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A B S T R A C T
Background: Novel imaging and analysis techniques may offer the ability to detect noncalcified 
or high-risk coronary plaques on a non-contrast computer tomography (CT) scan, advancing car-
diovascular diagnostics. 

Aims: We aimed to explore whether machine learning (ML) radiomic analysis of low-dose high-reso-
lution non-contrast electrocardiographically (ECG) gated cardiac CT scan allows for the identification 
of noncalcified coronary plaque characteristics. 

Methods: We prospectively enrolled 125 patients with noncalcified plaques and adverse plaque 
characteristics (APC) and 25 controls without visible atherosclerosis on coronary CT angiography 
(CCTA). All patients underwent non-contrast CT exam before CCTA. Four hundred and nineteen 
radiomic features were calculated to identify the presence of any coronary artery disease (CAD), 
obstructive CAD (stenosis >50%), plaque with ≥2 APC, degree of calcification, and specific APCs. ML 
models were trained on a training set (917 segmentations) and tested (validation) on a separate set 
(292 segmentations). 

Results: Among the radiomic features, 88.3% were associated with a plaque, 0.9% with obstruc-
tive CAD, and 76.4% with the presence of at least two APCs. Overall, 80.2%, 88.5%, and 36.5%, of 
features were associated with calcified, partially calcified, and noncalcified plaques, respectively. 
Regarding APCs, 61.1%, 61.8%, 84.2%, and 61.3% of features were associated with low attenuation 
(LAP), napkin-ring sign (NRS), spotty calcification (SC), and positive remodeling (PR), respectively. 
ML models outperformed conventional methods for the presence of plaque obstructive stenosis, 
and the presence of 2 APCs, as well as for noncalcified plaques and partially calcified plaques, but 
not for calcified plaques. ML models also significantly outperformed identification of LAP and PR, 
but neither NRS nor SC.

Conclusion: Radiomic analysis of non-contrast cardiac CT exams may allow for the identification 
of specific noncalcified coronary plaque characteristics displaying the potential for future clini-
cal applications.
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INTRODUCTION
According to recent cardiology guidelines, 
coronary computed tomography angiogra-
phy (CCTA) plays a leading role in diagnostics 
of symptomatic patients with chest pain [1]. 
Traditional CCTA image analysis is based on 

radiodensity, qualitative and quantitative 
stenosis, and plaque assessment and provides 
high negative predictive value to exclude 
significant stenosis or coronary artery disease 
(CAD) [2]. CCTA also allows for the identi-
fication of adverse plaque characteristics 

mailto:mkruk@ikard.pl


w w w . j o u r n a l s . v i a m e d i c a . p l / k a r d i o l o g i a _ p o l s k a 979

Mariusz Kruk et al., Noncalcified coronary plaque characteristics on non-contrast cardiac CT

W H A T ’ S  N E W ?
Diagnosis of coronary atherosclerosis on computed tomography angiography (CT) has significant therapeutic implications. Novel 
imaging and analysis techniques may offer the ability to detect disease signs with less risk for the patient. We explored whether 
artificial intelligence may help to detect noncalcified or high-risk coronary plaques on non-contrast CT scan. The use of machine 
learning radiomic models allowed for improved detection of coronary plaques, obstructive stenosis, or noncalcified plaques, 
compared to conventional methods, based on non-contrast cardiac CT scan. Also, machine learning radiomic models improved 
identification of adverse plaque characteristics, including low attenuation plaque or positive remodeling. To sum up, artificial 
intelligence improves detection of noncalcified high-risk coronary plaques on non-contrast CT scan, advancing cardiovascular 
diagnostics. 

(APCs) predictive of outcomes, including napkin ring sign, 
presence of low attenuation plaque, positive remodeling, 
or spotty calcifications [3]. Technological progress in CT 
imaging encompasses both post-processing methods and 
hardware technologies. CT-based images contain much 
more information than can be accessed by the human eye 
and traditional analytic tools.  Radiomics explores spatial 
distribution of signal intensities and pixel interrelationships 
and decodes latent patterns facilitating precision pheno-
typing of diseases based on imaging [4]. Regarding the 
hardware, the most advanced contemporary CT scanners 
enable acquiring high-resolution, electrocardiographically 
(ECG) gated coronary scans with low radiation doses. 

We performed a proof-of-concept study, exploring 
whether machine learning (ML) radiomic analysis of low-
dose high-resolution non-contrast ECG-gated coronary 
artery CT scan allows for the identification of specific cor-
onary pathologies, including noncalcified plaque, degree 
of calcification of the plaque, obstructive stenosis, and 
APCs. The ability to use non-contrast CTs to characterize 
CAD could potentially translate into future clinical appli-
cations, like improved risk assessment or pre-screening 
of individuals before CCTA exams, leading to a paradigm 
change in coronary diagnostics with CT. 

METHODS

Study design and participants
This was a prospective single-center pilot study. The insti-
tutional review board approved the study protocol, and 
all study participants provided written informed consent. 
All procedures used in this study were in accordance with 
local regulations and the Declaration of Helsinki. 

The study aimed to enroll 125 study patients with 
coronary atherosclerosis and with the presence of at 
least one noncalcified coronary plaque exhibiting APC 
(inclusion criterion) and 25 controls without visible ather-
osclerosis on CCTA. Hypertension was defined as a systolic 
blood pressure ≥140 mm Hg, diastolic blood pressure 
≥90 mm Hg or use of blood-pressure-lowering medica-
tion. Current smokers were defined as individuals who 
had smoked any tobacco in the previous 12 months. Hy-
percholesterolemia was defined as a fasting cholesterol 

level ≥5.2 mmol/l or statin/fibrate treatment before the 
index examination. Diabetes was defined as a reported 
diagnosis from the treating physician, use of insulin, oral 
hypoglycemic or insulin-sensitizing agent, or fasting 
glucose level ≥7 mmol/l. Family history of coronary artery 
disease was defined as the occurrence of myocardial 
infarction, coronary revascularization, stroke, or sudden 
death before the age of 55 years in male or 65 years in 
female 1st-degree relatives.

Between June 2018 and December 2020, we selected 
174 patients from 8250 patients undergoing CCTA exami-
nation at our center based on the above criteria; 24 refused 
to participate. The 150 remaining were enrolled within 
30 days of CCTA. 

There were no prior studies on radiomic analysis of 
non-contrast coronary CT scans, not permitting appropri-
ate power calculations for sample size. A patient sample 
including 125 subjects with at least one noncalcified plaque 
with APC plus 25 subjects without coronary atherosclerosis 
(with the assumption that at least 3 plaques per patient 
are available for analysis) was carefully considered based 
on previous radiomic analyses, our study aims, and also 
factoring in feasibility of segmentation work [5–7]. 

Coronary CT protocol 
CCTA scans were performed with a 3rd generation 
2 × 192 slice (SOMATOM® Force, Siemens Healthineers AG) 
dual-source CT scanner. Sublingual nitrates (0.8 mg) were 
administered routinely to all patients before any scan. In 
patients with heart rate <70 before the scan and fulfilling 
the clinical screening criteria, non-contrast high-resolution 
CT examination was performed before the CCTA study:  
prospectively ECG-triggered high-pitch spiral (Turbo Flash) 
acquisition was performed in a craniocaudal direction at 
90 kV using and 300 mAs. Images were reconstructed us-
ing iterative reconstruction strength ADMIRE 3 (ADMIRE, 
Siemens Healthcare) with 0.6 mm slice thickness, and an 
increment of 0.6  mm medium soft convolution kernel 
(Bv36). Next, standard CCTA examination was performed. 
The CT examinations were then reviewed using commer-
cially available software (Syngo Via, Siemens Healthcare) 
for fulfilling CT entry/exclusion criteria by two cardiologists 
(MK/CK) experienced in CCTA evaluation. 
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CAD assessment and segmentation 
A coronary plaque was defined as any discernible coronary 
artery wall thickening identifiable in at least two per-
pendicular imaging planes, causing at least 10% luminal 
stenosis in a vessel with reference diameter ≥2.5 mm [8, 
9], and the applied high-risk criteria included the presence 
of napkin ring sign (a plaque cross-section with a central 
area of low CT attenuation, which is surrounded by ring-
shaped higher attenuation plaque tissue), or low atten-
uation plaque (a plaque cross-section with a visible area 
of low CT attenuation, with confirmed presence of voxels 
<30 Hounsfield units [HU]) and positive remodeling (an 
outer vessel diameter >10% than the mean of the diameter 
of the segments immediately proximal and distal to the 
plaque), and spotty calcification (a <3 mm calcified plaque 
component) [10]. In 125 enrolled patients, all coronary 
plaques and normal (without visible atherosclerosis) 
coronary artery segments were investigated. In control 
patients, two proximal coronary segments with the fewest 
motion artifacts were selected for analysis. The analyzed 
segments were carefully paired on contrast and non-con-
trast studies using anatomic landmarks (side branches, 
calcifications). CT image processing was performed 
at the core lab using plaque segmentation software  
(QAngioCT, version 3.2; Medis Medical Imaging Systems 
bv), as reported previously [11]. The segmentation mask 
encompassed the whole vessel (lumen plus wall), and it 
was extracted in the original image space for radiomic 
analysis as DICOM (Digital Imaging and Communications 
in Medicine) images. 

CCTA-based outcomes 
The following plaque-based outcomes were chosen for  
modeling purposes: 
1.	 General categories based on the presence of any 

plaque, obstructive CAD (>50% luminal stenosis), or 
plaque with ≥ 2 adverse plaque characteristics (APCs). 

2.	 Categories based on plaque composition, including 
calcified, partially calcified, or noncalcified plaque. 

3.	 Categories based on the presence of specific APCs, 
including low attenuation plaque, positive remodeling, 
napkin-ring sign, or spotty calcification [11]. 

Radiomic calculations
Following segmentation, the resulting 3D volumes of 
interest (VOI) were loaded into open source Radiomics 
Image Analysis (RIA, v.1.6.0) software [12]. Altogether, 
44 first-order parameters describing the histogram of HU 
values of the VOI were calculated. We also discretized our 
HU values using 8, 16, and 32 equally sized bins to calculate 
texture-based metrics. For each discretized image, 114 gray 
level co-occurrence matrix and 11 gray level run length 
matrix derived parameters were calculated to enumerate 
texture. Altogether, 419 radiomic features were calculated 
to describe the morphology of each lesion.

ML validation
To validate our findings using conventional statistical tech-
niques, we tested whether ML models using the radiomic 
features as inputs could identify the plaque characteristics 
in a test set. For this, we randomly divided our patients into 
a training set (75%: 110 of 147 individuals) with 917 seg-
mentations and a separate test set (25%: 37 of 147 indivi
duals) with 292 segmentations. The test set was only used 
at the end to evaluate the performance of the ML models 
following training.

Overall, seven ML models were trained using a previ-
ously described ML pipeline [13]. The hyperparameters of 
the regularized logistic regression (L1, L2 penalty), k-nearest 
neighbors, random forest, naïve Bayes, Gaussian process, 
decision tree, and fully connected neural network models 
were randomly chosen from predefined parameter spaces 
to find the optimal model during the training process. Ex-
act hyperparameter distributions of the models can be 
found in the published source code [13]. This was repeated 
1000 times. The diagnostic accuracy using a given hyper-
parameter set was defined as the area under the receiver 
operating characteristic curve (AUC and ROC) evaluated 
using 5-fold cross-validation. The ML model providing the 
best results on the training set was then evaluated on the 
test set. All ML models were built using scikit-learn (v.1.0.1) 
in the Python environment (v.3.9.7) [14, 15].

Statistical analysis
Continuous variables were presented as means and stand-
ard deviations (SD) or medians and interquartile ranges 
(IQR) as appropriate, while categorical values as frequencies 
and percentages. 

We used linear mixed models (LMM) to account for the 
intra-patient clustering by adding a random intercept at the 
patient level to the model using the lm4 package (v 1.1–27). 
First, we used a univariate LMM to assess whether any of 
our plaque characteristics are associated with the given 
radiomic features. Next, as several different factors may 
influence radiomic signatures, we corrected our LMMs 
for kVp and mAs settings of the image that might affect 
radiomic feature values [16]. Furthermore, we corrected for 
noncalcified (between –100 and 350 HU), low-attenuation 
noncalcified (between –100 and 30 HU), calcified (above 
350 HU), and the total volume of the VOI, as volume is 
inherently correlated with radiomic features [17].

To model the radiomic signature network describing 
the latent morphological features of the VOI, we calculated 
intra-pair similarities between the features. To correct for 
the clustering, we used Nakagawa’s conditional R2 values 
from individual LMMs between each feature using the 
performance package (v. 0.7.2) [18]. We then converted 
the resulting similarity matrix to a distance matrix defined 
as 1-R2. This distance matrix was used for hierarchical 
clustering of the features. We used the gap statistic 
to derive the optimal number of latent characteristics  
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(clusters) among our radiomic signatures using the facto-
extra package (v 1.0.7). 

The ROC of the best ML model for each plaque out-
come was compared to the ROC of the volume of the VOI, 
noncalcified, calcified, and low attenuation noncalcified 
volumes using the Venkatraman test with the pROC pack-
age (v. 1.17.0.1) [19].

A two-sided P-value of 0.05 was used for conventional 
analyses while for all radiomic comparisons, a Bonferroni 
corrected P-value smaller than 0.00012 (0.05/419) was 
considered significant. All calculations were done in the  
R environment (v. 4.0.2) [20].

RESULTS

Baseline characteristics
Of 150 enrolled patients, 3 were excluded from analysis 
due to coronary calcification blooming artifact interfering 
with the target noncalcified plaque with APC. Therefore, 
the study group included 147 subjects (85 males, aged 
61.6 [10.8] years), in whom 1216 segments were evaluat-
ed. In these segments, CAD was present in 671 (55.2%), 
obstructive CAD in 145 (11.9%), and plaques with at least 
two adverse characteristics in 217 (17.9%) cases. There were 
220 (18.1%) partially calcified plaques and 122 (10.0%) 
calcified plaques. Considering adverse plaque charac-
teristics, there were 94 (7.7%) plaques with napkin-ring 
sign, 151 (12.4%) plaques containing spotty calcification, 
268 (22.0%) presenting with positive remodeling, and 
212 (17.4%) had a low attenuation component. 

All patients were white Caucasian, and their baseline 
characteristics are presented in Table 1. 

Association between plaque characteristics and 
radiomic features — univariate analysis
In univariate analysis, we found 90.0% (377/419), 55.8% 
(234/419), and 80.9% (339/419) of the features to be asso-
ciated with the presence of any plaque, obstructive CAD, 
and plaques with at least two APCs, respectively. P-values 
were smallest for the presence of any plaque, followed by 
the presence of at least two APCs and obstructive CAD  
(P <0.0001 for all pairwise comparisons). 

Regarding plaque composition, 56.1% (235/419) were 
associated with noncalcified plaque, 91.9% (385/419) 
with partially calcified plaque, and 84.7% (355/419) with 
calcified plaque. All pairwise comparisons were significant 
(P <0.0001). Manhattan plots of P-values are presented in 
Figure 1A.

Regarding adverse plaque characteristics, low-atten-
uation, positive remodeling, napkin-ring sign, and spotty 
calcification were associated with 71.8% (301/419), 79.5% 
(333/419), 69.0% (289/419), and 89.0% (373/419) of the 
features, respectively. The P-values were the smallest for 
spotty calcification, followed by positive remodeling, low 
attenuation, and napkin ring sign. All pairwise comparisons 

were significant (P <0.05). Manhattan plots of P-values are 
presented in Figure 1B.

Association between plaque characteristics and 
radiomic features — multivariate analysis
As scanner settings and volumetric properties of the 
segmented volumes may influence radiomic features, we 
corrected our results for kVp, mAs, plaque characteristics: 
noncalcified, low attenuation noncalcified, calcified, and 
the total volume of the segmentation. After correction, 
we found a similar proportion of variables to be signifi-
cant for the presence of any plaque (88.3% [370/419]) and 
plaques with at least two APCs (76.4% [320/419]), but four 
parameters (0.9%) showed significant associations with ob-
structive CAD. Fewer variables were significantly associated 
with partially calcified (88.5% [371/419]), calcified (80.2% 
336/419), and noncalcified plaques (36.5% [153/419]) in 
univariate analysis.  

Regarding APCs, in multivariate analyses, slightly few-
er variables were significant for low attenuation: 61.1% 
(256/419), napkin-ring sign: 61.8% (259/419), and spotty 

Table 1. Baseline patient characteristics

Study group 
(n = 147)

Clinical characteristics

Age, years (SD) 61.6 (10.8)

White, n (%) 147 (100)

Weight, kg (SD) 81.0 (16.3)

Height, cm (SD) 167.4 (14.3)

Diabetes, n (%) 15 (10.2)

Hypertension, n (%) 69 (46.9)

Current smoking, n (%) 20 (13.6)

Family history of coronary artery disease, n (%) 12 (8.2)

Hyperlipidemia, n (%) 73 (49.7)

Blood

Serum creatinine, mg/dl (SD) 0.88 (0.18)

Glucose, mmol/l (IQR) 1.9 (1.7–2.2)

HDL cholesterol, mg/dl (IQR) 1.3 (1.1–1.6)

LDL cholesterol, mg/dl (IQR) 2.6 (2.0–3.2)

Triglycerides, mg/dl (IQR) 1.2 (0.9–1.8)

High sensitivity-CRP, g/l (IQR) 0.13 (0.08–0.29)

Hemoglobin, g/dl (SD) 14.2 (1.2)

Medications 

Antiplatelet agents, n (%) 63 (42.9)

Beta-blocking agents, n (%) 49 (33.3)

Agents acting on the renin-angiotensin system, n (%) 25 (17.0)

Calcium channel blockers, n (%) 13 (8.8)

Statins, n (%) 61 (41.5)

Diuretics, n (%) 12 (8.2)

Anti-diabetic agents, n (%) 15 (10.2)

CT scan 

kV (SD) 84.1 (5.8)

mA (SD) 553.9 (17.0)

CCTA dose, mGy*cm (SD) 520.4 (219.6)

Non-contrast high-resolution CT scan, mGy*cm (SD) 37.0 (4.2)

Abbreviations: CT, computed tomography; CCTA, coronary computed tomography 
angiography; cm, centimeter; IQR, interquartile range; kV, kilo Volt; mA, mili Amper; 
mGy, mili Grey, SD, standard deviation



K A R D I O L O G I A  P O L S K A

w w w . j o u r n a l s . v i a m e d i c a . p l / k a r d i o l o g i a _ p o l s k a982

Figure 1. A. Manhattan plot of P-values for associations between radiomic features and qualitative plaque characteristics. B. Manhattan plot 
of P-values for associations between radiomic features and adverse plaque characteristics
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Figure 2. Heatmap of radiomic feature similarities and hierarchical clustering dendrogram with corresponding P-values for associations 
between radiomic features and plaque characteristics

Heatmap And p Values For Associations Between Radiomics Features and Plaque Characteristics
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calcification: 84.2% (353/419), and significantly fewer pa-
rameters were significant for positive remodeling (61.3% 
[257/419]). The magnitude of P-values showed similar 
tendencies as univariate analysis.

Association between plaque characteristics  
and latent morphological features
As individual radiomic features may be representations of 
the same latent morphology, we conducted hierarchical 
clustering of our radiomic features based on the similarities 
between each feature. Using the cluster-corrected Nakaga-
wa’s R2 value as a similarity measure, we created a heatm-
ap representing the similarity network of the radiomic 
features. We built a hierarchical clustering dendrogram to 
identify latent morphological features represented by the 
radiomic signatures. According to the gap statistic, the 
ideal number of latent features (clusters) was eight. We 
plotted the P-values from each multivariate analysis for 
each compositional plaque characteristic (i.e. degrees of 
calcification and individual APCs) at the position of each 
radiomic feature. We found that none of the clusters were 
associated specifically with any one of the plaque charac-
teristics. Results are presented in Figure 2.

Magnitude of associations between radiomic 
features and plaque characteristics
To further elucidate whether the radiomic clusters repre-
senting latent morphological features are specifically asso-

ciated with given plaque types, we plotted the magnitude 
of the association (effect size: standardized β) in relation to 
the P-values using volcano plots. We found that elements 
of the 4th and 6th clusters, which contained most of the 
features, had the largest effect sizes. However, we failed to 
identify any clear clusters among the associations (Figure 3).

Prediction of plaque characteristics using ML
To validate our findings, we built ML models to predict 
each plaque outcome using 917 segmentations of 110 in-
dividuals. The models were then tested in a separate set of 
37 individuals with 292 segmentations. We found that the 
best radiomics-based ML model outperformed the best 
conventional method to identify the presence of plaque 
(area under the curve [AUC], 0.84 vs. 0.77; P <0.0001), 
obstructive stenosis (AUC, 0.75 vs. 0.74; P = 0.003), pres-
ence of  2 APCs (AUC, 0.75 vs. 0.70; P <0.0001), presence 
of noncalcified plaque (AUC: 0.67 vs. 0.57; P <0.0001), and 
the presence of partially calcified plaque (AUC, 0.87 vs. 0.85; 
P = 0.023).  However, the radiomics-based MLE model did 
not outperform the best conventional method in the case 
of calcified plaque (AUC, 0.85 vs. 0.87; P = 0.617). Results 
are presented in Figure 4 and Table 2. Regarding APCs, 
the best radiomics-based ML model outperformed con-
ventional parameters to identify low attenuation plaque 
(AUC, 0.86 vs. 0.72; P <0.0001) and positively remodeled 
plaque (AUC, 0.71 vs. 0.66; P <0.0001). However, it failed to 
outperform conventional metrics to identify napkin-ring 
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Figure 3. A. Volcano plot of P-values and effect sizes for associations between radiomic features and qualitative plaque characteristics.  
B. Volcano plot of P-values and effect sizes for associations between radiomic features and adverse plaque characteristics
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Figure 4. Diagnostic accuracy of radiomics-based machine learning in identifying qualitative plaque characteristics in the patient validation set
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sign (AUC, 0.74 vs. 0.71; P = 0.325) and spotty calcification 
(AUC, 0.81 vs. 0.76; P = 0.289). Results are presented in 
Figure 5 and Table 3.

DISCUSSION
We found that ML-based radiomic analysis of the low- 
-dose, high-resolution, non-contrast CT scan allows for the 
identification of specific coronary plaque characteristics, 
including the presence of noncalcified plaque compo-
nents and APCs. These preliminary findings advance 
novel research pertaining to high-resolution non-contrast 
coronary imaging.

The study was based on the assumption that the pres-
ence of coronary atherosclerosis and plaque characteristics 
had a unique pattern on non-contrast CT images that might 
not be visible to the naked eye but could be identified using 
radiomics-based ML. Therefore first, we aimed to assess 
whether the plaques could be identified on the images 
(segments with plaques vs. without plaques). It was found 
that the majority of radiomic features differed between 
coronary segments with and without CAD, even though the 
segmentations contained not only the vessel wall but also 

the lumen. Furthermore, significant differences were ob-
served also in high-risk (i.e. two APCs) plaques and all of the 
individual APC features, even after correcting for imaging 
and volume characteristics. Weaker associations were found 
for the presence of significant stenosis and noncalcified 
plaques probably because plaque characteristics were not 
necessarily associated with stenosis and noncalcified plaque 
components showed similar HU values as the lumen with-
out contrast. Current results show that the machine-derived 
representation of plaque morphology can identify specific 
plaque characteristics on non-contrast CT images, while the 
classification scheme developed by humans works only on 
CCTA images. To validate these results, radiomics-based ML 
models predicting each plaque characteristics were built, 
and their predictive power was evaluated on a separate test 
set. These trained ML models outperformed the classical 
metrics based on density measures for detection of all but 
napkin ring sign and calcified plaques. The reason for this 
might be that in the case of napkin-ring sign, its definition 
indicates that the low-density core is apparently next to 
the lumen, but as the lumen cannot be depicted on the 
non-contrast scans, the algorithm cannot identify this 

Table 2. AUC and P-values from ROC analysis to identify qualitative plaque characteristics

  Seg-
men-
tation 

volume

Noncal-
cified 

volume

Calci-
fied 

volume

Low 
attenu-

ation 
noncal-

cified 
volume

Regu-
larized 
logistic 
regres-

sion

k-ne-
arest 

neigh
bors

Ran-
dom 

forest

Naïve 
Bayes

Gaus-
sian 

process

Deci-
sion 
trees

Neural 
network

Presence of plaque  

AUC training set 0.51 0.50 0.74 0.55 0.80 0.74 0.78 0.77 0.78 0.50 0.79

AUC test set 0.54 0.53 0.77 0.51 0.84

P-value compared to ML 
on test set

<0.0001 <0.0001 <0.0001 <0.0001              

Obstructive stenosis (>50%)  

AUC training set 0.50 0.52 0.69 0.55 0.72 0.61 0.70 0.70 0.71 0.50 0.71

AUC test set 0.44 0.45 0.74 0.46 0.75

P-value compared to ML 
on test set

<0.0001 <0.0001 0.003 <0.0001              

Presence of 2 adverse plaque 
characteristics

 

AUC training set 0.52 0.51 0.65 0.52 0.70 0.63 0.69 0.69 0.69 0.50 0.69

AUC test set 0.60 0.60 0.70 0.42 0.75

P-value compared to ML 
on test set

<0.0001 <0.0001 <0.0001 <0.0001              

Noncalcified plaque  

AUC training set 0.52 0.53 0.61 0.54 0.66 0.60 0.68 0.66 0.66 0.50 0.66

AUC test set 0.55 0.54 0.57 0.56 0.67

P-value compared to ML 
on test set

<0.0001 <0.0001 <0.0001 <0.0001              

Partially calcified plaque  

AUC training set 0.50 0.51 0.84 0.58 0.85 0.81 0.84 0.84 0.83 0.50 0.84

AUC test set 0.49 0.50 0.85 0.54 0.87

P-value compared to ML 
on test set

<0.0001 <0.0001 0.023 <0.0001              

Calcified plaque  

AUC training set 0.53 0.55 0.82 0.59 0.83 0.67 0.77 0.80 0.79 0.50 0.74

AUC test set 0.51 0.52 0.87 0.60 0.85

P-value compared to ML 
on test set

<0.0001 <0.0001 0.617 <0.0001

Abbreviations: AUC, area under the curve; ML; machine learning; ROC, receiver operating characteristic
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Table 3. AUC and P-values from ROC analysis to identify adverse plaque characteristics

  Seg-
men-
tation 

volume

Noncal-
cified 

volume

Calci-
fied 

volume

Low 
attenu-

ation 
noncal-

cified 
volume

Regu-
larized 
logistic 
regres-

sion

k-ne-
arest 

neigh
bors

Ran-
dom 

forest

Naïve 
Bayes

Gaus-
sian 

process

Deci-
sion 
trees

Neural 
network

Low attenuation  

AUC training set 0.49 0.50 0.61 0.53 0.66 0.60 0.64 0.65 0.65 0.50 0.65

AUC test set 0.39 0.39 0.68 0.41 0.72

P-value compared to ML 
on test set

<0.0001 <0.0001 <0.0001 <0.0001              

Positive remodeling  

AUC training set 0.55 0.54 0.62 0.50 0.68 0.63 0.69 0.65 0.67 0.50 0.67

AUC test set 0.61 0.60 0.66 0.41 0.71

P-value compared to ML 
on test set

<0.0001 <0.0001 <0.0001 <0.0001              

Napkin-ring sign  

AUC training set 0.50 0.51 0.66 0.56 0.69 0.62 0.70 0.65 0.68 0.50 0.69

AUC test set 0.58 0.43 0.71 0.46 0.74

P-value compared to ML 
on test set

<0.0001 <0.0001 0.325 <0.0001              

Spotty calcification  

AUC training set 0.52 0.51 0.79 0.55 0.82 0.73 0.82 0.80 0.81 0.50 0.74

AUC test set 0.60 0.61 0.76 0.43 0.81

P-value compared to ML 
on test set

<0.0001 <0.0001 0.289 <0.0001

Abbreviations: see Table 2

Figure 5. Diagnostic accuracy of radiomics-based machine learning in identifying adverse plaque characteristics in the patient validation set 
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specific morphology with high certainty. Also, in the case 
of calcified plaque, it seems that the simple density metric 
of calcified volume is equally good. Furthermore, our results 
also show that for characteristics with limited predictive 
power of the individual parameters (i.e. significant steno-
sis), the ML-based combination of these weak predictors 
resulted in a more accurate model, which is a well-known 
paradigm in ML research.

While the novel ML radiomic analytic approach is most 
advanced within tumor diagnostics in oncology, it is being 
adopted throughout other domains [21–23]. Radiomic 
analysis improves non-invasive characterization of histo-
logical properties of tissue, or its molecular profile, which 
may translate into clinical benefits including a reduction 
in invasive diagnostics, streamlining the diagnostic pro-
cess, better-informed treatment decisions, tracking treat-
ment-related changes, or prediction of clinical outcomes 
[21–23]. To the best of our knowledge, there are no previous 
data regarding the radiomic analysis of non-contrast cor-
onary CT images to characterize CAD. Another aspect of 
this novel analytic approach is utilization of ML methods, 
suitable for extracting valuable information from various 
datasets, among others, including ECG, imaging, or clinical 
data [24, 25].  The few previous analyses of contrast CCTA 
data indicated improved diagnostic potential of the novel 
ML-based analysis, compared to the traditional methods, 
with respect to prediction of functionally significant steno-
sis, advanced atherosclerotic lesions, cardiovascular event 
prediction, or lesions with invasive or radionuclide imaging 
markers of plaque vulnerability [13, 26, 27].  

Based on our findings, it may be hypothesized that 
detection of noncalcified plaque, APC, or stenosis on 
a non-contrast high-resolution coronary CT scan might 
be useful for risk evaluation in addition to the coronary 
calcium score [1–3]. According to recent studies, silent 
coronary atherosclerosis is present in 9%–16% of the 
general population with a calcium score of 0 [28, 29]. The 
presence of low attenuation plaque has been shown to 
provide cardiovascular risk prediction above that provided 
by calcium scoring alone [30]. 

There are several limitations of our study. First of all, the 
patients were selected on the basis of the presence of at 
least one single noncalcified plaque with one of the APCs. If 
we were to analyze consecutive patients undergoing CCTA, 
the numerical relationships could change.  

Another important limitation includes a single center 
setting, single CT scanner use, and the specific prospective 
scanning mode application, all of which might impact the 
image characteristics relevant to radiomics and render 
the results difficult to replicate with other hardware or 
protocol settings.

Despite these limitations, this work is a step towards 
measuring what so far has not been measurable and 
finding quantitative biomarkers for identifying noncalci-
fied atherosclerotic plaques imaged using non-contrast 
CT examination.

Radiomic features differ significantly between coronary 
segments with vs. without specific coronary pathologies 
on non-contrast high-resolution CT heart images. Using 
ML, these features improved the detection of coronary 
pathologies compared to traditional metrics, importantly, 
with the best performance in the case of noncalcified 
plaques. Further studies, likely involving larger samples, 
different scanners, and scanning modes are warranted. 
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