Anatomy Classroom: Rethinking Teaching Practices

Antonio Orcini da Costa Junior¹; Roberta Oliveira da Costa²; Renata Souza e Silva²; Glessiane Coeli Freitas Batista Prata³; Gilberto dos Santos Cerqueira⁴ and Emmanuel Prata de Souza⁴

- ¹ Master's student of the Program in Morphofunctional Sciences of the Universidade Federal do Ceará, Brazil.
- ² PhD student of the Program in Morphofunctional Sciences of the Universidade Federal do Ceará, Brazil.
 - ³ PhD student of the Program in Education at the Universidade Federal do Ceará, Brazil.

 ⁴ Teacher at the Universidade Federal do Ceará, Brazil.

Abstract

Human anatomy is a fundamental area for the training of health professionals, presenting itself as a foundation in their formation. However, the methodological path adopted in teaching practice in the course of this discipline is based on traditional methodologies. However, contemporaneity calls for new form and approach in the pedagogical course, inquiring and rethinking the anatomy classroom through different practices and active methodologies with the insertion of technological resources. Thus, the present research aims to investigate the different teaching practices applied in the anatomy classroom through an integrative review. An integrative review of the literature was performed through research in electronic databases: Science Direct and SciELO. The inclusion criteria were: studies that answered the guide question, research with human beings, published from 2015 to 2021, in English, Spanish and Portuguese. It was verified that there are a number of tools and strategies that can be used to teach the most attractive of human anatomy, stimulating the development of the skills and competencies of health students.

Keywords: methodologies; teaching; human anatomy.

1. 1. Introduction

Human Anatomy is a classical discipline that aims to understand the complexity of the human body, transcribing its high individual variability. It is a complex and essential knowledge for all courses in the health area, presenting itself at the beginning of academic training, giving support and solid foundations for professional training.

In the current contemporary scenario, the teaching of Anatomy has undergone structural changes, caused by the curricular reforms of health courses, essential for the panorama of the new guidelines. In a scenario that has become so simple to transmit information, it is essential to put education beyond this transmission, stimulating the search for scientific knowledge (Fornaziero et al., 2010; Fornaziero & Gil, 2003).

Thus, with the various technological advances already available, it is believed that there are possibilities for changes in pedagogical practices in the educational context, since technology is present in the daily lives of students and that the teaching-learning process must dialogue, in a way consistent with the reality that the student experiences.

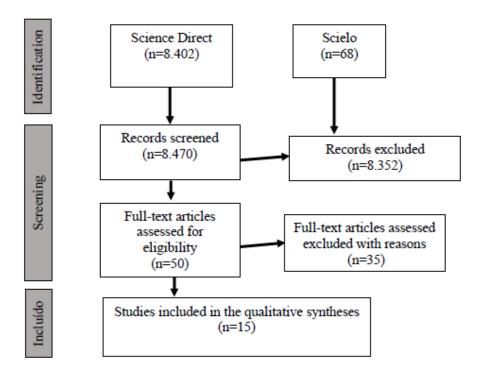
This process must be widely discussed, so that coherent pedagogical proposals are applied in the classroom, valuing differences. Therefore, it is not prudent to be faced with practices that are repeatedly routine, stereotyped, repeatedly, which submerge the potential for critical analysis of reality and educational problems (Basso, 1998).

The related didactic-pedagogical evolution, specifically in the context of Anatomy, is influenced by several factors, among which: advances in digital technology, integrating advances in digitized images that provide the visualization of 3D structures; difficulty in obtaining cadavers for dissection; increase in the number of students; reduction of time to study structures, etc. (Silva et al., 2018).

To observe the complex relationship between technological evolution and real learning needs, it is necessary to think about the educational and learning value (Bello & Brenton, 2011). Thus, the teaching of Human Anatomy arises through new methodologies and strategies, to make the teaching process effective.

The following questions are asked: what is the relationship between active methodologies and technologies in anatomy teaching? How to rethink the anatomy classroom and its teaching practices? Thus, this research aims to investigate the different teaching practices applied in the anatomy classroom through an integrative review.

Currently, teaching strategies are considered as significant as learning contents. In this way, traditional methodologies are being rethought throughout the intellectual community that seek to identify their deficiencies by proposing methodological innovations for teaching and learning (Paiva et al., 2017). However, this study seeks to rethink the different practices used in the anatomy classroom and their possibilities of innovation for the teaching and learning process in anatomy.


2. Methods

This study is an integrative literature review. The descriptors were selected from the Health Sciences Descriptors (DeCS). The one for other scientific topics, specialized in research, was multilingual created by BIRE to serve as a language, indexing of conference articles, technical reports and types as to be used in the research of materials and book studies Scientific literature in the available information sources.nThe following descriptors were used: teaching, active methodologies and human anatomy. Two search strategies were constructed: "teaching and human anatomy"; "active methodologies and human use anatomy".

The databases used were, Scielo and Science Direct, we chose to configure the period from 2015 to 2021, in Portuguese, English and Spanish, excluding patents and citations, so we obtained approximately 68 in Scielo, Science Direct 8,402, totaling the two databases. with 8,470.

The inclusion criteria adopted were studies that answered the guide question, quantitative and qualitative articles, published in Portuguese, English or Spanish, articles related to the theme "methodologies in the teaching of human anatomy, including, original research articles with human beings.

Thus, abstracts, editorials, literature review articles, and articles that were in duplicate, theses, dissertations, monographs were excluded.

Adapted from Moher et al. (2009). n = number of articles.

Figure 1. Flow diagram of study selection for the integrative review.

The process of selecting the articles was based on the following steps: 1) Reading and analysis of the titles and abstracts of the articles; 2) Organization and ordering of identified studies; 3) Reading the articles in full. Figure 1, called Prisma Flow, presents more detailed information on the selection, inclusion and exclusion of the studies searched in the databases.

3. Results

For analysis, the following variables were collected: author and year, objective, interventions methodologies, main results, conclusions (Table 2). It is noteworthy that the included studies were published in the period 2015 to 2021, presented in Table 1.

Table 1. Number of studies presented per year

Year	Quantity (No.)	Percent %
2017	1	6,7%
2018	3	20%
2019	3	20%
2020	4	26,6%

2021	4	26,6%
Total Studies	15	100%

Source: Survey data, 2022.

Table 2. Summary of studies included in the integrative review.

Title	Author	Objective	Methodological	Results	Conclusions
Title	and year	Objective	Interventions	Results	Conclusions
A 4 • - • -	and year	E 1		T1 4 1 1	A
Anatomicis	.	Educational	Educational	The technologies	A new approach
Network:	Inzunza et	software	Software	were evaluated	and platform is
An	al., 2017	platform to	Platform to	positively,	needed where
Educationa		improve	access 2D and	between 66% and	institutions with
l Software		anatomy	3D anatomical	89%, in	greater resources
Platform		teaching.	images, videos	educational	share their
Cloud-			and online	aspects such as	material with the
based to			multimodal	accessibility to	less fortunate.
Improve			theoretical and	images and	This points to
the			practical	animations, as	equity in access to
Teaching of			assessments.	well as their	information.
Anatomy in				quality and	
Medical				relevance aspects.	
Education					
Teaching-	Foureaux	Implement	Conceptual	The analysis of	The MC seems to
learning of	et al.,	and evaluate	Maps	the final averages,	have contributed
human	2018	the impact of	(MC) as a	before the project.	to improve
anatomy:		the	pedagogical	The MC was also	performance and
evaluation		development	strategy in the	able to promote	approval in
performan		of Concept	teaching-	the reduction of	Human Anatomy.
ce of		Maps	learning of	failure.	
students		(MC) as a	Human		
after the		pedagogical	Anatomy.		
use of maps		strategy in			
conceptual		teaching and			
as a		learning.			
pedagogica					
l strategy					
Human	Kurniawa	Development	The method used	This method	Advantages, such
Anatomy	n et al.,	of a human	is an augmented	showed better	as clarity and ease

Learning	2018	anatomy	reality marker	learning through	of understanding
	2010		•	the interactive	S
Systems		learning	system on a		
Using		system using	mobile	visualization of	anatomical model,
Augmented		augmented	processing	augmented reality.	providing
Reality on		reality	platform.		different options
Mobile		technology.			for Visualization
Application					of various organs
					of the human
					body, meeting
					quality learning
					requirements.
Web based	Layonaa,		Applications are	An Augmented	Application can
Augmented	Yuliantb,	Development	made using the	Reality app for	be used as an
Reality for	Tunardic,	of an	waterfall method	learning human	alternative
Human	2018	Augmented	which includes	body anatomy that	method to learn
Body		Reality	planning (data	contains 3D	anatomy. Apps
Anatomy		application to	collection and	object, organ and	increase interest
Learning		learn the	analysis), design	position	in learning more
		anatomy of	(user interface	explanation that	about anatomy.
		the human	and diagram),	can be accessible	
		body.	implementation	on the web.	
			and testing.		
Problem-	Bautista;	Design, apply	Application	With the PBL	It is necessary to
based	Tania	and	phase: strategy	strategy in	continue
learning	Erika	Evaluate a	design and	anatomy, it was	proposing new
strategy in	Román,	PBL strategy	development	achieved that the	methodologies
the	2019	to promote	and validation of	majority of	that enable the
Anatomy		the	assessment	participants will	construction of
subject of		development	instruments;	achieve a better	the value of
the Degree		of critical	situational	critical learning	knowledge.
in Medicine		meaningful	diagnosis;	significantly.	
		learning.	implemented		
			and final		
			evaluation.		
Developme	Santos et	Elaboration,	Several active	The active	The active
nt of active	al., 2019	application	teaching	methodologies	methodologies
methodolog		and	methodologies	made it possible to	helped the
ies for the		experience of	were developed	develop new skills	students in the

		1	T	T	
teaching of		the	and applied,	such as	absorption and
human		application of	Game-Based	collaboration,	fixation of the
anatomy		active	Learning, Use of	interdisciplinary	contents of human
		teaching	Audiovisual	knowledge,	anatomy.
		methodologie	Resources and	capacity for	
		s in human	Visual Arts-	innovation, group	
		anatomy.	Based Learning.	work and	
				education.	
Learning	Bautista et	Design,	PBL applied:	98.6% of students	PBL promoted
strategy	al., 2019	implement	strategy design,	rated the strategy	significant critical
based on		and evaluate a	development	as effective or	learning in most
problems		Problem-	and validation of	very effective for	students.
in the		based	assessment	autonomous	
anatomy		learning	instruments;	learning.	
discipline		(PBL),	situational		
of		strategy for	diagnosis; the		
degree in		the	strategy was and		
Medicine.		development	final evaluation.		
		of critical			
		learning			
		significant.			
Efficacy of	Oliveira et	To assess the	Body Painting in	The sum of the	Body Painting,
Body	al., 2020	acquisition of	the Teaching and	post-test scores in	facilitated the
Painting in		anatomical	Learning of	the Body Painting	process
the		knowledge of	Anatomy.	group was greater	teaching-learning,
Teaching		the rib cage,		than that of the	bringing theory to
and		larynx,		cadaver group,	practice and
Learning of		trachea,		with a statistical	allowing
Anatomy: a		of the nose		difference.	associations and
Randomize		and sinuses			meaningful
d Study		with the use			learning.
		of Body			
		Painting.			
Play as a	García-	Evaluation of	Using the kahoot	The impact that	Kahoot is an
motivating	Barrios, et	one on the use	educational app	the experience	interactive, free
factor in	al.,	of Kahoot as	through mobile	was by qualitative	and easy-to-use
teaching	2020	an	devices.	assessment	digital tool for
of human		educational		research. The	teachers and

anatomy		tool and		students evaluated	students, allowing
		motivating		positively, in the	to improve
		element in the		teaching-learning	learning using
		university		and in the	new technologies
		environment.		motivation.	and feeling
					motivated.
Apprentice	López et	To investigate	Different	98.1% considered	The traditional
ship of	al., 2020	the influence	teaching	the applied	method,
musculoske		of the	methodologies	methodologies	the denunciation
letal		application of	using the	positive and that	with new
anatomy by		new	Atlas 3D,	interest in	technologies,
meio de		methodologie	ultrasound and	anatomy was	contributions to
novas		s on the	the traditional	stimulated. The	increase
technologie		learning and	method.	method with the	student interest, as
s: um		motivation of		3D atlas	well as
ensaio		anatomy		Improved	acquisition of
clínico		students.		understanding of	skills and
randomiza				anatomy. Grades	competences.
do				improve by 20%.	
Three-	Tiznado-	Perception of	3D-digitized	The new	The study of
dimensiona	Matzner;	human	human cadaver	generations of	anatomy must be
l Virtual	Bucarey-	anatomy on	samples as a	students are	accompanied by
Models of	Arriagada,	the use of	complementary	immersed in a	technological
3D-	lizama,	models of real	method of study.	technological	elements that
Scanned	2020	cadaveric	These online	environment, both	complement the
Real		samples	resources were	general and	classic books.
Cadaveric		scanned, as a	chosen because	anatomy	Evaluating 3D
Samples		complementa	they are open	education could	models of real
Used as a		ry	web platforms.	benefit from the	human parts from
Compleme		educational		use of new	the anatomy
ntary		resource to		technologies.	module as part of
Educationa		the			their courses
1 Resource		conventional			showed that it was
for		study.			a widely accepted
the Study					resource.
of Human					
Anatomy:					
Undergrad					

Perception of this New Technology Use of a Yuwaraj,N Three- Three- The class average Evidence that						
of this New Technology Use of a Yuwaraj,N Three- Three- The class average Evidence that	Student's					
Technology Use of a Yuwaraj,N Three- The class average Evidence	Perception					
Use of a Yuwaraj,N Three- Three- The class average Evidence that	of this New					
	Technology					
virtual arrayyara dimensional dimensional in midterm and advectional	Use of a	Yuwaraj,N	Three-	Three-	The class average	Evidence that
vii tuai amaware, dimensionai dimensionai m inidienii and educationai	virtual	arnaware,	dimensional	dimensional	in midterm and	educational
human Melanie (3D) virtual (3D) Virtual final exams and technology can	human	Melanie	(3D) virtual	(3D) Virtual	final exams and	technology can
cadaver to Neumei, human Human the overall grade leverage	cadaver to	Neumei,	human	Human	the overall grade	leverage
improve 2021 corpse— Corpse— point average knowledge as an	improve	2021	corpse—	Corpse—	point average	knowledge as an
knowledge Anatomy Anatomage (GPA) were effective tool to	knowledge		Anatomy	Anatomage	(GPA) were	effective tool to
of human Table (TA)— Table (AT). significantly complement you	of human		Table (TA)—	Table (AT).	significantly	complement your
anatomy in in teaching higher in students learning. Teaching	anatomy in		in teaching		higher in students	learning. Teaching
nursing human taught with AT and learning o	nursing		human		taught with AT	and learning of
students: anatomy. than in students human anatomy	students:		anatomy.		than in students	human anatomy
research taught without AT. can be enhanced	research				taught without AT.	can be enhanced
article with a "blended	article					with a "blended"
and multimoda						and multimodal
approach.						approach.
Graphic Macía, Opinions of The techniques They show the Both the didacti	Graphic	Macía,	Opinions of	The techniques	They show the	Both the didactic
animation Munino students, of rotoscoping students' receptive material produced	animation	Munino	students,	of rotoscoping	students' receptive	material produced
as an 2021 immersed in animation, disposition and the	as an	2021	immersed in	animation,	disposition	and the
educational ICT traditional towards 2D information	educational		ICT	traditional	towards 2D	information
resource in management, frame-by-frame animation. They collected ar	resource in		management,	frame-by-frame	animation. They	collected are
Anatomy on animation and perceived the indicative of the	Anatomy		on	animation and	perceived the	indicative of the
autonomous motion graphic, minority effective			autonomous	motion graphic,	minority	effective
learning in generating the knowledge of pedagogical value			learning in	generating the	knowledge of	pedagogical value
the area of animated image these visual that 2D graphi			the area of	animated image	these visual	that 2D graphic
Anatomy, tracing the resources, which animation			Anatomy,	tracing the	resources, which	animation
assess the videos. are more dynamic attributes to the			assess the	videos.	are more dynamic	attributes to the
level of and facilitate the discipline.			level of		and facilitate the	discipline.
acceptance of teaching-learning			acceptance of		teaching-learning	
teaching process.			teaching		process.	
material			material			
based on			based on			
animated 2D			animated 2D			
graphic			graphic			
images.						

				Γ.	
Use of a 3D	Barrera-	Assess the	Use of a 3D	The average score	Using a 3D
virtual app	Cantoni et	association	virtual app and	was 13.5 2 and	application to
and	al., 2021	between the	academic	21% reported	study the anatomy
academic		use of a 3D	performance in	adequate use of a	of the
performan		virtual	the study of the	3D application.	musculoskeletal
ce in the		application	anatomy of the	No association	system was not
study of the		and academic	musculoskeletal.	was found	significantly
anatomy of		performance.		between App 3D	associated with
the				usage and	better academic
musculoske				academic	performance.
letal system				performance in	
among				the fitted model.	
Peruvian					
medical					
students					
Morpholog	Liu et al.,	Investigate	The methods	The teaching	Suggests that the
ical	2021	the new	used were the	results regarding	new
Practical		morphologica	traditional	the satisfaction of	morphological
Teaching		1 practice	teaching model	students in the	practical teaching
Platform		teaching	and the	integrated	platform improves
Improves		platform to	innovative	innovation	the outcome of
the		improve	teaching model.	teaching group	anatomy
Outcome of		anatomy	Morphological	were significantly	laboratory
Anatomy		outcome.	Practical	higher than those	teaching.
Laboratory			Teaching	in the control	
Teaching			Platform.	group.	
				(P < 0.05)	

Source: Elaborated by the authors

4. Discussion

Active methodologies used

It is emphasized that of the 15 studies analyzed, 8 are directly related to new technologies and 7 to active methodologies. Thus, 2 present educational software and platform (Inzunza et al., 2017; Liu et al., 2021), 2 augmented reality for the teaching of anatomy (Kurniawan et al., 2018; Layona et al., 2018), 3 as 3D tools (de La Barrera-Cantoni et al., 2021; Narnaware & Neumeier, 2021; Rodríguez-López et al., 2020), 1 2D graphic animation (Macías & Muñino, 2021). With regard to active methodologies, 1 with the karoot platform, game show (García-Barrios et al., 2020), 1 article highlights the application of conceptual maps, 3 with PBL (problem-based learning), 1 with games, audiovisual and visual arts, 1 Body painting.

What we can perceive, that despite the different methodologies applied, both dialogue in their objectives with regard to rethinking and innovating the process of teaching anatomy. In the current educational scenario, it is important to reflect on teaching practices in a context that transcribes and represents the needs of professional training.

Regarding the proposed objectives of the studies, Inzunza et al., (2017) describe an educational software platform to improve anatomy teaching in medical education. Liu et al., (2021), investigate whether the new platform for teaching morphological practice could improve the outcome of laboratory teaching of anatomy. Kurniawan et al., (2018) Develop a human anatomy learning system using augmented reality technology. Layonaa, Yuliantob, Tunardic, (2018) developed the Augmented Reality app to learn the anatomy of the human body to be more interesting and easier for the student to understand.

López et al., (2020), studied the impact of different methodologies using Atlas 3D, ultrasound, and the traditional method. Tiznado-Matzner, Bucarey-Arriagada, Lizama, (2020), brings the perception of human anatomy students about the use of 3D scanned models of real cadaver samples, as an educational resource that complements conventional study. Yuwaraj, Narnaware, Melanie Neumeie, (2021), incorporated a three-dimensional (3D) virtual human cadaver – Anatomage Table (AT) – into teaching human anatomy. Barrera-Cantoni et al., (2021) evaluated the association between the use of a 3D virtual application and academic performance among Peruvian medical students.

In the studies by Macíasa and Munino (2021), students' knowledge of immersion in ICT management was articulated to achieve autonomous learning in the area of Anatomy, to assess the level of acceptance by students of a teaching material based on graphic images, 2D animated.

Regarding the objectives of active methodologies, García-Barrios et al., (2020) evaluated a group of students on the use of Kahoot as an educational tool and as a possible motivating element in the university environment. Foureaux et al., (2018) Implement and evaluate the impact of the development of Concept Maps (CM) as a pedagogical strategy in the teaching and learning of Human Anatomy. Bautista, Tania Erika Román, (2019) is to apply and evaluate a PBL strategy to promote the development of critically meaningful learning in anatomy students. Bautista et al., (2019) design, implement and evaluate a PBL strategy to promote the development of significant critical learning in anatomy course students.

Santos et al., (2019) developed the elaboration, application and application experience as games, audiovisual practices and visual arts. Oliveira et al., (2020), evaluated the acquisition of anatomical knowledge of the rib cage (ribs, cartilages, intercostal muscles, sternum and thoracic lines), larynx, trachea, nose and paranasal sinuses with the use of Body Painting compared to the use of cadaveric parts, in addition to knowing and analyzing the perception and meaning of the Body Painting method in the teaching and learning of anatomy for medical students. The findings show that the proposed objectives and the accomplishment of the work in question are directly interconnected with the successful searches for anatomy teaching.

For Rodrigues (2001) different practices and methodologies provide an effective opportunity for student learning, regardless of complexity. Therefore, the good use of different technological and methodological tools requires us to have a clear notion of what we want to explore and how to do it, in

order to obtain effective practices. It is important to direct who, where and for what reality will apply it (Cunha, 2001). We can see that the objectives outlined in the different research seek, through active and technological methodologies, a reconfiguration of the teaching processes in human anatomy, since this discipline presented for many decades a plastered and traditional configuration. Thus, its resignification takes place in a process that seeks the protagonist student, as well as meaningful learning.

In short, the studies demonstrate the effectiveness and success of the proposed objectives, reinforcing the creation and use of software platform, augmented reality, 3D and 2D tools, Kahoot, concept maps, PBL, games, audiovisual and visual art, evidencing stimulus for learning of human anatomy. Of the 15 studies analyzed, only one of the studies did not show significant results, such as the use of the 3D application to study the anatomy of the musculoskeletal system (de La Barrera-Cantoni et al., 2021). However, the effectiveness in the use of active methodologies and their technologies is clear, the studies in question highlight significant results in the various methods used.

It is well known that the trends of the 21st century indicate that the central characteristic of education is the shift from an individual focus to a social focus. Thus, teaching and learning gain a dialectical character, that is, of constant movement and construction by those who carry it out, where teaching is directly related to learning: the educator is no longer what only educates, but what, while educating, It's polite. Both, equally, become subjects of the process (Delors, 2001).

Thus, these new practices are diverse, ranging from the use of representational models, games, to the use of technologies and mobile devices. Therefore, active methodologies are instruments that expand and facilitate the environment for the teaching and learning process. These recognize the subject as the author of the process, stimulate criticality, autonomy, the development of social, ethical, and technical awareness, encourage the student to intervene in real problems and attract students to classes (Aparecida & Berbel, 1998).

5. Conclusion

In this research, we sought to synthesize, through an integrative literature review, information related to teaching practices in anatomy. It is suggested that health education, especially anatomy teaching, has strategies that present different and complex curricular changes that have provided a new methodological involvement, developing meaningful learning and protagonist student.

Thus, the use of different methodologies and technologies are useful tools that are necessary for the implementation of the teaching and learning process in human anatomy. These practices break with the molds of technicality and traditionalism in anatomy teaching that for centuries were centered on mechanical and traditional procedures, making it uninteresting.

In view of the above, we conclude that the studies analyzed present strong and successful evidence in the use of different innovative methods aimed at teaching anatomy, and that even when applied in a targeted and well-planned way, they have positive impacts on learning. In view of what was found, we emphasize that the topic is not exhausted, we suggest the formulation of new studies and research, as it is a subject of great richness and scientific relevance for health practices.

6. References

- Aparecida, N., & Berbel, N. (1998). A problematização e a aprendizagem baseada em problemas: diferentes termos ou diferentes caminhos? *Interface Comunicação*, *Saúde*, *Educação*, *2*(2), 139–154. https://doi.org/10.1590/S1414-32831998000100008
- Basso, I. S. (1998). Significado e sentido do trabalho docente. *Cadernos CEDES*, 19(44), 19–32. https://doi.org/10.1590/S0101-32621998000100003
- Bautista, T. E. R., Montaño, M. del L. C. M., Méndez, M. C., Riverol, J. G. R. C., Gante, S. R. de, & Ramírez, M. del C. A. (2019). Estrategia de aprendizaje basado en problemas en la asignatura de Anatomía de la licenciatura en Medicina. *RIDE. Revista Iberoamericana Para La Investigación y El Desarrollo Educativo*, 9(18), 557–581. https://doi.org/10.23913/RIDE.V9I18.436
- Bello, F., & Brenton, H. (2011). Current and Future Simulation and Learning Technologies. In *Surgical Education* (Vol. 2, pp. 123–149). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1682-7_8 Cunha. N. H. S. Brinquedoteca: um mergulho no brincar. 3ed. São Paulo: Cortez, 1997
- de La Barrera-Cantoni, S. J., Lizarbe-Lezama, M. L., Rodriguez-Macedo, J. E., Carrillo-Levin, T. S., Jaramillo-Ocharan, M. F., & Toro-Huamanchumo, C. J. (2021). Use of a 3D virtual app and academic performance in the study of the anatomy of the musculoskeletal system among Peruvian medical students. *Heliyon*, 7(6), e07149. https://doi.org/10.1016/J.HELIYON.2021.E07149
- Delors J, organizer. Educação: um tesouro a descobrir. Relatório para a Unesco da Comissão Internacional sobre Educação para o Século XXI. 4. ed. São Paulo/Brasília (DF): Cortez/Unesco; 2000. p. x-y.
- Fornaziero, C. C., & Gil, C. R. R. (2003). Novas Tecnologias Aplicadas ao Ensino da Anatomia Humana. Revista Brasileira de Educação Médica, 27(2), 141–146. https://doi.org/10.1590/1981-5271V27.2-009
- Fornaziero, C. C., Gordan, P. A., Carvalho, M. A. V. de, Araujo, J. C., & Aquino, J. C. B. de. (2010). O ensino da anatomia: integração do corpo humano e meio ambiente. *Revista Brasileira de Educação Médica*, 34(2), 290–297. https://doi.org/10.1590/S0100-55022010000200014
- García-Barrios, A., Cisneros-Gimeno, A. I., Luesma-Bartolomé, M. J., Benito-Rodríguez, J., Barrio-Ollero, E., Whyte-Orozco, J., García-Barrios, A., Cisneros-Gimeno, A. I., Luesma-Bartolomé, M. J., Benito-Rodríguez, J., Barrio-Ollero, E., & Whyte-Orozco, J. (2020). El juego como factor motivador en la enseñanza de la anatomía humana. *FEM: Revista de La Fundación Educación Médica*, 23(6), 347–350. https://doi.org/10.33588/FEM.236.1097
- Inzunza, O., Neyem, A., Sanz, M. E., Valdivia, I., Villarroel, M., Farfán, E., Matte, A., & López-Juri, P. (2017). Anatomicis Network: Una Plataforma de Software Educativa basada en la Nube para Mejorar la Enseñanza de la Anatomía en la Educación Médica. *International Journal of Morphology*, *35*(3), 1168–1177. https://doi.org/10.4067/S0717-95022017000300056
- Kurniawan, M. H., Suharjito, Diana, & Witjaksono, G. (2018). Human Anatomy Learning Systems Using Augmented Reality on Mobile Application. *Procedia Computer Science*, *135*, 80–88. https://doi.org/10.1016/J.PROCS.2018.08.152
- Layona, R., Yulianto, B., & Tunardi, Y. (2018). Web based Augmented Reality for Human Body Anatomy

Liu, X., Shang, X., Wang, X., Zhou, F., Lequio, M., Signaigo, ; Noah, Fang, ; Yujiang, & Chen, & X. (2021). Morphological practical teaching platform improves the outcome of anatomy laboratory teaching. *Int. J. Morphol*, *39*(5), 1395–1398.

Learning. *Procedia Computer Science*, 135, 457–464. https://doi.org/10.1016/J.PROCS.2018.08.197

- Macías, A. J. N., & Muñino, J. D. (2021). La animación gráfica como recurso educativo en Anatomía. *Educación Médica*, 22, 288–293. https://doi.org/10.1016/J.EDUMED.2020.07.014
- Narnaware, Y. R., & Neumeier, M. (2021). Use of a virtual human cadaver to improve knowledge of human anatomy in nursing students: research article. *Teaching and Learning in Nursing*, *16*(4), 309–314. https://doi.org/10.1016/J.TELN.2021.06.003
- Oliveira, L. C., Costa, A. T. da, Ponte, M. L. da, Carvalho, M. N., Sousa Júnior, S. C. de, & Melo, S. P. (2020). Efficacy of Body Painting in the Teaching and Learning of Anatomy: a Randomized Study. *Revista Brasileira de Educação Médica*, 44(2). https://doi.org/10.1590/1981-5271V44.2-20190162
- Paiva, M. R. F., Parente, J. R. F., Brandão, I. R., & Queiroz, A. H. B. (2017). Metodologias ativas de ensino aprendizagem: revisão integrativa. *Revista De Políticas Públicas*, 15(2), 145–153.

 Rodrigues, M. O desenvolvimento do pré-escolar e o jogo. Ed Vozes –Petrópolis Rio, 2001.
- Rodríguez-López, E. S., Calvo-Moreno, S. O., Fernández-Pola, E. C., Fernández-Rodríguez, T., Guodemar-Pérez, J., & Ruiz-López, M. (2020). Learning musculoskeletal anatomy through new technologies: a randomized clinical trial. *Revista Latino-Americana de Enfermagem*, 28, 1–7. https://doi.org/10.1590/1518-8345.3237.3281
- Santos, A. M. G. dos, Silva Junior, M. J. da, Souza, P. A. dos S., Oliveira, A. S. de, & Palma, M. B. (2019). Development of active methodologies for the teaching of human anatomy. *Brazilian Journal of Development*, *5*(4), 3341–3352.
- Silva, J. H. da, Foureaux, G., Sá, M. A. de, Schetino, L. P. L., & Guerra, L. B. (2018). O ensino-aprendizagem da anatomia humana: avaliação do desempenho dos alunos após a utilização de mapas conceituais como uma estratégia pedagógica. *Ciência & Educação (Bauru)*, 24(1), 95–110. https://doi.org/10.1590/1516-731320180010007
- Tiznado-Matzner, G., Bucarey-Arriagada, S., & Pérez, R. L. (2020). Three-dimensional Virtual Models of 3D-Scanned Real Cadaveric Samples Used as a Complementary Educational Resource for the Study of Human Anatomy: Undergraduate Student's Perception of this New Technology. *International Journal of Morphology*, 38(6), 1686–1692. https://doi.org/10.4067/S0717-95022020000601686