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ABSTRACT

Objectives: The objective of this study was to develop and validate an ovarian tumor

ultrasonographic  diagnostic  model  based  on  deep  convolutional  neural  networks

(DCNN) and compare its diagnostic performance with that of human experts. 

Material  and methods: We collected 486 ultrasound images of 192 women with

malignant  ovarian  tumors  and 617 ultrasound images  of  213 women with  benign

ovarian tumors, all confirmed by pathological examination. The image dataset was

split into a training set and a validation set according to a 7:3 ratio. We selected 5

DCNNs  to  develop  our  model:  MobileNet,  Xception,  Inception,  ResNet  and

DenseNet. We compared the performance of the five models through the area under

the curve (AUC), sensitivity, specificity, and accuracy. We then randomly selected 200

images from the validation set as the test set. We asked three expert radiologists to

diagnose  the  images  to  compare  the  performance  of  radiologists  and  the  DCNN

model.

Results: In the validation set, AUC of DenseNet was 0.997 while AUC was 0.988 of

ResNet, 0.987 of Inception, 0.968 of Xception and 0.836 of MobileNet. In the test set,

the accuracy was 0.975 with the DenseNet model versus 0.825 (p < 0.0001) with the

radiologists, and sensitivity was 0.975 versus 0.700 (p < 0.0001), and specificity was



0.975 versus 0.908 (p < 0.001).

Conclusions: DensNet performed better than other DCNNs and expert radiologists in

identifying malignant ovarian tumors from benign ovarian tumors based on ultrasound

images, a finding that needs to be further explored in clinical trials.
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INTRODUCTION

Ovarian cancer is one of the deadliest gynecological malignancies. According to

the Global Cancer Statistics 2020 [1], it is estimated to be 313 959 new cases and 207

252 deaths of ovarian cancer in 2020 in the world. The global 5-year survival is below

45% [2]. Ovarian cancer generally affects women over 50. The treatment is based on

surgery and chemotherapy.

Ultrasound examination is the most appropriate first-line diagnostic technique

for  the preoperative evaluation of  women with adnexal  lesions.  Ovarian cancer  is

usually diagnosed through ultrasound features such as the shape of the pelvic mass,

the  proportion  of  solid  tissue,  the  presence  of  ascites,  the  number  of  papillary

projections, and blood flow signals [3]. Whether a pelvic mass is benign or malignant,

an expert radiologist discriminates through these features. Radiologists are limited in

their  abilities,  and  their  judgment  is  subject  to  the  influence  of  their  working

experience [4]. The accuracy of discriminating a pelvic mass through ultrasound by

radiologists is approximately 82–92% [5]. Therefore, it is necessary to improve the

precision of ultrasonographic diagnosis of ovarian tumors. 

With the rapid development of artificial intelligence, the technique of computer-



assisted  image  diagnosis  in  medicine  has  made  substantial  strides  in  the  area  of

image-recognition  [6,  7].  Recent  advances  in  deep  convolutional  neural  networks

(DCNN)  have  shown  great  promise  for  ultrasound  diagnosis  of  diseases  such  as

thyroid  nodules  and  breast  nodules  [8,  9].  However,  studies  on  ultrasonographic

diagnosis of ovarian tumors through DCNN are few so far [10]. In contrast to typical

machine learning algorithms, DCNN does not employ features that human experts

identified as input. By taking raw image pixels and the corresponding class labels as

inputs, DCNN automatically learns feature representations in a generalized manner

[11]. 

One of the main challenges of DCNN models is vanishing gradients. A practical

solution is to increase the connection between layers. This problem was overcome in

some DCNN models such as ResNet [12], Highway Networks [13], and Stochastic

depth [14]. Although these algorithms have different network structures, they all take

advantage of short paths to link early and later layers. Therefore, we used the concept

of  DenseNet  [15]  to  design  our  model  architecture.  A DenseNet  network  is  an

improved  DCNN  model  that  continues  the  idea  mentioned  above  by  directly

connecting all layers to ensure maximum information flow between layers, using a

shortcut connection to pass input from one block to another. Thus, DenseNet may

offer great help for diagnosis of image-based examinations in clinical work.

Objectives

In this study, we aim to develop a DCNN-based ultrasound image analysis model

and evaluate its  performance for the automated diagnosis of ovarian tumors using

real-world ultrasound images compared with human radiologists.

MATERIAL AND METHODS

Dataset

We retrospectively collected ultrasound images of ovarian tumors from the First

Affiliated Hospital of Soochow University between May 1st, 2017, to June 30th, 2020.



Patients  were  included  based  on  the  following  two  eligibility  criteria.  The  first

requirement  was  that  they were  at  least  18  years  old.  Secondly,  all  patients  with

benign  or  malignant  ovarian  tumors  underwent  a  pathological  examination.  The

pathological examination reports were provided by the pathological department of the

First Affiliated Hospital of Soochow University. 

If the patients fulfilled the inclusion criteria, ultrasound images within 120 days

before the surgery were collected. The ultrasound imaging was manufactured by GE

Healthcare system. Image quality control was performed by excluding images not

containing tumor nidus based on the pathological review report, such as the uterus and

opposite  normal  ovaries.  The images  were  all  in  jpg  format.  As  a  final  step,  we

established our image dataset of 1103 ultrasound images, including 486 images of

malignant ovarian tumors from 192 patients and 617 images of benign ovarian tumors

from 213 patients.

The construction of the DCNN models 

The dataset was split into a training set and a validation set at random in a 7:3

ratio. The training set was utilized to learn the parameters of the ultrasound images,

and the validation set was used to estimate the prediction error for hyperparameter

tuning and model selection. The training set consisted of 340 images of malignant

ovarian tumors and 432 images of benign ovarian tumors. The validation set consisted

of 146 images of malignant ovarian tumors and 185 of benign ovarian tumors. Our

training dataset was augmented with image data to increase training data and avoid

overfitting artificially [16]. Image augmentation was not applied to the validation set.

It is reported that after adopting the data enhancement method, the accuracy of the

final  recognition  results  can  be  improved  by 3–4% [17].  We  used  the  following

methods to effectively enhance the ultrasound image data, including rotation ± 20°,

horizontal translation 20°, vertical translation 20°, zoom 20%, and horizontal flip. The

effect of augmentation of specific data is shown in Figure S1. 

Afterwards, we selected five different DCNNs to develop our diagnostic models,



including Inception [18], Mobilenet [19], Resnet, Xception [20], and DenseNet. We

trained 50 rounds  on  the  training  set  and evaluated  the  DCNN models  using  the

training set. The output of the last layer was shown as the predicted probability of

malignancy.

All experiments were conducted on a device with a Windows 10 system. The

hardware capabilities included NVIDIA RTX 3080 GPU (10GB memory), CPU AMD

5600x, and 32GB RAM. In the experiment process, the size of all the images was set

at 299 × 299 mm. We set the batch size to 16 due to GPU memory limitations. All

programs were implemented by TensorFlow and Keras. The optimizer was Stochastic

Gradient Descent, and the initial learning rate was 0.001. The momentum was 0.9,

and the weight decay was 0.0001. We set the epoch at 50. Moreover, the warm-up was

employed during the training process. A stable distribution could aid in maintaining

the deep stability of the model, which could help to slow down the early overfitting of

the mini-batch at the start of the model. 

Comparison with radiologists

Futhermore,  DenseNet  showed  the  best  performance  among  the  five  DCNN

models and was used to compare whether  the DCNN model  has advantages over

human  radiologists  in  recognizing  malignant  ovarian  tumors.  Then,  we  randomly

selected 200 images from the validation set as the test set. Three expert radiologists

were invited to analyze the 200 images and determine whether they were malignant.

The performance of human radiologists was then compared with the DenseNet model

on the test set. All radiologists had working experience more than six years and were

required to complete the task within two hours independently. 

Statistical analysis 

The  predictions  of  DCNN  models  and  radiologists  were  compared  with  the

pathological reports, considered the diagnostic gold standard. We applied the receiver

operating characteristic (ROC) curve to compare the diagnostic abilities of different



DCNN models in discriminating malignant ovarian tumors from benign ones.  The

ROC curve was drawn by plotting the true positive rate (sensitivity) against the false

positive rate (1-specificity) by varying the predicted probability threshold,  and the

area  under  the  curve  (AUC)  was  calculated.  We  also  calculated  the  accuracy,

sensitivity, specificity, positive predicted values (PPV) and negative predictive values

(NPV) to assess the diagnostic abilities of different DCNN models and radiologists.

Sensitivity is the fraction of recognizing malignancies in the malignant data verified

by pathological examination. Specificity is the fraction of recognizing benignities in

benign  data  verified  by  pathological  examination.  Accuracy  is  the  fraction  of

recognizing malignant/benign data in malignant/benign data verified by pathological

examination.  PPV  is  the  fraction  of  malignancies  verified  by  pathological

examination in malignancies diagnosed by DCNN models or radiologists. NPV is the

fraction of benignities verified by pathological examination in benignities diagnosed

by DCNN models or radiologists. We calculated 95% confidence intervals (CIs) for

sensitivity,  specificity,  accuracy,  PPV, and NPV with the Clopper–Pearson method

[21].  We  also  calculated  kappa  values  and  F1  scores.  Kappa  value  measures  the

agreement  between  the  prediction  of  one  diagnostic  method  and  the  pathological

reports. F1 score was calculated as the harmonic mean of sensitivity and PPV, which

measures the accuracy of one diagnostic method against the pathological report.

We used  the  radiologists’ average  sensitivity,  specificity,  and  accuracy when

comparing the performance with the DenseNet model. A binomial test was applied to

evaluate the difference in sensitivity, specificity, and accuracy between the DenseNet

model  and  the  radiologists.  A p-value  less  than  0.05  was  considered  statistically

significant.  The inter-radiologist  agreement rate and Fleiss’ kappa value [22] were

also calculated. The figure plotting and statistical analyses were done with GraphPad

Prism (version 8.0) and R software (version 4.0.3). 

The flowchart depicting the process of our study is shown in Figure 1.

RESULTS



The baseline characteristics of the training set and the validation set are shown in

Table 1. The median age of participants showed no apparent differences between the

training set and the validation set, while the median age was higher in the malignant

group than in the benign group [55 years (IQR 49–64) versus 35 years (30–45) in

training set;  56 years (IQR 49–66) versus 33 years (28–44) in the validation set].

Since  malignant  ovarian  tumors  usually  occur  in  older  women,  the  proportion  of

participants over 45 was 86.9% in the malignant group, while the proportion was only

24.8% in the benign group in the training set. The age of onset was similar in the

validation  set.  There  were  no  significant  differences  between  the  training  and

validation  sets  regarding  the  histology of  malignant  ovarian  tumors.  Most  of  the

participants  were  at  stage  III  or  IV,  according  to  the  International  Federation  of

Gynecology and Obstetrics (FIGO).

The performance of different DCNN models on the validation set after 50 rounds

of training is shown in Table 2, and the corresponding ROC curves are shown in

Figure  2a.  As  the  ROC  curves  show,  the  DenseNet  model  achieved  the  best

performance in identifying benign malignant ovarian tumors in the validation set, with

AUC of 0.997 (95% CI 0.995–1.000).  AUC were 0.988 (0.980–0.997) of ResNet,

0,987 (0.978–0.996) of Inception, 0.968 (0.952–0.984) of Xception and 0.836 (0.792–

0.880) of MobileNet. Moreover, the DenseNet model achieved the highest accuracy,

sensitivity, specificity, PPV, and NPV on the validation set. For the DenseNet model,

accuracy was 0.964 (0.938–0.981), sensitivity was 0.952 (0.904–0.981), specificity

was 0.973 (0.938–0.991), PPV was 0.965 (0.921–0.989), and NPV was 0.963 (0.924–

0.985).  For  the  ResNet  model,  accuracy was 0.952 (0.923–0.972),  sensitivity was

0.945 (0.895–0.976),  specificity was 0.957 (0.917–0.981), PPV was 0.945 (0.895–

0.976), and NPV was 0.957 (0.917–0.981). For the Inception model, accuracy was

0.903  (0.866–0.933),  sensitivity  was  0.973  (0.931–0.991),  specificity  was  0.849

(0.789-0.897), PPV was 0.835 (0.771–0.888), and NPV was 0.975 (0.938–0.993). For

the Xception model, accuracy was 0.906 (0.870–0.935), sensitivity was 0.863 (0.796–

0.914), specificity was 0.941 (0.896–0.970), PPV was 0.920 (0.861–0.959), and NPV



was 0.897 (0.845–0.936).  For  the  MobileNet  model,  accuracy was  0.773 (0.724–

0.817),  sensitivity  was  0.747  (0.668–0.815),  specificity  was  0.795  (0.729–0.850),

PPV was 0.741 (0.663–0.810), and NPV was 0.799 (0.734–0.854). Furthermore, the

DenseNet model also had a higher kappa coefficient and F1 score than other DCNN

models.  From  the  above  results,  the  DenseNet  model  has  the  best  diagnostic

capability compared to other DCNN models.

The performance of DenseNet versus the expert  radiologists  in the test  set is

shown in Figure 2b and Table 3. In the test set, the AUC value of the DenseNet model

was  0.999 (95% CI  0.998–1.000).  Among  the  radiologists,  accuracy ranged  from

0.810 (0.749–0.862) to 0.855 (0.798–0.901), sensitivity ranged from 0.625 (0.510–

0.731) to 0.763 (0.654–0.851), specificity ranged from 0.875 (0.802–0.928) to 0.933

(0.873–0.971),  PPV ranged from 0.792 (0.680–0.878) to 0.862 (0.746–0.939),  and

NPV ranged from 0.789 (0.712–0.853) to 0.853 (0.780–0.909). The interradiologist

agreement rate was 0.735 (95% CI 0.668–0.795; Fleiss’ kappa 0·603). Compared with

the  expert  radiologists,  the  DenseNet  model  achieved  higher  performance  in

discriminating malignant ovarian tumors from benign ones. The accuracy was 0.975

(0.943–0.992) with the DenseNet model versus 0.825 (0.765–0.875; p < 0.0001) with

the radiologists, and sensitivity was 0.975 (0.913–0.997) versus 0.700 (0.587–0.797; p

< 0.0001), and specificity was 0.975 (0.929–0.995) versus 0.908 (0.842–0.953; p <

0.001).  Furthermore,  the  DenseNet  model  also  had  higher  PPV,  NPV,  kappa

coefficient, and F1 score compared with the performance of the radiologists.

The ultrasound images misdiagnosed by DenseNet are shown in Figure S2. The

confusion matrices reporting the number of true positive, false positive, false negative

and  true  negative  results  achieved  by  Inception,  MobileNet,  ResNet,  Xception,

DenseNet, and the radiologists are shown in Table S1 and Table S2.

DISCUSSION

In  this  study,  an  automatic  DCNN  model  was  developed  and  validated  to

discriminate  malignant  from  benign  tumors  of  the  ovary  on  ultrasound  images.



According to the above results, DenseNet performed better than other DCNN models

in  the  validation  set  with  respect  to  AUC,  accuracy,  sensitivity,  and  specificity.

Consequently,  DenseNet  was selected for the comparison with expert  radiologists.

The diagnostic capability of the DenseNet model significantly exceeded the average

level of radiologists. 

At  present,  studies  on the  application  of  deep learning in  ovarian  cancer  are

limited.  The  application  fields  include  diagnosis,  pathological  classification  and

prognostic prediction. Meanwhile, magnetic resonance imaging and ultrasonography

essentially take equal share of studies focusing on image recognition of ovarian tumor

through deep learning. By February 2023, only 6 articles [23–28] on ultrasonographic

diagnosis  of  ovarian  tumor  through  deep  learning  were  retrieved.  A retrospective

single-center  study in  South Korea  [23]  constructed  a  CNN-CAE model  to  make

diagnoses through ultrasound images of ovarian tumors. The model consisted of two

parts.  The  first  part  could  automatically  remove  interfering  information  such  as

characters and rulers on ultrasound images through the CAE program, and the second

part was the DenseNet model, which was used for image diagnosis. The accuracy of

CNN-CAE model was 0.972 in distinguishing ovarian tumors from normal ovarian

tissues, and the accuracy was 0.901 in recognizing malignant ovarian tumors. Another

study  from  Taiwan,  China  [24]  tested  the  performances  of  ten  common  DCNN

models,  and  three  of  them with  the  highest  accuracy (ResNet-18,  ResNet-50 and

Xception) were selected to construct  an assembled diagnostic model.  The average

accuracy of the assembled model reached 0.922. However, none of the above deep

learning  models  have  been  compared  with  the  diagnostic  performance  of  expert

radiologists.  Chen  et  al.  [25]  included  a  number  of  ultrasound  images  from 422

patients with ovarian tumors and trained two deep learning models based on ResNet,

DLdecidion and DLfeature. Then, the two models were compared with radiologists and the

Ovarian-Adnexal  Reporting  and  Data  System  (O-RADS).  However,  DLdecidion and

DLfeature did  not  show  superior  diagnostic  performances  than  radiologists  and  O-

RADS. Radiologists from Shanghai represents the highest diagnostic level in China to



a certain extent. 

Another multicenter retrospective study [26] involving 106,400 patients showed

that the AUC of the DenseNet-121 model reached 0.911 in the internal validation set,

as well as 0.870 and 0.831 in the two external validation sets. With the assistance of

the DCNN model, the average diagnostic accuracy of radiologists was improved from

0.783 to 0.876, revealing the great potential  of DCNN model in  the assistance of

image diagnosis.

Since ultrasound examination is  the most crucial  assistant examination in  the

diagnosis of ovarian lesions, the accurate recognition of ovarian malignant tumors is

dispensable.  However,  the  discrimination  of  ovarian  tumors  is  entirely  up  to

radiologists,  leading  to  subjective  mistakes  in  accurate  recognition  and  consistent

interpretation  of  ovarian  tumors  by radiologists,  as  shown by the  inter-radiologist

agreement  rate  in  the  test  set.  Nevertheless,  DenseNet  is  highly  robust  and  can

significantly  avoid  this  defect  since  it  learns  the  feature  representations  without

subjectivity  [29].  Thus,  diagnostic  consistency  and  reproducibility  could  be

maintained by the DenseNet model effectively. On the one hand, fresh radiologists,

without much experience, may be able to improve the accuracy of their diagnoses

using the DenseNet model [27]. On the other hand, two radiologists are required to

perform the ultrasonographic diagnosis during clinical work, one with less experience

assessing the images to reach a primary diagnosis, and the other with more experience

responsible  for  checking  the  primary  diagnosis  and  offering  the  conclusion.  The

DenseNet model may relieve labor requirement, which may offer great help to remote

areas in the lack of medical resources. 

Furthermore,  the  DenseNet  model  has  great  application  potential.  Firstly,  the

DenseNet  model  works  well  for  other  diseases  in  addition  to  ovarian  tumors,  as

mentioned above. Moreover, it could be applied not only in ultrasound examination

but  also  in  computerized  tomography  (CT),  magnetic  resonance  imaging,  retinal

fundus  photographs  and  other  examinations  requiring  image  generation  [30,  31].

Finally, because the DenseNet model report is instantaneous, the diagnosis model may



be  integrated  into  the  ultrasound  workstations,  creating  a  real-time  diagnosis  of

dynamic images. 

However,  our  study has  some limitations.  Firstly,  we did  not  set  up external

validation  sets.  Secondly,  we  excluded  patients  with  borderline  ovarian  tumors

because it may lead to confusion of features between samples. And the sample size of

patients  with  borderline  ovarian  tumors  is  too  small  for  DCNN to  obtain  enough

effective features to ensure the accuracy of the DenseNet model.  Lastly,  the three

radiologists were asked to make their judgments through only one single ultrasound

image  in  our  study.  However,  in  the  real  world,  radiologists  usually  make  a

comprehensive judgment by referring to more than one image. Not only that, but the

blood flow signals also help them make diagnoses. Therefore, the diagnostic accuracy

of human radiologists based on multi-modality data would likely be higher than the

performance of DCNN.

CONCLUSIONS

To conclude, the Densnet model is valuable despite its limitations. In future, we

plan to include more ultrasound images from external medical centers. We will also

make efforts to refine our diagnostic model of ovarian tumors. And we hope our study

will make a step to improve the accuracy of the diagnoses of ovarian tumors and to

help the realization of AI-assisted ultrasonographic diagnoses in clinical work, which

could bring benefit to both the patients and the radiologists.
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Figure 1. The flowchart  of  the  study;  FAHSU — the First  Affiliated  Hospital  of

Soochow University

Figure  2. Performance  of  different  deep  convolutional  neural  network  (DCNN)

models and the radiologists in discriminating malignant ovarian tumors from benign

ones;  A. The receiver operating characteristic (ROC) curves for the performance of

different DCNN models in the validation set;  B. ROC for the performance of the

DenseNet model versus 3 radiologists in the test set; AUC — Area Under the Curve
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Table 1. Baseline characteristics of the study. Data are n (%) or median (IQR)

FIGO  —

International Federation of Gynecology and Obstetrics; NA — not applicable

Training set (n = 282) Validation set (n = 123)
Malignant

group

Benign

group

Malignant

group

Benign

group
Patients 137 145 55 68

Images 340 432 146 185
Age (years) 55 (49–64) 35 (30–45) 56 (49–66) 33 (28–44)

≤ 45 years 18 (13.1%) 109

(75.2%)

10 (18.2%) 52 (76.5%)

> 45 years 119

(86.9%)

36 (24.8%) 45 (81.8%) 16 (23.5%)

Histology
Serous 95 (69.3%) NA 46 (83.6%) NA
Mucinous 9 (6.6%) NA 3 (5.5%) NA
Endometrioid 13 (9.5%) NA 1 (1.8%) NA
Clear cell 13 (9.5%) NA 2 (3.6%) NA
Others 7 (5.1%) NA 3 (5.5%) NA

FIGO
Stage I 32 (23.4%) NA 8 (14.5%) NA
Stage II 16 (11.7%) NA 9 (16.4%) NA
Stage III 66 (48.2%) NA 23 (41.8%) NA
Stage IV 23 (16.8%) NA 15 (27.3%) NA



Table 2. Performance of different DCNN models, assessed on the validation set. Data

are n (95% CI) 

MobileNet Xception Inception ResNet DenseNet

Sensitivity 0.747

(0.668–

0.815)

0.863

(0.796–

0.914)

0.973

(0.931–

0.991)

0.945

(0.895–

0.976)

0.952

(0.904–

0.981)

Specificity 0.795

(0.729–

0.850)

0.941

(0.896–

0.970)

0.849

(0.789–

0.897)

0.957

(0.917–

0.981)

0.973

(0.938–

0.991)

Accuracy 0.773

(0.724–

0.817)

0.906

(0.870–

0.935)

0.903

(0.866–

0.933)

0.952

(0.923–

0.972)

0.964

(0.938–

0.981)

Positive predictive value 0.741

(0.663–

0.810)

0.920

(0.861–

0.959)

0.835

(0.771–

0.888)

0.945

(0.895–

0.976)

0.965

(0.921–

0.989)

Negative predictive value 0.799

(0.734–

0.854)

0.897

(0.845–

0.936)

0.975

(0.938–

0.993)

0.957

(0.917–

0.981)

0.963

(0.924–

0.985)

Kappa 0.541 0.809 0.807 0.902 0.926

F1 0.744 0.890 0.899 0.945 0.959

CI — confidence interval; DCNN — deep convolutional neural networks

Table 3. Performance of the DenseNet model versus radiologists, assessed on the test

set

Radiologist

1

Radiologist 2 Radiologist

3

Radiologist'

mean

DenseNet P-

value

Sensitivity 0.625

(0.510–

0.763  (0.654–

0.851)

0.713

(0.600-

0.700

(0.587–

0.975

(0.913–

<

0.0001



0.731) 0.808) 0.797) 0.997)

Specificity 0.933

(0.873–

0.971)

0.917  (0.852–

0.959)

0.875

(0.802-

0.928)

0.908

(0.842–

0.953)

0.975

(0.929–

0.995)

<

0.001

Accuracy 0.810

(0.749–

0.862)

0.855  (0.798–

0.901)

0.810

(0.749-

0.862)

0.825

(0.765–

0.875)

0.975

(0.943–

0.992)

<

0.0001

Positive predictive

value

0.862

(0.746–

0.939)

0.859 (0.756–

0.930)

0.792

(0.680-

0.878)

0.836

(0.725–

0.915)

0.963

(0.896–

0.992)

Negative

predictive value

0.789

(0.712–

0.853)

0.853 (0.780–

0.909)

0.820

(0.743-

0.883)

0.820

(0.744–

0.881)

0.983

(0.941–

0.998)

Kappa 0.585 0.692 0.597 0.625 0.948

F1 0.725 0.808 0.750 0.762 0.969



Figure S1. Data  augmentation  effect.  a)  Original  image.  b)  Rotate.  c)  Horizontal

translation. d) Vertical translation. e) Zoom. f) Horizontal flip



Figure  S2. Images

misdiagnosed by the DenseNet Model. a-b) Malignant images classified as be-nign. c-

d) Benign images classified as malignant



Table

S1. Confusion matrices of different DCNN models on the validation set



Table S2. Confusion matrices of radiologists and DenseNet on the test set
Confusion matrices of different DCNN models on the validation set

MobileNet Xception Inception
Truth Truth Truth

Prediction malignancy benign malignancy benign malignancy benign
malignancy 109 38 126 11 142 28

benign 37 147 20 174 4 157
ResNet DenseNet
Truth Truth

Prediction malignancy benign malignancy benign
malignancy 138 8 139 5

benign 8 177 7 180

Confusion matrices of radiologists and DenseNet on the test set
Radiologist 1 Radiologist 2 Radiologist 3

Truth Truth Truth
Prediction malignancy benign malignancy benign malignancy benign

malignancy 50 8 61 10 57 15
benign 30 112 19 110 23 105

DenseNet
Truth

Prediction malignancy benign
malignancy 78 3

benign 2 117


