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Abstract - This article focuses on the localization and 

navigation of a mobile differential robot in an indoor office-

like environment. These are fundamental issues to service 

robotics, which is a branch with a strong market growth. The 

work implements a vision tracking system, environment 

mapping, route planning and navigation for an autonomous 

robot application inside services buildings. One goal of the 

methodology is its application with low cost equipment. The 

test bed chosen was a Pioneer P3-DX robot [16] in a service 

building, with an attached USB webcam, pointed at the ceiling 

to take advantage of the position of the light fixtures as 

natural landmarks. The robot location is estimated through 

two distinct probabilistic methods: a particle filter, when there 

is no information about the starting location of the robot, and 

the Kalman filter, given the convergence of the particle filter. 

Both methods use the detection of light fixtures together with 

the robot kinematics as information to estimate the pose. The 

mapping of the environment and its obstacles is obtained from 

the localization estimates and the information gathered by 

ultrasound sensors, representing the entire navigation space 

discretized in the form of an occupation grid. Planning the 

navigation path is determined by a simple search algorithm, 

namely the Wavefront algorithm, based on the information 

contained in the occupancy grid. For a given path, navigation 

is performed with obstacle avoidance using the virtual forces 

method. Replanning is used to recover from local minima 

situations. 

Keywords: Mobile Robots, Localization, Navigation, 

Mapping, Office Environment. 

I. INTRODUCTION 

Mobile robotics is currently considered a major area of 
interest, where there is a great willingness by the scientific 
community to develop its state of the art. Moreover, its 
interdisciplinary nature and the complexity of the associated 
problems make this advance depend on the development of 
mathematical tools, sensors, actuators and the materials 
themselves, which limit their progress. Whichever vehicle 
you want to use an autonomous behavior in, whether in 
health care, assistance at home, industry or even in an office 
environment, the basis of their performance includes 
localization and navigation tasks. In the particular case of 
offices, despite the circulation of a significant number of 
people, the environment is highly structured, with unique 
features which facilitate localization and navigation. 

Mobile robots have unique capabilities to perform tasks 
requiring mobility that can be automated, freeing humans to 
other more creative activities [11]. Today there are several 
tasks already automated in different areas, such as the 
mapping and monitoring of land surface [1], large-scale 
agriculture [3], environmental monitoring [20] and industry 
[2]. On the other hand, there are high risk tasks or ones 
which are even impossible to accomplish by humans, such 
as the verification of explosive devices [5], the exploration 
and mapping of areas contaminated by biological or nuclear 
waste to assess the damage [15], or even space exploration 
of distant celestial bodies [13]. There are other emerging 
application areas, such as personal assistance [21], 
rehabilitation and entertainment. For this type of 
applications to be possible with some degree of autonomy, 
robots must be equipped with various types of sensors (force 
sensors, inertial sensors, GPS, odometry, distance sensors or 
vision), to feedback the work environment perception. The 
robot movement can be made either by wheels or tracks, on 
land robots, propellers or wings, for aerial robots, and 
control surfaces or propellers for aquatic robots. Whether on 
land, air or water, two fundamental problems coexist: 
localization and navigation. These two problems are 
interdependent and crucial for autonomous mobile robotic 
systems to interact with the physical world correctly by 
extended periods of time. 

In [18] a filter of Simultaneous Localization and Map 
Building SLAM [12] is presented, which successfully 
exploited a low cost vision system, with means to improve 
dead reckoning pose estimate and maintain a correct 
estimate of the pose of a mobile robot for constructing a 
map of the environment. As in the present work, limited 
resources of hardware and low cost vision where used. 
These limitations impose the use of image processing 
algorithms involving low processing requirements. To avoid 
the computational complexity, the paper proposes a fast 
algorithm for feature extraction which includes the lens 
distortion model from the SLAM filter. In this methodology, 
as well as in the present work, the light fixtures positions 
were used as natural landmarks. Unlike the present work, in 
[18] the light fixture poses are not known a priori and will 
be mapped during navigation. Present work provides a 
better accuracy in pose estimate, since light fixture poses are 
known instead of calculated based in detection and pose 
estimation. 



 

 

 

This paper proposes the application of various methods 
to solve the problem of localization and navigation of a 
Pioneer P3-DX mobile differential robot in an indoor 
environment (the robotics laboratory and adjoining hallways 
of Escola Superior de Tecnologia e Gestão, ESTG, from the 
Polytechnic Institute of Leiria). It describes an autonomous 
navigation algorithm, requiring only the indication of the 
destination point. The algorithm takes advantage of the 
environment structure elements using low cost sensors, 
while minimizing the use of techniques which are 
computationally expensive, so as to be used in systems with 
limited computational resources. This work aims to be the 
base for a guide robot or an autonomous system at ESTG. 

The problem of localization was divided into two 
distinct situations: when there is confidence in the estimate 
of the real pose and when that confidence is insufficient. In 
the situation where there is a good confidence in the pose 
estimate, a Kalman filter [10][14] is used, which is an 
unimodal estimator, allowing to correct the accumulation of 
odometry errors during navigation. When there is 
insufficient certainty in the pose estimation, a Particle Filter 
[10] is used, which is a multimodal estimator that assumes 
that the robot can be in a number of possible poses. To use 
these probabilistic methods one needs information about the 
environment. As one of the goals is to save computational 
and economic resources, an off the shelf artificial vision 
system was used, with a video webcam mounted on top of 
the robot, pointing at the ceiling in order to recognize the 
light fixtures as natural landmarks. 

For a planned navigation one needs to determine 
waypoints and, therefore, the occupation of the workspace 
must be integrated in the model. With this goal in mind, a 
representation of space was implemented in the form of an 
occupancy grid, where every cell represents the probability 
of occupation of the corresponding space. This grid is 
updated based on the distance information provided by the 
ultrasound sensors and actual pose estimate, as long as the 
localization estimate confidence is acceptable. Determining 
the path to follow is implemented with the Wavefront 
algorithm, based on the information in the occupancy grid. 
Finally, the virtual forces method is used to execute the 
planned path, taking into account the distance information 
from ultrasound sensors to avoid unexpected obstacles. 

Aiming to give the work a strong portability and reuse, 
and given current trends in the field of robotics, the 
implementation of this system was based on the ROS 
environment [19]. It is a development environment which 
provides a set of libraries and tools that facilitate the 
implementation of mobile robotics applications. This 
includes a strong abstraction layer of the hardware, 
peripheral drivers, data viewers, messaging, package 
management, and makes easier the reuse and publication of 
the developed work. This software is available under 
various open source licenses, mainly the BSD license. 

The remainder of this paper is organized as follows. 
Section II addresses the issues of artificial vision, 
recognition of objects in images from the webcam and the 
representation of objects as natural landmarks in the robot 

coordinate frame. Section III deals with localization, divided 
in global localization and accumulation of errors correction. 
Section IV details the mapping of the environment in the 
form of an occupancy grid. Section V describes the planning 
algorithms and path execution with unexpected objects 
avoidance, while Section VI describes the use of the ROS 
environment. Conclusions and future works are presented in 
Section VII. 

II. ARTIFICIAL VISION 

One of the goals of this work was the use of low-cost 
equipment and algorithms that do not require high 
computational resources. For this purpose one used the 
recognition of elements of the ceiling, namely the pose of 
light fixtures, as illustrated in Fig. 1. Generally there are no 
obstacles between the robot and these, allowing for an easier 
and consistent detection. Moreover the fact that this type of 
structure typically exists in any office-type environment, 
allows the developed algorithms to be used generally for 
indoor service robots.  

 
Fig. 1. Workspace plan with the light fixtures location. 

 
Fig. 2. Webcam mounted on top of the robot. 

The vision system used in this work is based upon a low 
cost webcam, mounted on top of a mobile robot, pointed at 
the ceiling, as illustrated in Fig. 2. The camera transmits the 
data to the robot PC via an USB connection. The images are 
processed for the detection of the light fixtures position and 
orientation on the robot local reference frame, according to 
an algorithm divided into three steps: feature extraction, 



 

 

 

characteristics validation and calculation of the pose in local 
coordinates. 

In order to reduce the computation resources needed, the 
image is processed in grayscale. To better adjust the image 
to the lightning conditions the sensor exposure time is 
controlled to keep the average pixels value in a given range. 
The algorithm performs feature extraction using information 
from the luminance level of the pixels of the digitized 
image. Assuming that a light fixture on, has a high value of 
luminance, a threshold operation is performed with a high 
value to distinguish pixels corresponding to a lighted light 
fixture. Frequently the level of natural illumination is 
adequate and the lamps are off, or partially off. In this case, 
the pixels corresponding to an unlighted light fixture has a 
luminance lower than the ceiling. For detection of these 
light fixtures another threshold operation is performed, this 
time with a reduced value and lower than operation. These 
two operations are combined and the resulting binary image 
is subject to erosion followed by dilation operations in order 
to smooth the contours and eliminate small areas. These 
areas correspond to reflections or small elements too dark or 
too bright which might be rejected in the validation process. 

After these operations a contour detection is done using 
the Canny algorithm [8] and the calculation of the respective 
areas. Only contours with sufficient area and length, 
corresponding to light fixtures dimensions in image units, 
will be considered. Due to the existence of light fixtures 
with two lamps with only one lighted up, and light fixtures 
in corridors containing only one lamp, the width value 
considered valid lies between the height of the light fixture 
with two lamps and the height of a light fixture with only 
one lamp. For these values a tolerance is allowed for the 
validation operation to be more immune to variations in 
ambient lighting. This procedure discards objects which do 
not match light fixtures dimensions, which would have a 
negative impact in the localization process. 

Using OpenCV library functions [7], the contours 
moments are determined, and then the mass center and the 
corners of the smallest rectangle that surrounds the entire 
contour, which provides the orientation as shown in Fig. 3.  

 
Fig. 3. Results of the light fixtures detection algorithm. 

This illustrates the situation in which one light fixture is 
found on and the other off. The preview of the detected 
contours are red, the minimum rectangle that surrounds the 

contours in green, and the validated information of the light 
fixture pose in the robot reference frame are shown in blue. 

III. LOCALIZATION 

When there is no initial information about the pose of 
the robot, or the pose estimation confidence is low, one uses 
a particle filter to solve the global localization problem, 
which initially generates hypothesis randomly distributed in 
the available space [4]. Having solved the global 
localization problem with high enough confidence, the 
particle filter algorithm is abandoned and the Kalman filter, 
which is an unimodal estimator, is used instead. 

A. Global localization 

The following describes the application of the particle 
filter to estimate the robot pose, based on the robot 
odometry and the pose of the light fixtures detected by the 
previous method, following the standard three-step 
approach: prediction, update and resampling. 

 In the prediction step each particle, which represents a 
pose hypothesis, is updated based on the information of the 
robot linear displacement and rotation (odometry), including 
Gaussian white noise. This particle update is limited to the 
free map space, since the robot cannot be inside a wall or 
outside the map. 

In the update step, based on the observations of the light 
fixture, the weight of each particle is calculated. The weight 
is proportional to the proximity between the expected values 
for the observations and the values obtained. There is a 
particular problem that my cause ambiguities, since there is 
no information about witch light fixture was observed; it’s 
assumed that the observed light fixture is the closest from 
expected position. Two factors are included which help in 
disambiguation: the orientation of the light fixtures relative 
to the robot and the space occupation probability for the 
position of each particle. A noise factor is added 
corresponding to the observation error model, even when 
there is no motion. These calculations are represented in 
equation (Eq.1): 

             (1) 

where ,  and  correspond to the pose in world 

coordinates of the landmark , ,  and  correspond to 

the landmark  pose in global coordinates based on the pose 

of  particle ,  and  are adjustable gains enabling to 
vary the weight sensitivity to errors in position and 

orientation,  is the probability of the space 

corresponding to particle  position to be free, where  

is the pair row / column corresponding to the position of the 
particle  in the occupancy grid, and  is an 
independent factor representing the observation noise. After 



 

 

 

this procedure the weight of all the particles is then 
normalized so that the sum of all weights is one. 

The resampling step consists in replicating the best 10% 
of particles over the worst 10%. It was further introduced a 
random redistribution of 5% of the worst particles, to enable 
recovering from situations where no particles where placed 
near the robot true pose. 

To estimate the pose, one considered clusters of particles 
with a circular boundary with a radius smaller than the 
minimum distance between light fixtures, to distinguish the 
different groups associated with each light fixture possible 
sighting (see Fig. 4 for an example). The first cluster starts 
with the particle with the highest weight. Then, for each 
particle in order of importance, one checks if it lies within 
the boundaries of an existent cluster. If so, it is considered to 
belong to that cluster and contribute to its accumulated 
weight. If the location of the particle is far from existing 
clusters, it starts a new cluster with the same procedure. At 
the end of this process all particles will be part of a given 
cluster, even if it consists of only one particle. The weight of 
each cluster will be the sum of all weights of the particles 
that are associated with it. The estimated pose is the average 
pose of all particles poses of the cluster with higher weight. 
Generally available clustering techniques, such as K-means 
[9] or Nearest Neighbor are used with good results, but these 
are computationally intensive, which is contrary to our goal 
of having an algorithm with a low computational demand. 

 
Fig. 4. Particle distribution. 

B. Localization update after global localization 

Having solved the global localization problem, the 
particle filter is abandoned and the Kalman filter started. 
The main advantage is the processing time, much lower in 
the case of the Kalman filter (in our case in the order of tens 
of ms for each iteration, while the particulate filter takes 
between 200 and 300 ms by iteration, meaning a factor 
between 20x and 30x). This happens because in the Kalman 
filter the calculations are made only for one pose, whereas in 
the particulate filter calculations are done for all particles. 
The computational resources are then more available for 
mapping the environment and navigation (recall that 
mapping is not done while the robot is not confident enough 
in its pose estimate). Note that generally the robot only has 
to perform the global localization when starting, meaning 
that most of the time it is using the Kalman filter and not the 
particle filter. Given that the system is non-linear, the 
Extended Kalman Filter is used, as described in [10]. Here 
the state of the system to estimate is the robot pose, the 

control signal are linear and angular velocity from odometry 
and the external information is the observed pose of the light 
fixtures, in world coordinates. 

Fig. 5 shows loop closure navigation through the 
robotics laboratory at ESTG of the robot in teleoperation 
mode. Localization process started with the particle filter 
(green) and switched to Kalman filter (blue) after 
convergence. The odometry data is represented in magenta. 

 
Fig. 5. Loop closure navigation. 

IV. OCCUPANCY GRID 

Space is represented as an occupancy grid based on the 
estimated pose provided by the localization algorithm and 
only when there is an acceptable degree of confidence in the 
estimate. Otherwise the occupancy grid is not updated. 

For each distance measurement using the ultrasound 
sensors one assumes that the volume of the sonar beam, 
until the measured distance, is likely free space. If the 
measurement is smaller than the maximum range, at this 
distance, space is likely to be occupied. For the sake of 
reducing the computational complexity, one chose to 
consider only a line segment starting in the sensor with its  
orientation and ending after the measured distance. 

 
Fig. 6. Occupancy grid. 

Regarding the resolution of the sonar sensor and the 
ultrasonic dispersion cone, a 10 pixel/m resolution to the 
occupation grid was chosen. This satisfies the compromise 
between a good representation of space occupation and 
processing resources. An example of the occupancy grid is 
shown on Fig. 6. 

V. NAVIGATION 

After solving the localization problem, one needs to 
compute the movements required for the robot to reach the 



 

 

 

desired pose. This question can be divided in two: deciding 
which way to go and determining the execution speed. 

The Wavefront algorithm [10] was chosen for path 
planning, since it is one of the simplest solutions that 
guarantees finding a path if it exists, with immunity to local 
minima situations. Furthermore its use is possible because 
the navigation environment is discretized as an occupancy 
grid. The operating principle of the algorithm is essentially 
as follows: initially each cell considered as occupied is 
labeled with the value 1, and each free cell with the value 0. 
The cell corresponding to the target is labeled with the value 
2. In the first step, all cells surrounding the target, using 
eight-connectivity, are labeled with the value 3. In the next 
step all cells with the value 0 which involve the value 3 are 
labeled with the value 4. These causes a "wavefront" to 
grow from the target cell where, in each iteration, all the 
cells in the "wavefront" have the same path length, in pixels, 
from the target cell. This procedure terminates when the 
"wavefront" reaches the starting point. 

To account for the size of the robot, the occupancy grid 
must be expanded to configuration space, which consists in 
expanding the occupied space for the robot action radius, as 
showed in Fig. 7. In order to smooth the navigation 
trajectory, a temporary objective for navigation is defined, 
advanced relative to the current position on the path. To do 
so, the current position on the path was considered as the 
closest cell to the robot's position in the path set. The 
objective will be a number of cells along the path, 
determined by the compromise between a smoother 
trajectory, and the correct following of the planned path, 
given existing obstacles. Fig. 9 shows an example of a full 
planned path. 

 
Fig. 7. Path in configuration space 

While navigating the path defined above, unexpected 
obstacles can be founded. To account for this situation, one 

uses the information from the ultrasound sensors through the 
method of virtual forces [6] [17]. When an obstacle is 
detected on the path ahead, or close to it, its position is 
associated with a virtual repulsive force and the temporary 
navigation goal is associated with a virtual attractive force. 
The orientation of the robot is obtained from the resultant of 
these forces. 

 
Fig. 9. Path determined by the Wavefront algorithm. 

VI. ROS ENVIRONMENT 

To carry out the implementation of these methodologies, 
we used the ROS [19] development environment from 
Willow Garage. As stated previously, it consists of a 
development environment which provides a set of libraries 
and tools that facilitate robotic applications, especially in 
mobile robotics. It includes a nearly total abstraction of the 
hardware, peripheral drivers, data viewers, messaging and 
package management. Its architecture contemplates the 
existence of nodes, consisting in applications with the ability 
to publish and subscribe to topics, which are a type of data 
bus for transmitting information via messages with 
predefined data structures. 

For the communication with the hardware of the Pioneer 
P3-DX robot one used the p2os node [22], while the 
uvc_camera node [23] was used to access the webcam, both 
nodes were provided by the ROS community. The 
remaining software and algorithms were implemented in the 
main_node node. The representation of the full system 
structure is illustrated in Fig. 8, where the used nodes and 
topics are marked in red. This implementation allows using 
the onboard computer to perform all the computations, but 
also allows the use of external, or even multiple, computers 
in the future if needed, with only minimal changes in the 
configuration

 
Fig. 8. Full ROS system structure. 



 

 

 

VII. CONCLUSIONS AND FUTURE WORK 

A localization and navigation system was implemented 
to perform general tasks in office-like environments. This 
system maintains a correct estimate of the robot´s pose in 
real-time, being able to correct the error accumulation of 
intrinsic sensors and estimate its own pose if this 
information is not provided in advance. 

Artificial vision is used with a common video camera for 
recognizing ceiling light fixture fixtures as external 
landmarks, whose poses are known a priori. However, given 
the similarity between the various fixtures and the symmetry 
of those poses, the determination between the real and the 
corresponding fixture detected is strongly dependent on the 
robot’s estimated pose. This may generate erroneous 
matches, leading to ambiguity and getting reasonable 
confidence in a pose that may not be real. Also, the ambient 
lighting conditions can lead to false detections that can 
compromise severely the location and hence the mapping of 
the environment. Nevertheless, the continuous movement of 
the robot combined with the particle filter used for global 
localization and the Kalman filter localization update, given 
the localization estimate confidence, allows the robot to 
recover when lost, and resume its normal operation. 

For determining a safe and short path an occupancy grid 
was kept and updated with information of the space 
occupation likelihood. This map is updated based on the 
distance information of ultrasound sensors and pose 
estimate when this estimate has sufficiently high confidence. 
Based on the information of this occupancy grid the path to 
follow is determined with the Wavefront algorithm. 

Finally, while performing the determined path, this 
system reacts to unexpected obstacles such as people or 
objects left in previously free space. To avoid these 
obstacles one used the virtual forces method for navigation, 
resuming the path whenever possible. 

To speed up localization it would be interesting to 
explore matching techniques directly from the camera 
images or contours with a representation of the light fixtures 
and other ceiling elements, as air vents and fire detectors. 
This avoids significant movement without detection of 
landmarks, resulting in faster convergence for the particle 
filter and more accuracy for the Kalman filter and mapping. 
Furthermore, it is also expected to be more immune to 
erroneous detections caused by reflections, foreign objects 
or anomalous lighting conditions. This is difficult to 
combine with a high number of particles because it has to be 
done for each particle, which leads to a large consumption 
of processing resources, unavailable on the Pioneer P3-DX 
robot standard platform. 

As a follow up of the present work, one plans to use the 
developed work as a base for specific tasks, such as an 
autonomous guide or carrier robot. 
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