
University of Southern Maine University of Southern Maine

USM Digital Commons USM Digital Commons

All Theses & Dissertations Student Scholarship

5-2023

A Costing Framework for the Dynamic Computational Efficiency A Costing Framework for the Dynamic Computational Efficiency

of the Network Security Detection Function of the Network Security Detection Function

Afdam Howarth

Follow this and additional works at: https://digitalcommons.usm.maine.edu/etd

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at USM Digital
Commons. It has been accepted for inclusion in All Theses & Dissertations by an authorized administrator of USM
Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

https://digitalcommons.usm.maine.edu/
https://digitalcommons.usm.maine.edu/etd
https://digitalcommons.usm.maine.edu/students
https://digitalcommons.usm.maine.edu/etd?utm_source=digitalcommons.usm.maine.edu%2Fetd%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.fowler@maine.edu

A Costing Framework for the Dynamic Computational Efficiency of the Network Security

Detection Function

By

Adam Howarth

BA University of Southern Maine 2020

A Thesis

Presented to the Affiliated Faculty of

 The College of Science, Technology, and Health

at the University of Southern Maine

Submitted in Partial Fulfillment of Requirements

For the degree of Master of Cybersecurity

Portland & Gorham, Maine

May 2023

ii

Copyright by

Adam Howarth

2023

iii

Adam Howarth

5/5/2023

Cybersecurity

ABSTRACT

This study developed a comprehensive framework to systematically evaluate the economic

implications of security policy implementation in IT-centric business processes. Focusing on the

detection aspect of the NIST cybersecurity framework, the research explored the interrelation

between business operations, computational efficiency, and security protocols. The framework

comprises nine components, addressing the gap between cost projections and security policy

enforcement. The insights provided valuable perspectives on managing security expenses and

resource allocation in information security, ensuring alignment with revenue and expenditure

outcomes while emphasizing the need for a comprehensive approach to cost management in

information security management.

iv

University of Southern Maine

Master of Cybersecurity

This thesis was presented

by

Adam Howarth

It was presented on

4/27/2023

and pending approval of:

Lori L. Sussman, Ed.D, Faculty Advisor

University of Southern Maine

v

ACKNOWLEDGEMENTS

Primarily, I express my deepest gratitude to my thesis advisor, Dr. Lori Sussman, for the

unwavering support, guidance, and mentorship from my earliest inquiries into enrollment for the

master's program through the completion of this project. Your expertise and encouragement were

invaluable in helping me navigate the complex landscape of cybersecurity, and I am genuinely

thankful for the opportunity to learn from such a distinguished professional.

I would also like to express my appreciation to the entire faculty of the cybersecurity

master’s program. Each of you has played a crucial role in shaping my understanding of cyber

security, helping me identify my shortcomings, and fostering the growth of a well-rounded

information security skill set.

I am grateful for the support and camaraderie of my fellow students in the program, who

have enriched my experience through our discussions, collaborations, and friendships. Your

diverse perspectives and insights have been essential to my learning and personal growth.

I would like to acknowledge the contributions of my colleagues from my professional

work experience. Your expertise and mentorship have allowed me to apply the lessons learned in

the classroom to real-world scenarios, strengthening my skills and deepening my understanding of

the field.

This thesis represents not only the culmination of my academic journey in the master's

program but also the invaluable experiences and lessons gained from my personal work

experience. It is a testament to the incredible support and guidance I have received from my

mentors, colleagues, friends, and family. I am grateful to each of you for participating in this

journey and helping me become the information security professional I am today.

vi

TABLE OF CONTENTS

TABLE OF FIGURES ... VII

CHAPTER 1 ... 1

INTRODUCTION .. 1
Focusing on the Detection Function of the NIST Cybersecurity Framework 1

Analytical Frameworks ... 2
Conceptual Framework ... 2
Definition of Terms ... 3

CHAPTER 2 ... 6

LITERATURE REVIEW ... 6

Information Technology-based Business Process Augmentation Business Solution 6
Detection Algorithm Computational Efficiency .. 7
Distributed Denial of Service Detection ... 8
Data Exfiltration Detection ... 9

Graph Neighborhood Traversal .. 10
Security Policy .. 11

CHAPTER 3 ... 12

METHODOLOGY ... 12

Setting .. 13
Participants/Sample .. 13
Network A: Retail Business Network Analysis .. 13
Network B: Corporate Headquarters Network Analysis .. 15

Data ... 16
Analysis ... 17
Participants' Rights ... 18
Potential Limitations of the Study ... 18

Pilot Study ... 19

CHAPTER 4 ... 20

DATA COLLECTION, ANALYSIS, AND PRELIMINARY FINDINGS 20
Description of the Sample ... 21
Data Collection Method .. 22

Data Analysis Method ... 22

CHAPTER 5 ... 23

RESULTS ... 23
Discussion of Results .. 25

Ordinal Ranking of Computational Efficiency .. 25

vii

Baseline ... 25
BFS .. 26
KLDDOS ... 26

PCR ... 26
CONCLUSION... 36

A Costing Framework for the Dynamic Computational Efficiency of the Network Security

Detection Function .. 36

Limitations and Future Research .. 39

TABLE OF FIGURES

Figure 1. Business Solution Mapping ... 7

Figure 2. Baseline – Docker CPU Usage Rolling Average .. 27

Figure 3. Baseline – Docker Memory Usage Rolling Average .. 28

Figure 4. BFS – Docker CPU Usage Rolling Average .. 29

Figure 5. BFS – Docker Memory Usage Rolling Average .. 30

Figure 6. KLDDOS – Docker CPU Usage Rolling Average ... 31

Figure 7. KLDDOS – Docker Memory Usage Rolling Average ... 32

Figure 8. PCR – Docker CPU Usage Rolling Average .. 33

Figure 9. PCR – Docker Memory Usage Rolling Average .. 34

LIST OF TABLES

Table 1. Table of Results per input and algorithm variance...35

Table 2. A Costing Framework for the Dynamic Computational Efficiency of the Network

Security Detection Function...38

 CHAPTER 1

INTRODUCTION

Integration of information technology into business processes is a critical component of

business transformation. With the growing prevalence of cybersecurity threats, organizations

must consider business objectives and security policies when incorporating technology into their

more automated operations (Senate Committee on Homeland Security and Governmental Affairs,

2018). "Achieving digital transformation goals is impossible without taking into account

information security considerations" (Sandhu, 2021, p. xiv). As information technology assets

become more embedded in business processes, security policies, roles, and systems may impose

constraints that counterbalance the potential benefits. Information security is often perceived as a

cost center within organizations, leading to challenges in allocating costs and resources (Gordon

& Loeb, 2002). This study developed a methodology for information technology management

that considers not only the cost dynamics of security policy detection requirements but also the

perception of information security as a cost center when making decisions about business process

augmentation.

Focusing on the Detection Function of the NIST Cybersecurity Framework

The National Institute of Standards and Technology (NIST) cybersecurity framework

comprises five functions, and increasingly the implementation of security policies focuses on

addressing these functions (Greenwald, 2013). These high-level functional abstractions include

identification, protection, detection, response, and recovery. Together this framework defines the

“…five key pillars of a successful and wholistic cyber security program” (NIST, 2018). The

complexity and functionality of the algorithms required for these policy objectives differ,

2

encompassing availability attacks, data flow, and topographic anomaly detection. This research

concentrated on the detection function of the NIST framework, which is the most computationally

sensitive, as it processed real-time event data (Stonebraker et al., 2014).

Analytical Frameworks

There is no formal methodology for assessing the impact of a proposed business process

augmentation on the detection function of an organization's security operations. A mapping

function that translates the domain of detection analytic capacity requirements into a range of

monetary costs would enable a direct comparison with the expected revenue changes associated

with technology-based business process augmentation.

This study aimed to develop a formal method for determining proposed business process

augmentations. The importance of this research was due to the increased number of monitored

information technology assets that affected the costs of analytic detection requirements. This

method considered security operation costs when projecting the revenue changes of proposed

business process augmentations.

The central research question for this project was: How can security operations

management assess the costs of technology-driven enhancements to business processes in the

context of the security detection function? Addressing this question involves examining security

policy-driven detection outcomes, relationships between business processes and network

complexity, and the deltas observed in resource requirements.

Conceptual Framework

The theoretical concepts of digital business process transformation, analytic detection

outcomes, and security monitoring (Von Solms & Niekerk, 2013) are foundational conceptual

3

frameworks for this project. The comprehensive literature review explained the importance of

each. The method proposed by this project operates within the intersection of these concepts,

mapping business process revenue opportunities to security operation costs while considering

principles from each area (Li et al., 2010, p. 19). The expected outcome of this project was a

framework that enables security cost allocation among operating departments which require

security.

This project made several assumptions about the proposed business process augmentation,

the detection algorithms employed, and the security monitoring coverage strategy defined by local

security policies. These included the identification of process cost centers, the approximation of

core algorithmic logic isolation, and non-uniform departmental compliance requirements.

The proposed method's significance lies in its ability to enable security operations to

connect the computational efficiency of the security detection function with other functional areas

of the organization. This method facilitates resource allocation within the organization, reducing

information security costs (Horngren et al., 2015, p. 565). By providing security operations input

on business process augmentation, organizations can ensure the intended revenue/cost impact.

Definition of Terms

This project employs several unique terms that warrant definition.

Network. A system implemented with a collection of interconnected components. Such

components may include routers, hubs, cabling, telecommunications controllers, key distribution

centers, and technical control devices (Ross et al., 2020).

Security. A condition that from the establishment and maintenance of protective measures that

enable an enterprise to perform its mission or critical functions despite risks posed by threats to its

use of information systems. Protective measures may involve a combination of deterrence,

4

avoidance, prevention, detection, recovery, and correction that should form part of the enterprise's

risk management approach (Committee on National Security Systems, 2015, 176).

Security Function. The hardware, software, or firmware of the system is responsible for

enforcing the system security policy and supporting the isolation of code and data (Ross et al.,

2020, 58).

Computational Efficiency. The efficiency of an algorithm can be captured by a function T from

the set of natural numbers N to itself such that T(n) is equal to the maximum number of basic

operations that the algorithm performs on inputs of length n (Arora & Barak, 2007, p. 13).

This project proposed a method for calculating the cost of security policy enforcement

concerning proposed technology-based business process augmentations. We utilized Arora and

Barak’s (2007) definition of computational efficiency as the foundational building block of this

research represented in (1). Composition with resource cost quantification methods allowed for a

mapping between computational efficiency and cost, as shown in (2) (Sikeridis et al., 2018, p. 2).

Expressed as a composite (3) is a definition for cost as a function of computational efficiency and,

therefore, input cardinality.

𝐶𝐸 = 𝑇(𝑛) (1)

𝐶𝑜𝑠𝑡 = 𝐶(𝑥) (2)

 𝐶𝑜𝑠𝑡 = 𝐶(𝑇(𝑛)) (3)

 Gordon and Loeb (2002) asserted that “there are no fixed costs of information security”

(p. 443). From this concept, this project focuses on the cost dynamics as seen in (4), given

dynamics in computational efficiency as shown in (5).

𝛥𝐶𝑜𝑠𝑡 = 𝛥𝐶(𝑥) (4)

𝛥𝐶𝐸 = 𝛥𝑇(𝑛) (5)

5

 This project identified two sources of dynamics in the computational efficiency of security

detection. The first was dynamics in detection function input. By deploying information

technology to support business solutions, (6) defines the change in input cardinality caused by

business process augmentation (Gordon & Loeb, 2002, p. 438). Diestel (2017) defines a graph as

(7) a set of nodes and edges (p. 2). Business process defines the information technology

requirements of an organization. The management of business processes "...sits at the intersection

of computer science, information systems engineering, management science, and industrial

engineering" (Reijers, 2021, p. 4). Dynamics in business processes that result in a topological

change to the network are shown by (8) to impact computational efficiency directly, given that

nodes and edge cardinality are the input for detection algorithms (Hamilton et al. 2017, p. 2).

𝛥𝐶𝐸 = 𝑇(𝛥𝑛) (6)

𝐺 = (𝑉, 𝐸) (7)

𝛥𝐶𝐸 = 𝑇(𝛥𝑛) ∋ 𝛥𝑛 = 𝑓(𝛥𝑉, 𝛥𝐸) (8)

 Next, the project identified dynamics in security policy detection requirements as a source

of computational efficiency dynamics (Whitman & Mattord, 2018, p. 161). This resulted in the

formulation of (9), where the dynamics of computational efficiency are the composite of

applicable detection algorithms.

𝛥𝐶𝐸 = 𝛥𝑇(𝑛) ∋ 𝛥𝑇(𝑛) = 𝛥(𝑡1(𝑛1) + . . . + 𝑡𝑥(𝑛𝑥)) (9)

 We leveraged (8) and (9) for the project's research objective of determining how security

operations management should assess the costs of technology-driven enhancements to business

processes in the context of the security detection function. With this functional definition, our

costing framework can map organizational plans directly to security related costs, as seen in (10)

and (11).

6

 𝛥𝐶𝑜𝑠𝑡 = 𝑇(𝛥𝑛) (10)

 𝛥𝐶𝑜𝑠𝑡 = 𝛥𝑇(𝑛) (11)

 By conducting experimental simulations that evaluated the impact of augmentations on

various detection analytics’ computational efficiency, this study demonstrated a repeatable

method for approximating local analytic requirements and their application to the proposed

costing framework.

CHAPTER 2

LITERATURE REVIEW

Business process management, security computational efficiency, and information

security policy are the thematic pillars (Gordon & Loeb, 2002, p. 439). Literature aggregated

under these themes establishes evidence in answering the primary research question and our

method of experimentation.

Information Technology-based Business Process Augmentation Business Solution

Rajarathinam, Chellappa, and Nagarajan (2015) discussed the augmentation of business

processes with information technology in their research. Their framework partitioned business

processes into management, operational, and supportive classes. This partitioning allowed for the

consideration of variable algorithmic requirements and input data cardinality.

Similarly, Rajarathinam et al. (2015) introduce the term "business solution" to represent

the pairing of business process and information technology solutions (p. 2). The concept of a

business solution binds the technology requirement domain with business function. This

combination determines cost allocation along with security policy constraints. Information

7

security management utilizes this pairing to determine the relevant detection computational

efficiency dynamics.

Figure 1.

Business Solution Mapping

Reprinted from Rajarathinam, Chellappa, & Nagarajan, 2015, Figure 2

The Rajarathinam et al. (2015) framework outlined the fundamental principles to consider

while assessing business processes; consistency, consonance, competitive advantage, and

feasibility (p. 5). This project aims to balance their principle of competitive advantage, "the

strategy must provide for the creation and maintenance of a competitive advantage in the selected

area of the activity" and feasibility, "the strategy must neither overtax available resources nor

create unsolvable subproblems" (Rajarathinam et al., 2015, p. 5).

Detection Algorithm Computational Efficiency

Bastian and Weir (2020) discuss the challenges of efficient algorithm selection. These

authors form a mapping between tasks and analytical approaches, partitioning detection tasks into

8

prescriptive, predictive, and descriptive classes. The detection algorithm complexity domain at

focus in this project is discretized into these classes and then mapped to analytical approaches,

creating an interface for evaluating the delta in computational efficiency between business states.

Bastian and Weir conclude that algorithm selection automation did not significantly improve over

an expert system approach, supporting this project's intent to inform experts on business process

dependencies in algorithm selection.

Distributed Denial of Service Detection

Bouyeddou, Kadri, Harrou & Sun, Y. (2020) present an innovative method for network

intrusion detection using a nonparametric Kullback-Leibler distance-based approach in their study

titled "Nonparametric Kullback-Leibler distance-based method for networks intrusion detection."

The paper demonstrates the potential of this approach in detecting Distributed Denial of Service

(DDoS) attacks and other types of network intrusions, which is crucial in examining the impact of

business process augmentation on network security. Furthermore, the authors propose a novel

method to identify network intrusions using the Kullback-Leibler (KL) distance, a measure of the

divergence between two probability distributions.

The nonparametric KL distance-based method aims to enhance the detection of intrusions

in real-time by comparing the statistical distribution of network traffic data against a reference

distribution representing normal traffic. An intrusion detected is positive if the KL distance

between the two distributions exceeds a predefined threshold. In analyzing the relationship

between business process augmentation and security policy, Bouyeddou et al.'s (2020) research

are relevant as it offers an advanced technique for network intrusion detection, including DDoS

attacks. The KL distance-based method may provide valuable insights into how changes in

business processes and network configurations can affect the detection of network intrusions.

9

Penukonda and Paramasivam (2021) present a behavior-based DDoS detection algorithm

for data centers in the cloud. Their proposed method focuses on detecting distributed denial-of-

service (DDoS) attacks in a cloud environment by analyzing network traffic patterns and

classifying them as legitimate or malicious. This approach relies on threshold values to determine

whether traffic patterns indicate an ongoing DDoS attack. However, one potential limitation of

Penukonda and Paramasivam's (2021) approach is a reliance on predetermined threshold values,

which may not be optimal for all network traffic scenarios.

While Penukonda and Paramasivam's (2021) behavior-based DDoS detection algorithm

provides a valuable approach for detecting DDoS attacks in cloud environments, the reliance on

fixed threshold values could limit its adaptability. The KL divergence-based method by

Bouyeddou et al. (2020) may offer a more appealing alternative due to its nonparametric approach

and adaptability to evolving network traffic patterns. The KL divergence method's adaptability to

various traffic patterns and its focus on comparing probability distributions offer notable

advantages over methods that rely on fixed thresholds for specific traffic features. This

adaptability and flexibility make the KL divergence-based method a more appealing choice for

DDoS detection in the context of this project with a computational efficiency of (12), a

composition of the product of node count and histogram width, and the edges processed in

histogram realization.

𝑇𝐾𝐿𝐷𝐷𝑂𝑆(𝑛) = 𝑓(|𝑉|)(ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑤𝑖𝑑𝑡ℎ) + 𝑔(|𝐸|) (12)

Data Exfiltration Detection

 Data exfiltration refers to the unauthorized transfer of sensitive data from an organization's

network to an external destination. Therefore, detecting and preventing data exfiltration is a

critical aspect of cybersecurity. Proposals of numerous methods exist to address this challenge. In

10

this literature review, we focus on the producer-consumer ratio (PCR) method, a technique for

detecting data exfiltration by monitoring data flow between different network entities.

 Bullard and Gerth (2014) presented (13) the producer-consumer ratio metric, a statistic for

detecting data exfiltration based on monitoring data flow between network entities.

𝑃𝐶𝑅 =
𝑠𝑟𝑐𝐵𝑦𝑡𝑒𝑠 − 𝑑𝑠𝑡𝐵𝑦𝑡𝑒𝑠

𝑠𝑟𝑐𝐵𝑦𝑡𝑒𝑠 + 𝑑𝑠𝑡𝐵𝑦𝑡𝑒𝑠
 (13)

 From this definition, we can infer (14) the computational efficiency of PCR calculation.

This equation represents the total computational efficiency of this method as the composition of

the per node statistic calculation and per edge consideration made in its calculation.

 𝑇𝑃𝐶𝑅(𝑛) = 𝑓(|𝑉|) + 𝑔(|𝐸|) (14)

The core idea behind this method is to analyze the ratio of data produced (sent) by a network

entity to the data consumed (received) by that entity. This ratio can indicate unusual data flows,

such as those indicative of data exfiltration. For this reason, this project utilized PCR calculation

as the basis for evaluating computational efficiency dynamics for assets subject to data

exfiltration monitoring.

Graph Neighborhood Traversal

 Inductive representation learning on large graphs, like computer networks, has become an

essential technique for capturing complex patterns and relationships in various real-world datasets

(Hamilton et al. 2017, p. 1). In this literature review, we focus on the computational efficiency of

the breadth-first search (BFS) algorithm, a common graph traversal technique, in the context of

inductive representation learning on large graphs.

11

Breadth-First Search (BFS) is a widely used graph traversal technique that explores the

nodes of a graph in layers, starting from a source node and moving outwards, with a time

complexity of (15) (Cormen et al., 2009, p. 595).

𝑇𝐵𝐹𝑆(𝑛) = 𝑂(|𝑉| + |𝐸|) (15)

The utilization of BFS in GNNs to efficiently sample neighborhoods of nodes enable the

models to scale to input large graphs (Hamilton et al., 2017). Moreover, BFS forms the basis for

all neighborhood aware detection algorithms due to this property. For this reason, this project

considered the computational dynamics of BFS.

Security Policy

Security policies play a crucial role in guiding organizations through their cybersecurity

efforts, with the focus being on infrastructure, compliance, and legal aspects. Alok et al. (2022)

highlighted the importance of developing comprehensive security policies, identifying various

policy classes such as privacy, web, cloud, information, physical, data retention, access control,

data protection, network, and email communications. By partitioning the policy space, they

provide a structured approach to addressing business process augmentation and the necessary

detection capacity in the context of security policy. The Payment Card Industry Data Security

Standard (PCI DSS) is a prominent example of a security policy framework that offers guidance

on securing payment card data. It emphasizes the need for monitoring network activity to detect

and respond to security incidents effectively (PCI Security Standards Council, 2021).

Apart from the PCI DSS requirements, organizations should also consider other policy

classes outlined by Alok et al. (2022) to create a well-rounded security strategy. Algorithm

selection for security detection monitoring should be based on industry-accepted best practices,

considering factors such as the type of data monitored, network architecture, and potential threat

12

landscape (PCI Security Standards Council, 2021). In cases with network reconfiguration,

organizations must assess the implications for security detection monitoring algorithms. Changes

in network components or data flow might necessitate adjustments to existing algorithms to

maintain their effectiveness. Developing a comprehensive security policy incorporating PCI DSS

requirements and other relevant policy classes is essential for organizations exposed to commerce

and payment-related infrastructure. Adhering to industry-accepted best practices and monitoring

network activity for security incidents will help organizations safeguard against data breaches and

other security threats.

Under the theme of information technology-based business process augmentation, we

considered the business solution mapping for dynamics in network topology (Rajarathinam et al.,

2015, p.2). Regarding algorithm selection and complexity, we choose to employe the methods

Bouyeddou et al.'s (2020) Kullback-Leibler based DDOS detection, Bullard and Gerth’s (2014)

producer-consumer ratio calculation of data exfiltration detection, and general breadth-first

search. Finally, addressing the policy theme, Alok et al. (2022) provide a class-based method for

policy structure. This model describes business augmentation as a composition of sub-policy.

CHAPTER 3

METHODOLOGY

 How can security operations management assess the costs of technology-driven

enhancements to business processes in the context of the security detection function? Addressing

this research question required the study of the two identified sources of dynamics, input (10) and

detection composition (11). We conducted an experimental process to identify the impact of

various input on each of the detection algorithms in focus.

13

Setting

 This research utilizes summarized statistics from actual business topology and networked

entity usage profiles to inform a simulation allowing for the study across the dimensions of

business structure and observation point configuration. These topologies inform the simulation,

describing how the business process-related entities connect and the network infrastructure (Li et

al., 2020). As the research questions acknowledge, the initial state of the organization's structure

constrains business processes and monitoring requirements.

Participants/Sample

This project involves the participation of two businesses with network topologies

representing opposite sides of the business structure dependence spectrum. The first organization,

which this project calls Network A, is a medium/large retail operation. This business's network

topology is highly dependent on the business structure. "A typical retail network at the

downstream end of the supply chain generally comprises a set of retail stores, distribution

centres[sic] (DCs), customers and the transport network that connects them together as a spatial

system within which they interact" (Chhetri et al., 2017).

Network A: Retail Business Network Analysis

Network A is a computer network consisting of eighteen distinct locations, operating

within a single internal /16 network address space. The network serves a business with seventeen

retail stores and a central office, where each location has a unique third octet. This configuration

connected the retail stores and central office through a well-structured network design that offers

security, isolation, and access control, ensuring the protection of sensitive data while maintaining

efficient communication between the locations.

14

Retail Stores Configuration. Each of the seventeen retail stores within Network A contains

between 5 and 12 point-of-sale (POS) systems, an inventory computer, and an office computer. A

local subnet connected the devices of each store, enabling communication and resource sharing

among them. To ensure the security of sensitive store data and maintain isolation from potential

threats, restrictions on devices within the retail stores allow access only to resources within their

local subnet and the central office subnet. This design helps protect each retail store from

unauthorized access and potential security breaches.

Central Office Configuration. The central office in Network A houses a server room for

inventory management and sixty user desktops. The server room is crucial to the overall business

operation, as it facilitates effective inventory management across the retail stores. Unlike retail

stores, devices in the central office have internet access, allowing users to access external

resources and perform necessary online tasks. However, to maintain a secure environment for

critical business systems, restrictions prevent communication between user desktops and devices

within the server room.

Security and Access Control in Network A. Network A's design strikes a balance between

security, access control, and resource sharing among the retail stores and central office. By

limiting access to resources within their respective subnets and the central office subnet, the retail

stores can effectively share information with the central office without compromising security.

Similarly, the central office can maintain a secure environment for critical systems while

providing users with necessary internet access by restricting communication with the server room.

In summary, Network A's network configuration effectively addresses the unique

requirements of a retail business with multiple store locations and a central office. In addition, the

15

design prioritizes security and access control, ensuring the protection of sensitive data while

facilitating efficient communication and resource sharing among the business locations.

Network B: Corporate Headquarters Network Analysis

The second organization, which this project calls network B, is a software company with

centralized compute resources, cloud service reliance, and a 100% work-from-home employee

base. This end of the business structure spectrum shows a low level of dependency between

topology and business structure. For this reason, the spectrum of results serves as an analog for

the application of direct experimental observation evaluation. This business structure is standard

after the covid pandemic forced organizations to reduce physical interactions between employees

(O'Reardon & Rendar, 2020). In this configuration, the network serves multiple departments and

facilitates communication between various teams, including finance, marketing, human resources,

and IT. The network's primary objective is to ensure efficient interdepartmental communication

and resource sharing while maintaining a secure environment for sensitive data.

Departmental Configuration. Each department within Network B has its subnet, allowing

devices within the department to communicate and share resources efficiently. The number of

devices within each subnet varies depending on the size and nature of the department. To

maintain a structured network environment, restrictions limit devices with access to resources

only within their local subnet, while communicating with other departments through a central

resource server.

Central Resource Server. The central resource server in Network B plays a crucial role in

interdepartmental communication and resource sharing. This server houses shared resources such

as documents, applications, and databases required by various departments. By routing

16

communication between departments through the central resource server, Network B maintains a

secure environment for sensitive data and prevents unauthorized access.

Security and Access Control in Network B. Network B's design ensures a balance between

security, access control, and interdepartmental communication. By isolating departmental subnets

and facilitating communication through the central resource server, the network can effectively

protect sensitive data from unauthorized access. Additionally, the use of strict access controls and

authentication mechanisms helps maintain a secure environment for critical business systems.

Data

Network monitoring in an ideal world would consist of full packet capture, with every

detail of traffic flows archived. "NetFlow [IPFIX] can fill up some of the gaps and challenges

regarding the collection of packet captures everywhere on the network. It is easier to store large

amounts of NetFlow [IPFIX] data because it is only a transactional record" (Santos, 2016, p. 49).

The use of network summary statistics available through the aggregation of IPFIX network

observational logs constrained this research. The experiment requires manipulation of business

network topology, the development, and execution of network event-generating simulation code

produced observational records consistent with what is available from a production IPFIX data

stream.

Using packet capture data from these environments, the network usage of each network

entity informed behavioral profiles. We used these profiles to create network traffic flows

representative of the actual topology. The composition of each network flow record results in a

complete set of records for the observed period, which we analyzed for high-level summary

statistics relevant to this experiment. The composition of observation points allows for the

17

distributed and passive collection of data at scale, this experiment considers this factor as a linear

scaling factor (Claise et al., 2013).

We selected the algorithms for distributed denial of service detection, data exfiltration

detection, and generalized breadth-first search detection from techniques identified in the

literature review. Kullback-Leibler divergence is employed as a convolutional per the findings of

Bouyeddou et al. (2020). The performance of these algorithms is the data focus of this study.

With the per entity time of execution, captured memory and compute usage statistics

demonstrated algorithmic requirements. The delta between the control and augmented business

process instances reveals the augmentation's analytic impact. Collecting algorithmic requirements

and analytic impacts for each network with total observation point coverage and core-only

observation strategy produces four result sets.

Analysis

 Data collected during network simulation is the required detection analytic capacity,

measured as the proportion of overall detection resource usage. Therefore, the product of the

observed proportion and the overall cost is directly comparable to the proposed business process

augmentation's revenue/cost implications.

 By virtualizing the execution environment, log data pulled from the hypervisor gives

direct insight into the percentage of overall resource cost used by detection algorithms. Solving

this product turns the analytic impact of a business process augmentation into a cost figure

directly comparable to the proposed revenue increase enabled by the change. The decision-

making framework created by this analysis process allows organizations to consider the security

detection cost when considering business process augmentation across the dimensions of business

structure, detection algorithm objective, and observation point strategy.

18

Participants' Rights

"Publishers of network data are interested in protecting the privacy of a number of entities:

the network users, the network's security procedures, and the hosts that operate on the network"

(Coull et al., 2009, p. 5). Network topology information procured from real-world businesses

requires anonymization, providing accurate network design without exposing details of the source

network (Coull et al., 2009, p. 1). A prefix-preserving IP address pseudonymization strategy

provides the required anonymization (Fan et al., 2004). This method maintains the implicit

structure of IP addresses as node labels without exposing the actual business address structure.

Potential Limitations of the Study

TraceWrangler, a popular PCAP anonymization tool in the Wireshark community, utilizes

the methods presented by Coull et al. (2019). The deployment of TraceWrangler anonymized

network b without significant information loss. It was impossible to preserve a useful Network A

model, as it is highly structurally dependent. This limits the study to high-level network statistics

derived from network traffic flow metadata without leaking host topology-specific information.

Using network observational data as input generates an induced representation of the underlying

network. Analytic requirements and impact data from the induced network represent network

topology (Hamilton et al., 2017). Information technology entities in this study are host network

interfaces, leaving the complexity of user space for future research, which would expand the

resulting framework for user-oriented observational data. This allows for a description of

networks by total node count and relations count.

19

Pilot Study

 The initial simulation run revealed an inconsistency between multi-hop routes and their

existence in the generated IPFIX data. The resolution of this issue required submitting generated

conversations to all active observation points and checking the local routes and connected

networks at each point to check observation inclusion. While generalized pilot network topologies

occurred, direct consultation with the network staff at each company utilized in the final

experiment enables high-detail simulation entity inclusion and behavioral profile modeling. This

result informed the full-scale study to instead rely only on a high-level node and edge statistic

summarization, leaving the intricacies of collection strategy for further study under the protection

function (NIST, 2018).

20

CHAPTER 4

DATA COLLECTION, ANALYSIS, AND PRELIMINARY FINDINGS

Demonstrating computational efficiency requires running an analytic service and

collecting resource utilization. Through experimental data collection, this project shows the use of

high-level network statistics to approximate resource usage in network security detection. The

results of the algorithms are outside this project’s scope, with the resource required to operate

being the metric in focus.

We chose to use Docker as the execution environment for the experiment. Executing

programs in a Docker container provides several benefits that enable the collection of the

program's resource requirements. First, Docker containers provide an isolated, lightweight

environment deployable on any host system. The execution of programs within a standardized

environment, independent of the underlying hardware or operating system, makes it easier to

collect and compare resource usage data across different configurations.

Regarding data collection, Docker provides several built-in monitoring and resource

management features that allow the collection of data on resource utilization and managing

resource allocation. For example, the Docker stats command provides real-time statistics on CPU,

memory, disk I/O, and network I/O usage for each running container. We gain insights into the

resource requirements of the program collection and analysis of docker statistics (Potdar,

Kengond, & Mulla, 2020). The collection of data for this study, using the Docker stats command,

provided real-time statistics on the resource utilization of running Docker containers.

The execution of the stats command happened periodically during the experiment, and the

storage of resulting data in a log file allowed later analysis. These metrics will provide valuable

insights into the resource requirements of the containers under various conditions and in the

21

evaluation of the effectiveness of the proposed optimization techniques (Casalicchio & Perciballi,

2017). The Docker containers independently executed various security detection algorithms, and

the input network data was varied to simulate different states of network reconfiguration. The data

collection happened multiple times under different experimental conditions to evaluate the

resource requirements of the proposed security detection techniques.

The data collection for each configuration and network scenario and the resulting metrics

allowed the assessment of the required resources. Utilizing the average resource requirements

from multiple runs provides a result set that reduces the impact of random variation. Analysis log

files containing the data collected during each experiment store the metrics. Investigating

anomalous log files determines their accuracy and qualification for inclusion in the study. This

approach enabled a comprehensive evaluation of the resources required under various conditions,

providing valuable insights into their effectiveness and limitations.

Description of the Sample

 Docker stat streaming produces a series of records that include the following

instantaneous quantitative fields; CPU percent utilized, memory consumption in base two

measure (KiB, MiB, GiB, etc...), memory percent utilized, network I/O, storage I/O, and process

count. This approach allows for the collection of continuous data throughout the execution of the

program rather than at discrete intervals. Collecting data this way can capture changes in resource

utilization over time and identify patterns or trends not represented in aggregate data.

Streaming instantaneous resource utilization statistics can be particularly useful for understanding

how a program's resource requirements change under different experimental conditions or

scenarios. For example, it may be possible to observe how the CPU utilization of a program

changes over time as the input data changes or to monitor memory usage as the program executes

22

a specific task. By analyzing this data, it is possible to gain insights into how the program

consumes resources.

Data Collection Method

 Data collection required the setup of a docker environment. Each container consumes

IPFIX input data and runs a specific detection algorithm. This pattern allowed for the controlled

consumption of input data and ensured that the same input data was in the same order in each

experimental run. When run simultaneously, the command that starts the container and the docker

stats command start both the experiment and the observation. The stats command ran for a

duration of 1200 seconds at one sample per second.

Data Analysis Method

Analysis of the stat collection output, making it possible to gain insights into the

computational complexity of the program running in the container. “Different algorithms devised

to solve the same problem often differ dramatically in their efficiency” (Cormen et al., 2009, p.

12). A vital component of the analysis stage is the identification of algorithmic computational

efficiency due to input complexity caused by augmentation.

The Docker stats command, used to collect real-time CPU utilization data, allowed for

plotting the data over time. Analyzing the resulting graph makes it possible to identify CPU usage

patterns and estimate the program's algorithmic computational efficiency. In the case where CPU

usage remains constant over time, this may suggest that the program has a constant time

efficiency, indicating that it performs the same number of operations regardless of the input size.

If the CPU usage increases linearly with the input size, this may suggest that the program

has a linear response to input. The number of operations increases proportionally with the input

23

size. Finally, suppose the CPU usage increases exponentially with the input size suggesting the

program has exponential computational efficiency where logical operations grow exponentially

with the input size. Applying these principles to the memory usage statistics collected determines

the memory response of computational efficiency (Maidana, Parhizkar, Gomola, Utne, & Mosleh,

2023).

CHAPTER 5

RESULTS

The results section of this study addresses the research question via response information

in both the dynamics in input (10) and algorithmic composition (11). The experimental process

identifies resource requirements of different algorithmic classes when subjected to perturbations

in the simulated network. The following is an analysis of the data collected during the

experiments.

The basis for evaluation of resource requirements for the different algorithmic classes was

the metrics collected from the Docker stats command. The analysis of these metrics follows the

methodology presented by Casalicchio and Perciballi (2017), which provides a comprehensive

framework for measuring Docker performance. By adapting their approach to the specific context

of our research, we were able to assess the impact of network reconfigurations on the resource

consumption of the selected detection algorithms.

To analyze CPU usage effectively, we adapted the methodology Meng et al. (2019)

proposed to analyze smartphone usage to detect security attacks. By employing a similar

approach to examine the CPU utilization patterns of our detection algorithms, we were able to

24

identify trends and correlations that helped us assess the impact of network reconfigurations on

the resource consumption of the selected detection algorithms.

We ran the Golang program in a Docker container and collected the Docker stats for CPU

utilization, memory usage, network I/O, and disk I/O using the Docker stats command. Analyzing

the collected data, we assess the baseline resource consumption for each metric under different

computational workloads. This baseline served as a reference point for comparing the resource

requirements of the security detection algorithms under investigation.

 To establish a reliable reference point for comparing the resource consumption of security

detection algorithms, we created a custom Golang program that simulates computational tasks

with a specified time complexity. By creating a baseline that reflects various computational

workloads, we can answer ordinal research questions about the performance of the security

detection algorithms under different network conditions.

To establish a baseline for Docker stats, we developed a custom Golang program that

simulates computational tasks with a specified input complexity (Whitman & Mattord, 2018, p.

161). The program takes three input arguments: node count, time complexity factor, and

frequency. It performs N * F atomic computations representing the simplest case with time

complexity proportional to N * F. By varying the values of N and F, the generation of different

computational workloads simulates various ideal resource consumption levels within a Docker

container, given the observed performance of the security detection algorithms. The collected data

provided a baseline for resource consumption under different computational workloads as a

reference point for comparing the resource requirements of the security detection algorithms

under investigation.

25

Discussion of Results

The experimental results demonstrated a clear ranking of computational efficiency

between the different network reconfigurations. In this section, we discuss the implications of

these findings and how they can inform security operations management in assessing the costs of

technology-driven enhancements to business processes in the context of the security detection

function.

Ordinal Ranking of Computational Efficiency

The experimental results showed that logarithmic growth between network

reconfigurations had a more significant impact on the resource consumption of some security

detection algorithms than others. This finding is crucial for security operations management

because it highlights the importance of understanding the relationship between network

reconfigurations and the performance of security detection algorithms. By recognizing these

relationships, security operations management can make informed decisions about adopting

specific technology-driven enhancements to business processes, considering the potential impact

on the security detection function. The ranking of computational efficiency observed in this study

can serve as a guideline for security operations management to prioritize network reconfigurations

that minimize the resource consumption of security detection algorithms. When reviewing plotted

results evaluation of Equation (10) is along the x-axis of Figures 2-9. The composition of the

results from multiple algorithm results at the same input complexity allows evaluation of (11).

Baseline

Beginning with the baseline, Figure 2 shows a summarization of the CPU utilization. Here

we observed an approximate doubling in resource requirements between logarithmic changes in

26

input scale. The observation of a generalized minimum usage in small datasets shows similar

usage. Figure 3 shows memory consumption per input configuration. Observation shows fixed

memory allocation in the baseline case and proportional to the cardinality of input.

BFS

 Figures 4 and 5 show the CPU and memory usage for each input configuration applied to

the breadth-first-search algorithm. In this case, we can see CPU usage proportional to the

logarithmically varied input sizes. Observation shows memory usage approximately double with

logarithmic input variation.

KLDDOS

 Figures 6 and 7 show the CPU and memory usage for each input configuration as applied

to the Kullback-Leibler Distributed Denial of Service detection algorithm. CPU usage is

significantly more sensitive to the increase in edge cardinality. Memory usage shows a base level

of memory required independent of input, with slow usage growth as input cardinality increases.

PCR

 Figures 8 and 9 show the CPU and memory usage for each input configuration as applied

to the producer-consumer ratio-based data exfiltration detection algorithm. There is an

initialization impact of pcr that optimizes overtime. This study has attributed this behavior to

Golang memory allocation calls and the allocation itself. CPU shows minimal relation between

input configuration, like the baseline results. Memory is proportional to the node cardinality as

the PCR metric storage per node interacted with observed edges.

27

Figure 2.

 Baseline – Docker CPU Usage Rolling Average

Note. The collected CPU usage metrics from execution of the baseline container smoothed with

an averaging window of width 100.

28

Figure 3.

Baseline – Docker CPU Usage Rolling Average

Note. The collected memory usage metrics from execution of the baseline container smoothed

with an averaging window of width 100.

29

Figure 4.

BFS – Docker CPU Usage Rolling Average

Note. The collected CPU usage metrics from execution of the breadth-first search container

smoothed with an averaging window of width 100.

30

Figure 5.

BFS – Docker Memory Usage Rolling Average

Note. The collected memory usage metrics from execution of the breadth-first search container

smoothed with an averaging window of width 100.

31

Figure 6.

 KLDDOS – Docker CPU Usage Rolling Average

Note. The collected CPU usage metrics from execution of the Kullback-Leibler DDOS container

smoothed with an averaging window of width 100.

32

Figure 7.

KLDDOS – Docker CPU Usage Rolling Average

Note. The collected Memory usage metrics from execution of the Kullback-Leibler DDOS

container smoothed with an averaging window of width 100.

33

Figure 8.

PCR -Docker CPU Usage Rolling Average

Note. The collected CPU usage metrics from execution of the producer-consumer ratio container

smoothed with an averaging window of width 100.

34

Figure 9.

PCR -Docker CPU Usage Rolling Average

Note. The collected Memory usage metrics from execution of the producer-consumer ratio

container smoothed with an averaging window of width 100.

35

Table 1.

Table of Results per input and algorithm variance

Dataset Container Avg. CPU Usage (%) Rank (CPU) Avg. Mem Usage (%) Rank (Mem)

100_1000 baseline 0.02 1 0.05 1

239_10740 baseline 0.02 1 0.05 1

1000_10000 baseline 0.03 2 0.05 1

1083_59725 baseline 0.03 2 0.05 1

10000_100000 baseline 0.05 3 0.06 2

100_1000 klddos 0.01 1 0.05 1

239_10740 klddos 0.01 1 0.06 2

1000_10000 klddos 0.01 1 0.06 2

1083_59725 klddos 0.05 2 0.11 3

10000_100000 klddos 0.09 3 0.15 4

100_1000 bfs 0.02 1 0.08 1

239_10740 bfs 0.05 2 0.09 2

1000_10000 bfs 0.07 3 0.11 3

1083_59725 bfs 0.29 4 0.13 4

10000_100000 bfs 0.87 5 0.18 5

100_1000 pcr 0.00 1 0.05 1

239_10740 pcr 0.00 1 0.06 2

1000_10000 pcr 0.01 2 0.06 2

1083_59725 pcr 0.01 2 0.07 3

10000_100000 pcr 0.01 2 0.08 4

36

CONCLUSION

 This study has unified the relevant concepts that cause network reconfiguration and how

those reconfigurations induce dynamics in the cost of security detection. With the inclusion of a

repeatable experimental process for sourcing metrics used in cost calculation the paper concludes

by proposing the following costing framework for the dynamic computational efficiency of the

network security detection function. This framework addresses the research question of how

security operations management can assess the costs of technology-driven enhancements to

business processes in the context of the security detection function by providing a structured

approach to estimating and analyzing the fiscal impact of implementing security measures in a

business environment.

A Costing Framework for the Dynamic Computational Efficiency of the Network Security

Detection Function

The following series of steps comprise this costing framework.

Maintain a Business Solution Map. Ensure there is a strong understanding of the

relationship between the business processes and the technical assets supporting them.

Determine the Business Solutions Impacted. Identification of the specific business

solutions the technology-driven enhancements affect. This is the component of the framework

that determines the dynamics in computational efficiency related to input complexity.

Enumerate Relevant Compliance and Security Policy. Enumerate the various

compliance requirements and security policies that need to be adhered to when implementing

technology-driven enhancements. This component represents the computational efficiency

dynamic induced by recompositing of detection algorithms.

Select Appropriate Detection Algorithms. Based on the security policies, select suitable

detection algorithms for network observations of the business solution. This component also

37

represents the computational efficiency dynamic induced by recompositing of detection

algorithms.

Sample the Current Environment. By sampling the existing network environment and

generating statistics, simulations approximately reflect the current state of the network.

Simulate with Current and Projected Input. Perform simulations using both the current

network statistics and a dataset with the proposed changes, providing a comprehensive view of

the potential impact on the system.

Analyze the Usage Dynamics. This step involves collecting and analyzing the simulation

results to determine the changes in resource utilization resulting from the technology-driven

enhancements.

Calculate the Cost of the Usage Delta. Estimate the cost of the additional resource

utilization by considering the historical cost of operation and scaling it according to the changes

in resource usage.

Allocate the Cost Delta. Allocate the cost delta to the operational department responsible

for proposing the technology-driven enhancements, providing a clear picture of the financial

implications of the changes.

By following these steps, the framework offers a systematic solution for security

operations management to assess the costs of technology-driven enhancements to business

processes in the context of security detection function, enabling organizations to make well-

informed decisions and optimize their security investments.

38

Table 2.

A Costing Framework for the Dynamic Computational Efficiency of the Network Security

Detection Function

Action Requirements

Maintain a business solution map Maintain a mapping between business

function and the technical assets that support

them (Rajarathinam, Chellappa, & Nagarajan,

2015, p.2).

Determine the business solutions impacted Reduce business process augmentation to the

set of business solutions affected.

Enumerate the relevant compliance

requirements and security policy

Using the business solution mapping, identify

the business compliance related to the process

and the security policy for the technical asset

(PCI Security Standards Council, 2018,

requirement 10).

Select the appropriate detection algorithms Using the relevant security policy, select the

family of algorithms applicable to the business

solution’s network observations.

Sample the current environment Take samples from affected network

environment and generate node and edge

cardinality statistics for usage in simulation

(Yu et al., 2019).

Simulate with current and projected input Perform simulations with the current network

statistics as well as a dataset with the proposed

delta n (Yu et al., 2019).

Analyze the usage dynamics Collect statistics and identify the proportional

delta in resource utilization.

Calculate the cost of the usage delta Consider historical cost of operation and scale

by the delta in resource utilization (Horngren

et al., 2015 p. 840).

Allocate the cost delta Allocate the cost delta to the operational

department which proposed the business

solution augmentation (Horngren et al, 2015 p.

565).

39

This project successfully developed a comprehensive costing framework for evaluating

the impact of implementing security policies and algorithms within a business environment. By

considering factors such as business solutions, compliance requirements, technical assets, and

security policies, the framework offers a systematic approach to assessing the costs associated

with enhancing security measures. The utilization of detection algorithms, network environment

sampling, and simulations enables the framework to generate accurate and actionable data for

decision-making.

The proposed framework not only quantifies the cost of usage delta but also facilitates the

allocation of these costs to the respective operational departments responsible for the business

solution augmentation. The framework enables organizations to make informed decisions on

resource allocation and to better understand the financial implications of adopting new security

measures. The costing framework, therefore, serves as a valuable tool for organizations seeking to

optimize their security investments while minimizing the impact on their operational efficiency.

Future research could further refine the framework by incorporating additional variables

or exploring alternative detection algorithms. Additionally, case studies and empirical validation

of the framework within real-world scenarios would be beneficial in demonstrating its practical

applications and effectiveness.

Limitations and Future Research

While this study provides valuable insights into the relationship between network

reconfigurations and the resource consumption of security detection algorithms, the consideration

of some limitations is important when interpreting the results. First, the use of high-level network

summarization statistics and focus on IP networks constrained this study. Second, the execution

40

of experiments using simulated network traffic may not fully capture the complexity and

variability of real-world network environments. Third, experimental input space logarithmically

scales both node and edge counts when natural network traffic would compare better against a test

grid with an approximate proportion between nodes and edges. Future research could expand the

scope of the study by considering additional network configurations, exploring user-oriented

observational data, and analyzing the performance of security detection algorithms in more

diverse and complex network environments.

41

References

Arora, S., & Barak, B. (2007). Computational Complexity: A Modern Approach (Draft).

Princeton University. Retrieved from https://theory.cs.princeton.edu/complexity/book.pdf

Bastian, N. D., & Weir, J. (2020, July 13). Algorithm selection framework for cyber attack

detection. Proceedings of the 2nd ACM Workshop on Wireless Security and Machine

Learning. https://doi.org/10.1145/3395352.3402623

Bongertz, J. (2013). SEC-4 Trace File Sanitization NG [Slide show; Slides]. Sharkfest

2013: Wireshark Developer and User Conference, San Francisco, California, United States

of America. sharkfest.wireshark.org.

https://web.archive.org/web/20130903100239/https://sharkfest.wireshark.org/sharkfest.13/

presentations/SEC-04_Trace-File-Sanitization-NG_Jasper-Bongertz.pdf

Bouyeddou, B., Kadri, B., Harrou, F., & Sun, Y. (2020). Nonparametric Kullback-Leibler

distance-based method for networks intrusion detection. 2020 International Conference on

Data Analytics for Business and Industry: Way Towards a Sustainable Economy

(ICDABI). doi:10.1109/ icdabi51230.2020.9325642

Bullard, C., & Gerth, J. (2014). PCR - A new flow metric: Producer Consumer Ratio [PowerPoint

slides]. FloCon 2014.

https://qosient.com/argus/presentations/Argus.FloCon.2014.PCR.Presentation.pdf

Casalicchio, E., & Perciballi, V. (2017). Measuring Docker Performance. International

Conference on Performance Engineering. https://doi.org/10.1145/3053600.3053605

Casalicchio, Emiliano & Perciballi, Vanessa. (2017). Auto-Scaling of Containers: The Impact of

Relative and Absolute Metrics. 10.1109/FAS-W.2017.149.

https://doi.org/10.1145/3395352.3402623
https://doi.org/10.1145/3053600.3053605

42

Chhetri, P., Kam, B., Lau, K. H., Corbitt, B., & Cheong, F. (2017). Improving service

responsiveness and delivery efficiency of retail networks: A case study of Melbourne.

International Journal of Retail & Distribution Management, 45(3), 271-291.

https://doi.org/10.1108/IJRDM-07-2016-0117

Claise, B., Cisco Systems, ETH Zurich, Trammell, B., & Aitken, P. (2013, September). RFC

7011 - Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange

of Flow Information. IETF RFC 7011. https://tools.ietf.org/html/rfc7011

Committee on National Security Systems. (2015). Committee on National Security Systems

(CNSS) Glossary (CNSS Instruction 4009). National Security Agency, Fort George G.

Meade, MD.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms (3rd ed.). MIT Press. Retrieved from

https://sd.blackball.lv/library/Introduction_to_Algorithms_Third_Edition_(2009).pdf

Coull, S. E., Monrose, F., Reiter, M. K., & Bailey, M. (2009). The Challenges of Effectively

Anonymizing Network Data. 2009 Cybersecurity Applications &Amp; Technology

Conference for Homeland Security. https://doi.org/10.1109/catch.2009.27

Dempsey, K., Chawla, N. S., Johnson, A., Johnston, R., Jones, A. C., Orebaugh, A., Scholl, M., &

Stine, K. (2011). Information security continuous monitoring (ISCM) for federal

information systems and organizations (NIST Special Publication 800-137). National

Institute of Standards and Technology.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-137.pdf

Diestel, R. (2017). Graph Theory (5th ed.). Springer-Verlag. Retrieved from

https://web.xidian.edu.cn/zhangxin/files/20020101_111456.pdf

https://tools.ietf.org/html/rfc7011

43

Fan, J., Xu, J., Ammar, M. H., & Moon, S. B. (2004). Prefix-preserving IP address

anonymization: measurement-based security evaluation and a new cryptography-based

scheme. Computer Networks, 46(2), 253–272.

https://doi.org/10.1016/j.comnet.2004.03.033

Gordon, L., Loeb, M. (2002). The Economics of Information Security Investment. ACM

Transactions on Information System Security. 5. 438-457. 10.1145/581271.581274.

Retrieved from

https://www.researchgate.net/publication/220593665_The_Economics_of_Information_Se

curity_Investment

Greenwald, J. (2013, November 4). Cyber security framework welcomed; Voluntary plan may

spur broader coverage. Business Insurance, 47(22), 0003.

https://link.gale.com/apps/doc/A348425719/ITOF?u=maine_usm&sid=summon&xid=fa6

a5c0a

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on

large graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.

Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems

30 (pp. 1024-1034). Curran Associates, Inc.

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

Horngren, C. T., Datar, S. M., & Rajan, M. V. (2015). Cost Accounting: A Managerial

Emphasis (14th Global ed.). Retrieved from

https://vera.staff.unri.ac.id/files/2015/11/Cost-Accounting-A-Managerial-Emphasis-by-

Horngren-Datar-Rajan-14th-Global-Edition.pdf

https://doi.org/10.1016/j.comnet.2004.03.033
https://link.gale.com/apps/doc/A348425719/ITOF?u=maine_usm&sid=summon&xid=fa6a5c0a
https://link.gale.com/apps/doc/A348425719/ITOF?u=maine_usm&sid=summon&xid=fa6a5c0a
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

44

Li, S., Du, S., Huang, W., Liang, S., Deng, J., Wang, L., Huang, H., Liao, X., & Su, S. (2020). A

light-weighted data collection method for DNS simulation on the cyber range. KSII

Transactions on Internet and Information Systems, 14(8), 3501-3518.

https://doi.org/10.3837/tiis.2020.08.020

Li, A., Yang, X., Kandula, S., & Zhang, M. (2010). CloudCmp: Comparing public cloud

providers. In Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement (pp. 1-14). https://doi.org/10.1145/1879141.1879143

Maidana, R. G., Parhizkar, T., Gomola, A., Utne, I. B., & Mosleh, A. (2023). Supervised dynamic

probabilistic risk assessment: Review and comparison of methods. Reliability Engineering

& System Safety, 230, 108889. https://doi.org/10.1016/j.ress.2022.108889

National Institute of Standards and Technology. (2018). The five functions [PowerPoint slides].

Retrieved from https://www.nist.gov/document/thefivefunctionspptx

O’Reardon, M., & Rendar, M. (2020). Managing Security Risk: How COVID-19 Pandemic and

Work-from Home Arrangements Pose New Security Considerations. Employee Relations

Law Journal, 46(2). https://www.pillsburylaw.com/images/content/1/4/141663/Managing-

Security-Risks.pdf

Penukonda, Qubeb & Paramasivam, Ilango. (2021). Design and analysis of behaviour based

DDoS detection algorithm for data centres in cloud. Evolutionary Intelligence. 14.

10.1007/s12065-019-00244-3.

Potdar, A., Narayan, D G., Kengond, S., & Mulla, M. M. (2020). Performance Evaluation of

Docker Container and Virtual Machine. Procedia Computer Science, 171, 1419–1428.

https://doi.org/10.1016/j.procs.2020.04.152

https://doi.org/10.3837/tiis.2020.08.020

45

Rajarathinam, V., Chellappa, S., & Nagarajan, A. (2015). Conceptual Framework for the

Mapping of Management Process with Information Technology in a Business Process.

The Scientific World Journal, 2015, 1–7. https://doi.org/10.1155/2015/983832

Reijers, H. A. (2021). Business Process Management: The evolution of a discipline. Computers in

Industry, 126, 103404. https://doi.org/10.1016/j.compind.2021.103404

Ross, R., Pillitteri, V., Dempsey, K., Riddle, M., & Guissanie, G. (2020). Protecting Controlled

Unclassified Information in Nonfederal Systems and Organizations (NIST Special

Publication 800-171, Revision 2). National Institute of Standards and Technology.

https://doi.org/10.6028/NIST.SP.800-171r2

Sandhu, K. (2021). Advancing Cybersecurity for Digital Transformation. Handbook of Research

on Advancing Cybersecurity for Digital Transformation, 1–17.

https://doi.org/10.4018/978-1-7998-6975-7.ch001

Santos, O. (2016). Network Security with Netflow and IPFIX: Big Data Analytics for Information

Security [Kindle E-book]. Cisco Press. Retrieved January 30th 2021, from

https://Amazon.com

Senate Committee on Homeland Security and Governmental Affairs. (2018). Cyber threats facing

America: An overview of the cybersecurity threat landscape : Hearing before the

committee on homeland security and governmental affairs, united states senate, one

hundred fifteenth congress, first session, may 10, 2017. United States Government

Publishing Office. https://www.govinfo.gov/content/pkg/CHRG-

115shrg27390/pdf/CHRG-115shrg27390.pdf

https://doi.org/10.1016/j.compind.2021.103404
https://doi.org/10.6028/NIST.SP.800-171r2
https://www.govinfo.gov/content/pkg/CHRG-115shrg27390/pdf/CHRG-115shrg27390.pdf
https://www.govinfo.gov/content/pkg/CHRG-115shrg27390/pdf/CHRG-115shrg27390.pdf

46

Sikeridis, D., Papapanagiotou, I., Rimal, B. P., & Devetsikiotis, M. (2018). A Comparative

Taxonomy and Survey of Public Cloud Infrastructure Vendors. arXiv preprint

arXiv:1710.01476.

Von Solms, R., & van Niekerk, J. (2013). From information security to cyber security. Computers

& Security, 38, 97-102. https://doi.org/10.1016/j.cose.2013.04.004 Retrieved via

https://profsandhu.com/cs6393_s19/Solms-Niekerk-2013.pdf

Whitman, M. E., & Mattord, H. J. (2018). Principles of Information Security (6th ed.).

Cengage Learning. Retrieved from

http://almuhammadi.com/sultan/sec_books/Whitman.pdf

Yu, L., Zwetsloot, I. M., Stevens, N. T., Wilson, J. D., & Tsui, K. L. (2019). Monitoring dynamic

networks: A simulation-based strategy for comparing monitoring methods and a

comparative study. (). Ithaca: Cornell University Library, arXiv.org.

https://profsandhu.com/cs6393_s19/Solms-Niekerk-2013.pdf
http://almuhammadi.com/sultan/sec_books/Whitman.pdf

	A Costing Framework for the Dynamic Computational Efficiency of the Network Security Detection Function
	tmp.1699368503.pdf.do5EP

