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Abstract 

An LQR-based Control design and gain tuning strategies proposals for a multi-agent system are presented in 

this article, the agents are connected in an undirected graph. Controller gains tuning are adjusted by selecting 

the Q and R weighting matrices of the Linear Quadratic Regulator. Agreement (consensus) is one of the 

fundamental problems in multi-agent control, where a set of agents must agree on a joint state value. In the 

proposed design, first considering that the behavior of the agreement protocol is undirected and static, the 

main objective is to highlight the complexity of the relationship between the convergence properties of this 

protocol and the structure of adjacent interconnections. The effects on the formation due to static geometry 

are analyzed from the resulting data according to the proximity between the agents, where behavior and 

stability are analyzed based on the desired formation geometry through the construction of the Laplacian 

matrix. 
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1. Introduction 

The aim of cooperative control of multi-agent systems (MAS) is to control multiple dynamic units that share 

information to achieve a given mutual goal via collective movements and local communications (Li & Dua, 

2017). This control has been widely used in recent years due to its various applications in unmanned aerial 

vehicles (UAV), robotics in manufacturing and military, and space missions using satellites. Currently, many 

military and non-combat applications involve groups of agents that must cooperate to complete a specific 

mission without human involvement.  

Cooperative control is inspired by natural behaviors; in this case, the focus is on the collective movement of 

animals in groups. Every animal has individual movement characteristics; however, their collective movement 

and the communication between individuals result in movements that make multiple animals appear as a single 

entity, such as flocks of birds, herds of animals, and schools of fish. This synchronized and collective 

movement helps animals to stay together when searching for food, defend against predators, and stay together 

during migration (Lewis, Zhang, & Hengster-Morvic, 2014). In the context of cooperative control for 

formation and from the point of view of control in multi-agent systems, the authors (Tanner, Pappas, & Kumar, 

2004) emphasize optimal and adaptive control approaches. 

A methodology oriented to the design of Optimal LQR-based multiagent control system design and its gain 
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tuning is presented in this article. In the sense of performing evaluations of model-based, formation protocols 

for a fleet of quadcopters are associated to verify proposed design methodology. 

In PhD thesis (Arokiasami, 2016), the author presents a multi-agent framework for unmanned aerial/ground 

vehicles design. This thesis is focused on obstacle detection and avoidance via computer vision-based 

algorithms, as these algorithms are generally platform independent. Obstacle detection is achieved utilizing 

Hough transform, Canny contour and Lucas Kaneda sparse optical flow algorithm. Collision avoidance is 

performed utilizing time-to-contact estimation techniques. 

A unified framework is presented to capture the maximal disc-guaranteed gain margin (GGM) of the discrete-

time system via linear quadratic regulator (LQR) in reference (Fonseca Neto, Abreu, & Silva, 2010). Sufficient 

and necessary conditions on consensusability are established. 

In a multi-agent system that are oriented for formation tasks, each member (agent) may interfere with or 

operate within the range or radius of another member of the group, resulting in the agents becoming moving 

obstacles for each other, making formation control more complex. The advantages of interconnected multi-

agent systems over conventional systems include reduced cost, greater efficiency, better performance, 

parameter tuning and robustness, and new features (Tanner, Pappas, & Kumar, 2004).  

Graph-based multi-agent systems (MAS) show good results in terms of achieving a unique stable formation 

(Bamieh, Paganini, & Dahleh, 2002). However, the main drawback of these systems is that they require highly 

connected communication patterns to guarantee a unique formation that does not depend on the initial 

conditions (Smith, Egerstedt, & Howard, 2009). In the context of stability, a protocol that promotes   a 

continuous generalization of the behavior when it evolves across switching networks is presented  (Guo, 

Zhou, & Liu, 2018). In addition, these studies usually consider vehicles as a point mass to simplify the dynamic 

and kinematic models. 

Consensus algorithms for autonomous agents is an area of research that is related to the problems and 

techniques discussed in this paper, where agents (1, 2, … ,𝑁) with a given formation have reached a consensus 

if their associated variables (𝑥1, 𝑥2, … , 𝑥𝑁) converge to a common value. A stable formation must be achieved 

when a consensus problem is considered. Furthermore, vehicles must also reach the same speed in addition to 

reaching a certain point. In contrast, the vehicle dynamics in the formation problem are governed by 

differential equations of order 𝑛. 

The design of control protocols for cooperative control systems is not a trivial activity because the 

communication topology can restrict the application of distributed control protocols. In these, the control 

policy of each agent depends only on its own information and the available local information of its neighbors, 

directly affecting the stability of the multi-agent system in trying to achieve a given desired formation 

(Bamieh, Paganini, & Dahleh, 2002). The relationships between stability and optimization are usually applied 

in single agent systems; however, understanding the relationships between stability and optimization in 

cooperative control systems with multiple agents has gained interest in recent years (Cepeda-Gomez & Perico, 

2015) (Fax J. A., 2002) (Dimarogonas & Kyriakopoulos, 2009). These relationships in cooperative control 

are not the same as those appearing in the single-agent case, and local optimization and global team 

optimization are not the same (Lewis, Zhang, & Hengster-Morvic, 2014). 
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Essentially, the problem of formation of multi-agent systems includes two steps. As a first step, it is necessary 

to determine the desired training. In the second step, the design of the corresponding control algorithm used 

to achieve this training is performed (Li & Dua, 2017). Motivated by these problems, some basic concepts 

related to the formation of MAS are presented. Furthermore, a general framework methodology for the optimal 

formation problem is introduced to establish a solid basis for developing optimal control in the formation of 

a multi-agent system. 

The article is organized as follows. In Section II, the dynamics of a quadcopter are briefly described, followed 

by the mathematical model identified for its representation. In Section III is presented the state space model 

for formation control. The model is prepared for LQR-based control strategies that are oriented to multiagent 

formation. The mathematical formulation of state space modelling and a method for controller tuning through 

the Linear Quadratic Regulator is presented are described with a focus on state space multiagent optimal 

control design.  In Section V, the numerical simulation results of the proposed method are presented. Finally, 

in Section VI, the conclusions are drawn. 

 

2. Modelling and LQR Control of Quadcopter Fleet 

A quadcopter model, graph theory to model the fleet, Kronecker product and Linear Quadratic Regulator 

(LQR) to state feedback regulation of quadcopter formation are the fundamental topics for the design 

methodology proposal.   

A quadcopter is one of many types of unmanned aerial vehicles (UAV), and it shows reliability in maneuvering 

and its control and modeling technical issues accessible for real world needs. Therefore, research on 

quadcopters is gaining interest in the area of robotic control (Lyu, 2017). Graph theory is one of the most 

fundamental concepts and approaches for fully understanding the control of multi-agent systems (Mesbahi & 

Egerstedt, 2010). The main advantage of graph-based control methods is that they are easy to analyze and that 

it is easy to design associated control methods, which can also incorporate various communication topologies 

and scalability. Graph-based abstractions of a networked system contain almost no information about what 

exactly is shared between agents; instead, they provide information about the network connectivity in terms 

of the topology by representing topology objects in terms of nodes and edges (Guo, Zhou, & Liu, 2018). An 

extensive research of news methods and algorithms for analysis and implementation of control design in 

multiagent systems has been developed to several, sectors of our days. 

 

2.1 State Space Variables and Inputs of Quadcopter Agent 

The challenge in designing a control system for a quadcopter is that the mathematical model of the system is 

highly coupled, nonlinear and multivariable (Elkholy, 2014). The dynamics of a quadcopter contain six 

degrees of freedom and can be described by three degrees of rotation (roll, pitch, and yaw) and three 

translations along the x, y, and z axes. In most instances, the structure of a quadcopter is symmetrical and 

consists of four rotors attached at an equal distance from the center of mass of the body, as shown in Figure 1. 

Each of the rotors is driven by a DC motor. Propellers 1 and 3 rotate in the same direction, while propellers 2 

and 4 rotate in the opposite direction to maintain the balance of the system. 
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Figure 1. Referential Structure and Euler Angles. 

 

The body structure features the origin at the center of the quadrotor body with the 𝑥-axis pointing along 

propeller 1, the 𝑦-axis pointing along propeller 2, and the 𝑧-axis pointing to the ground, as illustrated in Figure 

1. The motions of the quadrotor can be divided into two subsystems—translational (positions 𝑥, 𝑦, and 

altitude) and rotational (roll, pitch, and yaw) (Elkholy, 2014). Based on Newton and Euler formalisms, the 

forces and moments acting on the quadcopter are investigated. 

The challenge in designing a control system for a quadrotor is that the mathematical model of the system is 

highly coupled and nonlinear (Ataka, Tnunay, & Inovan, 2013). In addition, the system of differential 

equations has several control and output variables and constants governing the system dynamics, making the 

control system quite complex (Elkholy, 2014). Therefore, the process of system identification was used to 

simplify the mathematical model of this system. 

The process of building models from experimental data is called system identification, involving building a 

mathematical model of a dynamic system based on a sample set of measured inputs and outputs, as illustrated 

in Figure 2. The chosen mathematical model can be characterized in terms of descriptions, such as transfer 

functions, impulse response, or power series expansions, and then used for controller design (Bhuvaneswari, 

Praveena, & Divya, 2012). 
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Figure 2. Block diagram of the quadcopter state space identification process. 

 

The block diagram of Figure 2 presents the mathematical model structure used in the identification process of 

the state space model parameters. This model is obtained in its state space form, with 𝜃 =

{𝐴𝑣𝑖
𝐵𝑣𝑖

𝐶𝑣𝑖
𝐷𝑣𝑖}. The state, control, and output for the 𝑖th agent are represented by 𝑥 ∈ ℜ𝑛, 𝑢 ∈ ℜ𝑚, 

and 𝑦 ∈ ℜ𝑝, respectively. 

 

2.2 Graph Theory and Formation Modelling 

Expanding quadrotor state space model of Figure 2, concepts of graph theory and multiagent (Mesbahi & 

Egerstedt, 2010)  state space to establish formation modelling of quadcopters fleet are presented in this 

subsection.   

A graph is defined as a set of vertices and a group of edges, each connecting a pair of vertices. In mathematical 

representation, a graph is denoted as 𝐺 =  (𝑉, 𝐸), where  𝑉 =  {𝑣1, 𝑣2, … , 𝑣𝑁} are a set of nodes (vertices), 

and 𝐸𝑖,𝑗 = {𝑣𝑖 , 𝑣𝑗} are a set of edges. The degree of a vertex denotes the number of edges that have 𝑣𝑖 as its 

head, and the degree of an edge indicates how many have 𝑣𝑗  as its tail. The degree of a vertex in the graph is 

equal to the number of neighbors of that node; thus, the number of neighbors of node 𝑖 , i.e., 𝒥𝑖 =

{𝑣𝑗: (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} (Li & Dua, 2017). 

A Graph 𝐺 consists of a finite set 𝑉 of vertices and a set 𝐸 of subsets of two elements of 𝑉 to be referred 

to as edges. Graph 𝐺 is considered connected if for any vertex 𝑖, 𝑗 ∈  𝑉, a path of edges exists in 𝐺 from 𝑖 

to 𝑗. Then, for any 𝑖, 𝑗 ∈  𝑉, we define the distance between 𝑖 and 𝑗 to be the number of edges along the 

shortest path joining 𝑖 and 𝑗. The diameter 𝐷 of a connected graph 𝐺 is the maximum distance between any 

two vertices of 𝐺. 

In an undirected graph 𝐺, the degree of a vertex is denoted by 𝑑(𝑣𝑖) and is equivalent to the number of 

vertices adjacent to the vertex (𝑣𝑖) in the graph. The degree matrix, denoted by 𝐷(𝐺), is a diagonal matrix 

with diagonal elements equal to the degree of each vertex (Li & Dua, 2017) and is defined as: 

                          𝐷(𝐺) = [

𝑑(𝑣1) 0 ⋯ 0

0 𝑑(𝑣2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑑(𝑣𝑛)

] ,                              (1) 

SYSTEM

IDENTIFICATION

PROCESS

QUADCOPTER

ESTIMATED MODEL
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where 𝑛 is the number of vertices. 

The adjacency matrix is an optimal attribute for defining the communication degree of a given graph, as it 

contains information about the agents and their connections (Mesbahi & Egerstedt, 2010). The adjacency 

matrix of an undirected graph is denoted by 𝐴𝑑(𝐺) and is a symmetric matrix 𝑛 × 𝑛 defined as: 

                             𝐴𝑑(𝐺) = {
1 𝑣𝑖𝑣𝑗 ∈ 𝐸,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                           (2) 

The graph information is essential for computing the dynamics of agreements between agents and is obtained 

by means of a Laplacian (Mesbahi & Egerstedt, 2010) that is given by 

 𝐿𝐺 = 𝐷(𝐺) − 𝐴𝑑(𝐺) , (3) 

where 𝐷 and 𝐴𝑑 are the degree and adjacency matrix of the same graph, respectively. The Laplacian 𝐿𝐺 ∈

ℜ𝑛×𝑛 matrix.   

For agents to achieve a goal collectively, it is necessary for all of them to have a common variable of interest, 

called information state, and a set of rules for entering into an agreement, called consensus algorithm (Mesbahi 

& Egerstedt, 2010). The consensus is defined as an agreement between several agents on a certain shared 

variable or a common objective by interactions of the group through communication links or sensors; when 

this condition is satisfied, it is said that the agents have reached a consensus (Dimarogonas & Kyriakopoulos, 

2009). 

According to the consensus protocols in (Dimarogonas & Kyriakopoulos, 2009), suppose a network consists 

of N corresponding agents with continuous-time linear dynamics. This model can similarly be considered a 

linearized version of the nonlinear system. Suppose the system dynamics model in state space description is 

given by 

 

�̇�𝑣𝑖
= 𝐴𝑥𝑣𝑖

+ 𝐵𝑢𝑖  ,  

𝑦𝑣𝑖
= 𝐶𝑥𝑣𝑖,

 
(4) 

where the state, control, and output for the 𝑖th agent are represented by 𝑥𝑣𝑖
∈ ℜ𝑛, 𝑢𝑖 ∈ ℜ𝑚, and 𝑦𝑣𝑖

∈ ℜ𝑝, 

respectively. In addition, 𝐴, 𝐵, and 𝐶 are constant matrices and their dimensions change based on the number 

of agents to satisfy matrix multiplications. The goal of consensus is that each agent communicates only with 

its neighbors. 

Consequently, a group of 𝑁  agents obtain consensus when lim
𝑡→∞

‖𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)‖ = 0 , ∀𝑖, 𝑗 = 1,… ,𝑁 . 

Another term for distributed control laws is consensus protocols, which are either dynamic or static based on 

the choice of problem. 

 

2.3 LQR and Tuning Method for Multiagent Control Design   

The Linear Quadratic Regulator (LQR) problem is presented in form of multiagent design, where each agent 

of the fleet is in state space description that is given by Eq. (4). The LQR design is based on minimization of 

the performance index (𝐽 ) that is a time integral of the sum of the states and the control energies. This 

performance index is given by   
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                                                𝐽(𝑥𝑣𝑖
, 𝑄, 𝑢𝑖 , 𝑅) =

1

2
∫ (𝑥𝑣

𝑇
𝑖
𝑄𝑥𝑣𝑖

+ 𝑢𝑖
𝑇𝑅𝑢𝑖)𝑑𝑡

∞

0

,      (5) 

where 𝑄 ≥ 0  is a positive semidefinite state weighting matrix and 𝑅 >  0  is a positive input weighting 

matrix.  Due to the fact that is necessary to insert in the controllers, design specifications, and physical 

constraints. The performance index 𝐽 of Eq. (5) handles with optimality and systematization of controller 

actions design. In (Fonseca Neto, Abreu, & Silva, 2010) the optimization function that minimizes the 

performance index is represented as 

min
𝑢

𝐽(𝑥𝑣𝑖
, 𝑄, 𝑢𝑖, 𝑅) ,     (6) 

subject to the constraint given by 

�̇�𝑣𝑖
= 𝐴𝑥𝑣𝑖

+ 𝐵𝑢𝑖  .     (7) 

Considering the system given in Eq.     (7) with the cost function given by Eq.      (5), the optimal 

control law is given by 

𝑢∗(𝑡) =  −𝐹∗𝑥𝑣𝑖
(𝑡) ,     (8) 

where 𝐹∗ is the state feedback gain matrix for the closed loop system and is given by  

𝐹∗ = −𝑅−1𝐵𝑇𝑃 ,     (9) 

where 𝑃 is the solution matrix of the algebraic Riccati differential equation (Lewis, Vrabie, & Syrmos, 2012), 

which is obtained numerically by  

−�̇� = 𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 .     (10) 

Using dynamic programming methods, one can solve the Riccati differential equation given in Eq.     (10). 

When the time horizon tends to infinity, the values of 𝑃  converge (stabilize), i.e., the matrix �̇� = 0 . 

Consequently, the algebraic Riccati equation is given by 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 .     (11) 

The LQR is optimal for an infinite horizon and the system behavior can be adjusted through the weighting 

matrices 𝑄 and 𝑅. Another way to describe the performance function (𝐽) is to penalize the output signal (𝑦𝑣𝑖
) 

(Fonseca Neto, Abreu, & Silva, 2010), assuming that 

𝑄 = 𝐶𝑇 𝑄𝑦𝐶 ,     (12) 

where 𝑄𝑦 ≥ 0 is the exit penalty. Substituting this equation into Eq.      (5) and considering that the output 

signal (𝑦𝑣𝑖
) is represented by state variables, as in Eq. (4), the performance index is given by 

𝐽(𝑥𝑣𝑖
, 𝑄, 𝑢𝑖 , 𝑅) =

1

2
∫ (𝑥𝑣𝑖

𝑇 𝐶𝑇𝑄𝑦𝐶𝑥𝑣𝑖
+ 𝑢𝑖

𝑇𝑅𝑢𝑖)𝑑𝑡
∞

0

=  

𝐽(𝑦𝑣𝑖
, 𝑄𝑦, 𝑢𝑖 , 𝑅) =

1

2
∫ (𝑦𝑣𝑖

𝑇𝑄𝑦𝑦𝑣𝑖
+ 𝑢𝑖

𝑇𝑅𝑢𝑖)𝑑𝑡
∞

0

 . 

         

(13) 

In this manner, the performance index is described in relation to the output signal. Generally, a relationship 

between the matrices 𝑄 and 𝑅 is noted, resulting in a factor that is given by 

𝛽 = 𝑄𝑅−1. (14) 

The values of 𝛽 can be selected to provide fast control by selecting only the values of the matrix 𝑄 or obtain 

a low power consumption of the input signal by selecting only the matrix 𝑅 (Grimstad, 2009). 

Schur's triangularization is an alternative for solving the linear systems of the ARE that is given by Eq. (12), 
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although it still has a high computational cost (Horn & Johnson, 2013). The triangularization process converts 

a square linear system into a triangular system with the same solution. The strategy used by this method for 

solving a linear system is to apply transformations to this system in order to convert it into another one with a 

higher triangular form or lower triangular form, but that has the same solution as the original system (Laub, 

1979). Defining a matrix 𝑈 as being a unitary matrix, that is, 𝑈𝑇 = 𝑈−1,   superior triangular form is given 

by 

𝑈−1𝑇𝑈 = �̃� , 

�̃�𝑖𝑖 = 𝜆𝑖, 𝑖 = 1,2, … , 𝑛𝑖 
(15) 

For 𝑈 ∈ ℜ𝑛𝑖, 𝑛𝑖 is the order of the matrix and �̃�𝑖𝑖 are the elements of the main diagonal of the matrix �̃�. 

 

3. State Space Model for Formation Control  

The main goal of formation control is to make multiple agents achieve a common goal, such as organizing 

themselves into a specified geometric shape using their mutual information and updating their positions and 

velocities relative to each other. As mentioned in the previous section on consensus algorithms, each agent 

communicates with its neighboring agents (Feng, Zhang, Tong, & Zhang). 

 

3.1 State Space Agent Modelling 

Assuming that there are 𝑁 agents with a dynamic given by 

�̇�𝑣𝑖
= 𝐴𝑣𝑖

𝑥𝑣𝑖
(𝑡) + 𝐵𝑣𝑖

𝑢𝑣𝑖
(𝑡) ,     𝑖 =  1,2, . . . , 𝑁, (16) 

where 𝑢𝑣𝑖
∈ ℜ𝑚 is the input vector for the dynamic system of a given agent and 𝐴𝑣𝑖

, 𝑥𝑣𝑖
, and 𝐵𝑣𝑖

 are given 

by 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] , 

𝑥𝑣𝑖
= [𝑥𝑖1

(𝑡) 𝑥𝑖2
(𝑡) … 𝑥𝑖𝑛

(𝑡)]𝑇 

𝐵𝑣𝑖
= [

𝑏11 𝑏12 ⋯ 𝑎1𝑚

𝑏21 𝑏22 ⋯ 𝑎2𝑚

⋮ ⋮ ⋱ ⋮
𝑏𝑛1 𝑏𝑛2 ⋯ 𝑏𝑛𝑚

] 

𝑢𝑣𝑖
(𝑡) = [𝑢𝑖1

𝑢𝑖2
… 𝑢𝑖𝑚]𝑇 , 

(17) 

where 𝐴𝑣𝑖
∈ ℜ𝑛×𝑛, 𝑖 = 1,2, … ,𝑁, 𝐵𝑣𝑖

∈ ℜ𝑛×𝑚, 𝑛 and 𝑚 are the system order and the number of inputs 

for each agent, respectively, 𝐴𝑣𝑖
 is the state weighting matrix and 𝐵𝑣𝑖

 is the input weighting matrix.  

 

3.2 State Space Multiagent Modelling 

To a better understanding of the proposed design methodology, concepts and associative property of the   

Kronecker product are is presented in Appendix 1. After algebraic operations with Kronecker algebra, the 

mathematical model that represents the multi-agent system is given by 
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�̇�𝐹(𝑡) = 𝐴𝑥𝐹(𝑡) + 𝐵𝑢𝐹(𝑡) , (18) 

where the variables and parameters of this equation are given by 

𝐴 = 𝐼 ⊗ 𝐴𝑣𝑖

𝑥𝐹(𝑡) = [𝑥𝑣1
𝑥𝑣2

… 𝑥𝑣𝑁]𝑇 ,

𝐵 = 𝐼 ⊗ 𝐵𝑣𝑖
 , 𝐼 ∈ ℜ(𝑛𝑁)×(𝑛𝑁),

𝑢𝐹(𝑡) = [𝑢𝑣1
𝑢𝑣2

… 𝑢𝑣𝑁]

 (19) 

 

3.3 Specified Formation 

The desired formation is achieved through Eq. (18) by means of the reference points given by 

ℎ𝑝 = (ℎ ⊗ [
1
0
] + ℎ̇ ⊗ [

0
1
]) ∈ ℜ𝑛𝑁  , (20) 

where the vectors of the reference points are given by 

ℎ = [ℎ1 ℎ2 … ℎ𝑁]  , (21) 

where ℎ𝑖 is the desired position vector with coordinates in the Cartesian coordinate system (𝑥, 𝑦) for each 

agent, and is given by 

ℎ𝑖 = [𝑥𝑝𝑖
𝑦𝑝𝑖]  , (22) 

The vehicles 𝑁 are in formation ℎ𝑝 if there are vectors 𝑞 ∈ ℜ𝑛 such that 𝑥𝑝𝑖
− ℎ𝑖 = 𝑞, 𝑖 = 1…𝑁,  the 

subscript 𝑝 refers to the position components of 𝑥𝑣𝑖
(𝑡). The desired formation is illustrated in Figure 3.  

 

Figure 3. Square formation for system with four agents. 

 

A regular quadrilateral formation is illustrated in Figure 3. In this type of formation control, the error between 

agents is calculated based on the average relative motion of adjacent agents (Fax & Murray, 2004) and is given 

by 

𝑧𝑖 = (𝑥𝑖 − ℎ𝑖) −
1

|𝒥𝑖|
∑(𝑥𝑗 − ℎ𝑗)

𝑗∈𝒥𝑖

, 𝑖 = 1…𝑁 , (23) 

where |𝒥𝑖| is the elements quantity of the set 𝒥𝑖. This gain does not influence the results considering that the 

AGENTS
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sum of the weights of a given one is equal to one. By substituting the Laplacian matrix into equation Eq. (23), 

the output vector and the system equation is obtained as 

�̇�𝐹(𝑡) = 𝐴𝑥𝐹(𝑡) + 𝐵𝑢𝐹(𝑡) , 

𝑧(𝑡) = 𝐿(𝑥𝐹(𝑡) − ℎ𝑝), 

                                 𝐿 = 𝐿𝐺 ⊗ 𝐼, 𝐼 ∈ ℜ(𝑛𝑁)×(𝑛𝑁) . 

(24) 

Once the mathematical model of the system has been determined, it is necessary to find a feedback gain matrix 

𝐹 that satisfies Eq. (24) and leads this system to a given formation ℎ𝑝. Eq. (20) is given by 

�̇�𝐹(𝑡) = 𝐴𝑥𝐹(𝑡) + 𝐵𝐹𝐿(𝑥𝐹(𝑡) − ℎ𝑝) , (25) 

By substituting the matrices 𝐴 and 𝐵 (Eq. (19)) and 𝐹 = 𝐼𝑁 ⊗ 𝐹𝑣𝑖
 into Eq. (25), the following equation is 

obtained 

�̇�𝐹(𝑡) = 𝐼 ⊗ 𝐴𝑣𝑖
𝑥𝐹(𝑡) + 𝐿𝐺 ⊗ 𝐵𝑣𝑖

𝐹𝑣𝑖
(𝑥𝐹(𝑡) − ℎ𝑝) . (26) 

The feedback gain matrix 𝐹𝑣𝑖
 shows some of the communication properties of graph 𝐺. Thus, it is necessary 

to insert the eigenvalues of the directed Laplacian matrix into the given graph. Consequently, matrix 𝑈 is 

defined to be a unitary matrix, making �̃�𝐺 = 𝑈−1𝐿𝐺𝑈  the upper triangular. Using the direct forms of the 

matrix, 𝐴, 𝐵, and 𝐹, the fleet model is given by  

(𝑈−1 ⊗ 𝐼)(𝐴 + 𝐵𝐹𝐿)(𝑈 ⊗ 𝐼) = 𝐼 ⊗ 𝐴𝑣𝑖
+ 𝐿𝐺 ⊗ 𝐵𝑣𝑖

𝐹𝑣𝑖
 . (27) 

The right-hand side of equation Eq. (27) is an upper triangular block with blocks in the form 𝐴𝑣𝑖
+ 𝜆𝐵𝑣𝑖

𝐹𝑣𝑖
 

where 𝜆  is the eigenvalue of the Laplacian matrix. Consequently, the eigenvalues of (𝐴 + 𝐵𝐹𝐿)  are the 

same as the eigenvalues of (𝐴𝑣𝑖
+ 𝜆𝐵𝑣𝑖

𝐹𝑣𝑖
),  provided that 𝜆 is an eigenvalue of 𝐿𝐺 . 

The desired formation is achieved if Eq. (27) is stable, i.e., each agent must be precisely in formation. A 

stability analysis of the system is performed using the matrices 𝐴𝑣𝑖
 and 𝐵𝑣𝑖

. As 𝑧𝑒𝑟𝑜 is an eigenvalue of 

𝐿𝐺  of multiplicity 1 (for connected graphs), then each eigenvalue of 𝐴𝑣𝑖
 will also be an eigenvalue of 𝐴 +

𝐵𝐹𝐿 with the same multiplicity. The system will be stable if all other eigenvalues of (𝐴 + 𝐵𝐹𝐿) have a 

negative real part. 

The formation variable ℎ satisfies ℎ̇ = 0 if the desired formation is constant; thus, the system given by Eq. 

(26) can be rewritten as 

 �̇�𝐹(𝑡) = 𝐴𝑥𝐹(𝑡) + 𝐵𝐹𝐿𝑥𝐹(𝑡) − 𝐵𝐹𝐿 (𝐼⨂ [
1
0
]) ℎ , 

 ℎ̇ = 0 , 

(28) 

this set of equations is written as 

�̇� = 𝑀𝑦 , 𝑦 = [
𝑥𝐹

ℎ
] , (29) 

where the matrix 𝑀 is given by 

𝑀 = [𝐴 + 𝐵𝐹𝐿 −𝐵𝐹𝐿 (𝐼⨂ [
1
0
]) ℎ

0 0
] . (30) 
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4. Simulation Results and Discussion 

The acquired results are illustrated with several numerical simulations, all of which consider that the graph 

consists of four nodes and all edges have a weight equal to one.  

 

4.1 Formation control algorithm and Consensus Criteria   

The formation control algorithm simulates the results using the consensus criteria, where the adjacency and 

degree matrices, respectively, are given by 

 𝐴𝑑 = [

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

] , 𝐷 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] . (31) 

According to Eq. (31), it is noted that the topology of the multi-agent system used is of the undirected graph 

type, in which each agent communicates with its neighbor, as illustrated in Figure 4. 

 

Figure 4. Representation of the undirected cyclic graph. 

 

From the graph illustrated in Figure 4, it is possible to verify the information flow between agents. From Eq. 

(31), the Laplacian matrix described in Eq. (24) is given by 

𝐿𝑔 = [

1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

] . (32) 

 

4.2 Multiagent Dynamics 

In computational experiments, it is assumed that the dynamics of all agents are equal, and therefore, the 

mathematical model of the system obtained through the identification process is used. Thus, the model used 

for the simulation of the dynamics of each of the agents presented in using the state variables in Eq. (16) is 
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given by 

                                            𝐴𝑣𝑖
= [

0 2.54 0 0
0 0 0 0
0 0 0 2.54
0 0 0 0

] , 𝐵𝑣𝑖
= [

1.73 0
0 0
0 1.73
0 0

]  , (33) 

and the state vector is described by 

                𝑥𝑣𝑖
=

[
 
 
 
𝑥𝑚𝑖

�̇�𝑚𝑖
𝑦𝑚𝑖

�̇�𝑚𝑖]
 
 
 
 , 𝑢𝑣𝑖

= [
𝑢𝑥𝑖
𝑢𝑦𝑖

]  , (34) 

where (𝑥𝑚, 𝑦𝑚) are the linear positions, (�̇�𝑚, �̇�𝑚) are the linear velocities, and (𝑢𝑥 , 𝑢𝑦) are the inputs of 

the 𝑥 and 𝑦 systems, respectively. 

 

4.3 Formation Specification  

The desired formation is specified as being the vertices of a regular quadrilateral with four agents, and the 

desired formation vector is given by 

ℎ = [1 1 −1 1 −1 −1 1 −1]𝑇  

ℎ̇ = [0 0 0 0 0 0 0 0]𝑇 . 
(35) 

 

4.4 Controller Gains 

The control system for training, described by Eq. (26), used the feedback gain matrix obtained by means of 

the Linear Quadratic Regulated theory, which is obtained through Eq.     (9) and     (11) that is given by 

𝐹𝑣𝑖
≅ [

−100 −101.45 0 0
0 0 −100 −101.45

] . (36) 

 

4.5 Numerical Results 

In the simulation, the initial states of the multi-agent system were considered as uniformly distributed random 

variables. Thus, the agents must leave their position and maintain a given desired formation and the response 

of the system is illustrated in Figure 5. 
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Figure 5. Position of agents in the Cartesian coordinate system for a square formation. Gray symbols indicate 

the initial positions and the black symbols represent the final positions of the agents. 

 

The Figure 5 illustrates the formation of a multi-agent system, where Ag1, Ag2, Ag3, and Ag4 represent the 

dynamics of agents 1, 2, 3, and 4, respectively. Also, in this figure, it is noted that the agents move in space at 

a constant speed because the vehicles have an initial velocity different from zero; thus, during the training 

process the velocity is kept constant. In addition, although the agents reach the desired formation, they 

continue moving in space, i.e., their speed is different from zero until the final instant. This behavior is 

illustrated by the graph presented in Figure 6. 
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Figure 6. Agent velocity versus time for square formation. 

 

In Figure 6 is shown the relationship between speeds along the (𝑥, 𝑦) axes. Note that the desired formation 

is maintained because the velocities at the final instants are approximately equal and different from zero; thus, 

the formation continues moving along the axes. 

Based on an elaboration of the communication graph of the agents, illustrated in Figure 4, it is possible to 

verify the way each agent communicates with its neighbors. To maintain the desired formation, it is necessary 

that each agent maintains a certain distance from its respective adjacent agents. The behavior of the agents for 

analysis purposes, considering their form of communication and their respective distances, is illustrated in 

Figure 7. As well as this figure, changes in the Euclidean distance between agents over multiple iterations is 

shown. 
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Figure 7. Distance between agents with respect to time for square formation. 

 

6. Conclusion 

Strategies and design proposals for a multi-agent control system based on LQR was presented.  A general 

procedure for multiagent formation via optimal control LQR-based approach were presented and evaluated in 

model mathematical of four quadcopter fleet.   

A connection between graph theory and a formation control method was presented. The multi-agent system 

of model of four quadcopters were used to computationally evaluate the proposal.  The LQR control design 

approach had shown to be a good alternative to real world implementations for control formation of 

quadcopters. The gains adjustments to the feedback gain matrix were performed using the Linear Quadratic 

Regulator weighting matrices, which ensures optimality of the closed loop system, i.e., with minimum control 

effort and stability robustness (phase and gain margins). For simplicity, the analysis was performed in a 

restricted manner, using only undirected graphs; however, analogous results are valid for directed graphs. 
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About the graph theory, the following comment are relevant: some cooperative control algorithms for multi-

agent systems, such as consensus and formation, have been presented. Graph theory is the main 

communication stream between agents to facilitate the use of directed, undirected graphs and Laplacian graphs 

in consensus and formation algorithms. In addition to the results obtained by simulation, an interesting 

observation is the importance of the Laplacian matrix influencing most of the results because it is a 

summarized representation of the system.  

This design makes possible to explore the more complex dynamics of an agent, i.e., to use a mathematical 

model of higher order and compare the results for directed and undirected graphs in future work. Also, any 

graph topology with multiple communication connections can be used to study modifications to the consensus 

algorithm and formation convergence. Motivation for future work includes implementing control algorithms 

in hardware for synchronized robots equipped with location-sensing abilities to perform aerial formation or 

do tasks beyond human capabilities. 
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Appendix 

Appendix 1. Product of Kronecker in Formation 

An operator used in graph theory is the Kronecker product, comprising the product between two matrices or 

vectors, this operation results in a block matrix, and is represented by the symbol ⊗. For example, assuming 

that the matrix 𝐸 ∈ ℜ𝑛×𝑚 and the matrix 𝐹 ∈ ℜ𝑝×𝑞 [7], the Kronecker product of 𝐸 ⊗ 𝐹 is defined as 

 𝐸 ⊗ 𝐹 = [
𝑒11𝐹 ⋯ 𝑒1𝑚𝐹

⋮ ⋱ ⋮
𝑒𝑛1𝐹 ⋯ 𝑒𝑛𝑚𝐹

] .   (A1) 

The Kronecker product is a useful tool in modeling and manipulating the equations that rules the dynamics of 

a given formation. For instance, if 𝑥�̇�𝑖
= 𝐴𝑥𝑣𝑖

 represents the dynamics of a single agent, the dynamics of 𝑁 

agents are represented by �̇� = (𝐼𝑁 ⊗ 𝐴)𝑥. Another example, if 𝐴 is a matrix, 𝑁 × 𝑁 represents a set of data 

of 𝑁 agents, and this operation needs to be applied to each value of the position vector 𝑛. The manipulation 

is represented by concatenating 𝑁  dimension vectors 𝑛  into a single vector of dimension 𝑁𝑛  and 

multiplying it by 𝐴 ⊗ 𝐼𝑛. 

The associative property of the Kronecker product facilitates the manipulation of matrices. is represented by 

(𝐼𝑁 ⊗ 𝑋)(𝑌 ⊗ 𝐼𝑠) = (𝑌 ⊗ 𝐼𝑟)(𝐼𝑁 ⊗ 𝑋) = 𝑌 ⊗ 𝑋 , 
     

(A2) 

where 𝑋 ∈ ℜ𝑟×𝑠 and 𝑌 ∈ ℜ𝑁×𝑁. 
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