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ABSTRACT 

This study developed a comprehensive framework to systematically evaluate the economic 

implications of security policy implementation in IT-centric business processes. Focusing on the 

detection aspect of the NIST cybersecurity framework, the research explored the interrelation 

between business operations, computational efficiency, and security protocols. The framework 

comprises nine components, addressing the gap between cost projections and security policy 

enforcement. The insights provided valuable perspectives on managing security expenses and 

resource allocation in information security, ensuring alignment with revenue and expenditure 

outcomes while emphasizing the need for a comprehensive approach to cost management in 

information security management. 
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  CHAPTER 1 

INTRODUCTION 

Integration of information technology into business processes is a critical component of 

business transformation. With the growing prevalence of cybersecurity threats, organizations 

must consider business objectives and security policies when incorporating technology into their 

more automated operations (Senate Committee on Homeland Security and Governmental Affairs, 

2018). "Achieving digital transformation goals is impossible without taking into account 

information security considerations" (Sandhu, 2021, p. xiv). As information technology assets 

become more embedded in business processes, security policies, roles, and systems may impose 

constraints that counterbalance the potential benefits. Information security is often perceived as a 

cost center within organizations, leading to challenges in allocating costs and resources (Gordon 

& Loeb, 2002). This study developed a methodology for information technology management 

that considers not only the cost dynamics of security policy detection requirements but also the 

perception of information security as a cost center when making decisions about business process 

augmentation.  

Focusing on the Detection Function of the NIST Cybersecurity Framework 

The National Institute of Standards and Technology (NIST) cybersecurity framework 

comprises five functions, and increasingly the implementation of security policies focuses on 

addressing these functions (Greenwald, 2013). These high-level functional abstractions include 

identification, protection, detection, response, and recovery. Together this framework defines the 

“…five key pillars of a successful and wholistic cyber security program” (NIST, 2018). The 

complexity and functionality of the algorithms required for these policy objectives differ, 
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encompassing availability attacks, data flow, and topographic anomaly detection. This research 

concentrated on the detection function of the NIST framework, which is the most computationally 

sensitive, as it processed real-time event data (Stonebraker et al., 2014). 

Analytical Frameworks 

There is no formal methodology for assessing the impact of a proposed business process 

augmentation on the detection function of an organization's security operations. A mapping 

function that translates the domain of detection analytic capacity requirements into a range of 

monetary costs would enable a direct comparison with the expected revenue changes associated 

with technology-based business process augmentation. 

This study aimed to develop a formal method for determining proposed business process 

augmentations. The importance of this research was due to the increased number of monitored 

information technology assets that affected the costs of analytic detection requirements. This 

method considered security operation costs when projecting the revenue changes of proposed 

business process augmentations. 

The central research question for this project was: How can security operations 

management assess the costs of technology-driven enhancements to business processes in the 

context of the security detection function? Addressing this question involves examining security 

policy-driven detection outcomes, relationships between business processes and network 

complexity, and the deltas observed in resource requirements. 

Conceptual Framework 

The theoretical concepts of digital business process transformation, analytic detection 

outcomes, and security monitoring (Von Solms & Niekerk, 2013) are foundational conceptual 
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frameworks for this project. The comprehensive literature review explained the importance of 

each. The method proposed by this project operates within the intersection of these concepts, 

mapping business process revenue opportunities to security operation costs while considering 

principles from each area (Li et al., 2010, p. 19). The expected outcome of this project was a 

framework that enables security cost allocation among operating departments which require 

security.  

This project made several assumptions about the proposed business process augmentation, 

the detection algorithms employed, and the security monitoring coverage strategy defined by local 

security policies. These included the identification of process cost centers, the approximation of 

core algorithmic logic isolation, and non-uniform departmental compliance requirements. 

The proposed method's significance lies in its ability to enable security operations to 

connect the computational efficiency of the security detection function with other functional areas 

of the organization. This method facilitates resource allocation within the organization, reducing 

information security costs (Horngren et al., 2015, p. 565). By providing security operations input 

on business process augmentation, organizations can ensure the intended revenue/cost impact.  

Definition of Terms 

This project employs several unique terms that warrant definition. 

Network. A system implemented with a collection of interconnected components. Such 

components may include routers, hubs, cabling, telecommunications controllers, key distribution 

centers, and technical control devices (Ross et al., 2020). 

Security. A condition that from the establishment and maintenance of protective measures that 

enable an enterprise to perform its mission or critical functions despite risks posed by threats to its 

use of information systems. Protective measures may involve a combination of deterrence, 
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avoidance, prevention, detection, recovery, and correction that should form part of the enterprise's 

risk management approach (Committee on National Security Systems, 2015, 176). 

Security Function. The hardware, software, or firmware of the system is responsible for 

enforcing the system security policy and supporting the isolation of code and data (Ross et al., 

2020, 58). 

Computational Efficiency. The efficiency of an algorithm can be captured by a function T from 

the set of natural numbers N to itself such that T(n) is equal to the maximum number of basic 

operations that the algorithm performs on inputs of length n (Arora & Barak, 2007, p. 13). 

This project proposed a method for calculating the cost of security policy enforcement 

concerning proposed technology-based business process augmentations. We utilized Arora and 

Barak’s (2007) definition of computational efficiency as the foundational building block of this 

research represented in (1). Composition with resource cost quantification methods allowed for a 

mapping between computational efficiency and cost, as shown in (2) (Sikeridis et al., 2018, p. 2). 

Expressed as a composite (3) is a definition for cost as a function of computational efficiency and, 

therefore, input cardinality.  

𝐶𝐸 =  𝑇(𝑛)                                                            (1) 

𝐶𝑜𝑠𝑡 =  𝐶(𝑥)                                                            (2) 

 𝐶𝑜𝑠𝑡 =  𝐶(𝑇(𝑛))                                                        (3) 

 Gordon and Loeb (2002) asserted that “there are no fixed costs of information security” 

(p. 443). From this concept, this project focuses on the cost dynamics as seen in (4), given 

dynamics in computational efficiency as shown in (5).  

𝛥𝐶𝑜𝑠𝑡 = 𝛥𝐶(𝑥)                                                             (4) 

𝛥𝐶𝐸 = 𝛥𝑇(𝑛)                                                             (5) 
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 This project identified two sources of dynamics in the computational efficiency of security 

detection. The first was dynamics in detection function input. By deploying information 

technology to support business solutions, (6) defines the change in input cardinality caused by 

business process augmentation (Gordon & Loeb, 2002, p. 438). Diestel (2017) defines a graph as 

(7) a set of nodes and edges (p. 2). Business process defines the information technology 

requirements of an organization. The management of business processes "...sits at the intersection 

of computer science, information systems engineering, management science, and industrial 

engineering" (Reijers, 2021, p. 4). Dynamics in business processes that result in a topological 

change to the network are shown by (8) to impact computational efficiency directly, given that 

nodes and edge cardinality are the input for detection algorithms (Hamilton et al. 2017, p. 2).  

𝛥𝐶𝐸 = 𝑇(𝛥𝑛)                                                             (6) 

𝐺 = (𝑉, 𝐸)                                                             (7) 

𝛥𝐶𝐸 = 𝑇(𝛥𝑛)  ∋  𝛥𝑛 = 𝑓(𝛥𝑉, 𝛥𝐸)                                         (8) 

 Next, the project identified dynamics in security policy detection requirements as a source 

of computational efficiency dynamics (Whitman & Mattord, 2018, p. 161). This resulted in the 

formulation of (9), where the dynamics of computational efficiency are the composite of 

applicable detection algorithms. 

𝛥𝐶𝐸 = 𝛥𝑇(𝑛)   ∋   𝛥𝑇(𝑛)  =  𝛥(𝑡1(𝑛1) + . . . + 𝑡𝑥(𝑛𝑥))                          (9) 

 We leveraged (8) and (9) for the project's research objective of determining how security 

operations management should assess the costs of technology-driven enhancements to business 

processes in the context of the security detection function. With this functional definition, our 

costing framework can map organizational plans directly to security related costs, as seen in (10) 

and (11). 
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 𝛥𝐶𝑜𝑠𝑡 = 𝑇(𝛥𝑛)                                                          (10) 

 𝛥𝐶𝑜𝑠𝑡 = 𝛥𝑇(𝑛)                                                          (11) 

 By conducting experimental simulations that evaluated the impact of augmentations on 

various detection analytics’ computational efficiency, this study demonstrated a repeatable 

method for approximating local analytic requirements and their application to the proposed 

costing framework.  

CHAPTER 2 

LITERATURE REVIEW 

Business process management, security computational efficiency, and information 

security policy are the thematic pillars (Gordon & Loeb, 2002, p. 439). Literature aggregated 

under these themes establishes evidence in answering the primary research question and our 

method of experimentation.  

Information Technology-based Business Process Augmentation Business Solution 

Rajarathinam, Chellappa, and Nagarajan (2015) discussed the augmentation of business 

processes with information technology in their research. Their framework partitioned business 

processes into management, operational, and supportive classes. This partitioning allowed for the 

consideration of variable algorithmic requirements and input data cardinality. 

Similarly, Rajarathinam et al. (2015) introduce the term "business solution" to represent 

the pairing of business process and information technology solutions (p. 2). The concept of a 

business solution binds the technology requirement domain with business function. This 

combination determines cost allocation along with security policy constraints. Information 
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security management utilizes this pairing to determine the relevant detection computational 

efficiency dynamics.  

Figure 1.  

Business Solution Mapping  

Reprinted from Rajarathinam, Chellappa, & Nagarajan, 2015, Figure 2 

 

The Rajarathinam et al. (2015) framework outlined the fundamental principles to consider 

while assessing business processes; consistency, consonance, competitive advantage, and 

feasibility (p. 5). This project aims to balance their principle of competitive advantage, "the 

strategy must provide for the creation and maintenance of a competitive advantage in the selected 

area of the activity" and feasibility, "the strategy must neither overtax available resources nor 

create unsolvable subproblems" (Rajarathinam et al., 2015, p. 5).  

Detection Algorithm Computational Efficiency 

Bastian and Weir (2020) discuss the challenges of efficient algorithm selection. These 

authors form a mapping between tasks and analytical approaches, partitioning detection tasks into 
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prescriptive, predictive, and descriptive classes. The detection algorithm complexity domain at 

focus in this project is discretized into these classes and then mapped to analytical approaches, 

creating an interface for evaluating the delta in computational efficiency between business states. 

Bastian and Weir conclude that algorithm selection automation did not significantly improve over 

an expert system approach, supporting this project's intent to inform experts on business process 

dependencies in algorithm selection.  

Distributed Denial of Service Detection 

Bouyeddou, Kadri, Harrou & Sun, Y. (2020) present an innovative method for network 

intrusion detection using a nonparametric Kullback-Leibler distance-based approach in their study 

titled "Nonparametric Kullback-Leibler distance-based method for networks intrusion detection." 

The paper demonstrates the potential of this approach in detecting Distributed Denial of Service 

(DDoS) attacks and other types of network intrusions, which is crucial in examining the impact of 

business process augmentation on network security. Furthermore, the authors propose a novel 

method to identify network intrusions using the Kullback-Leibler (KL) distance, a measure of the 

divergence between two probability distributions.  

The nonparametric KL distance-based method aims to enhance the detection of intrusions 

in real-time by comparing the statistical distribution of network traffic data against a reference 

distribution representing normal traffic. An intrusion detected is positive if the KL distance 

between the two distributions exceeds a predefined threshold. In analyzing the relationship 

between business process augmentation and security policy, Bouyeddou et al.'s (2020) research 

are relevant as it offers an advanced technique for network intrusion detection, including DDoS 

attacks. The KL distance-based method may provide valuable insights into how changes in 

business processes and network configurations can affect the detection of network intrusions.  
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Penukonda and Paramasivam (2021) present a behavior-based DDoS detection algorithm 

for data centers in the cloud. Their proposed method focuses on detecting distributed denial-of-

service (DDoS) attacks in a cloud environment by analyzing network traffic patterns and 

classifying them as legitimate or malicious. This approach relies on threshold values to determine 

whether traffic patterns indicate an ongoing DDoS attack. However, one potential limitation of 

Penukonda and Paramasivam's (2021) approach is a reliance on predetermined threshold values, 

which may not be optimal for all network traffic scenarios.  

While Penukonda and Paramasivam's (2021) behavior-based DDoS detection algorithm 

provides a valuable approach for detecting DDoS attacks in cloud environments, the reliance on 

fixed threshold values could limit its adaptability. The KL divergence-based method by 

Bouyeddou et al. (2020) may offer a more appealing alternative due to its nonparametric approach 

and adaptability to evolving network traffic patterns. The KL divergence method's adaptability to 

various traffic patterns and its focus on comparing probability distributions offer notable 

advantages over methods that rely on fixed thresholds for specific traffic features. This 

adaptability and flexibility make the KL divergence-based method a more appealing choice for 

DDoS detection in the context of this project with a computational efficiency of (12), a 

composition of the product of node count and histogram width, and the edges processed in 

histogram realization. 

𝑇𝐾𝐿𝐷𝐷𝑂𝑆(𝑛)  =   𝑓(|𝑉|)(ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑤𝑖𝑑𝑡ℎ)  +  𝑔(|𝐸|)                            (12) 

Data Exfiltration Detection 

 Data exfiltration refers to the unauthorized transfer of sensitive data from an organization's 

network to an external destination. Therefore, detecting and preventing data exfiltration is a 

critical aspect of cybersecurity. Proposals of numerous methods exist to address this challenge. In 
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this literature review, we focus on the producer-consumer ratio (PCR) method, a technique for 

detecting data exfiltration by monitoring data flow between different network entities. 

 Bullard and Gerth (2014) presented (13) the producer-consumer ratio metric, a statistic for 

detecting data exfiltration based on monitoring data flow between network entities. 

𝑃𝐶𝑅 =  
𝑠𝑟𝑐𝐵𝑦𝑡𝑒𝑠 − 𝑑𝑠𝑡𝐵𝑦𝑡𝑒𝑠

𝑠𝑟𝑐𝐵𝑦𝑡𝑒𝑠 + 𝑑𝑠𝑡𝐵𝑦𝑡𝑒𝑠
                                                 (13) 

  From this definition, we can infer (14) the computational efficiency of PCR calculation. 

This equation represents the total computational efficiency of this method as the composition of 

the per node statistic calculation and per edge consideration made in its calculation.  

  𝑇𝑃𝐶𝑅(𝑛)  =   𝑓(|𝑉|)  +  𝑔(|𝐸|)                                         (14) 

The core idea behind this method is to analyze the ratio of data produced (sent) by a network 

entity to the data consumed (received) by that entity. This ratio can indicate unusual data flows, 

such as those indicative of data exfiltration. For this reason, this project utilized PCR calculation 

as the basis for evaluating computational efficiency dynamics for assets subject to data 

exfiltration monitoring. 

Graph Neighborhood Traversal 

 Inductive representation learning on large graphs, like computer networks, has become an 

essential technique for capturing complex patterns and relationships in various real-world datasets 

(Hamilton et al. 2017, p. 1). In this literature review, we focus on the computational efficiency of 

the breadth-first search (BFS) algorithm, a common graph traversal technique, in the context of 

inductive representation learning on large graphs. 
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Breadth-First Search (BFS) is a widely used graph traversal technique that explores the 

nodes of a graph in layers, starting from a source node and moving outwards, with a time 

complexity of (15) (Cormen et al., 2009, p. 595).  

𝑇𝐵𝐹𝑆(𝑛)  =  𝑂(|𝑉| + |𝐸|)                                                  (15) 

The utilization of BFS in GNNs to efficiently sample neighborhoods of nodes enable the 

models to scale to input large graphs (Hamilton et al., 2017). Moreover, BFS forms the basis for 

all neighborhood aware detection algorithms due to this property. For this reason, this project 

considered the computational dynamics of BFS. 

Security Policy 

Security policies play a crucial role in guiding organizations through their cybersecurity 

efforts, with the focus being on infrastructure, compliance, and legal aspects. Alok et al. (2022) 

highlighted the importance of developing comprehensive security policies, identifying various 

policy classes such as privacy, web, cloud, information, physical, data retention, access control, 

data protection, network, and email communications. By partitioning the policy space, they 

provide a structured approach to addressing business process augmentation and the necessary 

detection capacity in the context of security policy. The Payment Card Industry Data Security 

Standard (PCI DSS) is a prominent example of a security policy framework that offers guidance 

on securing payment card data. It emphasizes the need for monitoring network activity to detect 

and respond to security incidents effectively (PCI Security Standards Council, 2021). 

Apart from the PCI DSS requirements, organizations should also consider other policy 

classes outlined by Alok et al. (2022) to create a well-rounded security strategy. Algorithm 

selection for security detection monitoring should be based on industry-accepted best practices, 

considering factors such as the type of data monitored, network architecture, and potential threat 
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landscape (PCI Security Standards Council, 2021). In cases with network reconfiguration, 

organizations must assess the implications for security detection monitoring algorithms. Changes 

in network components or data flow might necessitate adjustments to existing algorithms to 

maintain their effectiveness. Developing a comprehensive security policy incorporating PCI DSS 

requirements and other relevant policy classes is essential for organizations exposed to commerce 

and payment-related infrastructure. Adhering to industry-accepted best practices and monitoring 

network activity for security incidents will help organizations safeguard against data breaches and 

other security threats. 

Under the theme of information technology-based business process augmentation, we 

considered the business solution mapping for dynamics in network topology (Rajarathinam et al., 

2015, p.2). Regarding algorithm selection and complexity, we choose to employe the methods 

Bouyeddou et al.'s (2020) Kullback-Leibler based DDOS detection, Bullard and Gerth’s (2014) 

producer-consumer ratio calculation of data exfiltration detection, and general breadth-first 

search. Finally, addressing the policy theme, Alok et al. (2022) provide a class-based method for 

policy structure. This model describes business augmentation as a composition of sub-policy.  

CHAPTER 3 

METHODOLOGY 

 How can security operations management assess the costs of technology-driven 

enhancements to business processes in the context of the security detection function? Addressing 

this research question required the study of the two identified sources of dynamics, input (10) and 

detection composition (11). We conducted an experimental process to identify the impact of 

various input on each of the detection algorithms in focus. 
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Setting 

 This research utilizes summarized statistics from actual business topology and networked 

entity usage profiles to inform a simulation allowing for the study across the dimensions of 

business structure and observation point configuration. These topologies inform the simulation, 

describing how the business process-related entities connect and the network infrastructure (Li et 

al., 2020). As the research questions acknowledge, the initial state of the organization's structure 

constrains business processes and monitoring requirements.  

Participants/Sample 

This project involves the participation of two businesses with network topologies 

representing opposite sides of the business structure dependence spectrum. The first organization, 

which this project calls Network A, is a medium/large retail operation. This business's network 

topology is highly dependent on the business structure. "A typical retail network at the 

downstream end of the supply chain generally comprises a set of retail stores, distribution 

centres[sic] (DCs), customers and the transport network that connects them together as a spatial 

system within which they interact" (Chhetri et al., 2017).  

Network A: Retail Business Network Analysis 

Network A is a computer network consisting of eighteen distinct locations, operating 

within a single internal /16 network address space. The network serves a business with seventeen 

retail stores and a central office, where each location has a unique third octet. This configuration 

connected the retail stores and central office through a well-structured network design that offers 

security, isolation, and access control, ensuring the protection of sensitive data while maintaining 

efficient communication between the locations. 
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Retail Stores Configuration. Each of the seventeen retail stores within Network A contains 

between 5 and 12 point-of-sale (POS) systems, an inventory computer, and an office computer. A 

local subnet connected the devices of each store, enabling communication and resource sharing 

among them. To ensure the security of sensitive store data and maintain isolation from potential 

threats, restrictions on devices within the retail stores allow access only to resources within their 

local subnet and the central office subnet. This design helps protect each retail store from 

unauthorized access and potential security breaches. 

Central Office Configuration. The central office in Network A houses a server room for 

inventory management and sixty user desktops. The server room is crucial to the overall business 

operation, as it facilitates effective inventory management across the retail stores. Unlike retail 

stores, devices in the central office have internet access, allowing users to access external 

resources and perform necessary online tasks. However, to maintain a secure environment for 

critical business systems, restrictions prevent communication between user desktops and devices 

within the server room. 

Security and Access Control in Network A. Network A's design strikes a balance between 

security, access control, and resource sharing among the retail stores and central office. By 

limiting access to resources within their respective subnets and the central office subnet, the retail 

stores can effectively share information with the central office without compromising security. 

Similarly, the central office can maintain a secure environment for critical systems while 

providing users with necessary internet access by restricting communication with the server room. 

In summary, Network A's network configuration effectively addresses the unique 

requirements of a retail business with multiple store locations and a central office. In addition, the 
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design prioritizes security and access control, ensuring the protection of sensitive data while 

facilitating efficient communication and resource sharing among the business locations. 

Network B: Corporate Headquarters Network Analysis 

The second organization, which this project calls network B, is a software company with 

centralized compute resources, cloud service reliance, and a 100% work-from-home employee 

base. This end of the business structure spectrum shows a low level of dependency between 

topology and business structure. For this reason, the spectrum of results serves as an analog for 

the application of direct experimental observation evaluation. This business structure is standard 

after the covid pandemic forced organizations to reduce physical interactions between employees 

(O'Reardon & Rendar, 2020). In this configuration, the network serves multiple departments and 

facilitates communication between various teams, including finance, marketing, human resources, 

and IT. The network's primary objective is to ensure efficient interdepartmental communication 

and resource sharing while maintaining a secure environment for sensitive data. 

Departmental Configuration. Each department within Network B has its subnet, allowing 

devices within the department to communicate and share resources efficiently. The number of 

devices within each subnet varies depending on the size and nature of the department. To 

maintain a structured network environment, restrictions limit devices with access to resources 

only within their local subnet, while communicating with other departments through a central 

resource server. 

Central Resource Server. The central resource server in Network B plays a crucial role in 

interdepartmental communication and resource sharing. This server houses shared resources such 

as documents, applications, and databases required by various departments. By routing 
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communication between departments through the central resource server, Network B maintains a 

secure environment for sensitive data and prevents unauthorized access. 

Security and Access Control in Network B. Network B's design ensures a balance between 

security, access control, and interdepartmental communication. By isolating departmental subnets 

and facilitating communication through the central resource server, the network can effectively 

protect sensitive data from unauthorized access. Additionally, the use of strict access controls and 

authentication mechanisms helps maintain a secure environment for critical business systems.  

Data 

Network monitoring in an ideal world would consist of full packet capture, with every 

detail of traffic flows archived. "NetFlow [IPFIX] can fill up some of the gaps and challenges 

regarding the collection of packet captures everywhere on the network. It is easier to store large 

amounts of NetFlow [IPFIX] data because it is only a transactional record" (Santos, 2016, p. 49). 

The use of network summary statistics available through the aggregation of IPFIX network 

observational logs constrained this research. The experiment requires manipulation of business 

network topology, the development, and execution of network event-generating simulation code 

produced observational records consistent with what is available from a production IPFIX data 

stream.  

Using packet capture data from these environments, the network usage of each network 

entity informed behavioral profiles. We used these profiles to create network traffic flows 

representative of the actual topology. The composition of each network flow record results in a 

complete set of records for the observed period, which we analyzed for high-level summary 

statistics relevant to this experiment. The composition of observation points allows for the 
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distributed and passive collection of data at scale, this experiment considers this factor as a linear 

scaling factor (Claise et al., 2013).  

We selected the algorithms for distributed denial of service detection, data exfiltration 

detection, and generalized breadth-first search detection from techniques identified in the 

literature review. Kullback-Leibler divergence is employed as a convolutional per the findings of 

Bouyeddou et al. (2020). The performance of these algorithms is the data focus of this study. 

With the per entity time of execution, captured memory and compute usage statistics 

demonstrated algorithmic requirements. The delta between the control and augmented business 

process instances reveals the augmentation's analytic impact. Collecting algorithmic requirements 

and analytic impacts for each network with total observation point coverage and core-only 

observation strategy produces four result sets. 

Analysis 

 Data collected during network simulation is the required detection analytic capacity, 

measured as the proportion of overall detection resource usage. Therefore, the product of the 

observed proportion and the overall cost is directly comparable to the proposed business process 

augmentation's revenue/cost implications. 

 By virtualizing the execution environment, log data pulled from the hypervisor gives 

direct insight into the percentage of overall resource cost used by detection algorithms. Solving 

this product turns the analytic impact of a business process augmentation into a cost figure 

directly comparable to the proposed revenue increase enabled by the change. The decision-

making framework created by this analysis process allows organizations to consider the security 

detection cost when considering business process augmentation across the dimensions of business 

structure, detection algorithm objective, and observation point strategy.  
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Participants' Rights 

"Publishers of network data are interested in protecting the privacy of a number of entities: 

the network users, the network's security procedures, and the hosts that operate on the network" 

(Coull et al., 2009, p. 5). Network topology information procured from real-world businesses 

requires anonymization, providing accurate network design without exposing details of the source 

network (Coull et al., 2009, p. 1). A prefix-preserving IP address pseudonymization strategy 

provides the required anonymization (Fan et al., 2004). This method maintains the implicit 

structure of IP addresses as node labels without exposing the actual business address structure.  

Potential Limitations of the Study 

TraceWrangler, a popular PCAP anonymization tool in the Wireshark community, utilizes 

the methods presented by Coull et al. (2019). The deployment of TraceWrangler anonymized 

network b without significant information loss. It was impossible to preserve a useful Network A 

model, as it is highly structurally dependent. This limits the study to high-level network statistics 

derived from network traffic flow metadata without leaking host topology-specific information. 

Using network observational data as input generates an induced representation of the underlying 

network. Analytic requirements and impact data from the induced network represent network 

topology (Hamilton et al., 2017). Information technology entities in this study are host network 

interfaces, leaving the complexity of user space for future research, which would expand the 

resulting framework for user-oriented observational data. This allows for a description of 

networks by total node count and relations count.  
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Pilot Study 

 The initial simulation run revealed an inconsistency between multi-hop routes and their 

existence in the generated IPFIX data. The resolution of this issue required submitting generated 

conversations to all active observation points and checking the local routes and connected 

networks at each point to check observation inclusion. While generalized pilot network topologies 

occurred, direct consultation with the network staff at each company utilized in the final 

experiment enables high-detail simulation entity inclusion and behavioral profile modeling. This 

result informed the full-scale study to instead rely only on a high-level node and edge statistic 

summarization, leaving the intricacies of collection strategy for further study under the protection 

function (NIST, 2018). 
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CHAPTER 4 

DATA COLLECTION, ANALYSIS, AND PRELIMINARY FINDINGS 

Demonstrating computational efficiency requires running an analytic service and 

collecting resource utilization. Through experimental data collection, this project shows the use of 

high-level network statistics to approximate resource usage in network security detection. The 

results of the algorithms are outside this project’s scope, with the resource required to operate 

being the metric in focus.  

We chose to use Docker as the execution environment for the experiment. Executing 

programs in a Docker container provides several benefits that enable the collection of the 

program's resource requirements. First, Docker containers provide an isolated, lightweight 

environment deployable on any host system. The execution of programs within a standardized 

environment, independent of the underlying hardware or operating system, makes it easier to 

collect and compare resource usage data across different configurations.  

Regarding data collection, Docker provides several built-in monitoring and resource 

management features that allow the collection of data on resource utilization and managing 

resource allocation. For example, the Docker stats command provides real-time statistics on CPU, 

memory, disk I/O, and network I/O usage for each running container. We gain insights into the 

resource requirements of the program collection and analysis of docker statistics (Potdar, 

Kengond, & Mulla, 2020). The collection of data for this study, using the Docker stats command, 

provided real-time statistics on the resource utilization of running Docker containers.  

The execution of the stats command happened periodically during the experiment, and the 

storage of resulting data in a log file allowed later analysis. These metrics will provide valuable 

insights into the resource requirements of the containers under various conditions and in the 
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evaluation of the effectiveness of the proposed optimization techniques (Casalicchio & Perciballi, 

2017). The Docker containers independently executed various security detection algorithms, and 

the input network data was varied to simulate different states of network reconfiguration. The data 

collection happened multiple times under different experimental conditions to evaluate the 

resource requirements of the proposed security detection techniques.  

The data collection for each configuration and network scenario and the resulting metrics 

allowed the assessment of the required resources. Utilizing the average resource requirements 

from multiple runs provides a result set that reduces the impact of random variation. Analysis log 

files containing the data collected during each experiment store the metrics. Investigating 

anomalous log files determines their accuracy and qualification for inclusion in the study. This 

approach enabled a comprehensive evaluation of the resources required under various conditions, 

providing valuable insights into their effectiveness and limitations. 

Description of the Sample 

 Docker stat streaming produces a series of records that include the following 

instantaneous quantitative fields; CPU percent utilized, memory consumption in base two 

measure (KiB, MiB, GiB, etc...), memory percent utilized, network I/O, storage I/O, and process 

count. This approach allows for the collection of continuous data throughout the execution of the 

program rather than at discrete intervals. Collecting data this way can capture changes in resource 

utilization over time and identify patterns or trends not represented in aggregate data. 

Streaming instantaneous resource utilization statistics can be particularly useful for understanding 

how a program's resource requirements change under different experimental conditions or 

scenarios. For example, it may be possible to observe how the CPU utilization of a program 

changes over time as the input data changes or to monitor memory usage as the program executes 
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a specific task. By analyzing this data, it is possible to gain insights into how the program 

consumes resources.  

Data Collection Method 

 Data collection required the setup of a docker environment. Each container consumes 

IPFIX input data and runs a specific detection algorithm. This pattern allowed for the controlled 

consumption of input data and ensured that the same input data was in the same order in each 

experimental run. When run simultaneously, the command that starts the container and the docker 

stats command start both the experiment and the observation. The stats command ran for a 

duration of 1200 seconds at one sample per second. 

Data Analysis Method 

Analysis of the stat collection output, making it possible to gain insights into the 

computational complexity of the program running in the container. “Different algorithms devised 

to solve the same problem often differ dramatically in their efficiency” (Cormen et al., 2009, p. 

12). A vital component of the analysis stage is the identification of algorithmic computational 

efficiency due to input complexity caused by augmentation. 

The Docker stats command, used to collect real-time CPU utilization data, allowed for 

plotting the data over time. Analyzing the resulting graph makes it possible to identify CPU usage 

patterns and estimate the program's algorithmic computational efficiency. In the case where CPU 

usage remains constant over time, this may suggest that the program has a constant time 

efficiency, indicating that it performs the same number of operations regardless of the input size.  

If the CPU usage increases linearly with the input size, this may suggest that the program 

has a linear response to input. The number of operations increases proportionally with the input 
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size. Finally, suppose the CPU usage increases exponentially with the input size suggesting the 

program has exponential computational efficiency where logical operations grow exponentially 

with the input size. Applying these principles to the memory usage statistics collected determines 

the memory response of computational efficiency (Maidana, Parhizkar, Gomola, Utne, & Mosleh, 

2023).  

CHAPTER 5 

RESULTS 

The results section of this study addresses the research question via response information 

in both the dynamics in input (10) and algorithmic composition (11). The experimental process 

identifies resource requirements of different algorithmic classes when subjected to perturbations 

in the simulated network. The following is an analysis of the data collected during the 

experiments. 

The basis for evaluation of resource requirements for the different algorithmic classes was 

the metrics collected from the Docker stats command. The analysis of these metrics follows the 

methodology presented by Casalicchio and Perciballi (2017), which provides a comprehensive 

framework for measuring Docker performance. By adapting their approach to the specific context 

of our research, we were able to assess the impact of network reconfigurations on the resource 

consumption of the selected detection algorithms.  

To analyze CPU usage effectively, we adapted the methodology Meng et al. (2019) 

proposed to analyze smartphone usage to detect security attacks. By employing a similar 

approach to examine the CPU utilization patterns of our detection algorithms, we were able to 
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identify trends and correlations that helped us assess the impact of network reconfigurations on 

the resource consumption of the selected detection algorithms. 

We ran the Golang program in a Docker container and collected the Docker stats for CPU 

utilization, memory usage, network I/O, and disk I/O using the Docker stats command. Analyzing 

the collected data, we assess the baseline resource consumption for each metric under different 

computational workloads. This baseline served as a reference point for comparing the resource 

requirements of the security detection algorithms under investigation. 

 To establish a reliable reference point for comparing the resource consumption of security 

detection algorithms, we created a custom Golang program that simulates computational tasks 

with a specified time complexity. By creating a baseline that reflects various computational 

workloads, we can answer ordinal research questions about the performance of the security 

detection algorithms under different network conditions.  

To establish a baseline for Docker stats, we developed a custom Golang program that 

simulates computational tasks with a specified input complexity (Whitman & Mattord, 2018, p. 

161). The program takes three input arguments: node count, time complexity factor, and 

frequency. It performs N * F atomic computations representing the simplest case with time 

complexity proportional to N * F. By varying the values of N and F, the generation of different 

computational workloads simulates various ideal resource consumption levels within a Docker 

container, given the observed performance of the security detection algorithms. The collected data 

provided a baseline for resource consumption under different computational workloads as a 

reference point for comparing the resource requirements of the security detection algorithms 

under investigation.  
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Discussion of Results 

The experimental results demonstrated a clear ranking of computational efficiency 

between the different network reconfigurations. In this section, we discuss the implications of 

these findings and how they can inform security operations management in assessing the costs of 

technology-driven enhancements to business processes in the context of the security detection 

function. 

Ordinal Ranking of Computational Efficiency 

The experimental results showed that logarithmic growth between network 

reconfigurations had a more significant impact on the resource consumption of some security 

detection algorithms than others. This finding is crucial for security operations management 

because it highlights the importance of understanding the relationship between network 

reconfigurations and the performance of security detection algorithms. By recognizing these 

relationships, security operations management can make informed decisions about adopting 

specific technology-driven enhancements to business processes, considering the potential impact 

on the security detection function. The ranking of computational efficiency observed in this study 

can serve as a guideline for security operations management to prioritize network reconfigurations 

that minimize the resource consumption of security detection algorithms. When reviewing plotted 

results evaluation of Equation (10) is along the x-axis of Figures 2-9. The composition of the 

results from multiple algorithm results at the same input complexity allows evaluation of (11). 

Baseline 

Beginning with the baseline, Figure 2 shows a summarization of the CPU utilization. Here 

we observed an approximate doubling in resource requirements between logarithmic changes in 
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input scale. The observation of a generalized minimum usage in small datasets shows similar 

usage. Figure 3 shows memory consumption per input configuration. Observation shows fixed 

memory allocation in the baseline case and proportional to the cardinality of input. 

BFS 

 Figures 4 and 5 show the CPU and memory usage for each input configuration applied to 

the breadth-first-search algorithm. In this case, we can see CPU usage proportional to the 

logarithmically varied input sizes. Observation shows memory usage approximately double with 

logarithmic input variation.  

KLDDOS 

 Figures 6 and 7 show the CPU and memory usage for each input configuration as applied 

to the Kullback-Leibler Distributed Denial of Service detection algorithm. CPU usage is 

significantly more sensitive to the increase in edge cardinality. Memory usage shows a base level 

of memory required independent of input, with slow usage growth as input cardinality increases. 

PCR 

 Figures 8 and 9 show the CPU and memory usage for each input configuration as applied 

to the producer-consumer ratio-based data exfiltration detection algorithm. There is an 

initialization impact of pcr that optimizes overtime. This study has attributed this behavior to 

Golang memory allocation calls and the allocation itself. CPU shows minimal relation between 

input configuration, like the baseline results. Memory is proportional to the node cardinality as 

the PCR metric storage per node interacted with observed edges.  
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Figure 2. 

 Baseline – Docker CPU Usage Rolling Average 

 

Note. The collected CPU usage metrics from execution of the baseline container smoothed with 

an averaging window of width 100.  
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Figure 3.  

Baseline – Docker CPU Usage Rolling Average  

 

Note. The collected memory usage metrics from execution of the baseline container smoothed 

with an averaging window of width 100.  
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Figure 4.  

BFS – Docker CPU Usage Rolling Average  

 

Note. The collected CPU usage metrics from execution of the breadth-first search container 

smoothed with an averaging window of width 100.  
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Figure 5.  

BFS – Docker Memory Usage Rolling Average 

 

Note. The collected memory usage metrics from execution of the breadth-first search container 

smoothed with an averaging window of width 100.  
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Figure 6.  

 KLDDOS – Docker CPU Usage Rolling Average 

 

Note. The collected CPU usage metrics from execution of the Kullback-Leibler DDOS container 

smoothed with an averaging window of width 100.  
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Figure 7.  

KLDDOS – Docker CPU Usage Rolling Average 

 

Note. The collected Memory usage metrics from execution of the Kullback-Leibler DDOS 

container smoothed with an averaging window of width 100.  
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Figure 8.  

PCR -Docker CPU Usage Rolling Average 

Note. The collected CPU usage metrics from execution of the producer-consumer ratio container 

smoothed with an averaging window of width 100. 
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Figure 9.  

PCR -Docker CPU Usage Rolling Average 

 

Note. The collected Memory usage metrics from execution of the producer-consumer ratio 

container smoothed with an averaging window of width 100. 
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Table 1. 

Table of Results per input and algorithm variance 

Dataset Container Avg. CPU Usage (%) Rank (CPU) Avg. Mem Usage (%) Rank (Mem) 

100_1000 baseline 0.02 1 0.05 1 

239_10740 baseline 0.02 1 0.05 1 

1000_10000 baseline 0.03 2 0.05 1 

1083_59725 baseline 0.03 2 0.05 1 

10000_100000 baseline 0.05 3 0.06 2 

100_1000 klddos 0.01 1 0.05 1 

239_10740 klddos 0.01 1 0.06 2 

1000_10000 klddos 0.01 1 0.06 2 

1083_59725 klddos 0.05 2 0.11 3 

10000_100000 klddos 0.09 3 0.15 4 

100_1000 bfs 0.02 1 0.08 1 

239_10740 bfs 0.05 2 0.09 2 

1000_10000 bfs 0.07 3 0.11 3 

1083_59725 bfs 0.29 4 0.13 4 

10000_100000 bfs 0.87 5 0.18 5 

100_1000 pcr 0.00 1 0.05 1 

239_10740 pcr 0.00 1 0.06 2 

1000_10000 pcr 0.01 2 0.06 2 

1083_59725 pcr 0.01 2 0.07 3 

10000_100000 pcr 0.01 2 0.08 4 
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CONCLUSION 

 This study has unified the relevant concepts that cause network reconfiguration and how 

those reconfigurations induce dynamics in the cost of security detection. With the inclusion of a 

repeatable experimental process for sourcing metrics used in cost calculation the paper concludes 

by proposing the following costing framework for the dynamic computational efficiency of the 

network security detection function. This framework addresses the research question of how 

security operations management can assess the costs of technology-driven enhancements to 

business processes in the context of the security detection function by providing a structured 

approach to estimating and analyzing the fiscal impact of implementing security measures in a 

business environment.  

A Costing Framework for the Dynamic Computational Efficiency of the Network Security 

Detection Function 

The following series of steps comprise this costing framework. 

Maintain a Business Solution Map. Ensure there is a strong understanding of the 

relationship between the business processes and the technical assets supporting them.  

Determine the Business Solutions Impacted. Identification of the specific business 

solutions the technology-driven enhancements affect. This is the component of the framework 

that determines the dynamics in computational efficiency related to input complexity. 

Enumerate Relevant Compliance and Security Policy. Enumerate the various 

compliance requirements and security policies that need to be adhered to when implementing 

technology-driven enhancements. This component represents the computational efficiency 

dynamic induced by recompositing of detection algorithms. 

Select Appropriate Detection Algorithms. Based on the security policies, select suitable 

detection algorithms for network observations of the business solution. This component also 
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represents the computational efficiency dynamic induced by recompositing of detection 

algorithms. 

Sample the Current Environment. By sampling the existing network environment and 

generating statistics, simulations approximately reflect the current state of the network. 

Simulate with Current and Projected Input. Perform simulations using both the current 

network statistics and a dataset with the proposed changes, providing a comprehensive view of 

the potential impact on the system. 

Analyze the Usage Dynamics. This step involves collecting and analyzing the simulation 

results to determine the changes in resource utilization resulting from the technology-driven 

enhancements. 

Calculate the Cost of the Usage Delta. Estimate the cost of the additional resource 

utilization by considering the historical cost of operation and scaling it according to the changes 

in resource usage. 

Allocate the Cost Delta. Allocate the cost delta to the operational department responsible 

for proposing the technology-driven enhancements, providing a clear picture of the financial 

implications of the changes. 

By following these steps, the framework offers a systematic solution for security 

operations management to assess the costs of technology-driven enhancements to business 

processes in the context of security detection function, enabling organizations to make well-

informed decisions and optimize their security investments. 
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Table 2.  

A Costing Framework for the Dynamic Computational Efficiency of the Network Security 

Detection Function 

Action Requirements 

Maintain a business solution map Maintain a mapping between business 

function and the technical assets that support 

them (Rajarathinam, Chellappa, & Nagarajan, 

2015, p.2). 

Determine the business solutions impacted Reduce business process augmentation to the 

set of business solutions affected. 

Enumerate the relevant compliance 

requirements and security policy 

Using the business solution mapping, identify 

the business compliance related to the process 

and the security policy for the technical asset 

(PCI Security Standards Council, 2018, 

requirement 10).  

Select the appropriate detection algorithms  Using the relevant security policy, select the 

family of algorithms applicable to the business 

solution’s network observations.  

Sample the current environment  Take samples from affected network 

environment and generate node and edge 

cardinality statistics for usage in simulation 

(Yu et al., 2019). 

Simulate with current and projected input Perform simulations with the current network 

statistics as well as a dataset with the proposed 

delta n (Yu et al., 2019). 

Analyze the usage dynamics  Collect statistics and identify the proportional 

delta in resource utilization. 

Calculate the cost of the usage delta Consider historical cost of operation and scale 

by the delta in resource utilization (Horngren 

et al., 2015 p. 840). 

Allocate the cost delta Allocate the cost delta to the operational 

department which proposed the business 

solution augmentation (Horngren et al, 2015 p. 

565). 
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This project successfully developed a comprehensive costing framework for evaluating 

the impact of implementing security policies and algorithms within a business environment. By 

considering factors such as business solutions, compliance requirements, technical assets, and 

security policies, the framework offers a systematic approach to assessing the costs associated 

with enhancing security measures. The utilization of detection algorithms, network environment 

sampling, and simulations enables the framework to generate accurate and actionable data for 

decision-making. 

The proposed framework not only quantifies the cost of usage delta but also facilitates the 

allocation of these costs to the respective operational departments responsible for the business 

solution augmentation. The framework enables organizations to make informed decisions on 

resource allocation and to better understand the financial implications of adopting new security 

measures. The costing framework, therefore, serves as a valuable tool for organizations seeking to 

optimize their security investments while minimizing the impact on their operational efficiency. 

Future research could further refine the framework by incorporating additional variables 

or exploring alternative detection algorithms. Additionally, case studies and empirical validation 

of the framework within real-world scenarios would be beneficial in demonstrating its practical 

applications and effectiveness. 

Limitations and Future Research 

While this study provides valuable insights into the relationship between network 

reconfigurations and the resource consumption of security detection algorithms, the consideration 

of some limitations is important when interpreting the results. First, the use of high-level network 

summarization statistics and focus on IP networks constrained this study. Second, the execution 
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of experiments using simulated network traffic may not fully capture the complexity and 

variability of real-world network environments. Third, experimental input space logarithmically 

scales both node and edge counts when natural network traffic would compare better against a test 

grid with an approximate proportion between nodes and edges. Future research could expand the 

scope of the study by considering additional network configurations, exploring user-oriented 

observational data, and analyzing the performance of security detection algorithms in more 

diverse and complex network environments. 
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