply 10-CV of the whole dataset [35–37]. In 
order to do this validation, we generated LMI based on the data from all stations, then we applied a 
sample based 10-CV. The model showed similar results compared to the validation on the test set 
with R2=0.85, RMSE=5.42 µg/m3, MAE=3.41 µg/m3 and, bias=-0.03 µg/m3. Figure 3 shows the 
results of the sample based 10-CV.  

A negative bias indicates that, on average, the model tends to underpredict PM2.5 values. 
However, a value of -0.03 appears to align reasonably well with the characteristics of the data where 
the values range between 2 and 200 with an average of 17 µg/m3. 

R2 values indicate that the model explains around 86% and 85% of the variance in PM2.5 
values, which suggests that the model is performing well and generalizing reasonably to unseen 
data. 

 

Fig 3 - Density scatter plot for the 10-CV applied on all data. 
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Results 

Model deployment 

We utilized the model to generate daily full coverage PM2.5 maps over CZ. To validate the 
deployment of the model we extracted values of the estimated PM2.5 at station locations and 
compared their temporal profiles with observed values. Figure 4 represents the temporal profile for 
three stations with high, normal, and low PM2.5 levels. 

 

 

Fig. 4 - PM2.5 temporal profile over three stations 
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Fig. 4 - PM2.5 temporal profile over three stations: Kamenny Ujezd station, Praha 2-Legerova 
station, and Ostrava-Zabreh station. 

The results in all stations show nearly perfect overlap, which confirms not only high general 
accuracy of the model but also temporal clarity of the predictions. They also show slight bias of the 
model in the peaks’ predictions, small underestimation in high values and slight underestimation in 
down-peaks. It can be noticed that PM2.5 values are higher during winter compared to other seasons 
in the three chosen stations. 

Temporal and regional analysis 

We calculated the average PM2.5 levels for each year during the study period. In Figure 5 we 
show the yearly average levels. PM2.5 decreased gradually throughout the study period. The eastern 
part of CZ had the highest PM2.5 levels. The Moravia-Silesian Region was the most polluted region 
with an average PM2.5 level of 25.2 µg/m3 in 2018, 18 µg/m3 in 2019 and 15.8 µg/m3 in 2020. Karlovy 
Vary Region had the lowest PM2.5 values with 16.4 µg/m3 in 2018, 11.1 µg/m3 in 2019, and 10.2 
µg/m3

 in 2020. Besides, the Moravia-Silesian Region, PM2.5 values exceeded 20 µg/m3 in Zlín and 
Olomouc Regions with average values of 22.7 µg/m3 and 22.2 µg/m3 respectively during 2018. Good 
PM2.5 levels <= 12 µg/m3 were found in six regions in 2020, these regions are Plzeň, Karlovy Vary, 
Southern Bohemia, Vysočina, Central Bohemia, and Liberec. 
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Fig. 5 - The average PM2.5 levels over the Czech Republic in the years 2018, 2019, and 2020. 
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Seasonal analysis 

In this analysis, we delved into the seasonal patterns of PM2.5 concentrations of 2018 ̶ 2020. 
By examining the fluctuations across different seasons and analyzing the variations in PM2.5 levels 
over time, we aimed to gain valuable insights into the underlying factors influencing pollution levels 
during specific seasons of the study period. Winter was represented by January, February, and 
December; summer encompasses June, July, and August; spring spans from March through May; 
and autumn extends from September to November. We calculated the average PM2.5 levels for each 
region in CZ in the different seasons. Figure 6 shows the results we conducted. 

The average PM2.5 levels in summer are relatively consistent for each year across the entire 
country. PM2.5 concentrations exhibit significant variations during winter seasons. In winter, the 
average PM2.5 was the highest in all regions except two in 2018 where Prague had the highest values 
during autumn and Karlovy Vary had the highest levels during spring. The eastern part of CZ was 
highly polluted during 2018 winter with average values of 30 µg/m3 over Olomouc Region, 31 µg/m3 
over Zlín Region, and 35 µg/m3 over the Moravian-Silesian Region. Pardubice, Karlovy Vary, and 
South Moravian Regions also had average concentrations higher than 25 µg/m3 during this season. 
In 2019, only the eastern part of CZ had an average concentration higher than 25 µg/m3.  Air quality 
improved throughout the study period; the Moravian-Silesian Region recorded the highest average 
value of 20 µg/m3 in 2020 winter. 

 

   

Fig. 6 - PM2.5 seasonal analysis over the Czech Republic in 2018, 2019, and 2020. 

DISCUSSION 

In this study, we used a tree-based machine learning algorithm called the Extra Trees to 
estimate PM2.5 over CZ with a high spatial resolution of 1 km during 2018  ̶2020. In contrast to our 
prior study, which concentrated on the entire Europe [31], we discovered that incorporating more 
balanced data in terms of spatial and temporal distribution enhances the overall accuracy of the 
model and simplifies the modeling approach. The R2 obtained from the 10-fold cross-validation of 
the model developed specifically for CZ was 0.85, whereas the corresponding R2 for the model 
developed for the entire European region was 0.69 [31]. Dividing the data according to stations, 
ensured that the model can accurately forecast the absent PM2.5 values in new locations, 
achieving a high R2 of 0.86 and a low RMSE of 5.61 µg/m3. 

The spatial autocorrelation we calculated based on the Local Moran Index had higher 
feature importance than other spatial independent variables like elevation. Calculating the Local 
Moran Index can give different results due to factors like the K value and the data's distribution, 
which are important to consider when using it in machine learning models. It should be noted that 
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the spatial autocorrelation must be generated from the training data only without including the test 
data, so the test set remains totally unseen to the model to evaluate its performance in an 
unbiased way. 

Confirming the findings from our earlier study, the independent variables which exhibit a 
high degree of invariance over the duration of the study, like land cover data or the length of the 
roads in every 1 km of the grid, will have a lower importance on the model. Unlike other studies 
that included all input features regardless to their importance in generating the model [38], we 
showed that excluding these inputs will better generalize the model leading to improved 
estimations. We believe that the inclusion of temporally varying data will enhance the training 
process of the model, resulting in increased accuracy. For instance, including road traffic intensity 
yields more refined estimations compared to relying solely on static factors such as the length of 
roads. For each year during the study period, the yearly averages were computed by taking a 
simple average of all the available values per pixel.  

The results showed that PM2.5 levels were above the recommended limits in many regions 
of CZ in 2018. The eastern part suffered from the highest values especially during the winter 
season where the concentrations reached unhealthy levels with values higher than 30 µg/m3. The 
part located on the Czech-Polish border is characterized as a significant industrial zone with 
abundant coal deposits and a long-standing presence of factories involved in power generation 
and manufacturing of coal specifically used for steel-making purposes. PM2.5 levels found to 
exceed the limits over Polish cities in winter seasons [39], airborne transport facilitate the inflow of 
particulate matter from Poland across borders, making it a crucial factor in contributing to elevated 
air pollution levels in the eastern part of CZ. The average concentrations of PM2.5 during summer 
season were almost consistent for all regions each year and lower than average concentrations 
during winter, which indicates high effects of heating on PM2.5 levels of especially over the regions 
that count on burning coal as the main heating source. The measures that were taken by the 
government to reduce the usage of coal played an important role in improving air quality in recent 
years. Moreover, the COVID-19 lockdown had a positive effect on PM2.5 levels in the year 2020 
due to decreased industrial activities and reduced transportation emissions [31]. The 
concentrations of PM2.5 in 2020 were less than 20 µg/m3 in all regions except the Moravian-
Silesian Region during winter months. The yearly average PM2.5 concentrations calculated over 
CZ during 2018 ̶ 2020 in this study align well with our previous findings [31], this serves as 
validation for the reliability of the dataset we generated using open PM2.5 data for conducting air 
quality studies throughout Europe. Even though the western part of the country had low 
concentrations of PM2.5, we recommend augmenting the number of ground monitors in this part to 
establish a more extensive network that can be utilized for subsequent analysis. We strongly 
encourage the ongoing reduction of coal usage for local heating, acknowledging the progress that 
has already been made in this regard. Besides using green energy especially in the eastern part of 
the country where the highest concentrations were found. 

CONCLUSION 

In this study, we estimated daily PM2.5 concentration over the Czech Republic with a high 
spatial resolution of 1 km throughout 2018-2020. A comprehensive data analysis was applied to 
tune and generalize the spatiotemporal PM2.5 predictive model. The model achieved high 
accuracy in estimating missing PM2.5 values with R2 of 0.85, RMSE of 5.42 µg/m3, MAE of 3.41 
µg/m3, and bias of -0.03 µg/m3. Leveraging machine learning techniques and incorporating 
auxiliary data in model construction can enhance our comprehension of both the temporal and 
spatial fluctuations in PM2.5 concentrations. Based on our findings, the eastern part of the country 
suffered from the highest concentrations especially over Zlín and Moravian-Silesian Regions where 
the values for 2018 winter, reached risky average concentrations of 30 µg/m3 and 35 µg/m3 
respectively. In contrast to 2018, PM2.5 levels dropped over the whole Czech Republic during the 
next two years reaching acceptable levels that are less than 20 µg/m3 in almost all regions during 
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the year 2020. The COVID-19 lockdown played a role in improving air quality due to reduced 
human activities. The generated dataset can be used to obtain a better understanding of the 
regional and seasonal PM2.5 concentrations throughout the study period. 
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