
International Journal for Innovation Education and Research        ISSN 2411-2933   01 May 2021 

International Journal for Innovation Education and Research© 2021                          pg. 460 

BAYESIAN REGULARIZERS OF ARTIFICIAL NEURAL NETWORKS 

APPLIED TO THE RELIABILITY FORECAST OF INTERNAL 

COMBUSTION MACHINES IN THE SHORT-TERM. 

 

Ítalo Rodrigo Soares Silva 

Student of the Graduate Program in Engineering, Process, Systems and Environmental Management 

(PPG-EGPSA), ITEGAM, Brazil. 

Email: italo.computation@gmail.com 

ORCID: https://orcid.org/0000-0002-2827-1078 

 

Manoel Henrique Reis Nascimento 

PhD in Electrical Engineering from the Graduate Program in Engineering, Process, Systems and 

Environmental Management (PPG-EGPSA), ITEGAM, Brazil. 

Email: hreys@bol.com.br 

ORCID: https://orcid.org/0000-0003-4688-6751 

 

Milton Fonseca Júnior 

PhD in Electrical Engineering from the Graduate Program in Engineering, Process, Systems and 

Environmental Management (PPG-EGPSA), ITEGAM, Brazil. 

Email: milton.fonseca.jr@gmail.com 

ORCID: https://orcid.org/0000-0001-6001-3098 

 

Ricardo Silva Parente 

Student of the Graduate Program in Engineering, Process, Systems and Environmental Management 

(PPG-EGPSA), ITEGAM, Brazil. 

Email: ricardosilvaparente@gmail.com 

ORCID: https://orcid.org/0000-0003-3096-9069 

 

Paulo Oliveira Siqueira Júnior 

Student of the Graduate Program in Engineering, Process, Systems and Environmental Management 

(PPG-EGPSA), ITEGAM, Brazil. 

Email: paulojunior051996@gmail.com 

ORCID: https://orcid.org/0000-0001-8071-3972 

 

Jandecy Cabral Leite 

PhD in Electrical Engineering from the Graduate Program in Engineering, Process, Systems and 

Environmental Management (PPG-EGPSA), ITEGAM, Brazil. 

Email: jandecycabral@hotmail.com 

ORCID: https://orcid.org/0000-0002-1337-3549 

 

 

mailto:italo.computation@gmail.com
https://orcid.org/0000-0002-2827-1078
mailto:hreys@bol.com.br
https://orcid.org/0000-0003-4688-6751
mailto:milton.fonseca.jr@gmail.com
https://orcid.org/0000-0001-6001-3098
mailto:ricardosilvaparente@gmail.com
https://orcid.org/0000-0003-3096-9069
mailto:paulojunior051996@gmail.com
https://orcid.org/0000-0001-8071-3972
mailto:jandecycabral@hotmail.com
https://orcid.org/0000-0002-1337-3549


International Journal for Innovation Education and Research   www.ijier.net   Vol:-9 No-05, 2021 

International Educative Research Foundation and Publisher © 2021     pg. 461 

Abstract 

Predictive as well as preventive maintenance are tools of maintenance programs that aim to increase or 

maintain the life expectancy of an equipment through computational techniques and tools. Bearing in 

mind that the power generation industry has a high maintenance rate with machines and / or electric 

generators stopped, this research aims to develop a computational model for predicting the Reliability Key 

Performance Indicator (KPI) to identify how available the equipment will be in a time span of 22 days, for 

this the methodology to be used will be based on analyzes and tests of artificial neural network (ANN) 

architectures using the Bayesian Regularizers training algorithm, alternating the transfer functions in the 

layers hidden to find the best state of convergence and the minimum Root Mean Square Error (RMSE) 

value calculated between the real and simulated outputs. According to the results obtained by the training, 

validation and test steps, the algorithm presented a RMSE rate of 0.0000104202 and a 99.9% correlation 

between the real and simulated values, thus the model is able to identify which machine will have the 

greatest efficiency and less efficiency within the defined time span. 

 

Keywords: Reliability, RNA, Bayesian Regularizers, UTE; 

 

1. Introduction 

One of the elements that cause financial impacts in the sectors of commerce and industry is the maintenance 

of electric machines and / or generators (CORRÊA, 2020; SALLES et. al., 2020; RUIZ-HERNÁNDEZ et. 

al., 2020) that require large workforce for carrying out energy supply procedures and not having work 

breaks. Among the concerns of this sector, the supply of energy stands out (SÁNCHEZ et. al., 2020), as 

occurs in companies of essential services such as hospitals, clinics and supermarkets causing eventual 

irreversible damage or even loss of life in the case of hospitals when there is a lack of energy supply (CHINI 

et. al., 2020). 

For this, the other types of maintenance become trivial to guarantee the functioning of the equipment, 

among which qualified professionals who adapt or adopt methodologies of different procedures to perform 

in the necessary environment (AGNESE, 2020) perform the methods of prevention, prediction and 

correction. One of the performance indicators used in maintenance management according to NBR-5462 

is Reliability, which refers to the probability of proper functioning within a certain period of the elements 

involved in the production chain. 

One of the methods used to identify faults in electric generators that includes internal combustion machines 

is the vibration analysis (ROCHA, et. al., 2020; ZINGONI, 2020), the method consists of monitoring the 

target machine by defining the measurement ranges and parameters used for data collection. However, with 

the advancement of science and technology, computational tools gain space in these scenarios in order to 

optimize and improve the quality with which the processes are performed, but what stands out most in 

these procedures is the appropriate use of computational intelligence techniques (SOUZA, 2020; 

ABDULRAHMAN et. al., 2020; BAROROH et. al., 2020) to guarantee, through mathematical models 

disseminated in academia and science, the results presented by the tool. 

With this, studies with Machine Learning, Deep Learning, Pattern Recognition, Data Processing, Pattern 
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Classification, Optimization Techniques (RIGHETTO, 2020; ABDULRAHMAN et. al., 2020; BAROROH 

et. al., 2020) and many others are growing as the demands for complexity in these scenarios increase. An 

example that contemplates the scenario of maintenance of machines with the use of AI (Artificial 

Intelligence) is the detection of failures (CARDOSO, 2020; ARUNTHAVANATHAN et. al., 2020). 

Therefore, the use of these elements becomes more evident and tends to raise the level of complexity 

according to the need that companies find to adapt these methods or tools to the scenario used and obtain 

satisfactory results. With this, the present research demonstrates a focus on the scenario of maintenance of 

machines when using the group of electric generators of Thermoelectric Power Plants as study object, the 

study and implementation of the Artificial Neural Network Technique for Prediction of the Group's 

Reliability Index of engines. 

 

2 Literature Review 

2.1 Predictive maintenance 

Predictive maintenance (HAN et. al., 2021; SILVA et. al., 2019) becomes a necessary method since it is 

possible to prevent the stoppage of machines in a production process through indicators offered by 

monitoring systems, identify the small irregularities that can evolve to large failures early and thus allow 

for correction (AYVAZ and ALPAY, 2021; TIAN, LIU and SHU, 2021). Some methods for performing 

equipment-monitoring diagnostics are used in the literature (SCHWENDEMANN, AMJAD AND 

SIKORA, 2021; MANHERTZ and BERECZKY, 2021; LUGHOFER and SAYED-MOUCHAWEH, 2019), 

such as: 

Vibration Analysis: Through analysis of machines excited by dynamic efforts, vibration sensors at defined 

points in the machine, the vibration registers are captured (FONSECA-JUNIOR et. al., 2015). According 

to the extent to which the components of an equipment start to fail, the frequency and amplitude of vibration 

begin to change and with the analysis of the spectrum applied to the system it is possible to identify whether 

any component has its integrity compromised (MORO, 2020; YU, FENG and LIANG, 2021). 

Thermography: This method is based on the detection of infrared radiation emitted naturally by bodies 

with temperature proportional to the intensity emitted from the equipment, with this, it is possible to 

identify regions or points where the temperature is altered and obtain information about the state of the 

machine (MEIßNER et. al., 2021; LUGHOFER and SAYED-MOUCHAWEH, 2019; FONSECA-JUNIOR 

et. al., 2015). 

Cracks analysis: Uses magnetic particle test methods, deviate from their trajectory when finding a 

superficial or subsurface discontinued, this allows to identify points of non-conformity and apply the 

necessary repairs (CHEN et. al., 2021; LUGHOFER and SAYED-MOUCHAWEH, 2019). 

Thickness measurement: This method uses ultrasound as a non-destructive test, commonly used in 

industries to detect discontinuities in the entire volume of the material, the process consists of making the 

ultrasonic wave emitted by a transducer travel through the analyzed material, with this being verified the 

echoes received back, so it is possible to identify internal flaws or thicknesses (EL-ADAWY et. al., 2021; 

LUGHOFER and SAYED-MOUCHAWEH, 2019). 
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2.2 Reliability in maintenance 

According to NBR 5462, reliability is the possibility for an item, equipment, machine or system to perform 

its function within a certain period of time within a project, what is expected with the method is to analyze 

the degree of confidence of the equipment and with this determines metrics of use or maintenance 

techniques that act in the continuous improvement of the equipment (LU et. al., 2021). 

This measurement is commonly made based on a history of equipment performance and its estimate of 

future operation, which can be measured: Increased machine life, reduced maintenance costs, improved 

operational performance, agility and consistency of the teams techniques (ZOU et. al., 2021; LUGHOFER 

and SAYED-MOUCHAWEH, 2019). The reliability parameter to be calculated from this historical 

observation can be expressed by equation 1: 

𝜆𝑖
𝑥 =  

𝑁𝑓𝑖

𝑡𝑖
𝑥 . 𝑛

                                             (1) 

Where 𝑁𝑓𝑖 is the number of failures before the i-th point of failure, 𝑡𝑖
𝑥is the failure time of the ith point 

of failure for subsystem x, and n is the number of failures of the subsystem (BAI et. al., 2020). The failure 

rate for each failure point of subsystem x can be expressed by equation 2: 

𝜆𝑥 = [𝜆1
𝑥 , 𝜆2

𝑥, 𝜆3
𝑥 … 𝜆𝑖

𝑥, … 𝜆𝑛−1
𝑥 , 𝜆𝑛

𝑥]𝑡                               (2) 

For Bai et. al. (2020) in relation to fault investigation techniques, one of the most used is the bathtub curve, 

in which it is possible to analyze the equipment's useful life, a series of combinatorial radial basis functions 

for RBF are used to approximate functions complex or difficult calculations, expressed by equation 3. 

𝑦̂(𝑥) =  ∑ 𝛽𝑖𝑓(‖𝑥 −  𝑥𝑖‖) = 𝑓(𝑥)𝑇𝛽

𝑛

𝑖=1

                              (3) 

Where 𝑦̂(𝑥)  is the prediction response vector, 𝑥, 𝛽  is the radial base coefficient vector 𝛽𝑖  is the i-th 

component 𝛽, 𝑓(𝑥) is the RBF vector 𝑓(‖𝑥 − 𝑥𝑖‖) is the i-th component of 𝑓(𝑥), 𝑟 = ‖𝑥 − 𝑥𝑖‖ is the 

Euclidean distance between two vectors (LUGHOFER and SAYED-MOUCHAWEH, 2019; BAI et. al., 

2020). The same equation can be rewritten for the failure rate equation being expressed by equation 4: 

𝜆̂𝑥(𝑡) =  ∑ 𝛽𝑖𝑓(‖𝑥 −  𝑥𝑖‖) = 𝑓(𝑥)𝑇𝛽

𝑛

𝑖=1

                               (4) 

Where 𝜆̂𝑥(𝑡) is the failure rate of subsystem x at time t. The unit's reliability is defined as its cumulative 

probability of success, thus the reliability function 𝑅(𝑡) is given by equation 5: 

𝑅(𝑡) =  
𝑛𝑠(𝑡)

𝑛𝑠(𝑡) + 𝑛𝑓(𝑡)
=  

𝑛𝑠(𝑡)

𝑛0
                                   (5) 

The distribution function 𝐹(𝑡)is the complement of 𝑅(𝑡) expressed by equation 6: 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 −  ∫ 𝑓(𝑢)𝑑𝑢 =  ∫ 𝑓(𝑢)𝑑𝑢
+∞

𝑡

𝑡

0

                         (6) 

Thus, the reliability function indicates the probability that an item / equipment will be successful in its 

operation, characterized by the absence of failures in a period of time (LUGHOFER and SAYED-

MOUCHAWEH, 2019; BAI et. al., 2020). In order to measure reliability by means of probabilistic 

calculations, it is necessary to design a future scenario. However, it is necessary to have a survey of the 

average time between equipment failures, equipment failure rate and to know in advance what will be 

projected for the reliability calculation, in this case. if the number of projection days (SOLTANALI et. al., 

http://www.ijier.net/


International Journal for Innovation Education and Research        ISSN 2411-2933   01 May 2021 

International Journal for Innovation Education and Research© 2021                          pg. 464 

2021). 

 

2.3 Bayesian regularizers in machine learning 

The Bayesian inference can also be used to select the best structures or hypotheses 𝐻 = {𝐻1, 𝐻2, … , 𝐻𝑘}. 

According to Barbosa and Ferreira (2020) with the Bayes rule, the a posteriori probability distribution 𝑝 =

(𝐻ℎ|𝑌) of the 𝐻ℎ hypothesis is given by, expressed by equation 7: 

𝑝 = (𝐻ℎ|𝑌) =  
𝑝 = (𝐻ℎ|𝑌) p(𝐻ℎ)

𝑝(𝑌)
                                        (7) 

Where: 

𝑝(𝑌) = is a normalization factor 

𝐻ℎ = a priori equiprobable; 

𝑝(𝐻ℎ|𝑌) = model evaluator 

The a priori probability 𝑝(𝑌) starts from the premise that weights should initially assume values close to 

zero in order to avoid training saturation in analogy to the normalization applied to the input and output 

signals (FERREIRA and BARBOSA, 2020; FERREIRA, DE SOUZA and DO COUTTO FILHO, 2020). 

To define a probability, let 𝛿𝑘 be the output of the k-th output neuron of the Multilayer Perceptron (MLP), 

the equation x represents the weights that connect the hidden layer neurons to the k-th output neuron, 

expressed by equation 8.  

𝛿𝑘 =  ∅𝑠𝑎𝑖𝑑𝑎 {∑ 𝜛𝑘𝑗𝜙𝑜𝑐𝑢𝑙𝑡𝑎 (∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏𝑗) + 𝑏𝑘

𝑚

𝑗=1

}                          (8) 

The bias of this neuron, 𝑏𝑘  ∈  ℝ  o bias of the k-th output neuron, ∅𝑜𝑐𝑢𝑙𝑡𝑎(. ): ℝ ⟶ ℝ  the sigmoidal 

function of activation of the neurons of the hidden layer and ∅𝑠𝑎𝑖𝑑𝑎(. ): ℝ ⟶ ℝ the function of activation 

of neurons in the output layer. Thus, the vector 𝑤  ∈  ℝ𝑚, 𝑤 =  [𝑤𝑠
′  𝑤1

′ … 𝑤𝑗
′ 𝑏 𝑏1 … 𝑏𝑗]𝑡 training without the 

need for a validation set (FERREIRA and BARBOSA, 2020; FERREIRA, DE SOUZA and DO COUTTO 

FILHO, 2020). 

The principle of maximizing the evidence applied to the parameters 𝑤 giving rise to the functional 𝑆(𝑤) 

to be minimized for estimation of 𝑤  applied the hypotheses 𝐻 = {𝐻1, 𝐻2, … , 𝐻𝑘}  to calculate ln 𝑝 =

(𝐻ℎ|𝑌) is also applied to the hyperparameters 𝛼𝑖  𝑒 𝛽 giving rise to an iterative algorithm (LEOCÁDIO 

and FERREIRA, 2012). For Leocádio and Ferreira (2012) the Bayesian inference based on maximizing the 

evidence applied to the development of MLPs can be summarized by the algorithm: 

Step 1: specify the minimum number (𝑁𝑚𝑖𝑛) and the maximum number (𝑁𝑚𝑎𝑥) of neurons in the hidden 

layer and make the number of neurons 𝑚 =  𝑁𝑚𝑖𝑛; 

Step 2: manipulate proof variables in a n-dimensional vector of inputs. In cases of binary inputs (n + 2), if 

they are continuous (n + 1); 

Step 3: do l =0 and initialize 𝑤(𝑙) = [𝑤1(𝑙), … , 𝑤𝑛+3(𝑙)]𝑡 , 𝛼(𝑙) = [𝛼1(𝑙), … , 𝛼𝑛+3(𝑙)]𝑡  𝑒 𝛽(𝑙). 

Step 4: Using error back propagation, minimize 𝑠(𝑤) =  
𝛽

2
 ∑ [𝑑𝑗 − 𝑓(𝑥𝑗 , 𝑤)]2 +

1

2
 ∑ 𝛼𝑖  ∑ 𝑤𝑖𝑙

2𝑀
𝑙=1

𝑛+3
𝑖=1

𝑛
𝑗=1  about 

𝑤(𝑙) to obtain 𝑤(𝑙 + 1). 

Step 5: Calculate 𝛼𝑖(𝑙 + 1), 𝛽(𝑙 + 1) 𝑒 𝛾𝑖(𝑙 + 1); 

Step 6: Do l = l + 1 and return to step 4 until convergence. After convergence, proceed to the next step. 
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Step 7: Separate the hyperparameters 𝛼1
′ 𝑠 related to continuous inputs and the hyperparameters 𝛼𝑗

′𝑠 into 

binary inputs into two subsets. 

Step 8: For each list, select the entries with 𝛼𝑖 <  𝛼𝑟𝑒𝑓  represents the hyperparameter associated with the 

proof variable. 

Step 9: Repeat steps 4 to 6 using only the entries selected in steps 8, with n answering for the number of 

entries selected to obtain the trained model 𝐻𝑚 

Step 10: Calculate the logarithm of the evidence for the hypotheses (number of neurons in the hidden layer) 

𝐻𝑚. 

Step 11: If 𝑚 =  𝑁𝑚𝑎𝑥 go to step 12, otherwise do m = m + 1 and return to step 2. 

Step 12: select the hypothesis 𝐻𝑘  with more evidence ln 𝑝(𝑌|𝐻ℎ) to make the predictions. 

Each RNA model has characteristics and purposes, it is worth noting that the use of these models depends 

on the architecture and the learning process that must be balanced with a training algorithm. Learning 

occurs when the neural network reaches a generalized solution to a class of problems (CABEZA et. al., 

2018). Among the ways to learn a neural network there are those that consist of: error correction, 

competition, Hebrew models and learning machines (ARABI BULAGHI et. al., 2020). 

However, this alone is not enough to have the best neural network model, this is due to the various nonlinear 

applications, the activation functions do this intuitively by creating learning models that relate dependent 

and independent variables. Some examples of the activation function are shown in table 1. 

 

Table 1: Activation functions. 

Initials Function Expression 

Sigmoide Sigmoide 𝜎 =
1

1 + 𝑒𝑥
 

TanH Hyperbolic Tangent 
𝑡𝑎𝑛ℎ(𝑥) = 2𝜎(2𝑥) − 1 

𝑡𝑎𝑛ℎ′(𝑥) = 1 − 𝑡𝑎𝑛ℎ²(𝑥) 

ReLU Rectified Linear Unit 𝑅𝑒𝐿𝑈(𝑥) = max{0, 𝑥} , 𝑠𝑒𝑛𝑑𝑜 {
1, 𝑠𝑒 𝑥 ≥ 0

0, 𝑐. 𝑐
 

ELU Exponential Linear Unit 

𝐸𝐿𝑈(𝑥, 𝛼) =  {
𝑥, 𝑠𝑒 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1), 𝑠𝑒 𝑐. 𝑐
 

𝐸𝐿𝑈′(𝑥, 𝛼) =  {
1, 𝑠𝑒 𝑥 ≥ 0

𝐸𝐿𝑈(𝑥, 𝛼) + 𝛼, 𝑠𝑒 𝑐. 𝑐
 

Leaky 

ReLU 
Leaked Rectified Linear Unit 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥, 𝛼) = max{𝛼𝑥, 𝑥} 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈′(𝑥, 𝛼) =  {
1, 𝑠𝑒 𝑥 ≥ 0

𝛼, 𝑠𝑒 𝑐. 𝑐
 

 

Depending on the number of iterations that have been defined for a neural network, the combination of 

these methods can reduce the prediction time or increase if not used correctly. 

 

3. Materials and methods 

In order to carry out this research, it was necessary to use a database containing the main failures of a group 

http://www.ijier.net/
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of internal combustion engines provided with vibration analysis in Thermoelectric Plants. The analysis 

period consists of January to December 2019, the data set includes date, time, downtime, system that failed, 

subsystem that was affected and description of the failure. Figure 1 illustrates a flow with the stages of 

development. 

 

Figure 1: Development stages. 

3.1 Step 1: Data collection in thermoelectric plants 

For data collection, a survey of failures in internal combustion machines in thermoelectric plants was 

carried out in a period from January to December 2019. Table 2 shows the days analyzed during the period. 

 

Table 2: Distribution of analyzes by month. 

Month Days analyzed Operating hours 

Janeiro 9 216 

Fevereiro 26 624 

Março 29 696 

Abril 29 696 

Maio 29 696 

Junho 27 648 

Julho 29 696 

Agosto 27 648 

Setembro 28 672 

Outubro 21 504 

Novembro 26 624 

Dezembro 16 384 

Total 296 7104 

 

According to the analysis of the monthly samples they vary in an average of 24 days, where the hours of 

operation of the group of engines is given by equation 9: 

𝐻𝑂 = 24 ∗ 𝐷𝐴                                        (9) 

Where: 

HO = Hours of operation; 

DA = Days analyzed; 

24 = hours of the day; 

The machines that were analyzed in that time are 4-stroke internal combustion engines, from Wartisila NSD 

Data collection in 
thermoelectric plants

Selection of variables 
for the computational 

model

Implementation of the 
forecasting model using 

Bayesian Regularizers 
in ANN

Analysis of the results 
obtained



International Journal for Innovation Education and Research   www.ijier.net   Vol:-9 No-05, 2021 

International Educative Research Foundation and Publisher © 2021     pg. 467 

Corporation, model 18V46, with a nominal power of 15.75 MW, efficiency of 42.3%, length of 13.58m, 

width 5,347m, height of 5,488m and weight of 237 tons. 

 

3.2 Step 2: Selection of variables for the computational model 

The set of data provided by the vibration analysis allowed a table to be produced with the main variables 

that will be used in the forecasting model, where each one has importance and dependence for the 

calculation of Reliability, being: 

1. Total downtime: total downtime of the machines per month; 

2. Total frequency: number of occurrences of the machines per month; 

3. Days analyzed: Number of days analyzed to provide failure data; 

4. Hours of operation: total time of operation without considering failures; 

5. MTBF: average time between failures; 

6. MTTR: average repair time; 

7. Failure rate: instantaneous failure rate within a period of time. 

Finally, the Reliability output variable defined by a forecast time function to estimate this key performance 

indicator on a percentage scale. 

 

3.3 Step 3: Implementation of the forecasting model using Bayesian Regularizers in ANN 

For simulations of the computational model using the Bayesian Regularizers training algorithm in the 

learning process of the Neural Network, 5 input and 1 output variables were used. The network learning 

process is divided into 3 stages: training, validation and testing, where the data are separated by 70%, 15% 

and 15% respectively. 

The machine that will generate the results provided by the simulations has the following configurations: 

16GB of RAM, core i5 generation 10 processor with 2.50 GHz, 64-bit platform and 500GB SSD. Table 2 

presents the configuration data of the neural network that were used to simulate the reliability of the motor 

group of the thermoelectric plants considering the Bayesian regularization. 

 

Table 3: Configuration of the Bayesian model of RNA. 

ALG FC1 FC2 NC1 NC2 Epoch 

Bayesian 

Regularization 
Sigmoide Sigmoide 24 50 24 

 

Where: 

ALG = Algorithm used; 

FC1 = Layer 1 transfer function; 

FC2 = Layer 2 transfer function; 

NC1 = Number of neurons in layer 1; 

NC2 = Number of neurons in layer 2; 

Times = Number of iterations for the convergence of the algorithm; 

MSE = Mean Square Error; 

http://www.ijier.net/
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RMSE = Square Root of the Average Error 

 

3.4 Step 4: Analysis of the results 

The step for choosing the best configuration for the Bayesian regularization algorithm is an analysis of the 

lowest mean square error, where each network model is trained and a filter is made to identify the one with 

the lowest EMQ index. For each iteration performed, a network performance validation is performed, 

where a function is called that is responsible for simulating the network test result with the output vector, 

according to equation 10: 

𝐸𝑄𝑀 =  √
∑ (𝑟𝑎𝑖 − 𝑟𝑠𝑖)

2𝑛
𝑖=1

𝑛
                                   (10) 

Where: 

NDE = Mean Square Error; 

n = number of elements of the output vector; 

ra = target result; 

rs = simulated result 

Figure 2 illustrates the steps to obtain the best RNA model based on the minimum mean square error. 

 

Figure 2: Best RNA selection algorithm. 

 

For the evaluation of the winning Bayesian regularizer model, the configurations are alternated according 

to the need for neurons and the transfer function to escape the gradient explosion, thus obtaining better 

results of approximation of function. 
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4. Results and discussions 

To find the data set necessary to feed the RNA input nxp matrix, some elements were pre-processed and 

the model was adjusted to a point where it was measurable, for example, in the case of considering an 

estimated assessment of the reliability of a group of 20 engines within a Thermoelectric Plant it was 

necessary to group the Total Downtime and the Total Frequency Time. 

Table 4 presents the pre-processed data set for RNA in a period from January to December 2019, grouping 

the 20 TTP engines. These data are provided from the vibration analysis where the stop time calculation is 

performed for each equipment that failed, at the end of each month an accounting is made and grouped. 

 

Table 4: TTP nxp array. 

MOTOR JAN FEV MAR ABR MAI JUN JUL AGO SET OUT NOV DEZ TOTAL 

1 0,00 3,0 2,37 0,00 1,92 0,00 0,00 7,30 1,8 2,68 0,0 1,3 20,32 

2 0,00 0,0 0,45 8,98 0,85 3,87 6,33 1,30 0,0 0,70 9,3 0,0 31,78 

3 0,00 5,9 9,52 0,00 5,20 0,00 0,45 0,70 0,0 0,00 0,0 0,9 22,60 

4 4,13 7,4 2,60 20,53 2,85 3,43 1,17 4,35 2,0 0,00 1,8 0,0 50,18 

5 0,00 0,0 1,98 0,00 0,00 0,00 0,65 0,00 0,0 0,00 0,0 2,1 4,75 

6 0,00 7,8 0,00 1,92 2,52 4,97 0,00 0,00 4,5 5,10 3,2 1,0 30,98 

7 0,00 0,0 0,00 0,45 3,43 3,00 3,20 0,00 5,0 0,00 0,5 1,9 17,35 

8 8,92 0,0 0,00 0,00 0,00 0,70 0,00 6,85 0,0 4,52 0,0 0,0 20,98 

9 0,00 2,2 1,92 1,08 1,92 0,00 0,45 0,00 1,9 2,13 2,7 0,0 14,18 

10 0,00 0,0 2,00 3,30 1,80 3,93 0,00 1,45 0,0 1,60 1,4 2,2 17,75 

11 7,37 1,5 2,00 0,00 0,00 0,00 6,25 7,92 1,3 0,00 7,8 0,9 35,05 

12 3,43 3,9 0,00 0,85 9,35 7,85 0,00 1,98 0,0 0,00 0,0 0,0 27,32 

13 0,00 2,0 12,38 3,25 0,00 2,93 6,85 0,00 1,3 0,00 2,0 7,4 38,10 

14 14,15 0,8 0,00 0,00 3,92 6,10 0,00 1,75 5,8 3,67 0,9 3,3 40,27 

15 0,00 0,0 0,00 0,00 2,23 2,00 7,00 12,03 0,0 3,20 0,0 1,5 28,00 

16 3,85 1,5 0,85 8,95 1,33 0,00 0,70 1,75 5,2 1,53 0,7 0,0 26,33 

17 0,00 3,5 5,00 1,92 5,62 4,10 2,00 0,63 0,0 1,75 6,2 0,0 30,70 

18 0,00 1,9 0,00 5,85 0,45 0,00 0,85 3,95 0,0 1,98 0,0 0,0 14,93 

19 0,00 1,0 12,82 2,73 4,10 0,00 3,20 3,08 2,4 0,00 0,0 0,0 29,32 

20 2,93 0,1 1,72 11,08 1,75 5,17 0,45 1,92 2,6 0,00 1,9 6,7 36,30 

 

Table 5 shows the pre-processed set of TF for RNA for a period from January to December 2019, grouping 

the 20 engines. The set represents the amount of frequency that the equipment failed during the month 

being grouped by engine, while table 6 shows the total downtime on a decimal hour scale. 
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Table 5: TF nxp array. 

MOTOR JAN FEV MAR ABR MAI JUN JUL AGO SET OUT NOV DEZ TOTAL 

1 0 1,0 2,00 0,00 1,00 0,00 0,00 2,00 1,0 2,00 0,0 1,0 10 

2 0 0,0 1,00 3,00 1,00 3,00 4,00 1,00 0,0 1,00 3,0 0,0 17 

3 0 2,0 2,00 0,00 2,00 0,00 1,00 1,00 0,0 0,00 0,0 1,0 9 

4 1 2,0 2,00 3,00 2,00 2,00 1,00 3,00 1,0 0,00 1,0 0,0 18 

5 0 0,0 1,00 0,00 0,00 0,00 1,00 0,00 0,0 0,00 0,0 2,0 4 

6 0 3,0 0,00 1,00 2,00 4,00 0,00 0,00 3,0 2,00 1,0 1,0 17 

7 0 0,0 0,00 1,00 2,00 3,00 0,00 0,00 2,0 0,00 1,0 1,0 10 

8 1 0,0 0,00 0,00 0,00 1,00 0,00 1,00 0,0 1,00 0,0 0,0 4 

9 0 2,0 1,00 2,00 1,00 0,00 1,00 0,00 1,0 1,00 2,0 0,0 11 

10 0 0,0 2,00 2,00 3,00 3,00 0,00 1,00 0,0 2,00 1,0 1,0 15 

11 2 1,0 1,00 0,00 0,00 0,00 3,00 2,00 1,0 0,00 4,0 1,0 15 

12 3 1,0 0,00 1,00 3,00 4,00 0,00 1,00 0,0 0,00 0,0 0,0 13 

13 0 2,0 2,00 1,00 0,00 2,00 1,00 0,00 1,0 0,00 1,0 5,0 15 

14 1 1,0 0,00 0,00 2,00 2,00 0,00 1,00 2,0 3,00 1,0 1,0 14 

15 0 0,0 0,00 0,00 1,00 1,00 3,00 4,00 0,0 1,00 0,0 1,0 11 

16 1 1,0 1,00 2,00 2,00 0,00 1,00 1,00 2,0 1,00 1,0 0,0 13 

17 0 2,0 2,00 1,00 3,00 1,00 1,00 1,00 0,0 2,00 4,0 0,0 17 

18 0 1,0 0,00 2,00 1,00 0,00 1,00 2,00 0,0 1,00 0,0 0,0 8 

19 0 1,0 2,00 2,00 1,00 0,00 1,00 2,00 1,0 0,00 0,0 0,0 10 

20 1 1,0 2,00 3,00 1,00 2,00 1,00 1,00 2,0 0,00 1,0 2,0 17 

 

4.1 Architecture, training and validation of Bayesian Regularization 

Figure 3 illustrates the winning configuration for the RNA model with the Bayesian Regularization training 

algorithm. 

 

Figure 3: Winning RNA architecture. 

 

It is worth noting that the input layer has 5 neurons referring to the input variables and 1 output neuron 

which refers to the Reliability forecast result. Table 6 shows the values obtained using the best RNA 

selection algorithm. 

 



International Journal for Innovation Education and Research   www.ijier.net   Vol:-9 No-05, 2021 

International Educative Research Foundation and Publisher © 2021     pg. 471 

Table 6: Result of the best ANN using Bayesian Regularization. 

FC1 FC2 NC1 NC2 Épocas MSE RMSE MAPE 

Sigmoide Sigmoide 24 50 24 
0.0000000

001 

0.0000104

202 

0.0000372

952 

 

According to the results of tests carried out, the winning network model obtained a rate of 0.0000104202 

of RMSE and a configuration of 5 neurons in the input layer, 24 in the first intermediate layer, 50 in the 

second intermediate layer and 1 in the output layer, the it even reaches its state of convergence at the time 

24 of 1000 using the Sigmoide transfer function in the input and intermediate layers. Figure 4 illustrates 

the best training performance of the network where the mean quadratic error obtained from the training 

step is 0.0000104202 or 1.029e-10. 

 

 

Figure 4: Graph of the best training performance. 

 

To prove the effectiveness of the network through a statistical error analysis, figure x illustrates the error 

results from the smallest to the largest obtained through the training, test and validation steps, where the 

smallest error is achieved in the Zero Error marking line. 
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Figure 5: Histogram of error performance. 

 

4.2 Network simulation applied to the engine group Reliability forecast 

The simulation was performed by the numerical calculation software known as MatLab 2016a where it was 

possible to simulate the real data and then compare it with the simulated data from the network. Table 7 

presents the results obtained from the calculated model. 

 

Table 7: Calculated Model Results. 

Motor Calculated reliability % Calculated failure % 

1 24,70140556 75,29859444 

2 24,72584755 75,27415245 

3 24,69794165 75,30205835 

4 24,72949717 75,27050283 

5 24,68052799 75,31947201 

6 24,72562121 75,27437879 

7 24,70145604 75,29854396 

8 24,68055314 75,31944686 

9 24,70488315 75,29511685 

10 24,71875172 75,28124828 

11 24,71877582 75,28122418 

12 24,71193255 75,28806745 

13 24,71884821 75,28115179 

14 24,71544435 75,28455565 

15 24,70499279 75,29500721 
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16 24,71188414 75,28811586 

17 24,72579987 75,27420013 

18 24,69449831 75,30550169 

19 24,70138317 75,29861683 

20 24,72582587 75,27417413 

 

The simulation was carried out with the previously validated configurations of the Bayesian Regularization 

algorithm to predict the probability of operation of the motor group in a time span of 22 days. Table 8 

presents the relative data of predicted reliability and predicted failure. 

 

Table 8: Results of the Predicted Model. 

Motor Expected reliability % Predicted failure % 

1 24,70140556 75,29859444 

2 24,72584755 75,27415245 

3 24,69794165 75,30205835 

4 24,72949717 75,27050283 

5 24,68052799 75,31947201 

6 24,72562121 75,27437879 

7 24,70145604 75,29854396 

8 24,68055314 75,31944686 

9 24,70488315 75,29511685 

10 24,71875172 75,28124828 

11 24,71877582 75,28122418 

12 24,71193255 75,28806745 

13 24,71884821 75,28115179 

14 24,71544435 75,28455565 

15 24,70499279 75,29500721 

16 24,71188414 75,28811586 

17 24,72579987 75,27420013 

18 24,69449831 75,30550169 

19 24,70138317 75,29861683 

20 24,72582587 75,27417413 

 

According to figure 6, it is possible to compare the calculated and predicted models where the correlation 

between them is given by 0.0000104202 of mean square error and 99.9% correlation. According to the 

results obtained from the predicted model, the engine with the highest failure rate is number 4 with 75.28% 

and the engine with the lowest failure rate is number 5 with a rate of 75.32 %. 
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Figure 6: Comparative chart between models. 

 

5. Conclusion 

During the research it was possible to identify new research possibilities, considering that in addition to the 

variables raised (Total Downtime, Total Frequency, Total Occurrences, Average Time Between Failures, 

Failure Rate, Total Days and Reliability) for the model could be added to increase the consistency and 

accuracy of the network. 

With this, new methodologies can be applied as is the case with Self-Organizing Maps (SOM) for 

classification of patterns, in this way, it would be possible to determine fault characteristics and determine 

the probability of new events, or even the use of the supervised approach. considering other fault 

identification characteristics. 

Among the models of RNA architectures applied for prediction and analysis of the reliability KPI, the 

Bayesian Regularizers with the configurations of 5 neurons in the input layer, 24 in the first hidden layer, 

proved to be able and accurate to work with the proposed data. 50 in the second hidden layer and 1 in the 

output layer, presenting a rate of 0.0000104202 of RMSE, accurately estimating the reliability of the motor 

group. When comparing the results between the calculated and predicted models, it is possible to identify 

the similarity in the 22-day projection, according to the predicted model, it was possible to achieve a 99.9% 

hit rate. 
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