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The Wnt pathway has a pivotal function in tissue development and homeostasis, overseeing 

cell growth or differentiation. Aberrant Wnt signalling pathways have been associated with 

the pathogenesis of diverse malignancies, influencing cell proliferation, differentiation, 

cancer stem cell renewal, tumor microenvironment and thereby significantly impacting 

tumour development and therapeutic responsiveness. Promisingly, current research 

underscores the potential therapeutic value of targeting Wnt pathways, particularly the 

canonical Wnt/β-catenin signalling, in the context of numerous cancer types.

Key constituents of the Wnt pathway, such as the Wnt/receptor, β-catenin degradation or 

transcription complexes, have been focal points for interventions in preclinical studies. To 

comprehend potential therapeutic strategies, we conduct an analysis of ongoing clinical trials

that specifically aim to target components of the Wnt pathways across a diverse spectrum of 

cancer types. By scrutinizing these trials, including their respective phases, targeted patient 

populations, and observed outcomes, this review provides a consolidated overview of the 

current translational landscape of Wnt-targeted therapies, thus offering a roadmap for future

research endeavours. 
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Introduction 

Cancer is one of the main cause of death worldwide [1]. While chemotherapy remain the 

backbone of systemic treatment for both radically and palliatively treated cancer patients 

population new options including growing number of molecularly targeted drugs enter the 

market with new and new indications [2]. The journey from the initial discovery of a 

compound to its approval by regulatory bodies like the Food and Drug Administration (FDA) 

or the European Medicines Agency (EMA) is an extensive process. It initiates with preclinical 

evaluations and advances through a multi-stage series of clinical trials involving human 

subjects. A significant proportion of compounds displaying promise in the preclinical phase 

ultimately do not achieve the specified endpoints during the clinical trial phases [3–6]. Figure

1 succinctly outlines this intricate progression.

There are numerous signaling pathways abrupted in cancer cells that have been 

already used as targets for different therapeutic strategies including kinase inhibitors (Kis), 

monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), drugs’ nanoforms [2]. 

Activation of these pathways can induce alterations in cell survival capabilities, metabolic 

processes, cellular proliferation, differentiation, and impact the tumor microenvironment. 

Moreover, it plays a role in angiogenesis, epithelial to mesenchymal transition, and the 

formation of metastases [7–10]. Among the numerous pathways with key components that 

are established targets for treatment, prominent examples comprise epidermal growth factor

receptor/RAS/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase kinase 

(EGFR/RAS/RAF), human epidermal growth factor receptor 2 (HER2), Sonic hedgehog (SHH), 

vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor 

(PDGFR), and protein kinase B/mammalian target of rapamycin (AKT/mTOR). It is noteworthy

that these pathways' elements often intersect during signal transduction [7–10]. Wnt 

represents a fundamental pathway crucial in both embryonic development and the onset of 

tumorigenesis [11]. Presently, there are no registered drugs specifically targeting the 

elements of this pathway, despite it presenting an apparent target for innovative anticancer 

agents. The objective of this review is to delve into the prospects of translating elements of 

the Wnt pathway from preclinical research to clinical applications. Through meticulous 

examination of these trials, encompassing their phases, targeted population, and the active 

drug studied the review furnishes a comprehensive summary of the present translational 

panorama concerning therapies directed at the Wnt pathways.
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Canonical and non-canonical Wnt signalling

The Wnt pathway plays a pivotal role in numerous developmental and homeostatic 

processes. Aberrations within this pathway have been implicated in a spectrum of 

pathological conditions, including cancers. The intricate balance and regulation of the Wnt 

pathway underscore its paramount importance in cellular homeostasis, presenting a 

potential target for therapeutic interventions in malignancies and other diseases.

There are in fact several signaling pathways that can be activated with the elements of Wnt. 

The canonical pathway is the most well-known (fig. 2). At the core of this pathway lies β-

catenin, a key protein acting as a linchpin orchestrating downstream signaling events. Two 

other pathways are planar cell polarity (PCP) and calcium-related pathways [11–16].

Wnt proteins are categorized into canonical and noncanonical types, instigating both 

respective pathways by engaging Frizzled (FZD) receptors (tab. I). Frizzled receptors require a 

co-receptor, low-density lipoprotein receptor-related protein 5/6 (LRP5/6) for canonical 

signaling, and receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2) for non-canonical 

signaling, to transmit signals effectively [11–17].

Within the canonical pathway, upon activation, Wnt binding disrupts the β-catenin 

destruction complex, preventing the phosphorylation of β-catenin by GSK3β, thereby 

averting its proteasomal degradation. Key components of the destruction complex include:

 adenomatous polyposis coli (APC), 

 glycogen synthase kinase 3-beta (GSK-3β), 

 axin, casein kinase 1-alpha (CK1-α). 

The accumulation of β-catenin in the cytoplasm enables its translocation into the nucleus, 

where it forms complexes with various transcription factors, primarily lymphoid enhancer 

factor/T-cell factor (LEF/TCF), initiating the transcription of vital Wnt/β-catenin target genes 

such as: cMyc, cyclin D1 (CCND1), and VEGF or programmed death-ligand 1 (PD-L1) [11–16]. 

Non-canonical Wnt pathways are Wnt / PCP and Wnt-cyclic guanosine 

monophosphate / calcium ion (Wnt-cGMP/Ca2+) signaling. The targets for these non-

canonical pathways can include matrix metalloproteinases (MMPs) or AKT / mTOR. These 

pathways are believed to exert influence on processes such as epithelial-mesenchymal 
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transition (EMT), cell migration, cell metabolism, chemo-resistance, or the formation of 

metastases [11, 16, 17].

Preclinical and clinical cancer studies regarding Wnt elements 

Inhibition of the Wnt pathway represents an interesting and promising molecular target for 

novel anticancer therapies in various malignancies. Many new molecules have been 

investigated in preclinical studies or in clinical trials – mainly phase 1 (tab. II). Some of them 

have reached phase 2 clinical trials in the treatment of solid malignancies, as well as 

hematologic, but recruitment is ongoing or the results of those trials are expected to be 

published. The interesting approach represents the combination of Wnt inhibitors with 

chemotherapy of targeted therapies – PD-1/PD-L1 inhibitors (nivolumab / pembrolizumab) 

or EGFR inhibitors (cetuximab). 

               Katoh and Katoh divided Wnt-targeted agents into pan-Wnt inhibitors (like porcupine

inhibitors), canonical (like β-catenin protein-protein inhibitor) and non-canonical (like ROR1 

inhibitors) [12]. However, there is a significant group of compounds that modulate the signal 

indirectly or influence Wnt signalling by interfering with other pathways (like SHH). β-catenin 

itself plays an important role as signal transducer in other pathways including Trophoblast 

Cell Surface Antigen 2 (TROP-2) [138].

             Current trials, as shown in table II, involve drugs acting on numerous levels of these 

signaling pathways:

 Outside the cancer cell / on the cell membrane level: Wnt-mimicking agents [79, 80]; 

monoclonal antibody against ROR1 (cirmtuzumab) [82–86]; Wnt proteins / receptors 

inhibitors like: porcupine inhibitors LGK974, ETC-1922159, CGX1321, RXC004, 

XNW7201 [31–41] or FZD inhibitors (vantictumab, ipafricept, OTSA101) [42–53]. 

Porcupine serves as a vital enzyme within the Wnt signaling pathway, aiding in the 

palmitoylation of Wnt proteins. This alteration is pivotal for the appropriate secretion 

of Wnt proteins and the initiation of the Wnt signaling pathway [139]. Monoclonal 

antibodies against protein tyrosine kinase 7 (PTK7), can also be included into that 

group. PTK-7 is a transmembrane receptor protein that has been implicated in the 

regulation of the Wnt signaling pathway (cofetuzumab pelidotin) [94–102].
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 In the cytoplasm: dikkopf-1 (DKK1) modulators (DKN-01) [66–71]. Functioning as an 

extracellular antagonist, DKK1 binds to LRP5/6 co-receptors, interrupting their 

engagement with Wnt ligands and obstructing the activation of the canonical Wnt 

pathway. This impediment leads to a halt in the accumulation and nuclear movement 

of β-catenin [140].

 Within the nucleus e.g. inhibiting the target canonical pathway genes [125, 126] or 

CREB-binding protein (CBP) / β-catenin inhibitors (ICG-001, PRI-724, PRI-724 [26,56-

60, 89-96). CBP serves as a coactivator for transcription within the canonical Wnt 

pathway, collaborating with transcription factors such as β-catenin. It amplifies the 

transcription of Wnt target genes by modifying chromatin structure through the 

acetylation of histones [141].

 Within other signaling pathways that interact with Wnt including SHH (vismodegib, 

sonidegib, itraconazole, glasdegib, patidegib, LY2940680, ENV-101) as the most visible

example [101–121].

While compounds acting on β-catenin degradation complex show activity in preclinical 

studies their clinical activity has not been confirmed yet (NVP-TNKS656, XAV939) [54, 55]. 

Numerous limitations accompany development of Wnt pathways’ inhibitors. They include: 

non-obvious role of Wnt elements in cancer development and progression, its role in 

physiological processes, its complexity. Notably, WNT inhibitors have the potential to serve 

not only in cancer therapy but also in a supportive capacity to mitigate treatment-related 

toxicity [11–17, 142].

              Numerous novel molecules have undergone scrutiny in either preclinical 

investigations or clinical trials. A portion of these compounds has progressed to phase 2 

clinical trials, marking the mid-point in the translational process depicted in figure 1.

Conclusions

The precise equilibrium and meticulous regulation observed in the Wnt pathway underline 

its paramount importance in maintaining cellular homeostasis, thereby delineating it as a 
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promising focal point for therapeutic interventions directed at malignancies. The Wnt 

pathway branches into canonical and noncanonical categories, each instigating distinctive 

signaling cascades through specific receptor engagement. A comprehensive understanding of

these pathways and their constituent elements is imperative for discerning their potential 

therapeutic ramifications. Presently, preclinical and clinical inquiries into Wnt elements are 

progressing, presenting an enticing trajectory for the development of novel anticancer 

therapies. However, the intricate nature of Wnt signaling, its dual role in both disease and 

physiological homeostasis, and the complexities surrounding its inhibitors pose formidable 

challenges. The number of trials and the variety of molecular targets related to Wnt 

pathways, as well as different cancer indications within the patient population (tab. II) 

provide grounds for optimism regarding the possibility of advancing beyond the early phases 

of clinical trials in the journey from bench to bedside (fig. 1).
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Figure 1. Sequential stages of drug discovery and registration [3–6]
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Figure 2. Canonical Wnt pathway inactive (on the left hand side) and active (on the right 

hand side) (created with BioRender) [11–16]

APC – adenomatous polyposis coli; CBP – CREB-binding protein; CK1-α GSK3β – casein kinase 1-alpha; GSK – glycogen 

synthase kinase 3-beta; LEF – lymphoid enhancer factor; LRP – low-density lipoprotein receptor-related protein; TCF – T cell 

factor

Table I. Canonical and non-canonical elements of the Wnt family [11, 16]

Pathway Proteins
canonical Wnt / β-catenin Wnt1, Wnt2, Wnt3, Wnt3a, 

Wnt8a, Wnt8b, Wnt10a, 

Wnt10b
non canonical PCP

Wnt / Ca2+

Wnt3, Wnt4, Wnt5a, Wnt5b,

Wnt6, Wnt7a, Wnt7b, 

Wnt11

PCP – planar-cell polarity
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Table II. Agents inhibiting Wnt pathway which are under investigation. Complied on a basis of

clinicaltrials.gov as of April 2023, unless otherwise specified 

Name of agent Mechanism of action Development stage Indications Referenc

e 
PKF115–584, 

CGP049090, 

PKF222–815, 

PKF118–310, 

PKF118–744, 

ZTM000990

β-catenin – TCF 

antagonists

preclinical colorectal cancer, breast cancer [18, 19]

iCRT3, iCRT5, 

iCRT14

β-catenin – TCF 

antagonists

preclinical colorectal cancer, triple negative breast

cancer

[20, 21]

BC21 β-catenin – TCF 

antagonists

preclinical colorectal cancer [22]

FH535 β-catenin – TCF 

antagonists

preclinical triple negative breast cancer, colorectal

cancer, lung cancer, hepatocellular 

carcinoma

[23, 24]

CWP232228 β-catenin – TCF 

antagonists

preclinical breast cancer [25]

ICG-001 β-catenin / CBP 

inhibitor

preclinical triple negative breast cancer [26]

CG0009 glycogen synthase 

kinase 3α/β inhibitor

preclinical breast cancer [27]

niclosamide inhibition the binding of

a WNT ligand to LRP5/6

receptors

preclinical breast cancer [28]

salinomycin inhibition the binding of

a WNT ligand to LRP5/6

receptors

preclinical breast cancer, prostate cancer, chronic 

lymphocytic leukemia

[29, 30]

LGK974 (WNT974) inhibitor of the WNT-

receptor complex 

(porcupine inhibitor)

phase 1 clinical trial, recruiting pancreatic cancer, BRAF-mutant 

colorectal cancer, melanoma, triple 

negative breast cancer, head and neck 

squamous cell cancer, cervical 

squamous cell cancer, esophageal 

squamous cell cancer, lung squamous 

cell cancer

[31]

phase 1 and 2 clinical trial + 

cetuximab, completed

braf-mutant metastatic colorectal 

cancer

[32]
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preclinical Ewing sarcoma [33]

preclinical clear cell, renal cell carcinoma [34]

ETC-1922159 inhibitor of the WNT-

receptor complex 

(porcupine inhibitor)

phase I clinical trial

+/– pembrolizumab, recruiting 

advanced solid tumors [35]

CGX1321 Inhibitor of the WNT-

receptor complex 

(porcupine inhibitor)

phase I clinical trial

+/– pembrolizumab or 

encorafenib + cetuximab,

recruiting

advanced gastrointestinal tumors [36]

phase 1 clinical trial, 

recruiting

advanced gastrointestinal tumors [37]

RXC004 inhibitor of the WNT-

receptor complex 

(porcupine inhibitor)

phase 1 clinical trial

+/– nivolumab,

recruiting 

advanced solid tumors [38]

phase 2 clinical trial,

recruiting

advanced solid tumors [39]

phase 2 clinical trial +/–

nivolumab, recruiting

colorectal cancer [40]

XNW7201 inhibitor of the WNT-

receptor complex 

(porcupine inhibitor)

phase 1 clinical trial, active, not 

recruiting

advanced solid tumors [41]

OMP-18R5 

(vantictumab)

inhibitor of the WNT-

receptor complex 

(antibody against WNT 

family proteins – 

namely FZD1, FZD2, 

FZD5, FZD7 and FZD8)

phase 1 clinical trial, completed advanced solid tumors [42]

phase 1 clinical trial +/– nab-

paklitaxel and gemcitabine, 

completed

advanced pancreatic cancer [43, 44]

phase 1b clinical trial + docetaxel,

completed

non-small cell lung cancer [45]

phase 1b clinical trial, completed metastatic breast cancer [46]

OMP-54F28

(ipafricept)

inhibitor of the WNT-

receptor complex 

(antibody against WNT 

family proteins – 

namely FZD 8 receptor)

phase 1 clinical trial, completed advanced solid tumors [47, 48] 
phase 1 clinical trial + sorafenib, 

completed

hepatocellular cancer [49]

phase 1 clinical trial + paclitaxel 

and carboplatin, completed

ovarian cancer [50, 51]

phase 1 clinical trial + nab-

paclitaxel and gemcitabine, 

completed

pancreatic cancer [52]

OTSA101 inhibitor of the WNT- phase 1 clinical trial, recruiting synovial sarcoma [53]
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receptor complex 

(antibody against Wnt 

family proteins – 

namely FZD 10 

receptor)
NVP-TNKS656 β-catenin-destruction 

complex inhibitors, 

namely 

tankyrase inhibitors 

(PARPs family)

preclinical colorectal cancer  [54]

XAV939 β-catenin-destruction 

complex inhibitors, 

namely 

tankyrase inhibitors 

(PARPs family)

preclinical breast cancer [55]

PRI-724 inhibition of the CBP 

and β-catenin 

interaction

phase 1a/1b clinical trial, 

terminated

advanced solid tumors [56, 57]

phase 1 clinical trial + 

gemcitabine, completed

pancreatic cancer [58, 59]

phase 1 and 2 clinical trial, 

completed

acute myeloid leukemia, chronic 

myeloid leukemia

[60] 

CWP232291 inhibitor of the WNT 

pathway, induction of 

apoptosis via activation 

of caspases

phase 1 clinical trial, completed refractory acute myeloid leukemia, 

chronic myelomonocytic leukemia, 

myelodysplastic syndrome, 

myelofibrosis

[61, 62]

phase 1 clinical trial +/–

 lenalidomide, dexamethasone, 

completed

multiple myeloma [63, 64]

phase 1 and 2 clinical trial, active,

not recruiting

acute myeloid leukemia [65]

DKN-01 monoclonal antibody, 

inhibitor of the DKK1 

activity, a modulator of 

Wnt / β-catenin 

signaling

phase 1 clinical trial +/– paclitaxel

or pembrolizumab, completed

esophageal cancer gastroesophageal 

junction cancer, gastric 

adenocarcinoma with Wnt signaling 

alterations

[66, 67]
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phase 1 clinical trial + 

gemcitabine/cisplatine, 

completed

carcinoma primary to the intra- or 

exta-hepatic biliary system or 

gallbladder

[68, 69]

phase 1b/2a clinical trial +/– 

docetaxel, recruiting

prostate cancer [70, 71]

phase 1 and 2 clinical trial +/– 

sorafenib, recruiting

advanced liver cancer [72]

phase 2 clinical trial + nivolumab, 

recruiting

advanced biliary tract cancer [73]

phase 2 clinical trial +/– 

paclitaxel, completed

endometrial cancer, uterine cancer, 

ovarian cancer, carcinosarcoma

[74]

phase 2 clinical trial + tiselizumab

+/– chemotherapy, recruiting

gastric cancer, gastroesophageal 

cancer

[75]

phase 1 clinical trial, completed multiple myeloma, solid tumors, non-

small cell lung cancer

[76, 77]

phase 1 clinical trial + 

lenalidomide/dexamethasone, 

completed

relapsed or refractory multiple 

myeloma

[77]

phase 1 and 2 clinical trial

+ atezolizumab, recruiting

metastatic esophageal cancer, 

metastatic gastric cancer

[78]

Foxy-5 WNT5A-mimicking 

peptide

phase 1 clinical trials, completed breast cancer, colon cancer, prostate 

cancer

[79, 80]

phase 2 clinical trial, recruiting colon cancer (neoadjuvant setting) [81]

UC-961

(cirmtuzumab)

monoclonal antibody 

against ROR1 of the 

non-canonical Wnt path

way

phase 2 clinical trial + docetaxel, 

not yet recruiting

metastatic castration resistant prostate

cancer

[82]

phase 1 clinical trial, completed relapsed or refractory chronic 

lymphocytic leukemia

[83, 84] 

phase 1 and 2 clinical trial + 

ibrutinib, active, not recruiting

b-cell lymphoid malignancies [85, 86]

phase 2 clinical trial, recruiting chronic lymphocytic leukemia, 

consolidation after venetoclaxs

[87]

phase 1 clinical trial

+ paclitaxel, active, not recruiting

breast cancer [88]

PRI-724 CBP / β-catenin 

antagonist

phase 2 clinical trial

+ FOLFOX and bevacizumab, 

metastatic colorectal cancer [89]
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withdrawn
phase 1 clinical trial

+ gemcitabine, completed

advanced pancreatic cancer [90, 91]

phase 1 and 2 clinical trial, 

completed

acute myeloid leukemia, chronic 

myeloid leukemia

[92] 

phase 1 clinical trial, terminated advanced solid tumors [93]

PF-06647020 

(cofetuzumab 

pelidotin)

monoclonal antibody 

against PTK7 – 

inhibition of non-

canonical WNT pathway

phase 1 clinical trial + gedatolisib,

 completed triple negative breast cancer

[94–96]

phase 1 clinical trial, completed

non-small cell lung cancer

[97, 98]

phase 1 clinical trial, completed

advanced solid tumors

[99, 100]

GDC-0449 

(vismodegib) 

inhibitor of the 

Hedgehog pathway

FDA and EMA registered

metastatic/locally advanced basal cell 

carcinoma

[101, 

102]

numerous clinical trials phase 1–3

advanced solid tumors (also advanced 

breast cancer)

hematologic malignancies

#

LDE225

(sonidegib)

inhibitor of the 

Hedgehog pathway

FDA and EMA registered

metastatic/locally advanced basal cell 

carcinoma 

[103, 

104]

numerous clinical trials phase 1–3

advanced solid tumors (also advanced 

breast cancer)

hematologic malignancies

#

itraconazole antifungal medication, 

inhibitor of the 

Hedgehog pathway

numerous clinical trials phase 1–3

prostate cancer, lung cancer, ovarian 

cancer, esophageal cancer, multiple 

myeloma, solid malignancies

#

PF-04449913

(glasdegib)

inhibitor of the 

Hedgehog pathway

phase 1 and 2 clinical trials

hematologic malignancies

#

phase 1 clinical trial, completed

solid tumors

[105, 

106]
phase 1 and 2 clinical trial

+ temozolomide, active, not 

recruiting

glioblastoma

[107]

IPI-926

(patidegib)

inhibitor of the 

Hedgehog pathway

phase 1 clinical trial, completed

basal cell carcinoma

[108]

phase 1 and 2 clinical trial + 

gemcitabine, completed pancreatic cancer

[109, 

110]
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phase 1 + FOLIFIRINOX, 

completed pancreatic cancer

[111, 

112]

phase 1 clinical trial, completed

solid tumor malignancies

[113, 

114]
phase 1 clinical trial + cetuximab, 

completed head and neck cancer

[115, 

116]
phase 2 clinical trial, completed

unresectable chondrosarcoma

[117]

LY2940680 inhibitor of the 

Hedgehog pathway

phase 2 clinical trial, completed

solid tumor malignancies

[118]

ENV-101 inhibitor of the 

Hedgehog pathway

phase 2 clinical trial, recruiting

advanced solid tumors harboring 

PTCH1 loss of function mutations

[119]

phase 1 clinical trial, completed

breast cancer, colon cancer, 

cholangiocarcinoma, soft tissue 

sarcoma

[120] 

phase 1 and 2 clinical trial, 

completed

esophageal or gastroesophageal 

junction cancer

 [121]

lycopene naturally synthesized 

carotenoid (an active 

component of red fruits

and vegetables) – 

supression of β-catenin 

nuclear expression

phase 2 clinical trial,

active, not recruiting skin toxicity in patients with colorectal 

carcinoma treated with panitumumab

[122]

preclinical

gastric cancer, breast cancer

[123, 

124]

artesunate antimalarial drug – 

supression of WNT 

pathway by 

downregulation of c-

Myc and cyclin D1

phase 2 clinical trial, active, not 

recruiting stage II/III colorectal cancer (pre-

operative treatment)

[125, 

126]

phase 1 clinical trial, completed

advanced solid tumors

[127, 

128]
phase 1 clinical trial, completed

metastatic breast cancer

[129, 

130]
resveratol non-flavonoid 

polyphenol – 

suppression of WNT 

pathway by decreased 

the expression of β-

catenin and cyclin D1

phase 1 clinical trial, completed

colon cancer

[131, 

132]
preclinical

breast cancer, gastric cancer

[133, 

134]

quercetin flavonoid (component 

of onion, red grapes, 

lettuce, tomato). 

preclinical

breast cancer, ovarian cancer, B-cell 

lymphomas

[135–

137]
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Inhibition of the 

Notch1, PI3K/AKT and 

β-catenin signaling 

pathways

CBP – CREB-binding protein; BRAF – B-Raf proto-oncogene, serine/threonine kinase; DKK1 – dickkopf-1  protein; EMA – 

European Medical Agency; FDA – Food and Drug Administration; FOLFOX – folinic acid, 5-fluorouracil and oxaliplatin; 

FOLFIRINOX – folinic acid, 5-fluorouracil, irinotecan and oxaliplatin; FZD – frizzled receptor; LRP5/6 – low-density lipoprotein 

receptor-related protein 5/6; PARPs – poly (ADP-ribose) polymerases; PI3K/AKT – phosphoinositide 3-kinase/protein kinase 

B; PTK7 – protein tyrosine kinase 7; TCF – T cell factor; # – for details see clinicaltrials.gov 
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