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Introduction
Tissues are formed by the combinations of cells express-
ing different transcripts and proteins, which shape their 
morphology and function [1]. Differences between tis-
sues are driven by transcriptomic programs and sig-
natures, which change during normal organismal 
development and in detrimental processes such as ageing 
and various diseases [2, 3].

One hypothesis in gerontology is that tissues lose their 
cellular identity during ageing, which contributes to age-
related dysfunctions. Although recent studies support 
this idea for some tissues, we still do not have enough 
evidence to confirm this hypothesis, which highlights an 
important topic for the field [4–7].
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Abstract
Introduction  Understanding changes in cell identity in cancer and ageing is of great importance. In this work, we 
analyzed how gene expression changes in human tissues are associated with tissue specificity during cancer and 
ageing using transcriptome data from TCGA and GTEx.

Results  We found significant downregulation of tissue-specific genes during ageing in 40% of the tissues analyzed, 
which suggests loss of tissue identity with age. For most cancer types, we have noted a consistent pattern of 
downregulation in genes that are specific to the tissue from which the tumor originated. Moreover, we observed in 
cancer an activation of genes not usually expressed in the tissue of origin as well as an upregulation of genes specific 
to other tissues. These patterns in cancer were associated with patient survival. The age of the patient, however, did 
not influence these patterns.

Conclusion  We identified loss of cellular identity in 40% of the tissues analysed during human ageing, and a clear 
pattern in cancer, where during tumorigenesis cells express genes specific to other organs while suppressing the 
expression of genes from their original tissue. The loss of cellular identity observed in cancer is associated with 
prognosis and is not influenced by age, suggesting that it is a crucial stage in carcinogenesis.

Keywords  Functional genomics, Geriatric oncology, Geroscience, Oncogenomics
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Cancer cells are known to gain plasticity and stemness 
during tumor initiation and progression, and recently, 
unlocking phenotypic plasticity has been considered a 
“new” cancer hallmark [8, 9]. Ageing is one of the main 
risk factors for most cancers, which may link tissue speci-
ficity processes, the onset of cancer and progressive age-
related disruptions [10]. Moreover, cancers of different 
origins have different behaviour and development, and 
the relationship between the tumor and the original tis-
sue needs to be better elucidated to improve our under-
standing of cancer biology and find better treatment 
options [11–13]. Finally, growing evidence confirms that 
the molecular landscape of cancers from old and young 
patients are different, but we do not yet know whether 
patterns of tissue-specific identity influence these differ-
ences in any way [14].

In this study, we explore the relationship between 
genes differentially expressed in cancer and ageing with 
tissue-specific identity, using data from TCGA (The 
Cancer Genome Atlas), a comprehensive consortium 
that uses thousands of cancer samples to try to decipher 
the tumour landscape through sequencing and clinical 
data, and GTEx (Genotype-Tissue Expression), a public 
resource to study tissue-specific gene expression and reg-
ulation from healthy samples. Our results show evidence 
of a downregulation of tissue-specific genes in most can-
cers and in aged human tissues.

Methods
Data acquisition and processing
The mRNA expression data in read counts from the 
TCGA harmonized data (data aligned to hg38) and 
clinical data (XML files) were downloaded using TCGA-
biolinks (version 2.14.1) [15], as described in Chatsirisu-
pachai et al. [16].

RNA-Seq-based gene expression data from normal tis-
sues (version 8) were downloaded in read counts from 
the GTEx portal (https://gtexportal.org) [17]. According 
to GTEx documents, the sequencing reads were aligned 
to the human reference genome GRCH38/hg38.

First, we separated the TCGA or GTEx data according 
to cancer/tissue, and then we removed genes with less 
than 1 count in more than 30% of samples. TCGA and 
GTEx analyses were done independently. We used the 
biomaRt package to keep only the protein-coding genes 
in all analyses [18].

Genes differentially expressed in ageing (ageing-DEGs)
GTEx data was used to find differentially expressed genes 
with age. Samples without complete information were 
filtered out, and tissues with less than 50 complete sam-
ples were also excluded. GTEx only lists age ranges (i.e., 
20–29, 30–39, 40–49, 50–59, 60–69 and 70), so age was 
approximated to 25, 35, 45, 55, 65 and 75, respectively, as 

before [3]. The sample numbers for each tissue used in 
this study are shown in table Supplementary File 1. We 
follow the RNA-seq analysis workflow of Law et al. as 
described below [19].

GTEx GENCODE gene IDs were converted to Ensembl 
gene IDs using the cleanid() function from the grex pack-
age version 1.9 [20]. After ID conversion, 18 Ensembl IDs 
were duplicated – these genes were removed from the 
read counts.

Samples were grouped into their respective tissues and 
processed together.

First, to correct for library size variation between sam-
ples, the trimmed mean of M-values (TMM) normalisa-
tion method was applied using the calcNormFactors() 
function with default parameters [21]. Then, read counts 
were first converted to counts per million (CPM) to iden-
tify and exclude genes with low expression, using the 
cpm() function with default parameters from the edgeR 
package[22–24]. Counts were then voom transformed to 
adjust for heteroscedasticity using the voom() function 
with default parameters [25].

For each tissue, fold change with age was calculated 
using the model below. If any variable is not present in 
the tissue (e.g., sex for prostate or region for blood), it is 
disregarded in the analysis. All information on the sub-
jects was taken directly from the GTEx portal (https://
gtexportal.org/home/datasets).

	 Yij = αAgei + βSexi + γDeathi + δRegioni + εij

The variables are defined as follows:
 	• Yij: The expression level of gene j in sample i.
 	• Agei: The age of sample i – continuous variable.
 	• Sexi: The sex of sample i – categorical variable.
 	• Deathi: The death classification of sample i based on 

the 4-point Hardy scale – categorical variable [26].
 	• Regioni: The tissue region cells were extracted from 

for sample i – categorical variable.
 	• εij: The error term for gene i in sample j.

Linear models were generated using the R package 
limma, using the lmFit() function with default param-
eters[27, 28]. Genes were considered DEGs if they 
matched the following criteria: (i) The p-values derived 
from the empirical Bayes moderated t-statistics were 
less than 0.05 after Benjamini-Hochberg (BH) FDR cor-
rection; and (ii) the absolute log2 (fold change) across 50 
years of age (from 25 to 75), represented as 50* log2 (fold 
change) was greater than log2(1.5) [3].

Genes differentially expressed in cancer (cancer-DEGs)
Of all the cancers available in TCGA, we selected for our 
analyses only organs with at least ten samples of adja-
cent normal tissue available. The selected TCGA projects 
are: BLCA, BRCA, COAD, ESCA, HNSC, KICH, KIRC, 

https://gtexportal.org
https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
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KIRP, LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA 
and UCEC. For BRCA, we kept only samples from female 
patients. The sample number and definition for each 
organ (cancer and normal samples) are shown in table 
Supplementary File 1.

To generate a list of differentially expressed genes 
in cancer (cancer-DEGs), we compared tumour sam-
ples with adjacent normal tissue samples. Data were 
processed and analyzed using the R package DESeq2 
[29] using default parameters. A gene was consid-
ered differentially expressed when Fold Change > 2 and 
FDR < 0.01. The p-value adjustment was made using BH 
methodology.

Classification of genes based on specificity category
First, we need to classify all genes according to their tis-
sue specificity. For this, we downloaded the Tau Index-
based classification by Daniel Palmer et al. [30]. Briefly, 
the tau index is based on GTEx data and indicates how 
specific or widely expressed a gene is, with tau = 1 indi-
cating expression specific to only one tissue and tau = 0 
indicating similar expression in all tissues.

We subsequently established four specificity catego-
ries, further divided into two groups. The initial group, 
termed ‘Pan-tissue categories,‘ exclusively relies on tau 
values. As a result, genes in this group remain the same 
regardless of the tissues analyzed. The second group, 
called ‘Tissue-Specific categories,‘ incorporates tau values 
and tissue-specific average expression. Consequently, the 
genes in this group are different according to the tissue 
analysed. The categories are shown below:

 	• Pan-tissue categories:

“High Tissue Specificity genes” = Tau > 0.8;
“Low Tissue Specificity genes” = Tau < 0.2.

 	• Tissue-Specific categories:

“Tissue-Specific genes” = Tau > 0.95 and average 
expression > 1 in the tissue of interest;
“Tissue-Unexpressed genes” = Expression = 0 in the 
tissue of interest.

It is important to note that the Pan-tissue categories 
define how specific the expression of a gene is without 
specifying in which organ it is being expressed. On the 
other hand, Tissue-specific categories are based on the 
expression (or lack of expression) of genes only in the tis-
sue being analyzed. We kept only protein-coding genes 
and excluded transcripts where tau = NA (i.e., that are not 
expressed in any tissue).

The values of the “Pan-tissue” group are based on the 
original paper by Palmer et al. [30]. In the “Tissue-spe-
cific” group, we tried to be as strict as possible to ensure 

tissue specificity, so we used extreme tau values. The 
“Tissue-Specific” category, we used tau > 0.95 because 
using tau = 1 would generate insufficient genes for further 
analysis, but we guaranteed tissue specificity and consis-
tent expression using only genes with average expression 
above 1. Here it is important to note that although some 
authors consider “Tissue-Specific genes” to be genes 
expressed only in one tissue, we use a broader classifica-
tion, in which a tissue-specific gene has higher expres-
sion in one tissue but is expressed in one or a few tissues, 
an approach applied in several papers [31–35].

The Tau data and average tissue expression used in 
this study is in table Supplementary File 2. The numbers 
of genes in each category and the background list (all 
remaining genes in the tau classification) are shown in 
Table 1.

Overlap analyses
We performed a contingency analysis (i.e., overlap analy-
sis) by overlapping the DEGs (differentially expressed 
genes) related to cancer and ageing with the four catego-
ries using basic R functions. The overlap was considered 
significant if FDR < 0.05 (Fisher’s exact test followed by 
Benjamini-Hochberg correction).

To make sure that the pattern found in the previous 
analysis was biologically accurate, we used an alternative 
specificity classification and repeated the overlaps with 
the same parameters. For this, we downloaded data from 
Uhlén et al., where the authors’ classified genes based on 
RNA expression in a tissue-specific manner [36]. Briefly, 
in Uhlén et al., genes are divided into six main categories: 
“Tissue enriched”, “Tissue enhanced”, “Group enriched”, 
“Expressed in all”, “Mixed” and “Not Detected”. We then 
adapted these categories to our study, where we have the 
following “alternative categories” (number of genes and 
background list in each category in table Supplementary 
File 3:

 	• Pan-tissue categories:

High Tissue specificity genes = “Tissue enriched”, 
“Tissue enhanced” and “Group enriched”;
Low Tissue specificity genes = “Expressed in all” and 
“Mixed”,

 	• Tissue-Specific categories:

Tissue-Specific genes = “Tissue enriched”, “Tissue 
enhanced” or “Group enriched” in the tissue of inter-
est.
Tissue-unexpressed = FPKM < 1 in the tissue of inter-
est.

It is important to note that in Palmer’s classifica-
tion, HNSC and READ data could not be analyzed in a 
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tissue-specific manner as we do not have data available 
for the corresponding normal tissue (tonsil and rectum). 
In the alternative classification, BRCA, UCEC, blood, 
blood vessel, breast, nerve, pituitary, uterus, and vagina 
face the same limitation since their respective tissues are 
unavailable.

Gene ontology enrichment analysis
For the enrichment analyses, we used the webtool Web-
Gestalt (https://www.webgestalt.org/) [37] with the fol-
lowing parameters: Over-Representation Analysis (ORA) 
and Gene Ontology (Biological Process non-redundant). 
The reference list is the human protein-coding genome. 
Only significant results (FDR < 0.05) were included.

For High and Low Tissue Specificity genes we used as 
input all genes in these categories. For cancer-specific 
analyses, we used as input the downregulated-DEGs that 
are Tissue-Specific genes, or upregulated-DEGs that are 
Tissue-Unexpressed genes.

Survival analyses
For this analysis, we selected only the genes that lie in the 
overlap between the cancer-DEG and one of the four cat-
egories. We use the expression signature of those genes 
to construct overall and disease-free survival curves. All 
survival analyses were performed on GEPIA2 (http://
gepia2.cancer-pku.cn/#survival) using the median 
expression of the signature to segregate the two groups 

Table 1  Number of DEGs in TCGA and GTEx samples and number of genes on tissue specificity categories
High Tissue Specificity Genes 4851
Low Tissue Specificity Genes 3464
Genes in the background 17,836

Up_Ageing Down_Ageing Up_Cancer Down_Cancer Tissue-unexpressed Tissue-specific
Breast - BRCA 154 39 1802 1379 3833 35
Colon - COAD 80 1013 1630 1710 3861 73
Esophagus - ESCA 82 70 1145 840 3958 37
Kidney - KICH 0 0 1848 1997 4238 113
Kidney - KIRC 0 0 2214 1269 4238 113
Kidney - KIRP 0 0 1809 1358 4238 113
Liver - LIHC 14 21 1476 882 5872 162
Lung - LUAD 235 226 1919 1518 3473 117
Lung - LUSC 235 226 2627 2176 3473 117
Prostate - PRAD 1000 872 608 1097 3492 29
Stomach - STAD 21 13 1065 1591 4195 46
Thyroid - THCA 84 35 1167 641 3764 78
Uterus - UCEC 647 917 2364 1769 4122 27
BLCA 1415 1450 3928 44
HNSC 1290 1361
READ 1737 1748
Adipose Tissue 174 163 4223 27
Adrenal Gland 311 121 4736 56
Blood 236 96 5988 126
Blood Vessel 596 149 4481 25
Brain 347 343 3899 356
Heart 73 33 5483 51
Muscle 232 89 6289 83
Nerve 256 331 3934 77
Ovary 340 382 4303 42
Pancreas 54 18 5610 67
Pituitary 6 3 3382 242
Salivary Gland 887 432 3899 94
Skin 9 33 3874 195
Small Intestine 218 583 3688 119
Spleen 24 12 4277 119
Testis 99 25 1961 1248
Vagina 71 31 1588 46
*“Genes in the background” are all protein-coding genes, which are used as the background list in contingency analyses (i.e., overlap analyses); **“Up” and “Down” 
represent whether genes are upregulated or downregulated

https://www.webgestalt.org/
http://gepia2.cancer-pku.cn/#survival
http://gepia2.cancer-pku.cn/#survival
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[38]. The constructed heatmap was based on the log2 
hazard ratio (Mantel-Cox test), and the result was con-
sidered significant when FDR < 0.1.

Cancer analyses based on patients’ age
To analyze whether the patient’s age influenced the loss 
of tissue identity in cancer, we separated the TCGA sam-
ples into two groups: young and old. The young group 
comprises 30% younger samples and the old group 30% 
older samples. We kept only cancers with at least ten 
control samples in each normal group (old and young 
normal). To avoid confounding factors, we compared the 
two groups regarding the T pathological stage (Fisher’s 
exact test); if the p-value < 0.05, we considered the groups 
different and excluded this cancer from the subsequent 
analysis (Figure S1). So, for this analysis, we keep the 
following TCGA projects: KIRP, HNSC, COAD, LIHC, 
LUSC, LUAD, and BRCA. The age distribution of the two 
groups is shown in figure S2.

The differential expression and overlap analysis were 
done as before. To compare the expression (Fold Change) 
between the two groups, genes that lie in the overlap 
between the cancer-DEG and one of the four categories 
in each group were compared by Mann-Whitney U test 
using GraphPad Prism 8.0, and the difference was consid-
ered significant when FDR < 0.05.

Results
Differentially expressed genes in cancer and ageing
We first identified cancer-DEGs (table Supplementary 
File 4) and ageing-DEGs (table Supplementary File 5) 
in 26 human tissues and 16 cancer types, respectively. 
Moreover, we classified all the genes according to their 
tissue specificity based on tau’s categories, a metric of 
tissue-specificity described in Palmer et al. [30] (table 
Supplementary File 6). The numbers of cancer- and age-
ing-DEGs as well as genes classified according to tissue 
specificity are shown in Table 1 for the cancers and tis-
sues analyzed.

It is important to note that we employ two types of 
gene tissue-specificity: (1) tissue-specific and tissue-
unexpressed genes are classified based on the expression 
signature within a particular tissue being analyzed. For 
example, if analyzing the liver, we consider tissue-specific 
and tissue-unexpressed genes in the liver. On the other 
hand, (2) pan-tissue genes, whether high or low, indicate 
the broad level of tissue-specific expression across all tis-
sues. A high specificity gene is expressed only in one or a 
few tissues, while a low specificity gene is expressed simi-
larly across most tissues.

To provide insights into the functions of High and Low 
Tissue Specificity genes, used in all analyses regardless 
of tissues, we performed functional enrichment analyses 
(Supplementary File 7). As expected, in general, the low 

specificity genes are associated with basic cellular metab-
olism, while the high specificity genes have more special-
ized functions.

We then investigated the relationship between ageing-
DEG (Fig.  1A) and cancer-DEG (Fig.  1B and C) with 
tissue-specific genes. Afterwards, we overlapped ageing-
DEG (Fig.  2A and B) and cancer-DEG (Fig.  2  C and D) 
with the pan-tissue genes and tissue-unexpressed genes. 
In the following sections, we describe how these results 
impact ageing and cancer, respectively.

Loss of cellular identity in ageing observed in 40% of 
tissues analyzed
We overlapped the ageing-DEGs with the Tissue-specific 
category (Fig. 1A) and observed a pattern of tissue-spe-
cific loss of identity during ageing. Of the tissues ana-
lyzed, around 40% show enrichment of downregulated 
Tissue-specific genes (Fig.  1A), with some exceptions. 
Adrenal gland, brain, colon, esophagus, lung, muscle, 
prostate, skin, small intestine, and testis present down-
regulation of Tissue-specific genes, without presenting 
significant results in the opposite direction. Validating 
these results, we observed similar patterns in genes with 
High Tissue specificity (Fig.  2A). No significant results 
were identified for Tissue-unexpressed genes (Fig. 2B).

These results suggest that, although we have a trend 
of loss of tissue identity for some tissues with ageing, it 
is not a global phenomenon, presenting some excep-
tions. One possible explanation for this is that shifts in 
gene expression during ageing are more subtle and hence 
more difficult to detect.

A robust pattern of cellular identity loss is observed in 
most cancers studied
Repeating the same approach as before, we overlay the 
cancer-DEGs with the four specificity categories and 
observe a pattern in most of the cancers analyzed. First, 
we observed an enrichment of downregulated DEGs in 
Tissue-specific genes (Fig. 1B). At the same time, we can 
see a significant number of upregulated DEGs in High 
Tissue specificity and Tissue-unexpressed (Fig.  2C-D, 
respectively).

It is essential to highlight that the results of Tissue-
specific genes (Fig. 1B) are the most relevant, as opposed 
to the overexpression of genes from other organs and 
typically inactive genes (Fig.  2C-D), which is expected 
considering the nature of cancer. We show in Fig.  1C 
the percentage of Tissue-Specific genes that are cancer-
DEGs, highlighting the results that were statistically 
significant from the previous analysis. Considering the 
statistically significant results, we observe an enrichment 
of tissue-specific genes downregulated in 9 cancers, rang-
ing from 20.5% in THCA to 51.3% in KIRC.
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These results make biological sense and are in line 
with the literature. Considering the pan-tissue group, 
our analyses showed cancers commonly overexpress 
genes associated with specific functions of other organs 
and tissues (High Tissue specificity genes). In a tissue-
specific manner, they activate genes usually unexpressed 
and downregulate genes typically highly expressed in the 

original tissue. THCA (Fig. 2C) and PRAD (Fig. 1B and 
C) are the only significant exceptions to this pattern.

Furthermore, as we found a trend of overexpression of 
High Tissue Specificity genes, we tried to answer which 
healthy tissues these genes are typically expressed in, 
repeating the same approach but overlapping only the 
upregulated cancer-DEGs with the Tissue-specific genes 
from all GTEx tissues. As shown in Figure S3, we found 

Fig. 1  Overlap between DEGs and Tissue-Specific genes in ageing (A) and cancer (B, C). A-B Heatmap of odds ratio on the chance of the overlap. Red 
borders represent significant results (FDR < 0.05). A Ageing-DEGs, B Cancer-DEGs. “Up” and “Down” represent whether genes are upregulated or down-
regulated. C Percentages of tissue specific-genes for each tissue that are differentially expressed in cancer. Each triangle represents the percentage of 
genes and the direction of expression. Coloured triangles are the statistically significant results
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Fig. 2  Overlap between DEGs and tissue specificity categories. Heatmap of odds ratio on the chance of the overlap. Red borders represent significant 
results (FDR < 0.05). A-B Ageing-DEGs; C-D Cancer-DEGs. Inf = Odds ratio tends to infinity due to the low number of downregulated DEGs, but the result 
is not significant. “Up” and “Down” represent whether genes are upregulated or downregulated. “High” an “Low” represents Pan-Tissue group of genes with 
overall high or low tissue-specific expression across tissues
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no obvious pattern, which is aligned with the notion of 
generalized genetic instability in cancer cells.

Afterwards, to provide biological context to the 
observed patterns, we performed cancer-specific func-
tional enrichment analyses for the downregulated 
Tissue-Specific DEGs (Figure S4) and the upregulated 
Tissue-Unexpressed DEGs (Supplementary File 8).

Regarding the downregulated Tissue-Specific DEGs in 
BLCA, BRCA, ESCA, LUAD, PRAD, THCA, and UCEC, 
no significant results were obtained (FDR < 0.05). Despite 
the limitations, some tissue-specific functions were 
observed to be downregulated in cancer. For instance, we 
noted a downregulation of genes associated with diges-
tion in COAD and STAD, respiratory gaseous exchange 
in LUSC, and organic anion transport in the three renal 
tumors (KICH, KIRC, and KIRP) (Figure S4).

As for the upregulated Tissue-Unexpressed DEGs, 
significant results were found in all cancers except for 
THCA (FDR < 0.05). We identified more than 140 terms 
associated with at least one cancer, and in general, we 
observed the activation of genes associated with cellu-
lar proliferation, DNA metabolism, immune response, 
embryogenesis, and morphogenesis (Supplementary File 
8).

Finally, to further validate our findings and ensure their 
biological accuracy, we conducted additional analyses 
using an alternative classification system for tissue-spe-
cific genes (Figure S5). This alternative classification was 
based on data from Uhlén et al. [36], where genes were 

categorized into groups based on their RNA expression 
patterns in different tissues. We adapted these groups 
into our specificity categories to create alternative gene 
classification (the number of genes and the background 
list for each category can be found in Supplementary 
File 3). The biggest difference between the two analyses 
is in the results of the pan-tissue categories (Figures S5 
and D). This is probably because the alternative catego-
ries are much less stringent, which results in many more 
genes and consequently more significant results. How-
ever, results from Tissue-specific group are quite similar 
(Figures S5B, C, E and F), indicating that the observed 
pattern is biologically relevant.

Loss of tissue-identity is associated with cancer prognosis
After identifying the pattern of loss of tissue specific-
ity in cancer, we sought to understand whether this 
impacts patient survival. To do this, we used the genes 
in the overlap between cancer-DEG and one of the four 
categories of tau specificity and built an expression sig-
nature. Using the median of expression as a cutoff, we 
constructed overall survival and disease-free survival 
analysis comparing the high and low expression signa-
ture groups (Fig.  3). Looking at the heatmaps (Fig.  3A 
and B), we can see a trend in the Tissue-specific group. 
We can observe that most cancers show a positive haz-
ard ratio pattern (i.e., high expression group associated 
with the worst survival) in the Tissue-unexpressed genes, 
and oppositely, a negative hazard ratio pattern (i.e., low 

Fig. 3  Relationship between tissue specificity genes and cancer survival. A and B Heat map of hazard ratio of overall and disease-free survival, respec-
tively, statistically significant results (Mantel-Cox test, FDR < 0.1) are highlighted with blue or red borders, according to the direction of the expression 
signature and the worst survival. The x represents where analysis cannot be done in a tissue-specific manner. C) Kaplan-Meier curves of the significant 
overall survival results from the previous heatmap
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expression group associated with the worst survival) in 
Tissue-specific genes.

When analyzing the curves of the significant results 
(Fig. 3C and Figure S6), we observe that almost all obser-
vations align with the pattern observed previously: 
The upregulation of High Tissue specificity or Tissue-
unexpressed is associated with worse survival, and the 
downregulation of Tissue-specific genes is associated 
with worse prognosis. A partial exception is observed 
in LIHC, where the overexpression of Low tissue speci-
ficity genes is related to a worsening in overall and dis-
ease-free survival. Considering these results, we suggest 
a trend for the loss of tissue identity to increase cancer 
aggressiveness.

Age does not influence the loss of tissue specificity in 
cancer
Previous studies demonstrated that there are important 
molecular differences when considering the age of can-
cer patients [16, 39–41]. Then, considering that perhaps 
the loss of tissue identity occurs in ageing, we tested the 
hypothesis that the patient’s age influences the pattern of 
expression of specificity genes in cancer. For this, we sep-
arated the TCGA cancers into two groups in relation to 
age, as described in the methods, and generated two lists 
of DEGs for each tumor.

The old cancer-DEGs were obtained by directly com-
paring the 30% oldest cancer samples against the 30% 
oldest non-cancer tissue samples. The young cancer-
DEGs were obtained in the same way, but using the 30% 
youngest samples. These genes are in Tables Supplemen-
tary File 9 and Supplementary File 10.

We then analyzed the overlap between the DEGs of 
the two groups (Table  2) and observed that most dif-
ferentially expressed genes are shared independent of 
patient age, but a few hundred genes are unique to the 
old or young group. Besides that, 5 genes showed oppo-
site expression patterns: COX4I2 in HNSC; NR4A2 and 
NR4A1 in COAD; and CYP26A1 and FDCSP in BRCA. It 
would be interesting to explore whether these genes are 

important in differentiating cancers from old and young 
patients, but this analysis is beyond the scope of this 
study.

Focusing on the main objective of this study, we 
repeated the overlap analysis as previously, but now 
considering the age groups (Fig. 4A-C). We can observe 
that the pattern is, in general, the same as previously 
observed, and age does not change it. Next, we directly 
compared the expression (fold change) of the genes 
of interest in relation to the four specificity categories 
(Fig.  4D-G). Although we have a few significant differ-
ences, they are slight and in the same direction, indicat-
ing that age is not significantly influencing the loss of 
cancer tissue identity, reinforcing this phenomenon may 
be essential for carcinogenesis.

Discussion
Cell identity and plasticity are an essential topic in oncol-
ogy and, more recently, are gaining importance in geron-
tology [9, 42, 43]. In this work, we analyze how changes 
in gene expression are related to tissue specificity during 
cancer and ageing, using data from thousands of human 
samples.

First, we sought to test the hypothesis that tissues 
lose their identity “naturally” in ageing. Although we 
see a trend of downregulation of Tissue-Specific genes 
(which could reinforce the hypothesis), it occurred in 
around 40%, suggesting that, at least, this phenomenon 
is not valid for the whole organism or is too subtle to 
be detected amid all the transcriptional noise in age-
ing, especially from bulk RNA-seq data [44]. Izgi et al., 
observed a loss of cellular identity in brain, lung, liver, 
and muscle in ageing mice, our results suggest similar 
findings only in brain, lung and partially in muscle [4]. In 
the same paper, the authors also analyzed GTEx data, and 
similar to our study, they did not find a clear pattern of 
inter-tissue convergence during ageing in humans. Inter-
estingly, some tissues that lose their cellular identity are 
commonly affected by age-related diseases (brain with 
neurodegeneration, muscle with sarcopenia, prostate 

Table 2  Overlap between old and young cancer-DEGs
Cancer Up-Old and Young 

Shared
Down-Old and 
Young Shared

Up-Old Exclusive Down-Old Exclusive Up-Young Exclusive Down-
Young 
Exclu-
sive

KIRP 1176 777 210 220 784 434
HNSC 866 670 310 324 323 604
COAD 1406 1276 393 391 183 138
LIHC 1108 553 226 156 523 335
LUSC 2301 1837 247 338 424 236
LUAD 1616 1132 170 354 438 314
BRCA 1484 1110 568 514 441 158
Total 9957 7355 2124 2297 3116 2219
*“Up” and “Down” represent whether genes are upregulated or downregulated in cancer in young or old patients
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Fig. 4  Overlap between cancer-DEGs and tissue specificity categories considering patient age groups. A-C, heatmap of odds ratio on the chance of the 
overlap. Red borders represent significant results (FDR < 0.05). D-G, plots comparing the expression level (Fold Change) of the overlap genes between 
DEGs and specificity categories in the two age groups (red = old and blue = young) significant results are represented with * (FDR < 0.05). Error bars rep-
resent the maximum and minimum values. Number of genes in each group is in parentheses on the x-axis. “Up” and “Down” represent whether genes 
are upregulated or downregulated. The “Old” is composed of DEGs resulting from the comparison between the 30% oldest cancer samples and the 30% 
oldest non-cancer tissue samples. The “Young” is obtained in a similar manner, but using the 30% youngest samples
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with benign prostatic hyperplasia, etc.), which may sug-
gest a role of this dysfunction in pathologies [45–47]. 
However, further studies are needed to determine which 
cell types are affected, and the phenotypic consequences 
of identity loss before more robust conclusions can be 
drawn.

A question remains open: What mechanism leads to 
the loss of cellular identity observed in some tissues dur-
ing ageing? One hypothesis is that these changes in the 
transcriptome are driven by age-related changes in the 
epigenome, a phenomenon known as epigenetic drift. 
Supporting this idea, we know that the epigenome is 
critical for maintaining cell identity, and epigenetic 
changes are associated with mammalian ageing [48–50]. 
Moreover, this epigenetic drift has been associated with 
age-related dysfunctions in both tissue-specific and non-
specific ways, which shows that this hypothesis needs to 
be further studied in future studies [51]. It would also be 
interesting in the future to explore whether specific cell 
types in each tissue contribute to these patterns.

In cancer, on the other hand, we simultaneously 
observe an upregulation of High tissue specificity genes 
from other tissues, downregulation of Tissue-specific 
genes from the tissue of origin of the tumor, and activa-
tion of Tissue-unexpressed genes. This suggests that dur-
ing tumorigenesis, cancer cells gain functions of other 
organs/tissues (or at least there are more upregulated 
genes because of the noise from generalized genome 
instability) while suppressing the functions of their origi-
nal tissue. These results align with the literature since 
dedifferentiation is a known feature of cancer [52, 53]. 
This process has been described in some individual can-
cers such as colon, melanoma, and pancreas, but as far as 
we know, we were the first to demonstrate this in a pan-
cancer analysis and in a tissue-specific manner [54–56].

Exploring cancer as a tissue-specific disease is an 
approach that is gaining prominence in oncology, with 
several studies trying to understand in depth the genet-
ics that regulate this process [11, 57, 58]. Schaefera et al. 
explore why some genetic alterations are only relevant 
in specific types of cancer, concluding that the tissue 
microenvironment is a determining factor in this process 
[59]. Two other studies have demonstrated that expres-
sion signatures can help classify the tissue for cancers of 
unknown primary origin, which presents a possible appli-
cation of using the transcriptome signatures with tissue 
specificity in oncology [60, 61]. Our work, besides adding 
novel knowledge to this field, corroborates studies such 
as that from Hu et al., which showed that in cancer, there 
is a decrease in the expression of some tissue-specific 
genes, and Pei et al., which showed that it is common for 
cancers to acquire specific expression profiles from other 
organs [62, 63].

When we directly compare cancer results with age-
ing, we have an interesting finding: in cancer, we have an 
upregulation of High tissue specificity genes, and in age-
ing a trend to downregulation. This kind of opposite pat-
tern is expected and has already been described by our 
group [3]. But when analyzing the Tissue-Specific genes, 
most of the significant results are in the same direction, 
with the downregulation of these genes. This makes us 
wonder if preventing the loss of tissue specificity might 
be a promising strategy against cancer and ageing at the 
same time. But this result needs to be looked at carefully 
since less than half of the normal tissues show this pat-
tern, and there are a few exceptions.

The pattern found also seems to influence the aggres-
siveness of cancer, impacting on patient survival. A phe-
nomenon linked to the loss of tissue specificity is the 
acquisition of stemness and dedifferentiation, which is 
also related to the aggressiveness of cancers [53]. Further-
more, we still need better biomarkers in oncology, and 
although our data needs to be refined for possible appli-
cation, tissue identity loss has the potential to improve 
the prognostic classification of cancer patients [64–66].

Finally, we tested the hypothesis that the age of patients 
influences expression patterns of specificity genes. We 
found no relevant difference between the young and old 
groups, indicating that age does not affect the process of 
tissue identity loss in cancer. This reinforces the newly 
proposed idea that the phenomenon of acquiring cellular 
plasticity (which includes loss of identity) is a hallmark of 
cancer [8].

In summary, we show evidence of a trend age-depen-
dent loss of tissue specificity; however, this is not a global 
phenomenon, probably because it is more subtle in age-
ing. On the other hand, in cancer, we have a pattern of 
clear downregulation of Tissue-specific genes and activa-
tion of genes not expressed in the original tissue, includ-
ing genes highly expressed in other tissues. Our results 
also suggest that this pattern influences cancer aggres-
siveness and is not influenced by the patient’s age, cor-
roborating that it is a crucial step for carcinogenesis.
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