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Abstract 

Potential impacts of climate change on surface water yields over the Sondu River basin in the western 

region of Kenya were analysed using the Soil and Water Assessment Tool (SWAT) model with climate 

input data obtained from the fourth generation coupled Ocean-Atmosphere European Community 

Hamburg Model (ECHAM4) using the Providing Regional Climates for Impacts Studies (PRECIS) 

model. Daily time step regional climate scenarios at a spatial grid resolution of 0.44˚ over the Eastern 

Africa region were matched to the Sondu river basin and used to calibrate and validate the SWAT model.  

Analysis of historical and projected rainfall over the basin strongly indicated that the climate of the area 

will significantly change with wetter climates being experienced by 2030 and beyond. Projected monthly 

rainfall distribution shows increasing trends in the relatively dry DJF and SON seasons while showing 

decreasing trends in the relatively wet MAM and JJA seasons. Potential changes in water yields resulting 

from climate change were computed by comparing simulated yields under climate change scenarios with 

those simulated under baseline conditions. 

There was evidence of substantial increases in water yields ranging between 88% and 110% of the 
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baseline yields by 2030 and 2050 respectively. Although simulated water yields are subject to further 

verification from observed values, this study has provided useful information about potential changes in 

water yields as a result of climate change over the Sondu River basin and in similar basins in this region 

 

Keywords: Simulated Impacts; Climate Change; Water Yields; Sondu Basin; Kenya 

 

1. Introduction 

During the twentieth century, freshwater became increasingly limited because of the ever-increasing 

demand resulting from the rapid growth in population, unsustainable use, and increasing incidences of 

pollution due to emissions from anthropogenic activities. It is expected that climate change will have an 

impact on surface water yields over the Sondu River basin but the extent is not well understood. Climate 

change has created problems to water supply, human health and loss of biodiversity (IPCC, 2007). Most 

studies have concluded that besides being the most vulnerable, Africa is the continent least equipped to 

handle the impacts of climate change (Lubini and Adamowsky, 2013). The importance of water in 

agriculture, domestic use, power generation and industry calls for effective and sustainable water 

resources management. To achieve this, it is important to assess the potential impacts of climate change 

on the hydrological processes at the watershed level using hydrological models.        

The goal of this study was to evaluate the impacts of climate change on surface water yields from the 

Sondu River basin in the western region of Kenya using the Soil and Water Assessment Tool (SWAT) 

hydrological model with climate data observed from the basin and those derived from the fourth 

generation coupled Ocean-Atmosphere European Community Hamburg Model (ECHAM4) using the 

Providing Regional Climates for Impacts Studies (PRECIS) regional climate modelling system. 

 

2. Literature review 

 

2.1 Previous Studies on Climate Change  

In their review on the studies of climate change done on the African watersheds, Lubini and Adamowski 

(2013) have demonstrated that apart from Tyson’s (1991) early research, relatively littlework has emerged 

on future climate change scenarios focused on the African continent. Tyson (1991) constructed climate 

change scenarios for Southern Africa using results from the first generation of General Circulation Model 

(GCM) equilibrium experiments. Hulme (1994) later presented a method for creating regional climate 

change scenarios combining GCM results with the IPCC emission scenarios and demonstrated the 

application of the method in the African continent. 

Hulme et al. (1996) went further and took a more focused approach to the use of GCM experiments in 

describing the 2050 consequences of three future climate change scenarios for the Southern African 

Development Community (SADC). They selected three different GCM experiments spanning the range 

of precipitation changes predicted by the GCM for the SADC region, allowing for the assessment of 

potential impacts and implications of climate change on agriculture, hydrology and health among others. 
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However, considerable uncertainty remains regarding the large scale precipitation changes simulated by 

GCMs for Africa. Based on such models, Joubert and Hewitson (1997) came to the conclusion that 

precipitation would generally increase over much of the African continent by the year 2050 by as much as 

15% over 1961-1990 means in the Sahel region (Lubini and Adamowski, 2013). 

It is clear from the foregoing that very little work on the impacts of climate change on hydrology has 

been done for the eastern part of the continent of Africa. This study simulates the impacts of climate 

change on surface water yields at the watershed level over the Sondu River Basin in Kenya.  

 

2.2 The Soil and Water Assessment Tool  

The Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998) is a public domain physically-based 

continuous watershed scale hydrologic model that operates on a daily time-step designed to predict the 

impacts of changes of input variables, such as climate and land use/cover on water quantity and quality, 

inter alia, in a catchment area. The model simulates a watershed by first delineating and dividing it into 

multiple sub-basins which are further subdivided into homogenous Hydrological Response Units (HRUs). 

The HRUs are the smallest homogeneous units of the watershed created by overlaying unique digitised 

land use, soil properties and slope characteristics maps of the watershed. SWAT model performs 

hydrological computations at the HRU level from daily rainfall using the modified United States 

Department of Agriculture (USDA) Soil Conservation Service (SCS) Runoff Number (CN) or the 

Green-Ampt infiltration method and then sums it up to the sub basin level before routing it to the 

watershed outlet (Golmohammadi et al. 2014; Khanal and Parajuli, 2013). 

Model calibration (bettering the parameterisation to reduce the model prediction uncertainty) and 

validation (demonstrating the capability of a given site specific model to replicate observations) is 

normally done following three key steps: The selection of a portion of observed data; running the model 

at different values of known input parameters and comparing the results with observed data until fit to 

observation is good; and applying the model with calibrated parameters to the remaining portion of the 

observed data. The model input parameters are adjusted through relaxation techniques during the second 

step (Arnold et al, 2012; Krause et al, 2005). 

A number of researchers have demonstrated the ability of the SWAT model to replicate hydrologic loads 

at a variety of spatial scales on an annual and monthly basis (Gassman et al, 2007; Schuol et al, 2008). 

The model has been applied successfully in at least five river basins in Kenya that include Sondu 

(Jayakrishnan et al, 2005), Tana (Jacobs et al, 2007), Nzoia (Githui, et al, 2009) and Mara (Mango et al, 

2011).  

 

3. Methodology 

 

3.1 The study area – Sondu River Basin 

Sondu River basin was selected for this study in view of its economic, social, and environmental 

importance in the western part of Kenya. Agriculture is the mainstay of the people in this basin while the 

Sondu-Miriu Hydropower station derives its flow from Sondu River; the main river that drains the basin. 
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The dominant land use activities in the basin include agriculture and forestry accounting for about 64% 

and 27% respectively of the total basin area.  

The landform of the basin consists of low plains near the lakeshore rising eastwards to volcanic plateaus 

with dissected margins in the middle parts and rugged terrain with deep gorges and V-shaped valleys in 

the upper eastern parts (JICA, 2013). Land elevation in the basin varies from about 1134 m at the 

lakeshore to 2900 m above sea level at the summit of Londiani Mountains with an average elevation of 

2039 m. The slope of the watershed also varies highly with steeper slopes in the mountains and relatively 

flatter slopes near the lake.  

Elevation and slope play significant roles in watershed hydrology. The slope of the land affects the 

volume and timing of runoff. The average slope of each individual HRU was calculated by the ArcSWAT 

interface during the SWAT model setup process (Neitsch et al. 2011).  

Rainfall in the basin follows a trimodal pattern with the main rainfall season coming in the months of 

March-April-May (MAM) followed by June-July-August (JJA), and the short rains in 

September-October-November (SON). The mean monthly rainfall ranges from about 60 mm in January 

to about 284 mm in May while the mean annual rainfall exceeds 1500 mm, the threshold for a tropical 

wet type of climate (Ahrens, 2009).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Sondu River basin; its location in Kenya and the river, rainfall and temperature gauging 

stations networks 

Figure 1 shows the basin is located within latitudes 00˚23'S and 01˚10'S and longitudes 34˚46'E and 

35˚45'E and covers an area of about 3500 km2. Sondu River is approximately 173 km long and drains 

into Lake Victoria at a mean annual rate of about 1.37 BCM/yr (WRMA, 2009). 

 

3.2 Regional Climate Scenario Modelling 

Downscaled GCM outputs have been used in hydrological studies to translate projected climate scenarios 

into hydrological responses (Akhtar et al, 2009). In this study, PRECIS regional climate modelling 

system was used to downscale the coarse global climate scenarios from ECHAM4, following the IPCC 
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(2000) special report on emissions scenarios (SRES) A2, to 0.5˚grid resolution for eastern Africa where 

the model domain was set up with a horizontal resolution of 50 km spanning latitudes 12˚S to 18˚N and 

longitudes 22˚E to 52˚E (Wilson et al, 2009: Jones et al, 2004). The study focussed on climate change 

based on the future global climate scenarios simulated using the A2 emissions scenario which assumes 

that efforts to reduce global emissions this century will be relatively ineffective (Lumsden et al, 2009).  

Regional scenarios of daily time series of rainfall and temperature for the periods 1961-1990 (baseline), 

1991-2020 (present and immediate future), and 2021-2050 (intermediate future) were developed. 

Changes between the projected rainfall and temperature (1991-2020 and 2021-2050) and the baseline 

values (1961-1990) were evaluated to determine the possible climate change in the region. In order to 

represent the regional climate scenarios at the watershed scale, three 0.5˚ grid squares that cover most of 

the Sondu basin were used to extract time series of daily rainfall and temperature using the coordinates of 

at least one existing rain gauge station within the grid square. 

 

3.3 SWAT Data Preparation 

The input data requirements for the SWAT model fall into three main categories: spatial datasets that 

include the Shuttle Radar Topography Mission Digital Elevation Model (SRTM-DEM), land use/land 

cover (LULC) and soil properties digital maps; climate data that include long term mean monthly 

precipitation, probabilities of a wet day following a dry day (PR_W1) and a wet day following a wet day 

(PR_W2) in a month and the average number of days of precipitation in a month; and weather data that 

include time series of daily precipitation, maximum and minimum temperature, wind speed, solar 

radiation and relative humidity (Winchel et al, 2010).  

The SRTM-DEM  used in this study was a 3 arc-second (approximately 90 m) medium resolution 

elevation data resampled using cubic convolution interpolation and  was used to automatically delineate 

the watershed boundary, define stream networks, identify gage outlets, and to generate percent slope 

values over the watershed (Khanal and Parajuli, 2013; Neitsch et al. 2011). The LULC maps of the Sondu 

Basin were generated from a series of four LANDSAT imageries from Multispectral Scanner System 

(MSS), Thematic Mapper (TM), Enhanced Thematic Mapper (ETM), and Enhanced Thematic Mapper 

Plus (ETM+) sensors aboard the National Aeronautical and Space Administration (NASA) LANDSAT 

satellites. The four processed LANDSAT imageries were obtained from the Department of Resource 

Survey and Remote Sensing (DRSRS) in Kenya. Soil data, obtained in digital map format from the 

Kenya Soil and Terrain (KENSOTER) database compiled by the Kenya Soil Survey (KSS) in conjunction 

with the International Soil Reference and Information Centre (ISRIC) according to the Soil and Terrain 

(SOTER) methodology, were used to generate the requisite soil layers for the model. 

Climate data were used in the weather generator stations to fill in gaps in the daily time series weather 

data that were used to simulate flows from the basin. Figure 1 shows the weather stations located inside 

and outside the Sondu basin that were used in this study. These stations had daily and monthly rainfall 

and temperature (minimum and maximum) data. Climate change data were extracted from the PRECIS 

regional climate modelling system. 

Using these input data, SWAT model was used to simulate the terrestrial phase of the hydrologic cycle 
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based on the water balance equation (Equation 1). 

    
t

=i

gwseepasurfdayot QWEQR+SW=SW
1

     (1) 

Where 
tSW  is the final soil water content, 

oSW  is the initial soil water content on day i, t  is the time 

in days, dayR  is the amount of rainfall on day i, surfQ  is the amount of surface runoff on day i, 
aE  is 

the amount of evapotranspiration on day i, seepW is the amount of water entering the vadoze zone from 

the soil profile on day i, and gwQ  is the amount of groundwater flow on day i.  

 

3.4 Model Skill Assessment (Model Calibration and Validation) 

The SWAT model was calibrated and validated against observed monthly water yields obtained from 

Kiptiget gauging station for the periods 1982-1987 and 1988- 1990 respectively. The fit-to-observations 

calibration criterion was adopted in this study on account of its objectivity and affordability (Moriasi et al, 

2007).  

The model performance was evaluated by comparing the model-simulated and observed surface water 

yields using four commonly used test statistics in hydrological studies: Coefficient of Determination (R2), 

Nash–Sutcliffe Efficiency (NSE) index, Percentage Bias (PBIAS), and the Ratio of Root-Mean-Square 

Error to the Standard Deviation of Observations (RSR) (Moriasi et al, 2007). Calibration process was 

performed manually by continuously adjusting seven of the most sensitive model input parameters 

obtained from model sensitivity analyses (Winchel et al, 2010),  until simulation results of R2 ≥ 0.5 and 

NSE ≥ 0.5, both of which indicate good model performance, were obtained (Parajuli et al, 2009).  

The R2 (Equation 2)  is a value that indicates the consistency with which model-simulated versus 

observed values follow a best fit line (Parajuli et al, 2009; Muthama et al, 2008)  and ranges from 0 to 1. 

Values of R2 close to zero indicate poor model performance while a value of 1 indicates a perfect fit 

between model-simulated and observed values. Parajuli et al, (2009) have recommended that values of R2 

of at least 0.5 indicate good model performance. The main limitation of R2 is that it only describes how 

much of the observed variance is explained by the model simulation and it can therefore not be used 

alone to evaluate model performance. 

    
T

E

SS

SS
R 12          (2) 

In Equation (2), SSE is the sum of squared errors of estimates and SST is the total sum of squares of the 

original values.  

The NSE (Equation 3) is a normalised index whose values range between -∞ (poor model performance) 

and 1 (perfect model performance) and measures how well the plot of the observed versus 

model-simulated values fit the 1:1 line.  Values of NSE between 0 and 1 are considered acceptable while 

those less than 0 are considered unacceptable (Moriasi et al, 2007). Accordingly, 0.5≤ NSE ≤ 0.74 
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signifies good model performance, 0.75 ≤ NSE ≤0.89 signifies very good model performance, and 0.9 ≤ 

NSE ≤ 1.0 signifies excellent model performance (Parajuli et al, 2009). 
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In Equation (3) 
iO is the observed discharge series, 

iP  is the predicted discharge series, O  is the 

mean of the observed discharge series, and n  is the total number of observations.  

The PBIAS (Equation 4) is the percentage deviation of simulated from observed values. It measures the 

average tendency of the model-simulated values to be larger or smaller than the corresponding observed 

values (Moriasi et al, 2007). The optimal value of PBIAS is 0, indicating perfect model performance. 

Positive and negative values of PBIAS indicate model bias towards underestimation and overestimation 

respectively. 
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In Equation (4), 
iO  is the observed discharge series and 

iP  is the simulated discharge series. Values of 

PBIAS falling within ±16% ≤ PBIAS ≤ ±25% denote good model performance, those within ±11% ≤ 

PBIAS ≤ ±15%  denote very good model performance, and those within PBIAS < ±10%  denote 

excellent model performance (Parajuli et al, 2009). 

The RSR (Equation 5) was used to evaluate the accuracy of the model simulation. RSR values range from 

the optimal value of 0 (for a perfect model simulation) to large positive values.   
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In Equation 5, 
iO  is the observed discharge series, 

iP  is the simulated discharge series, and O is the 

mean observed discharge series. Values of RSR falling within 0.6 ≤ RSR ≤ 0.7denote satisfactory model 

performance, those within 0.5 ≤ RSR ≤ 0.6  denote good model performance those within 0.3 ≤ RSR ≤ 

0.5  denote very good model performance while those within 0.0 ≤ RSR ≤ 0.25  denote excellent model 

performance (Moriasi et al, 2007).  

 

3.5 Impacts of Climate Change on Surface Water Yields 

The impacts of climate change on surface water yields from the Sondu River basin were assessed by 

simulating water yields under different climate scenarios keeping the LULC unchanged. Surface water 
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yields were simulated under the 1970s baseline climate and projected climates in 2010s and 2030s. The 

impacts of climate change on surface water yields were then evaluated as the percentage difference 

between the projected and the baseline water yields (Equation 6). Any changes in the simulated water 

yields were attributed to climate change.   

   100






 


B

BC

W

WW
I      (6) 

In Equation 6, Wc is the surface water yields under changed climate scenarios, WB is the water yields 

under the baseline climate scenario. 

 

4.0 Results and Discussions 

The results of the analyses of projected rainfall, model calibration and validation, and model simulation 

and projections are presented and discussed in this section.  

 

4.1 Projected Rainfall in 2010s and 2030s 

   

(a)                                            (b) 

Figure 2: Projected (a) Mean monthly rainfall scenarios (PCPMM), and (b) Percentage change in 

PCPMM from the baseline values at Kericho Meteorological Station  

 

Figure 2 shows the baseline and projected monthly rainfall scenarios together with projected changes in 

2010s and 2030s. It was noted that there will be increases in monthly rainfall ranging between 9% and 

489% over the baseline values between September and May inclusive. Between June and August 

inclusive rainfall values are projected to fall by between 14% and 24% of the baseline values. The 

unusually high projected rainfall in the otherwise relatively dry seasons (DJF and SON) is expected to 

improve water yields from the basin but is also likely to cause an increase in flooding incidents if not well 

managed. These results agree with those of Githui et al, (2009) for Nzoia basin which is also within the 

larger Lake Vitoria basin.  

 

http://www.ijier.net/


Online-ISSN 2411-2933, Print-ISSN 2411-3123                                        August 2016 

International Educative Research Foundation and Publisher © 2016             pg. 168 

4.2 SWAT Model Calibration and Validation 

  

            (a)                                                 (b) 

Figure 3: Hydrographs of observed and SWAT model-simulated mean monthly water yields (MCM) 

during (a) calibration and (b) validation at Kiptiget RGS  

 

  

               (a)                                             (b) 

Figure 4: Regression of mean monthly SWAT model-simulated on observed water yields (MCM) during 

(a) calibration and (b) validation periods at Kiptiget RGS  

Figure 3 shows a comparison of hydrographs of simulated and observed mean monthly water yields while 

Figure 4 shows regression of simulated mean monthly water yields on corresponding observed values 

averaged over the calibration (1982-1987) and validation (1988-1990) periods respectively, at Kiptiget 

RGS. During calibration (Figure 3a) the model captures the monthly distribution of water yields from the 

catchment quite well but overestimates between April and July. During validation (Figure 3b) the 

monthly distribution of water yields is fairly well captured but the model generally overestimates the 

water yields in all the months except August.  

Monthly simulated water yields were found to be consistent with the corresponding observed values 

during calibration and validation periods. The R2 value of 0.66 during validation period indicates good 

model performance in the basin. Based on these results the model is recommended for use in predicting 

monthly water yields in the basin. 
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Table 1: SWAT Model performance statistics for the average monthly water yields during calibration 

and validation periods 

 

Period 

Observed  

(MCM/yr) 

Simulated 

(MCM/yr) 

 Evaluation Statistics 

Mean Stdev Mean Stdev R2 PBIAS NSE RSR 

Calibration (1982-1987) 11.9 7.4 13.0 9.4 0.95 -9 0.6 0.6 

Validation (1988-1990) 9.4 7.0 10.0 6.9 0.7 -7 0.5 0.7 

 

Table 1 shows a summary of results of the model performance statistics. Columns 2 and 3 show observed 

and simulated mean values and standard deviations respectively, of annual water yields during calibration 

and validation periods. Column 4 shows the model performance statistics for mean monthly water yields 

during calibration and validation periods. These results indicate that: there was good correlation between 

model-simulated and observed mean monthly water yields as shown by the values of R2 (0.7) and NSE 

(0.5) during validation; there was excellent match between the model-simulated and observed water 

yields as shown by the PBIAS value (-7%) during validation, and the model-simulated water yields were 

fairly accurate as shown by the RSR value (0.7) during validation. The PBIAS value of -7% indicates that 

the model tends to slightly over estimate monthly water yields from the watershed but this is within the 

limits of very good model performance as recommended by Moriasi et al, (2007) and Parajuli et al, 

(2009).  

According to the classification of Parajuli et al, (2009), this study has shown that SWAT model performed 

with good to very good correlation and agreement when model simulations are compared with observed 

values. This was shown by the high values of R2 and NSE (≥ 0.5) and the low values of PBIAS (≤ ± 10%) 

and RSR (≤ 0.7) which show that the model was able to simulate monthly water yields with minimum 

error and limited bias. 

 

4.2.1 SWAT Model Simulations and Projections  

  

             (a)                                                (b) 

Figure 5: Baseline and SRES A2 scenario projected mean monthly (a) and annual water yields (b) at 

Kiptiget RGS 
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Figure 5 shows a comparison of the baseline (1961-1990) and projected (1991-2030, 2021-2050) values 

for 30-year average monthly and annual water yields at Kiptiget RGS. Figure 5a shows increasing trends 

in mean monthly water yields between October and June but decreasing trends between July and 

September. The months currently experiencing relatively low water yields (December-March) are 

expected to experience relatively higher water yields while those currently experiencing relatively high 

water yields (August and September) are expected to experience relatively lower water yields under this 

scenario. On the other hand, from the 1970s through 2010s to 2030s, the mean annual water yields 

averaged over the thirty-year periods are expected to increase at a rate of about 105 MCM every 30 years 

under this scenario (Figure 5b).  

 

5. Conclusion 

The study has demonstrated a changing climate in the Sondu basin and the surrounding areas between 

1961 and 2050, with some seasons becoming wetter and others drier than the baseline conditions. 

Monthly rainfall patterns are projected to shift with the relatively drier seasons becoming relatively 

wetter and the relatively wetter seasons becoming relatively drier. This is expected to bring about a 

redistribution of seasonal water yields with the currently relatively dry seasons yielding more and the 

currently wet seasons yielding less water compared to the baseline period. An increase in water yields 

with climate change was observed which is in tandem with the results of an earlier study in Nzoia basin 

(Githui et al, 2009).   

Even though the model-simulated water yields under the baseline and climate change scenarios are 

subject to further verification using observed data, this study has provided useful information about the 

potential patterns of water yields from Sondu and other similar watersheds that may result from climate 

change. This study will therefore contribute to the scientific community’s understanding of the impacts of 

climate change on water resources over Lake Victoria basin in general and Sondu River basin in 

particular. Further, as a result of this study, a great amount of Hydrometeorological data in and around the 

area of study spanning the period 1961-2050 has been acquired. This forms a significant contribution to 

researchers wishing to advance the science of Hydrometeorology and climate change. Results of this 

study could also be used to provide information to inform policy in the strategic planning and 

management of water resources in this area as set out in the Kenya National water Master Plan 2030 in 

various sectors such as agriculture, hydropower and water supply. 
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