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ABSTRACT
Objectives: The study investigated the stem cell expression profiles and differentiation capacities of mesenchymal stem 
cells (MSCs) from different tissues, specifically human eutopic endometrium MSCs (eut-MSCs), ectopic endometrium 
MSCs (ect-MSCs), and umbilical cord MSCs (UC-MSCs). Our aim was to identify any similarities in subpopulations among 
these MSCs and lay a foundation for MSCs repair. 

Material and methods: MSCs were isolated from endometrial tissue (n = 5), endometriosis tissue (n = 6), and umbilical 
cords (n = 7). Flow cytometry was used to examine cell phenotype, and three lineage tests were conducted to evaluate 
the differentiation capacity of the MSCs.

Results: Eut-MSCs expressed CD44 (98.00 ± 0.96%), CD73 (99.54 ± 0.02%), CD140b (99.16 ± 0.50%), CD146 (93.87 ± 2.27%), 
SUSD2 (50.76 ± 8.15%), and CD271 (2.1 ± 1.22%). Ect-MSCs expressed CD44 (98.23 ± 1.60%), CD73 (99.63 ± 0.04%), CD140b 
(98.13 ± 0.53%), CD146 (93.88 ± 3.19%), SUSD2 (49.33 ± 6.36%), and CD271 (2.85 ± 1.17%). UC-MSCs expressed CD44 (99.11 ±  
± 0.42%), CD73 (99.65 ± 0.12%), CD140b (99.84 ± 0.42%), CD146 (88.09 ± 4.20%), SUSD2 (72.87 ± 7.13%), and CD271 (6.19 ±  
± 2.08%). The expression of SUSD2 and CD271 in UC-MSCs was slightly but not significantly higher than that in ect-MSCs 
and eut-MSCs. However, CD44, CD73, CD140b, and CD146 showed similar expression levels in UC-MSCs, ect-MSCs, and eut-
MSCs. All three types of MSCs demonstrated the capacity to differentiate into osteoblasts, adipocytes, and chondrocytes.

Conclusions: Our findings indicate that ect-MSCs, eut-MSCs, and UC-MSCs have similar stem cell phenotypes and the 
ability to differentiate into three lineages.
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INTRODUCTION
Mesenchymal stem cells (MSCs) are primitive cells that 

possess the ability to self-renew and differentiate in multiple 

directions. They can be found in various tissues and organs, 

including bone marrow [1, 2], human adipose tissue, en-

dometrium, umbilical cord (UC), amniotic fluid, deciduous 

pulp, and skeletal muscle [3–5]. Due to their capacity for 

self-renewal and multi-lineage differentiation, MSCs are 

highly regarded as attractive candidates for regenerative 

medicine and tissue engineering [6, 7].

In recent years, bone marrow-derived MSCs (BM-MSCs) 

in disease treatment has declined due to potential com-

plications and limited availability of bone tissue [8]. As  

a result, researchers have focused on other somatic materials 

for tissue repair considering their easier accessibility. One 

such material is the endometrium of the uterus, known for 

its regenerative capacity. Studies have demonstrated the 

presence of a small group of highly proliferative MSCs with 

multi-directional differentiation potential in the human 

endometrium. These endometrial MSCs (eMSCs) are con-

sidered promising for endometrial repair since they may 

contribute to the partial repair of the functional layer during 

shedding cycles. Additionally, Sampson’s hypothesis sug-

gests that eMSCs may aberrantly migrate to the peritoneal 

or pelvic cavity, leading to the formation of endometriosis 

[9]. Gargett et al. [10] have identified the existence of stem 

cells in ectopic endometrial lesions. Similar to eutopic en-

dometrial stem cell colony-forming units (CFUs), endome-

triotic stromal cell CFUs have displayed multipotency and 

undergone over 25 passages before reaching senescence.

Furthermore, UC-derived MSCs (UC-MSCs) have emerged 

as therapeutically efficient alternatives for several diseases. 

They are isolated from Wharton’s jelly, which not only provides 

access to raw materials from medical waste tissue but also ex-

hibits stable biological properties, rapid proliferation, and low 

immunogenicity [11]. In vitro experiments have demonstrated 

the ability of UC-MSCs to differentiate into fat, bone, cartilage, 

heart, and neuronal cells [12]. Based on these advantages, 

UC-MSCs may serve as another potential material for repair-

ing endometrial lesions. However, it remains unclear whether 

UC-MSCs share similar phenotypic characteristics with MSCs 

derived from the endometrium.

This study hypothesized that eMSCs located in the basal 

layer lose their regenerative potential when the endome-

trium is severely damaged. Consequently, our objective was 

to explore the possibility of increasing the number of eMSCs 

for endometrial repair. For this purpose, UC-MSCs and ect-

MSCs were considered as suitable options due to their easy 

accessibility and fewer associated ethical concerns. As a first 

step towards mimicking eMSCs for the repair of severely 

damaged endometrium, we sought to determine if UC-MSCs 

and ect-MSCs exhibit similar phenotype and characteristics.

MATERIAL AND METHODS
Collection tissues 

Following the guidelines outlined in the declaration of 

Helsinki and adhering to ethical standards, approval was 

obtained from the ethical committee at Henan Province 

People’s Hospital. Prior to enrollment in the study, patients 

provided informed consent and approved the use of their 

tissue samples. Five healthy women with no prior medical 

interventions (mean age: 30.05 ± 5.67 years, during the fol-

licular phase), six patients diagnosed with endometriosis 

(mean age: 29.15 ± 6.55 years), and seven healthy pregnant 

women (mean age: 28.85 ± 6.55 years) were recruited. Nor-

mal endometrial tissues were collected through uterine 

curettage. Ectopic ovarian cyst tissues were obtained from 

patients diagnosed with endometriosis during surgery. Con-

firmation of the endometrial and endometriosis tissues 

was conducted by at least two pathologists. Umbilical cord 

samples were collected from healthy women undergoing 

cesarean section. Within 30 minutes of surgery, all samples 

were transferred from the hospital to the laboratory on ice, 

using a sterilized container containing Dulbecco’s Modi-

fied Eagle Media supplemented with Nutrient Mixture F-12 

(DMEM/F-12, Hyclone, USA). The tissues were immediately 

washed multiple times with phosphate buffer saline (PBS, 

Hyclone, USA). The UC was stripped of blood vessels, and the 

remaining UC tissues, endometrial tissues, and endometrio-

sis tissues were retained in a sterile culture dish containing 

DMEM/F12.

Hematoxylin-eosin (HE) staining & 
Immunohistochemical (IHC) analysis 

Eutopic/ectopic endometrial, and UC tissues were fixed 

in 4% formalin for paraffin section preparation. Each seg-

ment was sliced to a thickness of 3 microns. Hematoxylin-

eosin staining was performed to identify the morphological 

structure of the segments. Additionally, these slides were 

stained with vimentin or cytokeratin7 (CK7) antibodies us-

ing immunohistochemistry to determine the cell types. The 

rabbit SP detection kit (ZSGB, Beijing, China) was utilized 

for IHC analysis following the manufacturer’s instructions. 

Antigen retrieval was conducted using sodium citrate buffer 

(pH 6.0) in a pressure cooker. The slides were incubated 

overnight at 4°C with primary antibodies against vimentin 

(1:100 dilution; BS1491; Bio-world Technology) or CK7 (1:100 

dilution; 22208-1-AP; Protein tech). PBS was used as a nega-

tive control. Chromogenic reaction was achieved using the 

DAB kit (ZSGB, Beijing, China). 

Mesenchymal stem cell isolation  
and primary culture 

Fresh tissues were subjected to enzymatic digestion 

to isolate stromal cells. After washing the samples three 
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times with sterile PBS, they were cut into 1 mm3 fragments. 

Fragments from each sample were placed in a 15 mL tube 

containing 400 U/mL collagenase II (Sigma) and digested in 

a YKW-303 shaker incubator (Yong le kang, Hunan, China) at 

37°C for approximately 45 minutes with a speed of 120 rpm.  

The cell suspension was filtered through a 100 μm cell 

strainer (Corning, New York, USA), followed by a 40 μm cell 

strainer (Corning, New York, USA) to remove excess tissue 

debris. The final filtered liquid was centrifuged at 1500 

rpm for 8 minutes. The supernatant was discarded, and 

the cell pellets were resuspended in 2 mL complete culture 

medium DMEM/F-12 supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin-streptomycin mixture (Gibco, 

Grand Island, NY). The cells were seeded in a flask (25 cm2) 

in the complete culture medium and cultured at 37°C in a 

humidified incubator with 5% CO2. A similar isolation and 

culture protocol was employed for stromal cells from UC 

as for endometriosis samples. The culture medium was 

refreshed every 3 days. When reaching 90% confluence, 

the cells were passaged using 0.25% Trypsin-Ethylene Di-

amine Tetraacetic Acid (Trypsin-EDTA, Gibco, Grand Island, 

USA) at a ratio of 1:2. At each passage, a small portion of 

cells were frozen in FBS supplemented with 20% dimethyl 

sulfoxide (DMSO, Solarbio, Beijing, China) for future evalu-

ation. Differentiation studies were conducted on cells from 

passages 3 and 4.

Flow cytometry analysis
For flow cytometry analysis, cells from passages 3 and 4 

were harvested using 0.25% Trypsin-EDTA into flow tubes, 

then centrifuged at 1000 rpm for 5 minutes. The cells were 

washed with PBS, diluted to a density of 1×106/mL, and incu-

bated in the dark at 4°C for 30 minutes with 5µL of antibod-

ies (CD31-PE cy7, CD45-PerCP, SUSD2-PE, CD73-APC/cy7, 

CD140b-APC, CD146-FITC, CD271-FITC, CD146-Alexa647, 

and CD44-Alexa488) (Table S1). Afterward, the cells were 

washed with 1 mL of PBS and centrifuged at 1000 rpm for 4 

minutes. The supernatant was discarded, and the cells were 

resuspended in PBS. One tube without antibody served as 

a blank control. The antibody-labeled cells were analyzed 

using FACS Calibur flow cytometry (BD Canto, San Jose, 

USA), and the resulting data were analyzed using Flowjo 

10 software (Leonard Herzenberg, USA).

Three lineages differentiation
In this study, three lineages of differentiation were in-

vestigated. MSCs were seeded in a 24 well plate (Corn-

ing, New York, USA) at a density of 5 × 104 cells/well using  

500 µL of complete culture medium. 

For adipogenic differentiation, cells were cultured until 

they reached 80% to 90% confluence. The culture medium 

was then replaced with an adipocyte-genic medium con-

taining Human MSC Adipocyte-genic Basal Medium A and B,  

FBS, Penicillin-Streptomycin, Rosiglitazone, Glutamine, Insu-

lin, Dexamethasone, and IBMX (Cyagen, California, USA), ac-

cording to the manufacturer’s instructions. The medium was 

changed every 3 days for 21 days. The adipocyte capacity of 

MSCs was evaluated using oil red staining. Cells were fixed 

with 4% paraformaldehyde for 35 minutes, washed thrice 

with PBS, and then stained with 60% Oil Red solution for  

25 minutes (Cyagen, California, USA). After gently washing 

the plates twice with PBS, adipocyte-like cells were observed 

under a microscope (Olympus, Japan).

For osteogenic differentiation, to prevent MSCs from 

floating during induction, gelatin coating (Cyagen, Califor-

nia, USA) was applied to the surface of osteoblast-induced 

culture plates for 30 minutes. Afterwards, cells were seeded 

and cultured until they reached 60–70% confluence. The 

medium was replaced with an osteoblast-genic medium 

consisting of Human MSC Osteoblasts-genic Basal Me-

dium, FBS, Glutamine, Penicillin-Streptomycin, Ascorbate, 

β-Glycerophosphate, and Dexamethasone (Cyagen, Cali-

fornia, USA), as per the manufacturer’s instructions. Cells 

were then cultured in this medium for 2 weeks. The oste-

oblast-genic capacity was assessed using Alizarin red dye 

solution (Cyagen, California, USA). Cells were fixed with 4% 

paraformaldehyde for 30 minutes, washed twice with PBS, 

and stained with Alizarin red dye solution for 3–5 minutes. 

Following three washes with PBS, the cells were imaged 

using a microscope (Olympus, Japan).

For chondrogenic differentiation, once cells adhered 

to the surface of the well, the medium was replaced with  

a chondrocyte-genic medium containing Human Stem Cell 

Chondrocyte-genic Basal Medium, Ascorbate, Dexameth-

asone, ITS + Supplement, Proline, Sodium Pyruvate, and 

TGF-β3 (Cyagen, California, USA), following the manufac-

turer’s instructions. Cells were cultured for 21 days, with the 

medium changed every 2–3 days. To evaluate chondrogenic 

capacity, cells were stained with Alcian Blue. After fixing the 

cells with 4% paraformaldehyde for 30 minutes, they were 

washed twice with PBS and then stained with Alcian Blue (Cy-

agen, California, USA) for 30 minutes. Following three washes 

with PBS, images were captured using a microscope (Olym-

pus, Japan). Positive staining with Alcian Blue indicated the 

presence of acid mucopolysaccharides in the chondrocytes.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 

software (GraphPad Software Inc, version 5.00). Data were 

presented as mean ± standard error of the mean (SEM). Sta-

tistical comparisons between groups were conducted using 

the t-test or non-parametric Mann-Whitney test. A p-value 

of less than 0.05 was considered to indicate a statistically 

significant difference.
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RESULTS
Isolation and culture of eut-stromal cells,  

ect-stromal cells and UC-stromal cells
Figure 1 (A–F) presents the morphological characteris-

tics of freshly isolated primary stromal cells from eutopic, 

ectopic endometrium, and UC, respectively. In Figure 1A and 

D, primary stromal cells from the healthy endometrium were 

cultured for five days, showing a predominantly triangular 

morphology. Figure 1B and E display the cell morphology 

after changing the culture medium on the third day, where 

small clusters of cells are visible. In Figure 1C and F, the mor-

phology of primary stromal cells from the UC is shown on 

the fifth day after isolation, with approximately 90% of the 

cells exhibiting a long spindle-shaped appearance.

Identification of UC, ectopic–endometrium and 
eutopic-endometrium

Through HE staining, the cellular cytoplasm was stained 

pink, while the nuclei appeared blue. IHC results demon-

strated that vimentin was primarily expressed in stromal 

cells of all three tissues, whereas CK7 was mainly expressed 

in the glandular epithelial cells (Fig. 2).

Cell surface antigen expression
Phenotypic analysis (Fig. 3) using flow cytometry with 

CD45- and CD31-gating (to exclude peripheral blood mono-

nuclear cells and endothelial cells) revealed that primary 

stromal cells from UC expressed CD44 (99.11 ± 0.42%), CD73 

(99.65 ± 0.12%), CD140b (99.84 ± 0.42%), CD146 (88.09 ± 

Figure 1. Morphology of primary eut-stromal cells, ect-stromal cells and umbilical cord-stromal cells — eut-stromal cells (A, D), ect-stromal cells (B, 
E), umbilical cord-stromal cells (C and F)

Figure 2. Identification of eut-endometrial and ect-endometrial tissues and umbilical cord; Hematoxylin-eosin (HE) staining identified the types 
of tissues (A, F and K); Expression of vimentin and CK7 in eut-endometrial (B–E), ect-endometrial (G–J), and umbilical cord (L–O) tissues were 
confirmed. Positive cells were presented with brown-yellow staining (red arrow); Eut-endometrial tissues (n = 5), ect-endometrial tissues (n = 6), 
and umbilical cord (n = 7)
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4.20%), Sushi-domain-containing-2 (SUSD2) (72.87 ± 7.13%), 

and CD271 (6.19 ± 2.08%). Similarly, primary stromal cells 

from the eutopic endometrium expressed CD44 (98.00 ± 

0.96%), CD73 (99.54 ± 0.02%), CD140b (99.16 ± 0.50%), 

CD146 (93.87 ± 2.27%), SUSD2 (50.76 ± 8.15%), and CD271 

(2.1 ± 1.22%). Additionally, primary stromal cells from the 

ectopic endometrium expressed CD44 (98.23 ± 1.60%), 

CD73 (99.63 ± 0.04%), CD140b (98.13 ± 0.53%), CD146 

(93.88 ± 3.19%), SUSD2 (49.33 ± 6.36%), and CD271 (2.85 ± 

1.17%). Notably, UC-MSCs, eutopic endometrial MSCs (eut-

MSCs), and ectopic endometrial MSCs (ect-MSCs) strongly 

expressed CD44, with a percentage exceeding 98% (Fig. 4A). 

The expression percentages of CD73 and CD140b were over 

95% in all three types (Fig. 4B–C). Furthermore, the average 

expression of SUSD2 in primary MSCs from the UC slightly 

exceeded that in eut-MSCs and ect-MSCs, with an expression 

level above 75% in 5 out of 7 cases of primary MSCs from the 

UC. The percentage spread was more uniform among the 

five samples (Fig. 4F). There was no significant difference in 

the expression of CD146 and SUSD2 between eut-MSCs and 

ect-MSCs, as indicated by similar p-values (1.000 and 0.931, 

respectively) (Fig. 4D and F). While the expression ratio of 

CD271 cells was less than 10% in all three MSC types, the 

percentage of CD271-positive eut-MSCs and ect-MSCs was 

similar but lower than that in UC-MSCs (Fig. 4E).

Multi-lineage differentiation
Eutopic endometrium MSCs, ect-MSCs, and UC-MSCs 

differentiated into adipocytes, osteoblasts, and chondro-

cytes when cultured with the corresponding differentiation 

medium. Oil drop-like fat particles indicative of adipocyte 

differentiation was visible on day 10 for eut-MSCs and ect-

MSCs, while UC-MSCs displayed these particles on day 12. 

Formalin terminated the differentiation process once the fat 

particles reached 80% growth under the microscope (Fig. 

5). During osteoblast differentiation, formalin termination 

occurred when osteocytes fused to 80% on day 18. As a 

result, the red staining of eut-MSCs and ect-MSCs appeared 

brighter compared to UC-MSCs (Fig. 5). Similarly, after 21 

days of stimulation, chondrocyte differentiation was halted 

using formalin. The blue stain of UC-MSCs appeared lighter 

than that of eut-MSCs and ect-MSCs (Fig. 5). However, no 

Figure 3. Expression profiles of primary mesenchymal stem cells (MSCs) derived from eut-,ect-endometrium and umbilical cord. Flow cytometry of 
MSC markers. Cells were gated by CD31-&CD45-. Data were presented with mean expression percentage of stem cell markers; A. Eut-endometrial 
tissues (n = 5); B. Ect-endometrial tissues (n = 6); C. Umbilical cord (n = 7)
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changes were observed in eut-MSCs, ect-MSCs, and UC-

MSCs cultured with complete medium as negative control.

DISCUSSION
Eutopic endometrium MSCs and ect-MSCs share similar 

surface marker expression. This study was aimed to com-

pare and evaluate the potential enrichment of different 

components in MSCs derived from the eutopic endome-

trium, ectopic endometrium, and UC. This is a crucial step in 

identifying a reliable source of MSCs for endometrial repair.

Single endometrial CFUs have the ability to differentiate 

into classical mesodermal lineages and express typical MSC 

surface markers, namely CD44, CD73, CD90, and CD29 [13]. 

However, they lack the surface markers on hematopoietic 

stem cells and epithelial cells, such as CD45, CD34, and 

CD31. The expression profiles of MSCs differ significantly 

among different tissues [1]. The colocalization of eMSCs 

with CD140b, CD146, and SUSD2, which are derived from 

human endometrium, indicates a high enrichment of these 

markers in eMSCs [3, 5, 14]. These findings suggest the ex-

istence of multiple subpopulations of eMSCs with different 

phenotypes.

Our data demonstrated that the expressions of CD44 

and CD73 in UC-MSCs, eut-MSCs and ect-MSCs were all over 

98%. Previous studies have consistently shown that CD73+ 

UC-MSCs comprise more than 98% of the isolated cells [15]. 

Consistent with our results, Kang et al. found that the ex-

pression of CD44 and CD73 in human UC blood was 99.12% 

and 98.69%, respectively [16]; while Kao et al. demonstrated 

that the expressions of CD44 in eut-MSCs and ect-MSCs 

using flow cytometry were 98.6% and 97.6%, respectively 

[17]. Therefore, we speculated that UC-MSCs, eut-MSCs and 

ect-MSCs express CD44 and CD73 in significant quantities.

Sushi-domain-containing-2 was positive in approxi-

mately 4.2% endometrial stromal cells [18]. Our study ob-

served SUSD2 expression in 49.33% of ect-MSCs and 50.76% 

of eut-MSCs, respectively. However, UC-MSCs showed higher 

enrichment at 72.87% compared to eut-MSCs and ect-MSCs. 

The percentage of SUSD2 expression varied greatly among 

individual endometrial samples, ranging from 13.73% to 

99.85%, which may be attributed to differences in age and 

menstrual phase, requiring further confirmation with a larg-

er sample size. Previous reports suggested SUSD2 as a stem 

cell marker mainly detected in eut-MSCs. However, we found 

a similar expression percentage of SUSD2 in ect-MSCs and 

eut-MSCs, suggesting a comparable MSC subpopulation. 

CD271 expression percentages in our results were 6.19% in 

UC-MSCs, 2.1% in eut-MSCs, and 2.85% in ect-MSCs. CD271 is 

known for enriching BM-MSCs [19] but had a low occurrence 

rate of only 0.71% [20]. Our results indicated that UC-MSCs 

Figure 4. Percentage of the mesenchymal stem cells (MSCs) markers. The expression percentage of MSC markers: CD44 (A), CD73 (B), CD140b (C), 
CD146 (D), CD271 (E) and Sushi-domain-containing-2 (SUSD2) (F), respectively. Umbical cord (n = 7); Eutopic endometrial MSC (eut-MSC) (n = 5); 
Ectopic endometrial MSC (ect-MSC) (n = 6)
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rarely expressed CD271, and the expression of CD271 in 

human eut-MSCs and ect-MSCs was lower than that in UC-

MSCs. Several studies have demonstrated that MSCs can 

be isolated from the endometrium using CD140b+CD146+ 

phenotypes, exhibiting similar differentiation abilities to 

other MSCs. In our study, CD146+ stromal cells accounted 

for approximately 90% of UC-MSCs, eut-MSCs, and ect-MSCs, 

with the average percentage of CD140b+ cells exceeding 

98%. Rajaraman et al. [21] reported that eMSCs expressed 

69% CD140b and 37% CD146. Masuda et al. [22] showed that 

freshly isolated human endometrial SUSD2+ cells expressed 

MSC markers, including CD146 (28.3 ± 4.3%) and CD140b 

(73.1 ± 11.5%) [13]. To our knowledge, this was the first study 

to demonstrate CD140b expression in UC-MSCs [23, 24].

Undoubtedly, the use of eut-MSCs for repairing thin 

endometrium represents an ideal therapeutic strategy for 

endometrial lesion-associated infertility. However, several 

obstacles hinder the clinical application of eMSCs, such as 

their rarity in normal endometrium, donor age [1], and the 

invasive acquisition method. Therefore, finding a substitute 

for eMSCs would be advantageous. Since primary eut-MSCs 

and ect-MSCs express similar percentages of stem cell phe-

notypes, we speculate that ect-MSCs might serve as an ideal 

alternative for lesion endometrial therapy.

Figure 5. Multi-lineages differentiation of mesenchymal stem cells (MSCs). Adipose differentiation: the red lipid vacuoles stained by oil red; 
Osteoblastic differentiation: red phosphatases stained by Alizarin red dye solution; Chondrocytic differentiation: blue acid mucopolysaccharide 
stained by alcian blue. 

The differentiation assays for adipocytes, osteoblasts and chondrocytes were terminated at day 22, day18 and day21; A–C. Showed that eutopic 
endometrial MSCs (eut-MSCs) (passage 4), ectopic endometrial MSCs (ect-MSCs) (passage 4) and umbilical cord MSCs (UC-MSCs) (passage 4) began 
to differentiate into adipocytes, osteoblasts and chondrocytes, respectively; D. Representatively showed MSCs which were cultured with complete 
medium as negative control
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Moreover, studies have shown that UC-MSCs possess 

high proliferation ability, multifunctional differentiation ca-

pacity, and low immunogenicity, making UC-MSCs efficient 

alternatives for the treatment of various diseases [25–27], 

including improving damaged human endometrium. Re-

cently, multiple studies have reported on the potential of 

UC-MSCs to enhance endometrial repair [28–30]. These 

results provided a promising source of MSCs for repairing 

damaged or thin endometrium in women. 

CONCLUSIONS
In summary, based on our data, it could be inferred 

that that: (1) eut-MSCs and ect-MSCs had similar pheno-

types, with a high expression percentage for CD44, CD73, 

CD140b, CD146, and SUSD2; (2) SUSD2-positive expres-

sion was slightly higher in UC-MSCs compared to eut-MSCs 

and ect-MSCs without statistical significance; and (3) MSCs 

derived from these three tissues had the potential to dif-

ferentiate into adipogenic, osteogenic, and chondrogenic 

cells. This study laid the foundation for further research 

on the application of UC-MSCs and ect-MSCs in repairing 

damaged endometrium. However, this study had several 

limitations, including a small sample size and variations in 

menstrual phase among patients with endometriosis. These 

limitations should be addressed through future studies with 

larger sample sizes.
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SUPPLEMENTARY MATERIAL

Table S1. Antibodies for cell phenotypes of human endometrial cells and umbilical cord cells using flow cytometry
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