DESIGN THINKING AS A TOOL TO THE TEACHING OF

CHILDREN, AND TEACHERS IN THE 21st CENTURY: An Integrative

Review

Fabiano Pamato Nunes¹, Marcos Molinari², and Francisco Antonio Pereira Fialho³, Carolina Santana⁴

^{1, 2 and 3} Programa de Pós-Graduação em Engenharia e Gestão do Conhecimento da Universidade Federal de Santa Catarina
⁴Mestre

Abstract

Children become more motivated to learn when what is presented to them reflects or simulates their own reality, providing a sense of authenticity to education. This article aims to analyse which studies have already been carried out in the scope of the use and teaching of Design Thinking for children in the school environment. In order to achieve this aim, a descriptive exploratory research was conducted, based on the integrative literature review, with the Scopus and Web of Science platforms as the basis. It was noticed that Design Thinking is a valuable tool for the empowerment of children and adolescents, as it stimulates empathy, communication, creativity, and the ability to analyse and solve problems. One point that should be drawn from the articles is that there is few formally structured materials on the use of Design Thinking as a pedagogical practice, which can hinder its more accelerated dissemination. Finally, although interventions are centred on children and adolescents, educators need to realize that they are the primary factor for transformation, through their involvement, dedication, and attitude. Therefore, they need to be qualified, aware of their role as facilitators, guiding in this collaborative journey of critical thinking, and problem-solving in an innovative and future-oriented way.

Keywords: Children; Skills; Design Thinking; 21st century; Integrative Review

1. Introduction

In recent years, a global movement in the field of early childhood education has been happening, concerning the necessary skills children should develop to be successful, economically productive and actively engaged citizens for modern society, which is understood as highly volatile, uncertain, complex and ambiguous. In this perspective, according to the OECD (Organization for Economic Development Cooperation), and the understanding of (Anagün, (2018), Sylva *et al.* (2020), and Zulkarnaen *et al.* (2019) the main skills needed for the 21st century are as follows: critical thinking, problem-solving, creativity, communication, collaboration, innovation, teamwork, decision-making, leadership, knowledge application, self-direction, and learning to learn.

It should be emphasized that, although there is already some clarity about what skills are necessary for adaptation, and better fluidity in modern society, a concern also lies in how to facilitate the acquisition of these skills, which results in the review of educational environments, and pedagogical practices. Children are currently subjected to a large daily dose of information, transiting in a hypermedia world, and are protagonists of digital access. They can communicate with a simple click of a button, and no longer can be seen as empty "containers", willing to passively receive content, often sterile, and that does not integrate with their longings. From this perspective, Anagün (2018) brings us that the creation of an effective learning environment has become one of the challenges to help students get involved, interpret, and give meaning to their surroundings, co-assuming responsibility for their learning.

Thus, there is an appreciation of the constructivist method of education, in which knowledge is not something fixed, and stable, on the contrary, it is constructed step by step and often changed. Knowledge would not be either in the subject or in the object, but it would be the result of the interactions between them; this interaction means assimilating the object to its structures. Costa *et al.* (2018), brings the understanding of Jean Piaget, in which it is necessary to teach students to think, what is not possible to be done in an authoritarian environment, without freedom or autonomy. Therefore, it can be concluded that for learning, motivation and interest are essential.

According to Corrêa (2017), "the intervention of interest mobilizes the internal reserves of strength, in such a way that there is a feeling of ease, and a decrease in fatigue ", and, according to Allegretti (2003, apud SOUZA, 2012) "it is important to put the learner in the face of challenges, provocative situations that awaken in him the need to research to solve real, and significant problems, and, at the same time provide search, and discovery conditions, associating learning with problem-solving". In this sense, there is the importance – or even the necessity – of incorporating new strategies and pedagogical support tools, so that children are positioned to face real challenges, that are part of their daily lives, feeling motivated to critical thinking, collaboration, empathy, and problem-solving.

Such understandings align with the so-called STEM education being, conforms Pugliese (2017), an innovative, and integrative proposal in the teaching of science, technology, engineering and mathematics that breaks with the traditional, and passive model, which tries unidirectionally to pass information, and concepts to students without interaction with the object of the study, however, with no meaningful correlations with the real world. As Sen, Ay, and Kiray, 2018 STEM education aims at the development of critical sense, research, logical reasoning, and collaborative work, supporting the goal of training more qualified individuals for modern society.

Thus, in the perspective of making teaching more attractive, adhering to reality and more easily preparing students for the 21st century, the following research question comes up: can Design Thinking be used by children in the school environment, as support for critical thinking and problem-solving capacity? After having defined the research question, the topics follow the sequence of theoretical reference, methodology, results, discussions, so then conclusions can be taken from this study. It is notable that in this type of research, it is fundamental to have a broader view of the use of Design Thinking as an instrument in teaching.

2. Theoretical Framework

Thereafter, we present the theoretical foundations related to the topics addressed, "Design Thinking" and "STEM", intending to merely conceptualize them, as related in this research.

2.1 Design Thinking

Design Thinking can be understood as a methodology for innovation, and development of products and services, centred on the human being. The development and expansion of Design Thinking in the most diverse areas had as a fundamental part a company called IDEO, responsible for an extensive list of innovations (BLEICHER, 2015). Located in California, United States, the company serves customers of many sizes and segments, including Google, Mattel, Swarowski, IKEA, Lufthansa, HBO, NBC, Bayer, Ford and American Express. The company also develops solutions for non-profit organizations - Bill, and Melinda Gates Foundation and Drucker Institute, for example - and a considerable number of Americans prefectures. As stated by Bleicher (2015), IDEO through its founder, David Kelley, and its chief executive, Tim Brown, chose to share with society the methodology used for innovation and development of products/solutions, which culminated in the design thinking currently known.

According to Filho (2016), the methodology has, basically, three stages: (i) inspiration phase, which involves the full concerned of the problem, considering the needs, and behaviour of users; (ii) ideation phase, related to the generation of new ideas according to the context, and rapid and inexpensive prototyping of some of them, and; (iii) implementation phase, where the main ideas and prototypes for the development of a viable solution to the market are refining.

Therefore, in the understanding of Demarchi (2011) Design Thinking is a creative process based on the construction of ideas without judgments, eliminating the fear of failure, encouraging maximum absorption and participation of individuals in the process of solving problems. Although strongly associated with the business world, Bleicher (2015) elucidates that the real focus of Design Thinking is to make the human experience a tool at the service of Innovation, and it can be used in any situation, context or environment. It is a tool that uses the sensitivity, methods, design tools of designers to solve many types of problems, stimulating and developing empathy, creativity, critical thinking, reflection, transdisciplinarity, abstraction, and collaboration.

2.2 STEM

STEM education (Anachronism of English for science, technology, engineering, and mathematics) seeks to promote students' interest in the disciplines it covers, as well as develop the competence for solving problems and skills related to creativity, curiosity, resilience, communication, and collaboration (ATA-AKTÜRK; DEMIRCAN, 2020). Sen, Ay, and Kiray(2018) present STEM education as one of the most outstanding educational movements of recent years, providing a significant contribution to student development by emphasizing three key elements, and with a significant place on the agenda of all countries: problem-solving, innovation, and design.

Pugliese (2017) brings us that STEM education is a movement that was born in the United States, later spreading to other countries. The author also presents the three factors that justified, and catalysed the

01-11-2021

movement: (i) the space that innovation acquired in societies, associated with techno-scientific transformations; (ii) international reports indicating poor performance and interest of U.S. students in various areas, including science, and; (iii) reports indicating that the U.S. was going through a shortage of skilled professionals in STEM areas, so that they would lose economic competitiveness as a result.

Thus, it is possible to realize that, together with the educational issue, there is an inherent economic concern, which justifies the interest of governments in stimulating and financing STEM education, as well as creating physical spaces, more proper pedagogical strategies that stimulate critical thinking, problemsolving, and the aptitude for the sciences in their school units.

3. Methodology

When faced with a problem or phenomenon, and we need to answer or to explain about it, we can only do this assertively through research that contains rational and systematic procedures. For this, there must be a process consisting of steps that cover the initial state, that is, the formulation of the problem or phenomenon until the final part, where the response or explanation of the phenomenon is presented (GIL, 2007).

The term Integrative Review comes from the idea of integrating ideas, opinions, concepts of concepts, works presented by different authors, studies, and therefore has the potential to create a holistic view of the theme of interest (WHITTEMORE; KNAF, 2005).

To reach the objective of this study, the use of an Integrative Review on the research issue was chosen because it is a method that creates a rigorous compendium of previous studies related to the proposed theme through a clear methodology, and easy reproduction (GREENHALGH, 1997).

The systematic search occurred in the multidisciplinary base's Web of Science, and Scopus recovering articles published with the terms related to the proposed theme. Articles published from 2014 to November 2020 were searched on both platforms. In these cases, we considered articles that are already accepted, approved, and published in scientific journals indexed in the databases described above, even if the date of release of the journals is set for the year 2021.

Inclusion criteria also entered: a) only articles in magazines, congresses, and conferences; and b) be available in free access, to ease the reading of the full article by the researchers.

The search terms were "Design Thinking", "skill", and "children "for search in the title, abstract, and keyword fields of the studies. The results of this first analysis created Table 01.

Table 01 Articles found by Platform

Base	Magazines	Conferences, and Congresses
Web of Science	19	12
Scopus	19	10
Total	38	22
General Total	6	50

Source: Survey data, 2021

Using the *Software Mendeley Desktop*® (version 1.19.4) the articles were grouped for the analysis of possible duplicates. There were 41 articles for analysis, 24 published in magazines, and 17 in conferences, and congresses.

Once the inclusion criteria were established, the abstracts of all selected articles were read. After reading, 21articles were eliminated because they were not aligned with the scope of the theme of this research - didn't bring children as a study object, design thinking was used only as a method of conducting the research; Four articles were eliminated because they were not in English or because they were not freely accessible; one is not from a very specific field within the child's environment; one was literature review. Fourteen articles were left to be analysed more deeply by the authors. These were distributed in 11 journal articles, and 03 articles published in conferences or congresses.

Table 02 shows us the articles that were selected for this work.

Table 02 *Articles Selected*

	AUTHOR	GOAL	FINDINGS
TITLE			
3D Printing in	Teemu Leinonen	Create an overview of the	According to the teachers'
the Wild:	Marjo Virnes	use of 3D tools in the	observations, the 3D project
Adopting	Ida Hietala	classroom, their	aroused curiosity and generated
Digital	Jaana Brinck	opportunities, and	motivation, even for those
Fabrication in		obstacles	children who showed apathy to
Elementary			learn in other school subjects.
School			However, it was not possible to
Education			observe all the expected gains
			in terms of creativity, and
			design due to limitations. In any
			case, it is believed that 3D
			printing projects in schools
			reach the full potential that the
			research community has
			addressed, but adopting them
			requires greater competence in
			the use of tools, pedagogical
			design, and greater
			understanding of the
			movement, and culture maker
An Analysis of	Anne Forbes	Investigate learning	Students were heavily involved
the Nature of	Garry Falloon	processes, and the results	in learning in the makers'
Young	Michael Stevenson	of the use of 3D design,	spaces, and developed skills in
Students'	Maria Hatzigianni	and printing technologies	several areas, including digital

	_		
STEM	Matt Bower	with children aged 5 to 8	technical proficiency, design
Learning in 3D		in three schools in a	thinking, problem-solving,
Technology-		metropolitan city of	critical thinking, collaboration,
Enhanced		Australia	and communication. The
Makerspaces			findings imply that 3D maker
			spaces, design, and printing can
			be used to promote
			literacy/knowledge in STEM
All Aboard for	Vattigunta	Assess the driving, and	The workshop presented
the Joy of	Susmitha	impact of a user-centric	children with the concept of
Making!	Nagarajan Akshay	design workshop for	user-based product creation,
Teaching User-	Vilvanathan	eighth-graders at an	and as a focal point for design
Centered	Vennila	Indian school	decisions. Additionally, the
Design, and	Anirudh		children learned to use h, and
Tinkering to	Muraleedharan		tools such as the electric drill,
Middle School	Rahul Nair		saws, pipe files, sanding blocks,
Children in	Alekh Velayudhan		and skills such as painting, and
India	Meltem Alkoyak-		pipe fixing. The results also
	Yildiz		indicate that the experience in
	Rao R. Bhavani		the workshop increased the
			sense of efficacy by children,
			which can positively impact
			self-confidence
Amets Ekiten:	Arantza Arruti	Present a project called	No results were presented in
A new		Amets Ekiten (Start-up	this study since it was intended
entrepreneurial		Dreams) in which primary	only to elucidate the importance
experience for		school children conduct	of entrepreneurial education in
primary		workshops, and activities	children, and how the Amets
education		intending to develop	Ekiten project relates to this
children		entrepreneurial talent	design.
		through skills such as	
		creativity, innovation,	
		solidarity, gratitude, and	
		leadership	
Children's	Maria Hatzigianni	Analyses interviews, and	According to the children's
views on	Michael Stevenson	reports of children about	reports, it was possible to
making, and	Matt Bower	their experiences with	extract that their abilities
designing	Garry Falloon	maker spaces, and digital	evolved, but also their positive
	Anne Forbes	tools, with emphasis on	attitudes towards "doing", and
			the "creator mentality",

		the process of creation,	including important assets such
		and design	as the willingness to try again,
		una design	resilience, and persistence, even
			after failures. They also made
			many prototypes, responded to
			advice from colleagues, and
			•
			challenged themselves to
			achieve their goals. The
			children were able to describe
			challenging, and rewarding
			aspects of their design, identify
			solutions, offer alternatives, and
			discuss innovative ideas. They
			were able to go from a passive
			posture concerning knowledge
			to active involvement with
			innovative ideas, and skills.
			Children came to see
			themselves as future designers,
			innovators, engineers, and
			scientists.
Children's	Sarika	The study investigated	The teachers, although not
engineering	Kewalramani	two questions: 1. How do	familiar to their technological
design thinking	Ioanna Palaiologou	the introduction of	pedagogical knowledge,
processes: The	Maria Dardanou	littleBits, and associated	engaged the children in playing
magic of the		electronic magnetic blocks	with robotic toys, and co-they
robots, and the		exp, and the possibilities	learned from them. The
power of		of play, and creativity of	integration of playful
blocks		children with a focus on	experiences focused on STEM
(electronics)		STEM?	supported scientific research,
		2. What kind of critical	design thinking, and children's
		thinking, and	creativity, as well as vocabulary
		interdisciplinary STEM	directed to interdisciplinary
		concepts have the children	STEM concepts. With an
		demonstrated?	increasing focus on the
		acinonstrated:	development of children's skills
			of the 21st century, this study
			•
			recommends that creativity and
			research arrangements should
			be considered in teaching and

			learning situations with young
			children.
Collaborative	Maarten Van	Present the co-design	To reap the benefits of co-
Design	Mechelen	approach of Collaborative	design or collaborative
Thinking	Ann Laenen	Design Thinking	creativity, multiple actors must
(CoDeT): A co-	Bieke Zaman	(CoDeT), its theoretical	work together on one or more
design	Bert Willems	framework, and its	goals. However, children often
approach for	Vero Vanden	application in a case study	lack a basic understanding of
high child-to-	Abeele	with 49 children aged 9 to	the design processing of the
adult ratios		10 years	design process, such that
			productive collaboration can be
			difficult to achieve, especially
			when children lack the
			motivation or skills to work as a
			team. This is even more
			complicated in co-design
			environments with a high child-
			to-adult ratio. The CoDeT
			approach helps to address this
			difficulty by allowing children
			to work relatively
			independently of adults in co-
			design activities.
Effect of design	Moses Irekpita	Investigate the impact of a	Students of both sexes
thinking	Simeon	design thinking-based	improved their performance,
approach on	Mohd Ali	teaching method on male,	but male participants had higher
students'	Samsudin	and female students, under	scores than women when
achievement in	Nooraida Yakob	concepts of physics	STEM design thinking modules
some selected		discipline in the context of	were used to learn physics
physics		STEM learning	concepts. Implications include
concepts in the			the need to training physics
context of			teachers in the use of a gender-
STEM learning			balanced STEM design thought
			pedagogy. This training should
			guide teachers on how these
			STEM design thinking modules
			can be used to create
			opportunities by linking
			learning physics concepts to
			real-life situations

Future	Annie Botha	Explore the role/impact of	Design Thinking principles,
entrepreneurs	Thea Tselepis	activity focused on	aligned with the dimensions of
design a way:	Lee de Wet	product innovation in	creativity, can encourage
Supporting	Lee de Wei	participants of an	product innovation, and allow
		-	
product innovation with		extracurricular sewing	participants to freely
		program	experiment, and develop
a design			product prototypes with the
thinking			intention of enterprise design
approach in a			
children's			
extracurricular			
sewing			
programme			
Identity	Scott A. Pattison	Peer interactions are a	Young people with leadership
negotiation	Ivel Gontan	learning characteristic,	profiles exert a profound
within peer	Smirla Ramos-	both inside, and outside	influence on the other members
groups during	Montañez	the classroom, for	of the group concerning how
an informal	Lauren Moreno	children, and young	they see themselves, and what
engineering		people, and identity	they develop in engineering
education		processes shape the ways	activities. In such a way, this
program: The		young people come to see	condition should be considered
central role of		themselves, including	in education programming
leadership-		STEM topics, and careers.	based on STEM concepts.
oriented youth		Thus, the objective of the	
		research was to evaluate	
		how participants with a	
		leadership profile	
		influenced the identity	
		negotiation of their peers	
		and the mechanisms by	
		which the young people	
		provided, and restricted	
		identity negotiation within	
		the groups.	
Improving	C. Parikh	Investigate how to prepare	Results showed a significant
creative ability	K. Maddulety	children from the Base of	general difference in the scores
of base of	CJ Meadows	the Pyramid in India for	of creative ability indicators of
pyramid (BOP)		creativity through Design	students who received
students in		Thinking-based training	intervention concerning those
India			who did not. The study
IIIGIU			who did not. The study

			management and add that a! -
			recommended that socio-
			technological entrepreneurs in
			the country become
			protagonists, and stakeholders
			for the development of creative
			skills for students at the base of
			the pyramid
Integrating	Mr. Menezes	Presents the results of an	Students demonstrated the
Design-Based	J. Alarcón	experiment conducted	ability to detect authentic
Learning	L. Navarrete	under the research project	problems in their community by
Methodologies	P. Bello	"Development, and small-	asking questions about three
in Rural	R. Montecino	scale validation of a	different, and complementary
Educational	N. Mardones	didactic model to improve	topics: recycling, animal care,
Environments	J.P. González	the effectiveness, and	and forest care. The teachers
in Chile: A		efficiency of teaching-	responsible for guiding the
Positive		learning processes in rural	activity found that the chosen
Collaborative		schools in Chile". The	themes were in line with the
Model at the		project aims to integrate	needs for community
Head of the		design-based learning	improvement and that the
Action!		methodologies (DBL) that	students had succeeded in their
		are based on the	decision, as they effectively
		integration of design	required a solution to the
		thinking and the design	problems of domestic waste
		process in the classroom	treatment, care of pets
		into primary schools.	threatened by wild animals, and
			forest care, and wood
			extraction. The students were
			able to propose various ideas to
			solve problems, with creative,
			and imaginative ideas,
			respecting reality.
When Kids are	Renate Motschnig	Assess how computational	The results show that students
Challenged to	Daniel Pfeiffer	thinking, and digital, and	have learned significantly, both
Solve Real	Anna Gawin	interpersonal skills can be	in programming, and social
Problems –	Peter Gawin	effectively promoted in	skills, and most enjoy this type
Case Study on	Michael Steiner	schools with traditional	of active learning. The results
Transforming		structures, with the	also clearly indicate that -
Learning with		Stanford Children's	although the intervention is
Interpersonal		Design Thinking Method	child-centered - their teachers
Presence, and			need to be heavily included,
resence, and			need to be heavily included,

Digital			otherwise a notable part of them
Technologies			may lose control over the class
			and remain skeptical
Young	Maria Hatzigianni	Assess how children from	Design thinking approaches are
children's	Michael Stevenson	kindergarten to second	suitable, and beneficial for
design thinking	Garry Falloon	grade (children aged 5 to	young children, and can
skills in	Matt Bower	8 years old, three	enhance open, flexible, and
makerspaces	Anne Forbes	classrooms) designed and	transferable skills such as
		printed 3D objects using	creativity, and critical thinking.
		tablets, printers, and	Consistent with learning
		physical materials, using	expectations for the future,
		the five steps of IDEO's	developing design thinking
		Design Thinking model	skills in young children can
			help equip them with the right
			skills to 'strategically manage
			their challenges in the digital
			age

Source: Survey data, 2021

4. Analysis of Systematic Search Results

We can observe from Table 03 that there is possible recent concern about the subject studied since there is a predominance of articles written in the year 2020, with seven articles, and two more articles that will be in journals in the year 2021, but that are already available by the journals on their websites for analysis by researchers. There was no journal or event with more than one article selected for this study.

Table 03 *Relevant articles per year*

Year	Quantity
2014	01
2015	00
2016	00
2017	01
2018	03
2019	01
2020	06
2021	02
	•

Source: Survey data, 2021

It should also be emphasized that there were 51 different authors in the articles, with only one study with a single author. All the other analysed studies had at least three authors. We should highlight 05 authors who take part in 03 different articles. These articles are part of the same research project, from Australia, but have different goals. All other authors participate in a single paper.

The research described in the articles is spread throughout Europe (04), Asia (02), Oceania (04), North America (01), South America (01), and Africa (02). Among the countries with analysed surveys, Australia stands out, with all 03 referring to the same project, as mentioned above. India also stands out, where 02 kinds of research analysed in the articles were conducted.

Within the keywords of the articles, we found 60 distinct types of expressions to give life to the articles. The most used was *Design Thinking*, *and Creativity as* we can see in Figure 01.

Figure 01 - Keyword Word cloud

Source: Survey data, 2021

5. Discussion

The articles analysed somehow bring the STEM as a fundamental point for their studies. Not for less, as we have seen, these skills are considered essential for basic education in this century. These skills were not always present in the articles explicitly, but they always approached areas covered by the acronym.

Also, during the analysis of the works, it was noticed that design thinking was not necessarily presented to children and adolescents as a methodology to be followed for problem-solving. However, in a portion of the articles, educators conducted children's activities that permeated the main stages of Design Thinking, such as the debate and understanding of the problem, ideation/prototyping, and the development of a solution.

Forbes et al. (2021), and Hatzigianni et al. (2020, 2021) bring in their articles the project *The Makerspaces in Primary School Settings* where through design activities, modelling, and 3D printing

analysed the learning skills of the 21st century, especially those focused on STEM. In a universe of more than 550 children aged 05 to 08 years, the tools for the development of tasks were presented. Teachers were instructed by facilitators within the Design Thinking perspective in the parameters of the Innovation Design Engineering Organization (IDEO). A development was observed in issues such as engagement, collaboration, communication, and creativity. Although there is no good evidence that students have developed skills in issues such as Design Thinking or critical, and reflective thinking, for example, the authors agree that educational innovations are promising in early childhood. Parikh, Maddulety, and Meadows (2020), in a different study, follow the same line of conclusion, adding that language can be a limiting factor for the expression of ideas for some children.

6. Acknowledgement

To the FOUNDATION TO SUPPORT RESEARCH, AND INNOVATION IN THE STATE OF SANTA CATARINA (FAPESC) by the research scholarship provided to the author Fabiano Pamato Nunes.

7. References

ALARCÓN, Jimena et al. Integrating Design-Based Learning Methodologies in Rural Educational Environments in Chile: a Positive Collaborative Model At the Head of the Action! In: ICERI2018 **PROCEEDINGS**. Seville: IATED, 2018. v. 1, p. 8158–8167.

Available in: https://doi.org/10.21125/iceri.2018.0474

ANAGÜN, Şengül S. Teachers' perceptions about the relationship between 21st century skills, and managing constructivist learning environments. **International Journal of Instruction**, [s. l.], v. 11, n. 4, p. 825–840, 2018. Available from: https://doi.org/10.12973/iji.2018.11452

ARRUTI, Arantza. AMETS EKITEN: A NEW ENTREPRENEURIAL EXPERIENCE FOR PRIMARY EDUCATION CHILDREN. In:, 2014, Barcelona. 6th International Conference on Education, and New Technologies. Barcelona: IATED. 2014. 7286-7296. Available Learning p. https://www.researchgate.net/profile/ArantzaArruti/publication/288617361_AMETS_EKITEN_A_NEW ENTREPRENEURIAL EXPERIENCE FOR PRIMARY EDUCATION CHILDREN/links/568253ed 08aebccc4e0d131e/AMETS-EKITEN-A-NEW-ENTREPRENEURIAL-EXPERIENCE-FOR-

PRIMARY-EDUCATION-CHILDREN.pdf

ATA-AKTÜRK, Aysun; DEMIRCAN, H. Özlen(Supporting Preschool Children's STEM Learning with Parent-Involved Early Engineering Education. Early Childhood Education Journal, [s. l.], 2020. Available from: https://doi.org/10.1007/s10643-020-01100-1

01-11-2021

BLEICHER, Sabrina. Flexible processes for the production of teaching materials for distance education: recommendations based on an interdisciplinary perspective. 387 f. (I give a lot of work in Engineering, and Knowledge Management) - Federal University of Santa Catarina, Florianópolis, 2015.

Botha; TSELEPIS, Thea; WET, Lee's. FUTURE ENTREPRENEURS DESIGN A WAY: SUPPORTING PRODUCT INNOVATION WITH A DESIGN THINKING APPROACH IN A CHILDREN'S EXTRACURRICULAR SEWING PROGRAMME. Journal of Consumer Sciences, [s. l.], v. 48, p. 19– 37, 2020.

CORRÊA, Crístia Rosineiri Gonçalves Lopes. The relationship between human development, and learning: Theoretical perspectives. School, and Educational Psychology, [s. l.], v. 21, n. 3, p. 379–386, 2017. Available in: https://doi.org/10.1590/2175-3539/2017/02131117

COSTA, Felipe De Almeida et al. Evaluation of teaching, and learning: an analysis of data about teachers' discourses. Mathematics Education Research, [s. l.], v. 20, n. 2, p. 391–404, 2018. Available in: https://doi.org/10.23925/1983-3156.2018v20i2p391-404

DEMARCHI, Ana Paula Perfetto. Strategic design management with the design thinking approach: **proposal of a knowledge production system.** 302 f. (Ph.D. in Engineering, and Knowledge Management) Federal University of Santa Catarina, Florianópolis, 2011. Available in: http://repositorio.ufsc.br/xmlui/handle/123456789/95075

SON, Vilson Martis. Design Thinking, and the Creation of Knowledge Assets in Teaching Activity. 312 f. (PhD in Engenharia, and Knowledge Management) - Federal University of Santa Catarina, Florianópolis, 2016.

FORBES, Anne et al. An Analysis of the Nature of Young Students' STEM Learning in 3D Technology-Enhanced Makerspaces. Early Education, and Development, [s. l.], v. 32, n. 1, p. 172–187, 2021. Available in: https://doi.org/10.1080/10409289.2020.1781325

GIL, A.C. How to develop research projects. 4ed. ed. São Paulo: Atlas, 2007.

GREENHALGH, Trisha. Papers that summarise other papers (systematic reviews, and meta-analyses). **British Medical Journal**, [s. l.], v. 315, n. 7109, p. 672–675, 1997. Available in: https://doi.org/10.1136/bmj.315.7109.668

HATZIGIANNI, Maria et al. Children's views on making, and designing. European Early Childhood **Education Research Journal**, [s. l.], v. 28, n. 2, p. 286–300, 2020. Available from: https://doi.org/10.1080/1350293X.2020.1735747

HATZIGIANNI, Maria *et al.* Young children's design thinking skills in maker spaces. **International Journal of Child-Computer Interaction**, [s. l.], v. 27, p. 100216, 2021. Available in: https://doi.org/10.1016/j.ijcci.2020.100216

KEWALRAMANI, Sarika; PALAIOLOGOU, Ioanna; DARDANOU, Maria. Children's engineering design thinking processes: The magic of the ROBOTS, and the power of BLOCKS (electronics). **Eurasia Journal of Mathematics, Science, and Technology Education**,[s. l.], v. 16, n. 3, 2020. Available in: https://doi.org/10.29333/ejmste/113247

LEINONEN, Teemu *et al.* 3D Printing in the Wild: Adopting Digital Fabrication in Elementary School Education. **International Journal of Art, and Design Education**,[s. l.], v. 39, n. 3, p. 600–615, 2020. Available in: https://doi.org/10.1111/jade.12310

MOTSCHNIG, Renate *et al.* When Kids are Challenged to Solve Real Problems – Case Study on Transforming Learning with Interpersonal Presence, and Digital Technologies. **Interaction Design, and Architecture(s)**, [s. l.], n. 34, p. 88–111, 2017.

PARIKH, C.; MADDULETY, K.; MEADOWS, C. J. Improving creative ability of base of pyramid (BOP) students in India. **Thinking Skills, and Creativity**, [s. l.], v. 36, n. 1, p. 100652, 2020. Available from: https://doi.org/10.1016/j.tsc.2020.100652

PATTISON, Scott A. *et al.* Identity negotiation within peer groups during an informal engineering education program: The central role of leadership-oriented youth. **Science Education**, [s. l.], v. 102, n. 5, p. 978–1006, 2018. Available in: https://doi.org/10.1002/sce.21459

PUGLIESE, Gustavo Oliveira. **The pedagogical models of science teaching in two educational programs based on STEM (Science, Technology, Engineering, and Mathematics**). 135 f. 2017. - State University of Campinas, [s. l.], 2017. Available in: http://repositorio.unicamp.br/bitstream/REPOSIP/331557/1/Pugliese_GustavoOliveira_M.pdf

SEN, Ceylan; AY, Zeynep Sonay; KIRAY, Ahmet Seyit. STEM Skills in the 21st Century Education. *In*: RESEARCH HIGHLIGHTS IN STEM EDUCATION. [*S. l.*]: ISRES Publishing, 2018. p. 81–101. *E-book*.

SIMEON, Moses Irekpita; SAMSUDIN, Mohd Ali; YAKOB, Nooraida. Effect of design thinking approach on students' achievement in some selected physics concepts in the context of STEM learning. **International Journal of Technology, and Design Education**,[s. l.], 2020. Available in: https://doi.org/10.1007/s10798-020-09601-1

SOUZA, LEONARDO BELÉM DE. **THE DIGITAL HORIZON IN FUNDAMENTAL EDUCATION.** 130 f. (Master)- Intelligence Technologies, and Digital Design, Pontifical Catholic University of São Paulo, São Paulo, 2012.

SUSMITHA, Vattigunta *et al.* All aboard for the joy of making! teaching user centered design, and tinkering to middle school children in India. *In*:, 2018. **IEEE Ninth International Conference on Technology for Education (T4E)**. [S. l.]: IEEE, 2018. p. 33–40. Available in: https://doi.org/10.1109/T4E.2018.00015

SYLVA, Kathy *et al.* Developing 21st century skills in early childhood: the contribution of process quality to self-regulation, and pro-social behavior. **Zeitschrift fur Erziehungswissenschaft**, [s. l.], v. 23, n. 3, p. 465–484, 2020. Available in: https://doi.org/10.1007/s11618-020-00945-x

VAN MECHELEN, Maarten *et al.* Collaborative Design Thinking (CoDeT): A co-design approach for high child-to-adult ratios. **International Journal of Human Computer Studies**,[s. l.], v. 130, p. 179–195, 2019. Available in: https://doi.org/10.1016/j.ijhcs.2019.06.013

WHITTEMORE, Robin; KNAF, Kathleen. The integrative review: updated methodology. **Journal of Advanced Nursing**, [s. l.], v. 52, n. 5, p. 546–553, 2005. Available in: https://doi.org/10.1111/j.1365-2648.2005.03621.x

ZULKARNAEN, R. H. *et al.* Smart city design in learning science to grow 21st century skills of elementary school student. **Journal of Physics: Conference Series**, [s. l.], v. 1157, n. 2, p. 0–7, 2019. Available from: https://doi.org/10.1088/1742-6596/1157/2/022021