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Game-Theoretic Statistics and
Safe Anytime-Valid Inference
Aaditya Ramdas, Peter Grünwald, Vladimir Vovk and Glenn Shafer

Abstract. Safe anytime-valid inference (SAVI) provides measures of statisti-
cal evidence and certainty—e-processes for testing and confidence sequences
for estimation—that remain valid at all stopping times, accommodating con-
tinuous monitoring and analysis of accumulating data and optional stopping
or continuation for any reason. These measures are based on test martingales,
which are nonnegative martingales starting at one. Since a test martingale is
the wealth process of a player in a betting game, SAVI uses game-theoretic
intuition, language and mathematics. We report recent advances in testing
composite hypotheses and estimating functionals in nonparametric settings,
leading to new methods even for nonsequential problems.

Key words and phrases: Test martingales, Ville’s inequality, universal in-
ference, reverse information projection, e-process, optional stopping, con-
fidence sequence, nonparametric composite hypothesis testing.

1. INTRODUCTION

Stop when you are ahead. Increase your bet to make up
ground when you are behind. This is called martingaling
in the casino. It often succeeds in the short or medium
term, leading novice gamblers to think they can beat the
odds and day traders to think they can beat the market
(Dimitrov, Shafer and Zhang, 2022). The same delusion
arises in science, where sampling until a significant result
is obtained is an important source of irreproducibility.

The fallacy of sampling until a significant result is ob-
tained has been discussed by statisticians at least since the
1940s, when Feller (1940) saw it happening in the study
of extra-sensory perception. Anscombe (1954) famously
called it “sampling to a foregone conclusion”, and this in-
evitability was also pointed out by Robbins (1952).

But disapproval by statisticians has hardly dented the
prevalence of the practice. In one widely publicized ex-
ample, a team of researchers apparently demonstrated
benefits from “power posing” (Carney, Cuddy and Yap,
2010). The lead author later disavowed the conclusion and
identified the team’s peeking at the data as one of her rea-
sons (Carney, Fact 5):

We ran subjects in chunks and checked the ef-
fect along the way. It was something like 25
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subjects run, then 10, then 7, then 5. Back then
this did not seem like p-hacking. It seemed like
saving money (assuming your effect size was
big enough and p-value was the only issue).

Ten years ago, an anonymous survey of over 2000 psy-
chologists found 56% admitting to “deciding whether to
collect more data after looking to see whether the results
were significant” (John, Loewenstein and Prelec, 2012).

Bayesian inference with a prior defined by a statisti-
cian’s beliefs before seeing any of the data is not affected
by (planned) peeking. Problems quickly arise, however,
when default or pragmatic priors are used to test com-
posite null hypotheses. These problems are especially se-
vere for commonly used pragmatic priors that depend on
the sample size, covariates, or other aspects of the data
(De Heide and Grünwald, 2021).

As emphasized by Johari et al. (2022); Howard et al.
(2021); Grünwald, De Heide and Koolen (2023); Shafer
(2021); Pace and Salvan (2020), amongst others, we need
to go beyond disapproval of peeking, and we instead
should give researchers tools to fully accommodate it.
The branch of mathematical statistics that enables this,
sequential analysis, was brilliantly launched in the 1940s
and 1950s by Wald, Anscombe, Robbins, and others. The
innovations introduced by Robbins, Darling, Siegmund
and Lai included confidence sequences that are valid at
any and all times and tests of power one. But these ideas
occupied only a small niche in sequential analysis re-
search until around 2017. Since then, interest has ex-
ploded and much conceptual progress has been made in
parallel threads, which we attempt to summarize.
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This new methodology differs from traditional statisti-
cal testing in the way it quantifies evidence against sta-
tistical hypotheses. The traditional approach casts doubt
on a hypothesis when a selected test statistic takes too ex-
treme a value. This leads to quantifying evidence against
the hypothesis by the p-value—the probability the hy-
pothesis assigns to the test statistic being so large. The
new methodology instead casts doubt on a hypothesis
when a selected nonnegative statistic is large relative to
its expected value. Imagining that we bought the statis-
tic for its expected value when we selected it, we call the
ratio of its realized to its expected value a betting score
and take this as a measure of our evidence. In the case
of a composite hypotheses, we use the infimum of betting
scores for the multiple hypotheses and call this an e-value.
The sequential analog is an e-process—a sequence of e-
values that monitor the accumulation of evidence. This
permits anytime-valid inference; we can repeatedly de-
cide whether to collect more data based on the current
e-value without invalidating later assessments, stopping
whenever and for any reason whatsoever. This anytime-
validity is a form of safety. This safety may come with
a price, of course. There may (or may not) be tradeoffs
between safety and power; see for example Section 8.2.2.

From a technical point of view, the new methodol-
ogy is based on the concept of a test martingale, along
with its betting interpretation. Although martingales be-
came important in probability theory more than a half-
century ago, their potential has still not been fully ex-
ploited in statistics, and the new emphasis on nonnegative
(super)martingales has produced a plethora of powerful
new methods. These include confidence sequences for a
variety of functionals that can be used with multi-armed
bandits and new sequential tests for composite null hy-
potheses. This responds to the need for rigorous methods
in many settings that have emerged with the development
of information technology in the past half-century, includ-
ing “living meta-analysis” and the industrial use of A/B
testing and multi-armed bandit experiments.

The new methods can be most clearly presented in the
language of game-theoretic probability (Shafer and Vovk,
2001, 2019). Here successive observations are Reality’s
moves in a game. Two other players move before Reality
on each round: Forecaster gives probabilities for the out-
come, and Skeptic bets by choosing a real-valued func-
tion of the outcome, paying its expected value, and receiv-
ing its realized value. If Skeptic always chooses nonneg-
ative functions, then the factor by which he multiplies his
money (the ratio of the realized to the expected value) is
his “betting score” or “e-value” (Shafer, 2021). If he rein-
vests his money on each round, the betting scores multi-
ply, producing cumulative betting scores that are products
of the betting scores for each round so far. Because Skep-
tic is a free agent, the option of stopping or continuing

or even switching to a different experiment on the next
round is intrinsic to the game, and the cumulative betting
score or e-value quantifies the evidence against the Fore-
caster (and his probabilities): Skeptic refutes the odds by
making money betting at those odds; more money is more
evidence that the odds do not reflect reality.

Betting games often fit statistical practice better than
measure-theoretic probability models. In particular, they
accommodate fully the opportunistic behavior that we
want to allow. George Barnard, in his review of Wald’s
book on sequential analysis (Barnard, 1947), called for
embedding statisticians in the sequential decision-making
of experimental scientists, in which each batch of obser-
vations is followed by deliberation about whether to stop
or to continue, perhaps with a modified experiment. The
use of a prespecified stopping time, which prescribes con-
tinuing only until a certain data-dependent condition is
met, obscures or erases this sequential deliberation, pre-
tending that all the decisions flow from a stopping strategy
adopted in advance. Barnard’s suggestion is better cap-
tured by our game-theoretic framework, where a single
stopping rule is replaced by notions of evidence that re-
main valid at any stopping time not specified in advance.

Because most readers will be unfamiliar with game-
theoretic probability as developed by Shafer and Vovk
(2001, 2019), we use the relatively familiar apparatus of
measure theory (filtrations, stopping times, martingales,
etc.) and new concepts defined within that apparatus (e-
values, e-processes, etc.). Frequently, however, we return
to the betting story, where our martingales are wealth pro-
cesses for Skeptic.

2. CENTRAL CONCEPTS

We begin with a sample space Ω equipped with a fil-
tration F ≡ (Ft)t≥0 (an increasing nested sequence of σ-
fields), and a set Π of probability distributions on (Ω,F).
We assume that some distribution P ∈Π governs our data
X ≡ (X1,X2, . . . ). The variables X1,X2, . . . need not be in-
dependent and identically distributed (iid) under P. We
use Xt as a shorthand for X1, . . . ,Xt.

A sequence of random variables Y ≡ (Yt)t≥0 is called a
process if it is adapted to F—i.e., if Yt is measurable with
respect to Ft for every t. Often Ft := σ(Xt), with F0 being
trivial (F = ∅,Ω}), and in this case Yt being measurable
with respect to Ft means that Yt is a measurable function
of X1, . . . ,Xt. But F is sometimes a coarser filtration (we
discard information, see e.g. Section 4.1) or a richer one
(we add external randomization).1 Y is called predictable
if Yt is measurable with respect to Ft−1.

1In statistical practice, the filtration is usually coarsened, as ex-
plained by Alan Turing (Turing, c 1941, p.1): “When the whole evi-
dence about some event is taken into account it may be extremely dif-
ficult to estimate the probability of the event, . . . and it may be better
to form an estimate based on a part of the evidence . . . ”
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A stopping time (or rule) τ is a nonnegative integer val-
ued random variable such that {τ ≤ t} ∈ Ft for each t ≥ 0.
In words: we know at each time whether the rule is telling
us to stop or keep going. Denote by T the set of all stop-
ping times, including ones that may never stop.

When we say we are testing P, we mean that we are
testing the null hypothesis H0 that P ∈ P. When we say
we are testing P against Q, we mean that the alternative
hypothesis H1 is that P ∈Q. Typically, P and Q are either
non-intersecting or nested subsets of Π.

In the sequel, we leave measurability assumptions and
other measure-theoretic details implicit so far as possible.

2.1 E-values

An e-variable for P is a nonnegative random variable E
such that EP[E] ≤ 1 for all P ∈ P. Its realized value, after
observing the data, is an e-value. Often we call E itself
an e-value, blurring the distinction between the random
variable and its realized value. (The term “p-value” is also
used both for random variables and their values.)

When EP[E] = 1, we call the e-value E a unit bet
against P. This name evokes a story in which expected
values are prices of payoffs; the payoff is E(X) and the
price is 1. Mathematically, a unit bet against P is the same
thing as a likelihood ratio dQ/dP for some alternative Q.
This is elementary when we use probability densities:

• EP[E] = 1 can be written as
∫

E(x)p(x) =1, so that
q := E × p is a density, and E = q/p.
• If q and p are Q’s and P’s densities, then EP[q/p] =∫

p(x) q(x)
p(x) dx = 1.

Unit bets are simply likelihood ratios when testing a sin-
gle probability distribution P. The generalization to e-
values is needed when dealing with a composite P. We
use e-values when data are treated as a batch. Their dy-
namic counterparts are test martingales and e-processes.

2.2 Test Martingales

A process M is a martingale for P if

(1) EP[Mt | Ft−1] = Mt−1

for all t ≥ 1. M is a supermartingale for P if it satisfies (1)
with “=” relaxed to “≤”. A (super)martingale is called a
test (super)martingale if it is nonnegative and M0 = 1.

Game-theoretically, a test martingale for P is the wealth
process of a gambler who bets against P. If M is a test
martingale for P, then EP[Mt] = 1 for any t ≥ 0, and thus
each Mt is itself a unit bet against P; it is the factor by
which M multiplies its money from time 0 to time t. Sim-
ilarly, the optional stopping theorem implies that for any
stopping time τ, even potentially infinite, EP[Mτ] ≤ 1, and
thus each Mτ is also an e-value for P.

The correspondence between unit bets against P and
likelihood ratios with P as the denominator extends to a

related correspondence for test martingales for P. If Q is
absolutely continuous with respect to P, we can write

(2)
q(Xt)
p(Xt)

=
q(X1)
p(X1)

q(X2|X1)
p(X2|X1)

· · ·
q(Xt|Xt−1)
p(Xt|Xt−1)

,

where Xt := (X1, . . . ,Xt), p(Xt) is P’s density for Xt, and
q(Xt) is Q’s density for Xt. Denote the sequence defined
by (2) as M; then M is a test martingale for P, and

Mt =

t∏
i=1

Bi =
q(Xt)
p(Xt)

,(3)

where Bt :=
q(Xt|Xt−1)
p(Xt|Xt−1)

.(4)

Note that each Bt is a unit bet against P, conditional on
Ft−1; we call Bt M’s unit bet on round t.

Test martingales for P are always of the form (3). So
choosing a test martingale for P comes down to choosing
an alternative Q. In applications, constructing a test mar-
tingale for P usually amounts to constructing the numer-
ator q(Xt|Xt−1) in (4); see Section 3.2. Test supermartin-
gales can also be decomposed in the style of (3), where
the Bt are single-round e-values (i.e. defined as function
on a single outcome Xt) conditional on Ft−1.

A process M is a test (super)martingale for P if it is
a test (super)martingale for every P ∈ P. Such composite
test (super)martingales are important in this paper. Com-
posite test martingales decompose as in (3): for every
P ∈ P, there is a Q that is absolutely continuous with re-
spect to P and satisfies Mt = q(Xt)/p(Xt).

Trivially, the constant process Mt = 1 is a test martin-
gale for any P, and a decreasing process is a test super-
martingale for any P. We call a test (super)martingale
nontrivial if it is not always a constant (or decreasing)
process. There may be no nontrivial test martingales if P
is too large. In this case there may still be nontrivial test
supermartingales (Section 5.1), but there may also not be
(Section 5.5). For this reason, we also need e-processes.

2.3 E-processes

A family (MP)P∈P is a test martingale family if MP is
always a test martingale for P. A nonnegative process E
is called an e-process for P if there is a test martingale
family (MP)P∈P such that

(5) Et ≤ MP
t for every P ∈ P, t ≥ 0.

This type of definition was used by Howard et al. (2020),
who used the name “sub-ψ process”. In parallel, Grün-
wald, De Heide and Koolen (2023) implicitly defined an
e-process for P, also without using the name “e-process”,
as a nonnegative process E such that

E[Eτ] ≤ 1 for every τ ∈ T ,P ∈ P.

In words, E must be an e-value at any stopping time.
Ramdas et al. (2020) proved that the two definitions are
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equivalent and that if P is “locally dominated”, then ad-
missible e-processes (Section 8.2.3) must satisfy

(6) Et = inf
P∈P

MP
t

for some test martingale family (MP)P∈P. (Technically, the
inf above is an “essential infimum”.)

Whereas a test martingale for P is the wealth process
of a gambler who bets against P, an e-process for P re-
ports the minimum wealth across many simultaneous bet-
ting games, one against each P ∈ P, all with the same out-
comes X1,X2, . . . (Ramdas et al., 2022, Section 5.4).

Gamblers often lose some of their money as they con-
tinue to play. Similarly, the evidence against a null hy-
pothesis as measured by a test martingale or e-process
may decrease as we collect more data. To obtain a mea-
sure of evidence that does not decrease, one can take
the running maximum of the e-process and then adjust it
back to being an e-process using an adjuster or lookback
calibrator; see Shafer et al. (2011); Dawid et al. (2011)
and Ramdas et al. (2022, Section 4.7).

2.4 Ville’s Theorem and Ville’s Inequality

The notion of a test martingale was first formulated
by Ville (1939), though he simply called it a martingale.

Ville gave a proof, valid for any discrete-time stochastic
process P, that an event A has measure zero under P if and
only if there is a betting strategy that bets against P and
becomes infinitely wealthy if A happens—i.e., a test mar-
tingale for P that grows to infinity on all of A. Moreover,
P(A) < ϵ if and only if there is a test martingale for P that
exceeds 1/ϵ on all of A.2 These results have been called
Ville’s theorem (Shafer and Vovk, 2019, Section 9.1). See
Ruf et al. (2022) for a generalization to composite P.

Ville also showed that if M is a test martingale for P,
then for any λ ≥ 1,

(7) P
(
sup

t
Mt ≥ λ

)
≤

1
λ
.

Ville called this the theorem of gamblers’ ruin; a gam-
bler who begins with unit capital and keeps betting un-
til he wins the casino’s entire capital λ has little chance
of succeeding. More recently, the theorem has become
known as Ville’s inequality. For a self-contained proof see
Howard et al. (2020) or Crane and Shafer (2020).

Ville’s inequality extends to statements about compos-
ite P: if E is an e-process for P, then for every α ∈ (0,1),

(8) sup
P∈P

P(∃t ≥ 1 : Et ≥ 1/α) ≤ α.

Equivalently, by Howard et al. (2021, Lemma 3),

(9) P(Eτ ≥ 1/α) ≤ α for every τ ∈ T ,P ∈ P.
Ville’s inequality plays a central role in converting e-
processes into sequential tests or confidence sequences.

2Shafer and Vovk (2019) turn this around into a definition of prob-
ability in the betting game.

2.5 Sequential Tests and their Families

We consider test martingales and e-processes bona fide
measures of evidence, with no need for thresholding. But
we may want to make a binary decision based on this evi-
dence. We define a (one-sided) sequential test in terms of
rejection decisions like (0,0,0,0,1,1,1,1, . . . ), where a 0
means that there is not yet enough evidence to reject the
null, and a 1 means that there is. In this formalization, a
level-α sequential test ψ ≡ (ψt)t≥1 is an increasing process
consisting of 0-1 random variables such that

P(∃t ≥ 0 : ψt = 1) ≤ α for all P ∈ P.

Howard et al. (2021, Lemma 3) proved that an equivalent
definition, with optional stopping made more explicit, is

P(ψτ = 1) ≤ α for any τ ∈ T ,P ∈ P.

Above, as in the “power-one tests” of Darling and Rob-
bins (1968), we just keep going if we never reject P. This
contrasts with Wald’s original picture, where we may fi-
nally decide to accept the null.

It is easy to obtain a sequential test from a test martin-
gale or e-process: simply reject the null (and stop) the first
time the process reaches or exceeds 1/α. Indeed, Ville’s
inequality implies that ψt := 1(sups≤t Ms ≥ 1/α) is a se-
quential test. We call a family (ψP)P∈P, where ψP is a se-
quential test for P, a sequential test family.

2.6 Anytime-valid p-values

A random variable p is a p-value for P if P(p ≤ u) ≤
u for all P ∈ P and u ∈ [0,1]. Like the e-value, this is a
static concept. Anytime-valid p-values are the dynamic
counterparts of p-values.

An anytime-valid p-value (Johari et al., 2022; Howard
et al., 2021) for P is a process p := (pt)t≥1 such that
P(pτ ≤ u) ≤ u for any τ ∈ T ,P ∈ P,u ∈ [0,1]. Equiva-
lently, P(inft pt ≤ u) = P(∃t ≥ 1 : pt ≤ u) ≤ u. In other
words, with probability at least 1 − u an anytime-valid
p-value will never drop below u. So decisions to stop an
experiment or to continue to collect data based on the cur-
rent value of an anytime-valid p-value are safe; they will
not violate type-I error control.

It is easy to check that if M is an e-process for P then
1/(maxs≤t Ms) is an anytime-valid p-value for P. In our
framework, test martingales and e-processes are central
objects for testing, and sequential tests and anytime-valid
p-values take a secondary and derivative role.

2.7 Confidence Sequences

When estimating some property of a distribution, like a
mean (or a median), we think of it as a functional ϕ :Π→
Θ for some space Θ, which is often a subset of Rd.

A (1 − α)-confidence sequence (CS) is a sequence
(Ct)t≥0 of sets Ct ⊆Θ such that

P(∀t ≥ 1 : ϕ(P) ∈Ct) ≥ 1 − α for all P ∈Π.
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As before, Howard et al. (2021, Lemma 3) implies that a
mathematically equivalent definition is to require

P(ϕ(P) ∈Cτ) ≥ 1 − α for all τ ∈ T ,P ∈Π.

This dynamic concept can be contrasted with the concept
of a confidence set (or interval). A (1− α) confidence set,
as usually defined, is required only to contain ϕ(P) with
probability 1−α for a sample of a fixed size or at a single
fixed stopping time rather than at all stopping times. Con-
fidence sequences remain valid under continuous moni-
toring (or peeking) and optional stopping, but confidence
sets require the sample size or the stopping time to be
fixed in advance of seeing any data.

One can construct a confidence sequence by inverting
a family of sequential tests, or thresholding a test mar-
tingale family (MP)P∈Π: Ct := {ϕ(P) : P ∈ Π,MP

t < 1/α}.
Sometimes it is easier to construct a test martingale family
(Mθ)θ∈Θ, where Mθ is a test martingale for {P : ϕ(P) = θ}.
In that case, we would define

(10) Ct := {θ ∈Θ : Mθ
t < 1/α}.

2.8 Averaging e-values

We can average e-values. By the linearity of expecta-
tions, if E1 and E2 are e-values for P, then (E1 + E2)/2
is as well, even if E1 and E2 are dependent (for exam-
ple, calculated in different ways using the same data).
This observation generalizes to any number of e-values,
and holds for convex combinations or mixtures that are
not equally weighted. Of course, the e-values to mix and
the weights for the mixture must be chosen without look-
ing at the realized e-values; otherwise we are martin-
galing. Recently, Wasserman, Ramdas and Balakrishnan
(2020) used it to derandomize universal inference. Vovk
and Wang (2021) have shown that averaging is an admis-
sible way of combining e-values (for a particular defini-
tion of admissibility) without further information about
the e-values or their dependence structure. (And it is the
only admissible symmetric method if we ignore the pos-
sibility of further mixing with the constant e-value 1.)

Test (super)martingales and e-processes can also be
mixed, yielding mixture (super)martingales or e-processes.
This method of mixtures goes back to Ville (1939), Wald
(1945), and Robbins (Darling and Robbins, 1968; Rob-
bins and Siegmund, 1974), who employed it in various
contexts; see Howard et al. (2021) for recent advances.

2.9 Multiplying e-values

Independent e-values can be combined by multiplica-
tion. If B1, . . . ,Bn are independent e-values for P, then the
product B1 · · ·Bn is also an e-value for P. As we saw in
Section 2.2, a product of dependent e-values can also be
an e-value. If, for all k, Bk is an e-value for P conditional
on the values of B1, . . . ,Bk−1, i.e. if

E[Bk | B1, . . . ,Bk−1] ≤ 1

for k ≥ 1, then Mn =
∏n

k=1 Bk is an e-value for P. The se-
quence (Mn)n≥0 is a supermartingale with respect to the
filtration generated by the Bk. In fact, in Section 2.2 we
encountered, and in Sections 4 and 5 we again encounter,
at each time t a random variable S t which is a single-
round e-variable conditional on the past, i.e. for all P ∈ P

(11) EP[S t | Ft−1] ≤ 1.

If (11) holds for all t, then Mn =
∏n

t=1 S t is an e-value
for P. The sequence (Mn)n≥0 is a supermartingale with
respect to the (often richer) filtration F.

3. GENERAL PRINCIPLES AND METHODOLOGY

As mathematical statisticians learned nearly a century
ago from Jerzy Neyman and E. S. Pearson, the choice of a
test of a null hypothesis should be guided by the alterna-
tive hypotheses that are considered plausible. How should
this work when we are using a test martingale, or more
generally a test supermartingale or an e-process?

Intuitively, a good supermartingale should grow (get
large) fast under the alternative so that we quickly build
up evidence against the null as the sample size increases.
So we want a test martingale or e-process with maximal
expected rate of growth under the alternative.

In this section, we first focus on testing a simple null
P = {P} against a simple alternative Q = {Q} and use this
case to develop our understanding of expected rate of
growth (Section 3.1). We then move to testing a simple
null against a composite alternative (Section 3.2), and to
the most difficult case, where even the null is composite
(Section 3.3), introducing general methods for construct-
ing e-processes—some based directly on growth rate op-
timality, some more indirectly.

One danger we want to avoid throughout is an e-process
becoming zero. Once this happens, the e-process can
never become positive again, and thus it can never recog-
nize later evidence against the null, no matter how strong.
This can happen with positive probability under a particu-
lar alternative Q only if the e-process’s strategy for betting
for Q (i.e, the test martingale for P designed to become
large if Q is correct; remember that the e-process is an
infimum for such test martingales for the different alter-
natives) is sometimes allowed to bet all its money, thus
risking bankruptcy. We call this betting the farm, and we
insist on choosing e-processes that avoid it.

3.1 Simple Null and Simple Alternative

This is the case where we are testing a probability dis-
tribution P against an alternative probability distribution
Q. As we saw in Section 2.1, the likelihood ratio dQ/dP
is the natural test martingale in this case. (This assumes
that Q is absolutely continuous with respect to P.)

What are the advantages of using this natural test mar-
tingale? The most important advantage, perhaps, is that
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it has the greatest expected growth as measured using
the expected logarithmic return, a measure popularized
by Kelly (1956). The name logarithmic return is standard
in finance and hence appropriate when we consider wealth
processes. When E is a unit bet against P, E’s logarithmic
return is simply log E. The fact that the expected logarith-
mic return EQ(log E) is maximized by E := dQ/dP can be
obtained directly from Gibbs’ inequality (Shafer, 2021, p.
413). Because Mt is a unit bet against P whenever M is a
test martingale for P, it follows that the cumulative likeli-
hood ratio Et := (dP/dQ)(Xt) maximizes

EQ(log Et)(12)

and hence the growth rate EQ(log Et)/t for each t. By the
same argument, (dP/dQ)(Xτ) maximizes EQ(log Eτ) for
every stopping time τ. Grünwald, De Heide and Koolen
(2023) called the requirement that EQ(log Eτ) be maxi-
mized the GRO criterion, for “growth-rate optimality” rel-
ative to τ. So we may summarize by saying that in a sim-
ple vs. simple test, the likelihood ratio is GRO.

Why use the logarithm of E rather than some other in-
creasing function of E? In finance, we average the loga-
rithmic returns for successive time periods rather than the
simple percentage returns in order to account for com-
pounding. Kelly (1956) pointed out that this compound-
ing means that logarithmic returns add, and hence the
law of large numbers applies, allowing us to gain some
foresight about the medium to long run. Breiman (1961)
showed that the logarithm has a number of other strong
optimality properties, especially in iid settings where the
wealth can be made to grow exponentially under the alter-
native, and this criterion maximizes the exponent. Using
Wald’s identity as Breiman used it, one can show that, in
iid settings, the logarithm asymptotically (as α→ 0) min-
imizes expected time before E reaches a desired threshold
such as 1/α, independently of α. It is also true that we will
not “bet the farm” when we choose E to maximize the
expected logarithm, whereas this can happen if we maxi-
mize the expectation of E itself or some polynomial func-
tion of E. See also Shafer (2021), who compares expected
logarithmic return to power in the Neyman-Pearson the-
ory: both can be used to ask whether the alternatives for
which a test is effective are plausible.

3.2 Simple Null and Composite Alternative

How do we find a good test martingale for P when the
alternative Q is composite? In general, we cannot maxi-
mize the expected growth rate under all the distributions
in Q. But we can look for an alternative Q such that the
test martingale defined by (3) has a reasonably high ex-
pected growth rate under any distribution in Q that fits the
data X1,X2, . . . reasonably well. Because X1,X2, . . . are
revealed to us progressively, the natural procedure is to
construct this Q progressively. On betting round t, we use

the data so far, xt−1, to choose the numerator q(Xt|Xt−1)
in (4). Another way to view this is to imagine the data
being drawn from (or best explained by) some unknown
Q∗ ∈ Q and — since we do not know Q∗ — to attempt
to learn it from the data, at each round t plugging in a
q(Xt|Xt−1) that is an estimate of q∗ based on past data Xt−1.

3.2.1 The Plug-in Method. This is natural when Q is
a parametric model. We use xt−1 to estimate the parame-
ters, and this gives us an estimate Q̂t of the best fitting (or
the ‘true’) Q∗. So our choice for q(Xt|Xt−1) is q̂t(Xt|Xt−1),
where q̂t is Q̂t’s density. Wald proposed, in passing and
without any further analysis, this plug-in method (Wald,
1947, Eq. 10.10); it was subsequently analyzed by Rob-
bins and Siegmund (1974), who connect it directly to the
mixture method (introduced in the next subsection). Sim-
ilar ideas were proposed independently by Dawid (1984)
for prequential model validation and by Rissanen (1984)
as a predictive version of Minimum Description Length
learning. Recently, the plug-in method has been employed
by Wasserman, Ramdas and Balakrishnan (2020) in para-
metric models and Waudby-Smith and Ramdas (2020,
2023) in nonparametric models.

We obtain a test martingale M no matter how we esti-
mate the Qt. But we should not use maximum likelihood,
at least when data are discrete, lest we end up betting
the farm (the maximum likelihood estimator may assign
probability 0 to an outcome that may very well occur in
the next round. Most of the authors just cited have found,
however, that it often suffices to slightly smooth the maxi-
mum likelihood estimator (often using a “prior”) to avoid
this problem, even in nonparametric settings.

3.2.2 The Mixture Method. Another way to choose the
q(Xt|Xt−1) in (4) is to average over the corresponding con-
ditional distributions for the distributions in Q. We can
vary the weights with t and with Xt−1. This is the mixture
method. The mixture method is not a special case of the
plug-in method, because the mixed probability distribu-
tion Q we obtain may not be in Q (this may happen if Q
is not “fork-convex”, to use a concept introduced in Ram-
das et al. 2022). Since most models used in mathematical
statistics are not fork-convex, Q is rarely in Q.

3.2.3 Bayes Factors. We can use a probability distri-
bution on Q, say R, to define weights for a mixture mar-
tingale. We update R on each round in the usual Bayesian
way. On round t, we use the update R(·|xt−1) in the aver-
aging that produces q(Xt|Xt−1).

Not surprisingly, a simple calculation shows that the re-
sulting unit bet Mt =

∏t
i=1 Bi is equal to the Bayes fac-

tor defined by the distribution R on Q (Grünwald, De
Heide and Koolen, 2023). This Bayes factor is the ra-
tio q(Xt)/p(Xt), where q is the density from mixing the
distributions in Q with R. But for each t, the conditional
probabilities given Xt−1 obtained by mixing with R are the
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same as the conditional probabilities given Xt−1 obtained
with R(·|Xt−1). Conditioning on the data so far commutes
with averaging the distributions in the model.

Bayes factors have been advocated by many statisti-
cians as measures of evidence against a null when the al-
ternative is composite (Berger, Pericchi and Varshavsky,
1998; Jeffreys, 1961). E-values measure evidence against
the null in a different way. Whereas a Bayes factor is used
to multiply prior odds, an e-value is intuitively the out-
come of a bet. Not surprisingly then, the correspondence
between mixture test martingales (or e-values) and Bayes
factors does not extend to composite nulls.

3.2.4 Minimizing the Worst. If we do not have a priori
knowledge to guide us when determining the ‘prior’ dis-
tribution R in the method of mixtures, we may look for the
distribution R that minimizes the worst possible shortfall
from this best growth rate. This means that we measure
the quality of test martingale M stopped at time τ by

inf
Q∈Q
EQ(log Mτ − log MQ

τ ).(13)

We want this nonpositive quantity to be as large (as close
to zero) as possible. Grünwald, De Heide and Koolen
(2023) introduced this criterion and called it REGROW
(RElative GRowth Optimality in Worst case). Under slight
regularity conditions, the e-variable Mτ that maximizes
(13) can be written as a Bayes factor defined relative to a
specific prior Rτ, where Rτ varies with τ. Still, in the cases
considered by Grünwald, De Heide and Koolen (2023)
one can find priors R that get us close to the maximum
for all τ. In some settings we do find a unique test martin-
gale that maximizes (13) for all τ. We will generalize (13)
to the case of composite nulls below, and we will find a
unique e-process that maximizes the criterion for all τ for
the group invariance tests of Section 4.1.

Grünwald, De Heide and Koolen (2023) show that
when Q is an i.i.d. exponential family and P = {P} is sim-
ple, the test martingale M obtained from Jeffreys’ prior
is asymptotically REGROW: for every τ set equal to a
large t, Mt maximizes (13) up to an o(1) term among all
e-variables that can be defined on Xt, linking growth op-
timality to description length (Section 8.1.3).

3.2.5 The (Smoothed) Empirical Distribution as Al-
ternative. Waudby-Smith and Ramdas (2023) have pro-
posed a related method, which they call GRAPA (Growth
Rate Adaptive to the Particular Alternative). On round
t, it uses the empirical distribution of Xt−1, possibly
smoothed, for the numerator in (4). In practice, this yields
efficient tests and (by inversion) confidence sets. GRAPA
tries to mimic the growth rate that would be achieved by
using a smoothed empirical distribution as the alternative
(or its projection onto Q when possible), while REGROW
tries to match the Q∗-expected growth rate by learning Q∗

by the method of mixtures.

3.3 Composite Null and Alternative

When the null P and alternative Q are both compos-
ite, we can usually handle them in a modular fashion. The
composite alternative can be handled as in the previous
section, using the plug-in method or the method of mix-
tures. Here we describe two relatively general ways of
handling the composite null: universal inference (UI)—
which always yields an e-process—and reverse informa-
tion projection (RIPr)—which yields a sequence of e-
variables that is sometimes an e-process. As mentioned in
Section 2.2, test (super)martingales for composite P may
not exist. So we use the general concept of an e-process.

UI and RIPr are not the only ways of handling com-
posite nulls. In Section 5, we will see many other test
(super)martingales and e-processes for composite nulls.
Most of these involve the method of mixtures applied di-
rectly to a collection of e-variables rather than to distribu-
tions in Q, as briefly introduced in Section 3.3.3 below.

3.3.1 Universal Inference (UI). This method, intro-
duced by Wasserman, Ramdas and Balakrishnan (2020)
uses e-processes of the form

Euit :=
q̄(Xt)

supp∈P p(Xt)
=

q̄(Xt)
p̂Xt (Xt)

,(14)

where q̄(Xt) :=
∏t

i=1 q̂Xi−1(Xi), q̂Xi−1 is any distribution
learnt from Xi−1, and p̂Xt is the maximum likelihood es-
timator (MLE) under P, the final equality holding when-
ever the MLE is well-defined. Alternatively, we can use
the method of mixtures and set q̄(Xt) :=

∫ ∏t
i=1 q(Xi |

Xi−1)dR(q), where R is a distribution over Q. In either
case, as in the preceding subsection, the numerator is
equal to q̄(xt) for some alternative Q̄ (usually not in Q),
so that Euit is the infimum of the family of test martin-
gales (q̄(Xt)/p(Xt))p∈P and hence an e-process by (5). The
method is universal because it does not require regular-
ity assumptions or asymptotics and, importantly, is appli-
cable in both parametric and nonparametric settings; see
Section 5.5 for an example of each.

We can think of Euit as a middle ground between the
non-Bayesian generalized likelihood ratio (MLE in both
numerator and denominator) and the Bayes factor for a
composite null (mixtures in both numerator and denomi-
nator), neither of which leads to an e-process in general.
By taking a supremum in the numerator, the generalized
likelihood ratio exaggerates evidence for the alternative,
requiring that this exaggeration be taken into account us-
ing the ratio’s sampling distribution. By including poorly
fitting distributions in its mixture in the denominator, the
Bayes factor may downplay evidence for the null.

3.3.2 Reverse Information Projection (RIPr). This me-
thod, pioneered by Grünwald, De Heide and Koolen
(2023), finds, for each stopping time τ, an e-variable Eriprτ
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for P. To define Eriprτ , we first choose a Q̄ via the plug-in
or mixture method, exactly like we did above for UI. Then
we consider the set W of all probability distributions on
P, and for each W ∈W, we denote by PW the distribution
obtained by mixing the distributions in P with W .

Extending results of Li (1999); Li and Barron (2000),
Grünwald, De Heide and Koolen (2023, Theorem 1) show
that, provided the infimum below is finite, for every τ ∈ T ,
there exists a unique measure Pτ for Xτ satisfying

(15) D(Q̄τ∥Pτ) = inf
W∈W

D(Q̄τ∥Pτ
W),

where D(·∥·) is Kullback-Leibler divergence and Q̄τ (resp.
Pτ

W ) is Q̄τ’s (resp. Pτ
W ’s) marginal for Xτ. Further, Pτ has

the following nontrivial property: defining

Eriprτ := q̄(Xτ)/pτ(Xτ),

where pτ is the density of Pτ, and q̄ is the density of Q̄,
Eriprτ is an e-variable; it is even the GRO e-variable rel-
ative to τ, maximizing (12) over all e-variables that can
be written as a measurable function of Xτ. Pτ is called
the reverse information projection of Q̄ onto P. In some
cases (e.g. Section 4.2, 4.1) it is easy to calculate, in oth-
ers (Section 4.3) it is not. In general, it is a sub-probability
measure, i.e. pτ may integrate to less than one; but in all
cases of practical interest we have encountered so far, Pτ

is a probability distribution. In particular, because of the
convexity of KL divergence and the set of mixtures of P,
the infimum is often achieved by some W ∈W and then
Pτ = Pτ

W . The sequence (Eriprt )t≥1 is adapted to F. Some-
times it is an e-process; sometimes not. More precisely:

1. For some Π,P,Q (e.g. in Section 4.1), (Eriprt )t≥1 is
an e-process relative to an appropriately chosen Q̄.
It then dominates UI when using the same mixture
over Q: Euit ≤ Eriprt , since they have the same nu-
merator, but UI maximizes denominator likelihood.

2. For some Π,P,Q, (Eriprt )t≥1 is an e-process when
for Q̄ we take any fixed Q ∈ Q, but not when we
take plug-in or mixture Q̄ that ‘learns’. This hap-
pens in Section 4.2. To handle composite Q we
must then combine RIPr with the method of mix-
tures used as in Section 3.3.3.

3. For some Π,P,Q, (Eriprt )t≥1 does not define an
e-process. This happens in the example of Sec-
tion 4.3. In this case, Eriprτ can still be used to
represent evidence in a study that stops at τ and
can be multiplied with other e-variables in a meta-
analysis setting (Section 6.1). But if we want to en-
gage freely in optional stopping, we must use other
methods, such as UI or the “sequential” version of
RIPr illustrated in Section 4.3.

When Q is composite but we lack prior knowledge to
justify a mixing distribution, one could use the GRAPA

method from Section 3.2.5 that employs a smoothed em-
pirical distribution. Alternatively, we may be able to ob-
tain REGROW e-variables using RIPr, provided that we
reformulate REGROW (13) as

(16) inf
Q∈Q
EQ

(
log Eτ − log Eripr(Q)

τ

)
,

where Eripr(Q)
τ is the RIPr of Q onto P. We hope to find

a single e-variable E that approximately maximizes (16)
simultaneously for every τ. In principle this task is well-
defined even if the RIPr e-variables do not define an e-
process; but it is much simplified if they are, for then we
can apply the method of mixtures again to find an Eτ that
approximately maximizes (16).

3.3.3 Mixing E-Processes. In all nonparametric, and
some parametric cases, a natural way to proceed is to
first construct a parameterized collection of e-processes
{Eλ : λ ∈ Λ}. We then need to come up with a final e-
process to use in practice. For this, we can use the method
of mixtures again, but now by putting a distribution R on
the space Λ and creating the new e-process ER with, for
each τ, ER

τ :=
∫

Eλ
τdR(λ), thus applying the method of

mixtures directly to e-processes rather than to the alter-
native hypothesis Q, as we did above when introducing
UI and RIPr. In general these approaches are different, as
will be illustrated in the parametric examples below: Sec-
tion 4.1 mixes over Q, Sections 4.2 and 4.3 (and all of
Section 5) mix over a collection of e-processes.

4. PARAMETRIC EXAMPLES

Examples of test martingales and e-processes for sim-
ple nulls abound in the Bayesian literature, since every
Bayes factor for a simple null also defines a test mar-
tingale. Further, as pointed out by Darling and Robbins
(1968), if Xi are iid from P, and P has a finite MGF, mean-
ing Φ(λ) := EP[exp(λXi)] <∞, then exp(λ

∑
i≤t Xi)Φ(λ)−t

forms a test martingale for P. Thus, we emphasize exam-
ples with composite nulls. The examples of Section 4.1–
4.3 are all implemented in the R package safestats on
CRAN (Turner et al., 2022).

4.1 t-test, Regression, General Group Invariance

TODO PETER Consider the following version of the
t-test: according to the null, the Xt are iid ∼ N(δ0σ,σ)
for some given effect size δ0; according to the alternative,
they are iid N(δ1σ,σ) for effect size δ1. Under both null
and alternative, the nuisance parameter σ is unknown,
making the hypotheses composite. We coarsen the orig-
inal process to V1,V2, . . ., where Vi := Xi/|X1|; of course,
|V1| = 1. Under the null, (Vt)t has the distribution Pδ0 that
does not depend on the variance; similarly, it has a distri-
bution Pδ1 that is the same under all distributions in the
alternative. So by considering (Vt)t instead of (Xt)t we re-
duce the problem to a simple-vs-simple test as in Sec-
tion 3.1, and the likelihood ratio Et := pδ1(V

t)/pδ0(V
t) is
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a test martingale for the null relative to a coarsened filtra-
tion. Essentially the same likelihood ratio was proposed
by Rushton (1950) for classical sequential testing. Cox
(1952) noted (using different terminology) that it can be
rewritten as a Bayes factor applied to the original data un-
der the improper right-Haar prior, w(σ) = 1/σ, i.e.

(17) Et =

∫
σ>0 pδ1σ,σ(Xt)w(σ)dσ∫
σ>0 pδ0σ,σ(Xt)w(σ)dσ

,

where pµ,σ denotes the density of a N(µ,σ) distribution.
Lai (1976) also noted the equality (17) and first proposed
to use Et in an anytime-valid context, and even inverted
the test to yield a closed-form confidence sequence for a
Gaussian mean with unknown variance.

More recently Grünwald, De Heide and Koolen (2023)
showed that Et is the REGROW e-variable (16) for this
problem (with θ set to σ and Eripr(σ)

τ equal to the GRO
e-variable for testing simple alternative {Pδ1σ,σ} vs. com-
posite null {Pδ0σ,σ : σ > 0}, and τ arbitrary), implying that
the proposed e-process is in fact optimal in a strong sense.
They also demonstrate related growth optimality proper-
ties for the case that the defining constraint in either H0 or
H1 or both is replaced by an inequality, i.e. H0 expresses
δ ≤ δ0 and/or H1 expresses δ ≥ δ1, and for the case that,
under H0, δ = 0 while under H1, δ is equipped with a prior
distribution. In the latter case, if a heavy-tailed prior is
used, the marginal of (17) with respect to this prior co-
incides with the Bayesian t-test (Jeffreys, 1961; Rouder
et al., 2009) which is thereby seen to have an e-process
interpretation and to provide Type-I error safety. Thus, in
this composite setting (and in contrast to the 2 × 2 and
logrank examples below), test martingales overlap with a
specific popular type of Bayes factors.

Pérez-Ortiz et al. (2022) extend these insights to the
general setting of H0 and H1 that share nuisance parame-
ters expressing a group invariance. For all such problems,
one can determine a sequence of maximal invariants—a
special process adapted to F that has the same distribution
Pδ1 under all distributions in the alternative and the same
distribution Pδ0 under all distributions in the null. In the
t-test case, this is the process (V t)t given above. Then the
likelihood ratio of the maximal invariants always defines
an e-process; and—the main contribution of Pérez-Ortiz
et al. (2022)—under some conditions on the group, the
most important of which is amenability, this likelihood
ratio is, for each fixed n, the REGROW e-variable relative
to H0 and H1. One can show that all required conditions,
including amenability, hold for scale invariance such as in
the t-test above, but also location and rotation invariance.
By considering the affine group, one can handle linear re-
gression problems with Gaussian errors and with the null
having one of the parameters (the ‘control’) set to 0.

4.2 Parametric 2-Sample Tests; 2 × 2 Tables

Consider data streams Y1,a,Y2,a, . . . and Y1,b,Y2,b, . . ., all
Yi,a and Yi,b taking values in the same space Y. We fix a
statistical model {P◦θ : θ ∈ Θ} of distributions on Y. Our
set Π is then given as Π = {Pθa,θb : (θa, θb) ∈ Θ2}, i.e., all
distributions on Ω for which Yi,a are iid ∼ P◦θa

and Yi,b are
iid ∼ P◦θb

for some (θa, θb) ∈ Θ2. In the simplest setting,
data is further constrained to come in ‘blocks’ X1,X2, . . .,
each block X j containing na ≥ 1 elements of stream a and
nb ≥ 1 elements of stream b, and we want to test the null
hypothesis that θa = θb, i.e. P = {Pθ,θ : θ ∈Θ}. We first con-
sider the case of testing this composite null vs. a simple
alternative Q = {Pθa,θb}. Turner, Ly and Grünwald (2021)
design a 1-round e-variable S θa,θb

j for a single block of

data X j = (Y ( j)
1,a, . . . ,Y

( j)
na,a,Y

( j)
1,b, . . . ,Y

( j)
nb,b

) with na outcomes
in group a and nb outcomes in group b, defined as

S θa,θb
j =

pθa(Y
( j)
1,a, . . . ,Y

( j)
na,a) · pθb(Y

( j)
1,b, . . . ,Y

( j)
nb,b

)∏
g∈{a,b},i=1...ng

(
na

na+nb
pθa(Y

( j)
i,g ) + nb

na+nb
pθb(Y

( j)
i,g )

) .
If one observes iid data blocks X1,X2, . . . ,Xt (each X j

represents a full block), one can calculate S θa,θb
j for each

block j = 1, . . . , t and set Eθa,θb
t :=

∏t
j=1 S θa,θb

j . Then Eθa,θb

is a test martingale. One can accommodate a composite
alternative Q = {Pθa,θb : (θa, θb) ∈ Λ},Λ ⊂ Θ2, by learning
(θa, θb) using the method of mixtures as in Section 3.3.3
with λ set to (θa, θb). One can extend this picture in vari-
ouis ways, e.g. letting group sizes vary over time and us-
ing preceding data to determine the next na and nb.

Here we concentrate on the special case that Y = {0,1},
in which the e-processes embody a sequential version of
the 2 × 2-table contingency test, and for each τ, Eθa,θb

τ

turns out to be equal to E
ripr(Pθa ,θb )
τ as obtained by (15),

and is thus GRO relative to simple alternative Q = {Pθa,θb}.
One can now determine a prior R as in Section 3.3.3
that approximately optimizes the REGROW criterion
(16), providing strong optimality guarantees for the con-
structed e-process. Turner, Ly and Grünwald (2021) de-
termine the prior that optimizes (16) among all beta-
priors, and find that it behaves excellently in practice.
Turner and Grünwald (2023) then give the correspond-
ing confidence sequence for various notions of effect
size such as absolute difference ϕ(θa, θb) = θb − θa, log-
relative risk ϕ(θa, θb) = log(θb/θa) and the log-odds ratio
ϕ(θa, θb) = log(1 − θa)θb/(θa(1 − θb)).

4.3 Logrank Test and Cox Regression

Ter Schure et al. (2021) provide efficiently computable
e-variables and test martingales for the logrank test, a
work-horse of medical statistics. Here we describe the
test martingale they derive for the more general setting
of the Cox regression model with covariates, for which
computationally efficient implementation remains a work
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in progress. One starts with m subjects, partitioned into
a treatment and a control group; for example, one wants
to test a COVID vaccine; at time 0 all m1 subjects in the
treatment group get the vaccine and all m − m0 subjects
in the control get a placebo. Each subject j ∈ [m] (where
[m] := {1, . . . ,m}) is associated with a (d+ 1)-dimensional
covariate vector z j = (z j,0, z j,1, . . . , z j,d) where the special
covariate z j,0 ∈ {0,1} denotes whether the subject is in
the treatment (z j,0 = 1) or control (z j,0 = 0) group. Data
X1,X2, . . . come in sequentially, in the form of events.
In our example, events X1 = j1,X2 = j2 would represent
‘the first to get COVID was subject j1; the second was
j2’. The risk set Rn at time n is the set of subjects that
did not have an event yet; i.e. if X1 = j1, . . . ,Xn = jn,
thenRn+1 = [m]\{ j1, . . . , jn}. Cox’s celebrated model rests
on the proportional hazards assumption. This assumption
implies that, conditional on the first n−1 events, the prob-
ability of the n-th event happening to any subject j that is
still in Rn is given by

(18) Pβ(Xn = j | Xn−1 = jn−1) =
exp(βT z j)∑

j′∈Rn
exp(βT

j′z j′)

for some parameter vector β = (β0, . . . , βd). We would like
to test the null hypothesis that β0 = 0 (no effect of treat-
ment) against alternative β0 ≤ −δ or β0 ≥ δ for some δ > 0
(in our example, we would take alternative β0 ≤ −δ in-
dicating that vaccination reduces the chance of getting
COVID). Proceeding as in the previous example, we start
with a simple alternative, i.e. pretend that we know that
if β0 , 0, then β = β(1) for some fixed β(1) ∈ Rd+1. We
can then determine, for each n, the single-round GRO e-
variable S β(1)

n for the sample-size-1 outcome Xn under al-
ternative given by (18) with β set to β(1). The distribution
in (18) being dependent on the past, the definition of this
e-variable will also depend on the past: S β(1)

n := pβ(1)(Xn |

Xn−1)/pWfβ(1)(Xn | Xn−1) where Wf β(1) is a distribution
on the null model parameter space {β ∈ Rd+1 : β0 = 0} such
that, conditionally on each xn−1, PWfβ(1)(Xn | Xn−1 = xn−1)
is the RIPr of Pβ(1)(Xn | Xn−1 = xn−1) as given by (15).
Since the sample space (i.e. the risk set) on which (18)
is defined is finite, we can guarantee that the RIPr is a
finite mixture, i.e. W f β(1) is a distribution with finite
support on {β ∈ Rd+1 : β0 = 0}. Thus, at least in princi-
ple, S β

n can be found by numerical optimization methods.
This gives us a process S β(1) of single-round past- condi-
tional e-variables as in (11), i.e. each S β(1)

n is a function
of Xn, and, under every distribution in the null, E[S β(1)

n |

Xn−1] ≤ 1, so that their running product is a test martin-
gale, with good growth behaviour under the simple alter-
native indexed by β(1). We can apply the method of mix-
tures as in Section 3.3.3, with λ in the role of β(1), putting
a prior distribution R on β(1), to go from a ‘simple’ to
composite alternative. We note that Cox’s model is highly

nonparametric—it assumes continuous time. By appro-
priately coarsening the data Cox arrived at the ‘partial’
likelihood (18) which allows us to treat the problem as if
it were parametric. Thus when we write ‘simple’ above
we really mean a large set of continuous time processes
that all satisfy (18) for a single parameter vector β.

Ter Schure et al. (2021) have not yet found any method
to calculate or approximate the prior Wf β(1) (and hence
the required e-variables S (β1)

n ) for this problem if d > 0.
Yet the situation simplifies dramatically if d = 0, i.e. the
only covariate is the binary treatment/control dichotomy.
For that situation, under distribution Pβ with β = β0 ∈ R,
Pβ(Xn | Xn−1 = jn−1, zXn = g) is uniform for both groups
g ∈ {0,1}: all remaining subjects in group g have the
same probability of an event, which only depends on
g. The probability of Xn being in group 1 (the next
event is in the treatment group) given Xn−1 becomes
n1 exp(β)/(n1 exp(β)+n0), where ng is the number of sub-
jects in the risk set that are in group g. under the null
(β = 0) this is simply a Bernoulli determined by the rela-
tive group size. The resulting test can then be interpreted
as a sequential version of the classical logrank test (a sim-
ilar test martingale was independently, and without refer-
ence to survival analysis, proposed by Lindon and Malek
(2020)). Ter Schure et al. (2021) give simulations com-
paring it to various standard group sequential/α-spending
approaches (Section 8.1.2).

5. NONPARAMETRIC EXAMPLES

We begin with case studies that illustrate how one might
build (A) test martingales for composite nonparametric P
despite there being no common reference measure, (B)
test supermartingales for P when no test martingales exist,
(C) e-processes for P when no test supermartingales exist,
and (D) confidence sequences for functionals using sub-
martingales in reversed time instead of test martingales.

5.1 Estimating Sub-Gaussian Means (Case B)

A distribution P for real-valued X1,X2, . . . is sub-
Gaussian with parameter σ > 0 if

∀λ, i : EP[exp(λ(Xi − µi)) | Fi−1] ≤ exp(λ2σ2/2),

where µi := EP[Xi | Fi−1]. Fixing σ, let Gµ be the set of
sub-Gaussian distributions with parameter σ and µi = µ
for all i. Set P := {Gµ}µ∈R. This is a nonparametric gen-
eralization of Gaussianity; the conditional mean is con-
stant and the conditional moment generating function is
no larger than that of a Gaussian with variance σ. Dar-
ling and Robbins (1968) effectively constructed CSs for
µ. They first observed that for any λ ∈ R,

(19) Mµ
t (λ) := exp

λ∑
i≤t

(Xi − µ) − λ2

2 σ
2t
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is a test supermartingale for Gµ. Setting Yt :=
∑

i≤t Xi, and
choosing a centered Gaussian with variance ρ2 as a mix-
ing distribution F, they define

Mµ
t :=

∫
Mµ

t (λ)dF(λ) =
exp( ρ

2(Yt−tµ)2

2(tσ2ρ2+1) )√
tρ2σ2 + 1

.

Since the supermartingale property is closed under aver-
aging, Mµ

t is also a test supermartingale for Gµ. It grows
exponentially fast under any P ∈ Pθ for any θ , µ, and it
grows faster for θ far from µ; thus, the evidence automat-
ically adapts to the difficulty of the testing problem. This
type of adaptivity is a commonly observed benefit of the
method of mixtures, if appropriately employed.

Using the inversion (10), we find that

(20)
Yt

t
±σ

√
(tρ2 + 1)

t2ρ2 log((tρ2 + 1)/α2)

is a CS for µ. If µi differs for each i, an identical ar-
gument shows that (20) is a CS for the running mean∑t

i=1 µi/t. The general scaling of σt−1/2
√

log t + logα−1 is
expected when using mixture distributions that are con-
tinuous around the origin (Howard et al., 2021, Prop. 2).
The

√
log t can be changed to

√
log log t at the expense

of other constants using mixture distributions that are un-
bounded at the origin; see Howard et al. (2021, Eq. (1)).

Waudby-Smith and Ramdas (2023) observed that

exp

∑
i≤t

(
λi(Xi − µ) − λ2

i
2 σ

2
)

is also a test supermartingale for Gµ, whenever λi is pre-
dictable. They invert plug-in test supermartingales of this
form to yield efficient CSs.

5.2 Heavy-Tailed Mean Estimation (Case B)

For a given σ > 0, let Vµ be the set of distributions
on R∞ that yield observations with conditional mean µ
and conditional variance bounded above by σ2. The set
Vµ contains Gµ and is much larger. A distribution in Vµ

may be very heavy tailed, with no more than the first two
moments. Inspired by the seminal nonsequential work
of Catoni (2012), one can prove that

Lµt := exp

∑
i≤t

φ(λ(Xi − µ)) − λ2

2 σ
2t


is a test supermartingale for Vµ, where φ(x) equals log(1+
x + x2/2) if x ≥ 0 and − log(1 − x + x2/2) if x < 0. Wang
and Ramdas (2023) use the plug-in and inversion tech-
niques discussed in the previous cases to derive a CS
for µ. Somewhat surprisingly, these CSs for µ (assum-
ing P ∈ Vµ) appear, visually, almost identical to the sub-
Gaussian CSs one gets when assuming P ∈ Gµ. In other
words, for mean estimation, the sub-Gaussian assump-
tion — which is very common in machine learning (in

the multi-armed bandit literature, for example) — can be
relaxed with almost no practical consequence. Wang and
Ramdas (2023) also derive simple extensions for the case
when the p-th moment is finite for p < 2.

There are other known test supermartingales for this
setting, for example by Dubins and Savage (1965) and De-
lyon (2009, Proposition 12) but Wang and Ramdas (2023)
find these to be less powerful.

5.3 Variance-Adaptive Estimation of Bounded
Means (Case A)

In the previous two examples, the sub-Gaussian param-
eter or the variance bound σ must be provided (or an up-
per bound must be guessed) in advance by the statistician,
since it is provably impossible to learn σ from the data
itself. Unfortunately, neither CS adapts to the unknown
variance by yielding a tighter CS for lower variance data
(and it is likely impossible to design ones that can); if
E[(Xi−µ)2|Fi−1]≪ σ2, the CS will still depend on the pro-
vided conservative value σ. These impossibilities are due
to the unbounded nature of G and V, allowing some distri-
butions to have very small mass far away from the origin.
For the subclass of bounded random variables, however,
variance-adaptive mean estimation is feasible.

Let Bµ denote the set of distributions P on [0,1]∞ such
that EP[Xi|Fi−1] = µ. Howard et al. (2021) prove that for
any λ ∈ [−1,1], and any predictable µ̂i ∈ Fi−1,

(21) Nµ
t (λ) := exp

λ∑
i≤t

(Xi − µ) − ψ(λ)
∑
i≤t

(Xi − µ̂i)2

 ,
where ψ(λ) := − log(1 − λ) − λ, is a test supermartin-
gale for Bµ. Because ψ is the logarithm of the moment
generating function (MGF) of a centered unit-rate expo-
nential distribution, we call Nµ a subexponential super-
martingale. As λ → 0, ψ(λ) behaves like the Gaussian
log-MGF λ2/2, but unlike the sub-Gaussian supermartin-
gale in (19), we can employ a fully empirical variance
term in (21). This generalizes a result of Fan, Grama and
Liu (2015), who effectively proved the same claim with
µ̂i := 0 for all i. The extension to predictable µ̂i, which
requires some additional tricky algebra, is very useful in
lowering the empirical variance.

As before, we need to mix over the tuning parameter λ.
The gamma family provides suitable mixing distributions,
because they are conjugate to the exponential, leading to
a closed form mixture supermartingale. The resulting CS
was developed in Howard et al. (2021).

Waudby-Smith and Ramdas (2023) note that for pre-
dictable λi ∈ Fi−1,

Nµ
t := exp

∑
i≤t

λi(Xi − µ) −
∑
i≤t

ψ(λi)(Xi − µ̂i)2
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is also a subexponential “plug-in” test supermartingale
that can be tuned to closely mimic the earlier mixture su-
permartingale. This means that∑

i≤t λiXi∑
i≤t λi

±
log(2/α) +

∑
i≤t ψ(λi)(Xi − µ̂i)2∑
i≤t λi

is a (1 − α)-CS for µ.
The preceding techniques are interesting because they

can be used even when the observations are not bounded.
But for the bounded model ∪µ∈RBµ, the most statistically
powerful way to derive a CS for µ is to use plug-in test
martingales for Bµ of the form

(22) Kµ
t :=

t∏
i=1

(1 + λµi (Xi − µ)),

where λµi is a predictable process indexed by µ. As be-
fore, Ct := {µ : Kµ

t < 1/α} is a (1 − α)-CS for µ. The λµi
are naturally interpreted as bets on the Xi; they must be
predictable because a bet on Xi must be made before see-
ing Xi. This idea was suggested by Hendriks (2018), and
was independently proposed and studied in more depth by
Waudby-Smith and Ramdas (2023), who derive betting
strategies that are adaptive to the underlying distribution
P, in particular to its mean and variance, establishing con-
nections to the Chernoff method, empirical and dual like-
lihood, and other parts of the literature. Followup work
by Orabona and Jun (2021) derives other betting strate-
gies via connections to Thomas Cover’s universal port-
folios. None of these strategies uniformly dominates any
other, and the resulting CSs are in general not comparable
(some may be tighter earlier but looser later, etc.).

5.4 Testing Symmetry (Case A)

Let P be the set of distributions on R∞ such that Xt
and −Xt have the same distribution given Ft−1, for every
t ≥ 1. Extending an older result by Efron (1969), de la
Peña (1999, Lemma 6.1) establishes that for any λ ∈ R,

(23) Rt(λ) := exp

λ∑
i≤t

Xi −
λ2

2

∑
i≤t

X2
i


is a test supermartingale for P. Notice again the fully em-
pirical variance term, as in (21); these are also called self-
normalized processes. As before, one can mix over λ or
use the plug-in technique described earlier.

Recently, Ramdas et al. (2020) proved that Rt is inad-
missible for testing symmetry by constructing a test mar-
tingale Ro

t for P that is always at least as large as Rt, and
typically larger. In fact, M is a test martingale for P (and
is admissible) if and only if the unit bets Bt at time t in (4)
are nonnegative and predictable, and Bt−1 is an odd func-
tion of Xt. Note that the unit bet underlying (23) takes
the form exp(λx − λ2x2/2), which does not yield an odd
function on subtracting one; rectifying this yields the im-
proved and admissible test martingale Ro

t .

5.5 Testing Exchangeability and Log-Concavity
(Case C)

In the previous example, P is a very rich, nonparametric
class of distributions (discrete and continuous, light and
heavy tailed, etc.) with no common dominating measure.
Being able to find a single (nonconstant) process that is
simultaneously a test martingale for every P in P is quite
atypical, and it can only occur for very structured prob-
lems. (The same atypical situation also occurred with Bµ

in the bounded case.) For example, there is no nontrivial
test martingale for Gµ, the sub-Gaussian class discussed
earlier; nevertheless, we did exhibit a test supermartin-
gale. It turns out that even this is atypical: a rather spe-
cial structure is required for a (nonmonotonic) test super-
martingale to exist.

Ramdas et al. (2022) study the seemingly simple prob-
lem of testing if a binary sequence is exchangeable, and
find that no nontrivial test supermartingale exists (in the
original filtration), but they exhibit a nontrivial and pow-
erful e-process based on universal inference.

Remarkably, Vovk (2021) demonstrates that by shrink-
ing the filtration to include only conformal p-values, it is
once again possible to design nontrivial test martingales,
even though none exist in the richer data filtration. Vovk’s
method works for general observation spaces, but in the
binary case, experiments by Vovk, Nouretdinov and Gam-
merman (2021) demonstrate that it is not as powerful as
the aforementioned e-process.

Another relevant example is that of testing log-concavity.
Let Ld denote the set of distributions P on Rd with
Lebesgue densities p such that log p(x) is concave in x.
Ld is a nonparametric class that contains all Gaussian, lo-
gistic, exponential and Laplace distributions, as well as
uniform distributions on any convex set. It is possible to
prove with some effort that there is no test supermartin-
gale for Ld. However, the universal inference approach
yields a powerful e-process for Ld; see Dunn et al. (2021).

Of course, there are problems for which even no non-
trivial e-process exists and testing those nulls is futile;
see Ruf et al. (2022) for examples.

5.6 Estimating Convex Functionals and
Divergences by Reversing Time (Case D)

Consider a set of probability distributions Π that is
closed under convex combinations. A functional ϕ : Π 7→
R≥0 is called convex if ϕ(aP + (1 − a)Q) ≤ aϕ(P) + (1 −
a)ϕ(Q) for any P,Q ∈ Π and a ∈ [0,1]. Classic exam-
ples are the entropy and the mean. Similarly, a divergence
D :Π×Π 7→ R≥0 is called convex if D(aP+(1−a)P′,aQ+
(1 − a)Q′) ≤ aD(P,Q) + (1 − a)D(P′,Q′). Examples in-
clude the total variation distance, Kullback-Leibler diver-
gence, kernel maximum mean discrepancy, Kolmogorov-
Smirnov distance, Wasserstein distance or any integral
probability metric or f-divergence.
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Suppose X1,X2, . . . ,Xt, · · · ∼ P and let Pt denote the em-
pirical distribution of Xt. The exchangeable filtration Et is
the decreasing filtration given by Et = σ(Pt,Xt+1,Xt+2 . . . );
in words: Xt+1,Xt+2 . . . are known perfectly, but the order
of X1,X2, . . . ,Xt is forgotten. Manole and Ramdas (2023)
derive a curious property: for any convex functional ϕ, the
process (ϕ(Pt))t≥1 is a reverse submartingale with respect
to the exchangeable filtration. (An analogous statement
also applies to divergences.)

Recall that a reverse submartingale is a submartingale
when time is reversed and the process is viewed from
time ∞ to zero. Reverse submartingales behave some-
what like forward supermartingales: their expectations are
decreasing as time increases. Nonnegative reverse sub-
martingales behave like test supermartingales in that there
exists a reverse Ville’s inequality, with an identical state-
ment to the forward Ville’s inequality. Manole and Ram-
das (2023) use this to derive confidence sequences for
(say) the entropy of a distribution, as well as for diver-
gences between pairs of distributions in quite some gen-
erality. The same technique also allows the authors to
derive the first tight CSs (in their dependence on sam-
ple size, dimension, etc.) for suprema of Gaussian pro-
cesses, Rademacher complexities, U-statistics, quantile
functions, and several other interesting objects.

A game-theoretic interpretation of nonnegative re-
verse submartingales remains unknown, as does a game-
theoretic derivation of the above CSs.

5.7 Sequential Change Detection

On observing a stream of data, the problem of se-
quential change detection can be seen as an extension
of sequential testing: either all the data is from some
P ∈ P, or at some time ν, it switches from P to some
Q ∈Q. If there is indeed a change, we would like to stop
as quickly as possible and proclaim a change (call this
time τ∗). Measures of the performance of a change de-
tection procedure include average run length (ARL, also
called frequency of false alarms) and average detection
delay. These are respectively defined as infP∈P EP[τ∗], and
supP∈P,ν>0,Q∈Q EP,ν,Q[τ∗ − ν | τ∗ > ν], where the subscript
P, ν,Q means that the data come from P up through time
ν and from Q after ν. We would like the former to be as
large as possible with the latter being as small as possible.

Extending Volkhonskiy et al. (2017), who use confor-
mal test martingales to detect deviations from exchange-
ability of the Xi’s, Shin, Ramdas and Rinaldo (2022) de-
scribe a general nonparametric game-theoretic framework
for change detection. They define an e-detector for P to
be a nonnegative process M such that

EP[Mτ] ≤ EP[τ] for every τ ∈ T and P ∈ P.

(Like an e-process, the definition only depends on P but
we measure its quality relative to a post-change class Q).

The authors show that if one can construct an e-process
for P, then one can define an e-detector for P by summing
e-processes started at consecutive times. Formally, Mt :=∑

i≤t Ai is an e-detector for P, where Ai is an e-process for
P that depends only on Xi,Xi+1, . . . . Game-theoretically,
Mt is the wealth of a gambler who injects an extra dollar
into the game at each time, and uses it to bet against P.

The above definition and construction may appear mys-
terious, but yields methods with nontrivial properties.
First, defining τ∗ := inf{t ≥ 1 : Mτ ≥ 1/α}, one can prove
that the ARL is at least 1/α. Second, in certain para-
metric settings, if there is indeed a changepoint, then
one can design e-detectors such that the detection de-
lay is near-optimal in a particular sense: even if P,Q
were known in advance, the best possible detection de-
lay for any method with ARL at least 1/α scales like
log(1/α)/D(P||Q), where (as before) D is the Kullback-
Leibler divergence. An e-detector based on likelihood ra-
tios recovers the famous Shiryaev-Roberts statistic and
can adaptively achieve this optimal scaling (up to lower
order terms) without knowing P,Q, by employing new
mixture and plug-in approaches. Third, e-detectors can be
built for many nonparametric P using (for example) the
e-processes constructed earlier in this section. For many
such nonparametric problems, e-detectors provide, as far
as we know, the first changepoint procedures with prov-
able ARL control.

5.8 Asymptotic Confidence Sequences and
Sequential Causal Inference

The average treatment effect (ATE) is arguably the most
popular estimand in causal inference, and one may ask if
it is possible to estimate it sequentially in both random-
ized and observational settings. For brevity, we focus on
the observational setting, where finite-sample inference is
not possible due to unknown biases caused by confound-
ing, but under suitable assumptions it is possible to design
“doubly-robust” estimators for the ATE that have (nonse-
quential) asymptotic coverage guarantees. A suitable gen-
eralization of the concept of confidence sequences is re-
quired, because (by definition) CSs have finite-sample va-
lidity guarantees that we do not know how to achieve even
at fixed sample sizes.

With such goals in mind, Waudby-Smith et al. (2021)
define “asymptotic confidence sequences”, which may
sound paradoxical at first. They mirror an analogous defi-
nition of asymptotic CIs. Informally, a sequence of (mea-
surable) sets (Ct)t≥1 is called an asymptotic CS if there
exists some unknown nonasymptotic CS (Dt)t≥1, such that
the measure of the symmetric difference between Ct and
Dt almost surely vanishes faster than a

√
log log t/t rate.

Waudby-Smith et al. (2021) then derive a universality re-
sult: informally, as long as the data have more than two
moments (an almost necessary condition for inference),
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a universal asymptotic CS is given by (20) but with σ
replaced by an empirical variance σ̂t. This yields a time-
uniform analog of the central limit theorem (CLT), and is
established using certain strong approximation theorems
for Brownian motion. The authors then construct doubly-
robust asymptotic CSs for the ATE, yielding anytime ver-
sions of the corresponding CIs.

Beyond causal inference, asymptotic CSs can be used
in a variety of other settings where CLT-based CIs are the
norm in the offline setting. These include M-estimation
and other semiparametric and nonparametric functional
estimation problems; see also Pace and Salvan (2020)
and Johari et al. (2022).

In complementary work, Duan, Ramdas and Wasser-
man (2022) develop test martingale versions of rank based
tests like the Wilcoxon, Kruskal-Wallis, and Friedman
tests. Batch versions of these tests are commonly used for
testing the strong global null (of no treatment effect) in a
randomized experiment with covariates.

5.9 Other Nonparametric Problems

5.9.1 A Compendium of Exponential Supermartin-
gales. We have encountered several nonparametric test
supermartingales of the form

exp(λ · (sumt) − ψ(λ) · (variancet)).

Likelihood ratios for point nulls in exponential families
also take this form. So in a very concrete sense, we
have been generalizing the likelihood ratio to compos-
ite and nonparametric problems, and even to cases where
there is no dominating measure to define likelihood ra-
tios (most previous subsections). Just as likelihood ratios
are fundamental objects for parametric inference, test (su-
per)martingales and e-processes are fundamental objects
for nonparametric inference. Howard et al. (2020) sum-
marize a large literature on test supermartingales and e-
processes of the above exponential form, in discrete and
continuous time, for scalar-, vector- and matrix-valued
observations, and under a variety of nonparametric con-
ditions. We have mentioned only some examples.

5.9.2 Estimating Quantiles. Howard and Ramdas (2022)
derive confidence sequences based on iid data for any
prespecified quantile of an unknown probability distribu-
tion, improving on those derived by Darling and Robbins
(1967). They also derive CSs for the entire cumulative
distribution function (or quantile function), providing a
time-uniform extension of the famous Dvoretzky-Kiefer-
Wolfowitz inequality.

5.9.3 Two-Sample and Independence Testing. Here,
we observe two samples and want to know if they have the
same distribution, making no further assumptions. This
is one of the best studied problems in statistics. Com-
mon methods in the offline setting include the univari-
ate Kolmogorov-Smirnov test and the multivariate ker-
nel maximum mean discrepancy, amongst many others.

However, the literature on sequential nonparametric two-
sample testing appears sparse: Balsubramani and Ram-
das (2016) and Lhéritier and Cazals (2018) do use test
(super)martingales, but the methods they proposed are
not that powerful in practice (although Pandeva et al.
(2022) report excellent results with an extension of the
ideas in (Lhéritier and Cazals, 2018)). Shekhar and Ram-
das (2021) describe a relatively general game-theoretic
framework that provides the first sequential analog of
large classes of offline nonparametric tests, and these per-
form rather well in practice. The evidence grows slowly
for hard problems (when the two distributions are differ-
ent but very similar) and quickly for easy ones (when the
two distributions are very different), and it can be moni-
tored and stopped adaptively. This is a major advantage
over offline tests when the problem difficulty is not known
in advance. Recently, the first sequential nonparametric
independence testing framework was developed in Pod-
kopaev et al. (2023), which allows random variables to lie
in general spaces and handles non-i.i.d. settings.

5.9.4 Sampling Without Replacement (WoR). Another
classical problem is that of estimating a mean when
sampling WoR. Here we have a bag of N numbers
{x1, . . . , xN}, say all in the range [0,1], and we wish
to estimate their average µ :=

∑
i≤N xi/N, or (say) to

test if it is at most a half. The randomness arises from
the WoR sampling process. Waudby-Smith and Ram-
das (2020) construct powerful plug-in test supermartin-
gales for testing such hypotheses (of the empirical Bern-
stein flavor in (21)), and invert them to construct CSs.
Waudby-Smith and Ramdas (2023) designed more pow-
erful test martingales of the form (22) and the result-
ing confidence sequences are state-of-the-art. These were
then applied quite successfully towards election auditing
by Waudby-Smith, Stark and Ramdas (2021) and more
recently by Spertus and Stark (2022).

6. MULTIPLE HYPOTHESIS TESTING

6.1 Global Null Testing and Meta-Analysis

Based on test martingales, Ter Schure and Grünwald
(2022) propose ALL-IN (Any time Live and Leading
INterim) meta-analysis. This meta-analysis can be up-
dated any time, even after each new observation, while
retaining type-I error guarantees. It is live: no need to
specify in advance the times when you will look and rean-
alyze. And it can be the leading source of information for
deciding whether individual studies should be initiated,
stopped early, or expanded.

These authors illustrate the method for clinical trials in-
volving time-to-event data, using a Gaussian approxima-
tion to Section 4.3’s logrank test. Consider the case where
each study tests the null hypothesis that some effect size
δ (measuring, say, the efficacy of a medical treatment) is
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0; extensions to CIs are possible via inversion. In the sim-
plest case, the evidence for the i-th study is measured by a
unit bet S (i); the null is always the same (a “global null”),
but the alternative may change. For example, if the first
study is based on the mixture method of Section 3.2, the
mixing distribution for later studies might be updated us-
ing the outcomes of the studies so far or changed because
the next study samples from a different population. The
unit bets S (1),S (2), . . . generated this way can be multi-
plied, so that the process E with E( j) :=

∏ j
i=1 S (i) is a test

martingale at the “meta-level”, with individual outcomes
replaced by entire studies. We can always keep initiating
and adding new studies as we want at the time, deciding
whether do so and choosing the unit bet for any new study
in light of the outcomes of the previous studies.

In the terminology of Grünwald, De Heide and Koolen
(2023), the method is safe under optional continuation.
This is true when the study-level e-variables S ( j) are pro-
duced by Section 3.3’s RIPr, even when the RIPr does
not give an e-process at the individual outcome level. The
method is more flexible though when each study j is as-
sociated with an e-process. As Ter Schure and Grünwald
(2022) show, it is then possible to interleave the studies—
one may first observe some outcomes from study 1, then
some from study 4, then some from study 1 again, etc.,
tracking the cumulative product of the e-variables result-
ing from each batch. Again, one can decide at any time to
stop an individual study, initiate or change studies, or stop
the meta-analysis all-together, while still retaining Type-I
error guarantees throughout.

Without using the ALL-IN terminology, Duan et al.
(2020) design several martingale methods to sequentially
test a global null when each study ends with a p-value (in-
stead of e-value) that is valid conditional on all past stud-
ies. These new methods can be seen as sequential analogs
to several well known nonsequential p-value combination
rules like Fisher’s or Stouffer’s. Alternatively, one could
calibrate the p-values into e-values (calibrators are de-
fined in Section 6.3) and multiply them as done above.

6.2 False Discovery Rate

The false discovery rate (FDR) is probably the most
popular error metric in modern large-scale multiple test-
ing. The BH procedure (Benjamini and Hochberg, 1995)
is the standard procedure for controlling the FDR when
working with p-values. Given a target FDR level α, it pro-
claims as discoveries the hypotheses corresponding to the
k∗ smallest p-values out of K, where

k∗ :=max{k ∈ {1, . . . ,K} : p(k) ≤ αk/K},

and p(k) represents the k-th smallest p-value. It is known
to control the false discovery rate when the null p-values
are independent of each other and of the non-nulls, as well

as under a particular type of positive dependence known
as PRDS (Benjamini and Yekutieli, 2001).

Wang and Ramdas (2022) define an analogous e-BH
procedure, which rejects hypotheses corresponding to the
k∗ largest e-values, where

k∗ :=max{k ∈ {1, . . . ,K} : e[k] ≥ K/(kα)},

and e[k] represents the k-th largest e-value. Surprisingly,
this procedure controls the FDR at α under arbitrary de-
pendence between all the e-values. In fact, the same fact
is true if one picks any set of S e-values that are all larger
than Kα/S , while an analogous result is known to not
hold for p-values.

When both p-values and e-values are available for
the same set of hypotheses (for example, from different
datasets collected under different conditions), Ignatiadis,
Wang and Ramdas (2022) define generalizations of the
above procedures that use both sources of information.
In particular, e-values can serve as unnormalized weights
within standard FDR methods that use weighted p-values.
The waiving of the need to normalize the weights (to
sum to one) gives the e-value weighted methods a dis-
tinct power advantage over the usual normalized weights
that are employed in weighted multiple testing.

Xu, Wang and Ramdas (2021) extended these results
to bandit multiple testing. There, the data to test the K
hypotheses is not available in advance, but must be col-
lected adaptively, for example by assigning later subjects
to more promising treatments as revealed by the results
on earlier subjects. For each of the K treatments, one can
form an e-process to test the null hypothesis that the treat-
ment effect is nonpositive. The K e-processes have a com-
plex dependence structure because of the adaptive assign-
ment mechanism. Nevertheless, at any data-dependent
stopping time, the e-BH procedure applied to the stopped
e-processes controls the FDR.

6.3 False Coverage Rate

Suppose data regarding K parameters has been col-
lected, a data-dependent selection rule S is applied to
select a subset S of the parameters deemed of interest,
and CIs for the selected parameters must be reported so
as to keep the expected fraction of miscovering intervals
at α. The BY procedure (Benjamini and Yekutieli, 2005)
is an analog of the BH procedure for this task: we re-
port (1 − αR/K)-CIs for the selected parameters, where
1 ≤ R ≤ |S | is some function of the selection rule and
dependence structure. Under certain dependence assump-
tions, this is proven to control the FCR at level α.

In contrast, the e-BY procedure of Xu, Wang and Ram-
das (2022) applies only to e-CIs, which are CIs con-
structed by inverting tests based on e-values (discussed
next). The authors prove that reporting (1−α|S |/K) e-CIs
controls the FCR at α for any dependence structure, and
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any data-dependent selection rule S (including one that is
fully aware of the corrected intervals).

Formally, using the notation of Section 2.7, e-confidence
sets for data Xτ can be defined whenever we are given a
family of e-variables E := {Eθ

τ : θ ∈ Θ}, where θ is a pa-
rameter of interest, and for all θ ∈ Θ, Eθ

τ is an e-variable
defined relative to null Pθ = {P ∈ Π : ϕ(Π) = θ}. Then the
(1−α)-e-confidence set based on family E is simply given
by {θ ∈Θ : Eθ

τ < 1/α}; by Markov’s inequality, this is also
a confidence set in the usual sense. If the e-confidence set
is an interval, we refer to it as an e-CI.

Concrete examples of e-CIs include all confidence sets
based on universal inference, any (arbitrarily) stopped
confidence sequence, and CIs constructed using Chernoff-
style concentration inequalities. Further, Xu, Wang and
Ramdas (2022) show that any CI can be converted to an e-
CI by calibration. A calibrator f is nonincreasing function
from [0,1] to [0,∞) such that

∫ 1
0 f (x)dx = 1. If a calibra-

tor f is also continuous at 1/α, then any CI constructed
at (the more stringent) level α′ := f −1(1/α) is an e-CI at
level α. This e-CI is always larger than the original CI.

As before, the implications for bandit multiple testing
are interesting. One can construct and continuously moni-
tor a CS for the effect size of each treatment, decide when
to stop adaptively, select any subset for further study, and
report corrected CIs using the stopped CSs at the e-BY
adjusted level. As one example, one could run e-BH con-
tinually using the underlying e-processes, decide when to
stop based on its rejections; then the corrected CIs will
be congruent with the reported discoveries in the sense
that all the corrected CIs will not contain the null param-
eter and both FDR and FCR will be controlled at level α.
(The congruence is a result of the duality between tests
and CIs that we employed earlier: the e-process exceeds
1/α if and only if the CS does not intersect the null.)

6.4 The Inevitability of e-hacking

Peeking at the data obtained so far in order to decide
whether to continue is only one of many abuses of sta-
tistical testing that have been classified as “p-hacking”.
Because of the interpretation in terms of betting, peeking
is legitimate when we test by e-values, but other abuses
are neither legitimized nor prevented. When statisticians
commit these abuses using e-values, they have merely
replaced “p-hacking” with “e-hacking”. A statistician is
e-hacking, for example, whenever they implement many
betting strategies with given data and report only the one
that yields the greatest wealth.

The fundamental principle of testing by betting is that
a bet on an outcome must be made before the outcome
is observed. Optional continuation is allowed in the case
of successive bets because this condition is still met for
each individual bet. But claiming you would have bet in a
certain way after you know the outcome is still humbug.

We can only hope that the clarity of these principles, even
for laypeople, will make the possibilities for abuse more
obvious and increase the pressure to distinguish between
exploratory and confirmatory analysis.

In some situations, abuses can be prevented or miti-
gated by a separation of roles. The use of e-values rather
than p-values may be helpful in these situations.

In academic disciplines where abuses are driven by the
need to publish, for example, editors can encourage pre-
registration of a study’s data collection and analysis. If
we agree that the analysis should use the betting strategy
that maximizes the expected logarithm of wealth under a
reasonable alternative, then the proposed analysis neces-
sarily identifies the alleged reasonable alternative; Shafer
(2021) calls this the implied alternative. Editors and ref-
erees could reject proposed registrations for which this
implied alternative is not really plausible and even agree
in advance to publish the study when it is plausible and in-
teresting. This option does not arise when classical signif-
icance testing is used, because usually there is no unique
alternative for which a test is most powerful.

When the statistician is embedded in a larger scientific
enterprise, decisions about each step in data collection
can be the result of consultation between the statistician
and other scientists. In the first flush of excitement about
Wald’s sequential analysis, Barnard (1947) saw this as the
future of statistics, but it has been in tension with the no-
tion of a p-value based on a global test statistic. Testing
by betting escapes this tension and can be used even in
collaborative meta-analysis (Section 6.1).

7. OTHER APPLICATIONS

Game-theoretic statistics is rapidly evolving. Here are
additional topics where it is relevant.

Comparing Forecasters. Many experts and pundits
now repeatedly make predictions about the weather, wars,
sport games, business events, and elections probabilisti-
cally, sometimes as the probability of an event (one team
beating another) or a predictive distribution (over the
amount of rain the next day). How can we test whether
probabilistic forecasters are doing a good job (are cali-
brated, for example), and how can we compare two dif-
ferent probabilistic forecasters? Such questions have been
addressed in a game-theoretic setup by several recent
works that use test supermartingales (Henzi and Ziegel,
2022; Henzi, Arnold and Ziegel, 2023) or e-processes and
confidence sequences (Choe and Ramdas, 2021).

A fascinating general phenomenon, called Jeffreys’s
law by Dawid (1984, Sect. 5.2) in honor of Harold Jef-
freys, is that two reliable forecasters must agree in the
long run: if they differ too much, a Skeptic observing
both of them will be able to discredit at least one of them
(Shafer and Vovk, 2019, Sect. 10.7).
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Multi-Armed Bandits and Reinforcement Learning. In
sequential decision making, as modeled by a contextual
multi-armed bandit or a reinforcement learning problem,
one sees a sequence of “contexts” xt ∈ X, and one must
decide which action at ∈A to take in order to maximize a
(discounted) sum of observed rewards R(xt,at). A policy
π is a mapping from X to A, and one usually attempts
to understand the unknown reward function R by playing
some exploratory policy π0. One central question is the
following: if the data was collected using some π0, is it
possible to estimate the quality (called “value”) of some
other policy π1 that was never deployed? This is called
“off-policy evaluation”, and is a central problem of great
practical interest. Recently, Karampatziakis, Mineiro and
Ramdas (2021) developed confidence sequences for off-
policy evaluation when the rewards are bounded, and ex-
tended by Waudby-Smith et al. (2022) to settings with
unbounded importance weights and time-varying poli-
cies. We remark that outside of the off-policy setting,
CSs are very commonly designed and used in contex-
tual bandits (Abbasi-Yadkori, Pál and Szepesvári, 2011;
Chowdhury and Gopalan, 2017) and best arm identifica-
tion (Jamieson et al., 2014; Kaufmann and Koolen, 2021),
commonly under sub-Gaussian-type assumptions.

8. DISCUSSION

8.1 Connections with Other Areas

8.1.1 Bayesian and Evidentialist Approaches We al-
ready alluded to various connections between Bayesian
and game-theoretic statistics (Bayes factors, Section 3.2.3,
Jeffreys’ prior, Section 3.2, Bayesian t-test Section 4.1).
Even though interpretations are very different, a precise
comparison would fill up an entire paper. We do high-
light some relations in Appendix A, emphasizing that
e-processes generalize likelihood ratios and, like these,
can be interpreted as evidence. In the present section,
we restrict ourselves to one specific simple technique
to construct CSs, the prior-posterior ratio martingale
(Waudby-Smith and Ramdas, 2020; Grünwald, 2022) so
as to demonstrate how Bayesian tools can be transformed
into SAVI tools. Suppose the data are drawn from Pθ∗

for some unknown θ∗ ∈ Θ (extension to Bayesian non-
parametrics is straightforward (Neiswanger and Ramdas,
2021)). Let π0(·) be a “prior” distribution over Θ; we
call this the working prior, because no assumptions are
made about it. After seeing X1,X2, . . . ,Xt, let πt(·) be
the posterior distribution obtained via Bayes’ rule. The
central observation is that π0(θ∗)/πt(θ∗) is a test martin-
gale for Pθ∗ , termed the “prior-posterior ratio martingale”
(it is used for different purposes in Bayesian statistics,
and is there known as the Dickey-Savage ratio. Thus,
{θ ∈ Θ : π0(θ)/πt(θ) < 1/α} is a (1 − α)-CS for θ∗. Intrigu-
ingly, quite recently it has also been suggested within the

Bayesian community Wagenmakers et al. (2020); Pawel,
Ly and Wagenmakers (2022) to use this CS, when applied
to fixed t, as an alternative for the Bayesian posterior cred-
ible interval; all this is further investigated in Appendix A.

8.1.2 Group-Sequential and Alpha Spending Methods.
We touched on the connection to these methods in the log-
rank example, Section 4.3. They are mostly used in the
clinical trial literature. Like our methods, they have their
roots in the work of Robbins, Siegmund, Lai and others
on anytime-valid tests in the 1970s. But they developed in
quite a different direction. For example—although there
are exceptions3 such as Mingxiu, Cappelleri and Gor-
don Lan (2007)—such methods, while providing Type-
I error control under multiple looks at the data, typi-
cally require a pre-specified final sample size; whereas
e-processes can continue as long as new data is available.
Principles for designing e-processes, such as the GRO cri-
teria, or the RIPr and UI methods, do not seem to have
analogues in the α-spending/group sequential literature.
But a firmer understanding of connections is desirable.

8.1.3 Information Theory and Online Learning. We
touched on the relationship between our methods and
the information-theoretic Minimum Description Length
(MDL) paradigm for model selection, learning and pre-
diction (Barron, Rissanen and Yu, 1998; Grünwald and
Roos, 2020) when discussing the REGROW criterion in
Section 3.2. The connection to MDL and the related idea
of universal coding runs quite deeply, due to Kraft’s in-
equality, which states that for any probability distribu-
tion Q̄ with probability mass function q̄ and any stopping
time τ, there is a lossless code such for every realization
xτ, the codelength achieved with this code is equal, up
to a negligible roundoff term, to − log q̄(xτ); conversely,
for any lossless code there is a distribution Q̄ such that
this correspondence holds. In MDL approaches one pro-
ceeds by associating statistical models (sets of distribu-
tions) Q with ‘universal codes’, represented as distribu-
tions q̄ such that the codelengths are − log q̄(xt), designed
to give small codelengths to the data at hand whenever
the code corresponding to any element P ∈ Q assigns a
small codelength to the data. This very closely mirrors
the construction of q̄ via an estimator θ̂ or the method
of mixtures as in Section 3.2. MDL model selection be-
tween a number of parametric models Qγ, γ ∈ Γ works
by first associating each Qγ with a q̄γ as above, and then
picking as ‘the best explanation for data xt’ the γ for
which the associated codelength − log q̄γ(xt) is minimal,
reporting as evidence of model Qγ1 over Qγ2 the code-
length difference − log q̄γ2(xt) − [− log q̄γ1(xt)]. As a re-
sult, if there are just two models, γ ∈ {0,1} and the null

3We thank J. Goeman and J. ter Schure for pointing this out to us.
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model is simple, the MDL approach is essentially equiva-
lent to doing a test between null Q0 and alternative Q1
and reporting as evidence the logarithm of the e-value
q̄1(xt)/q0(xt) (Grünwald and Roos, 2020) —exactly the
same as in Section 3.2 but with evidence expressed on a
logarithmic scale. When the null is composite, MDL and
SAVI methods diverge, but we conjecture that e-processes
have a codelength interpretation—but with different codes
than in classical MDL approaches.

One may also think of ‘universal codes’ q̄ as sequen-
tial prediction strategies that predict xt using q(xt | xt−1)
and with loss assessed by the logarithmic loss func-
tion − log q(xt | xt−1). The vast field of online learning
is about such sequential prediction and the logarithmic
loss takes an important special case in it. Not surpris-
ingly then, sequential prediction strategies from the on-
line learning literature can often be converted to provide
good (in some cases optimal in some sense) betting strate-
gies for several problems. These connections have been
emphasized by Orabona and Jun (2021), and also ex-
ploited by Waudby-Smith and Ramdas (2023); Shekhar
and Ramdas (2021); Ramdas et al. (2022); Casgrain, Lars-
son and Ziegel (2022) and others.

8.2 Open Questions

8.2.1 Existence of e-processes. For what classes of
distributions P are there nontrivial (a) test martingales,
(b) test supermartingales but no test martingales, (c) e-
processes but no test supermartingales, (d) none of the
above? While Ramdas et al. (2022); Ruf et al. (2022) have
interesting examples separating the above concepts, this
separation is not yet fully understood in general.

8.2.2 Choice of Filtration. The choice of a filtration is
a design choice, and one need not choose the richest one,
the one generated by the observations. The choice affects
both safety (the set of stopping times τ for which the ex-
pected value of Eτ does not exceed one under the null) and
power (how fast the wealth grows under the alternative).

Recall the example of testing exchangeability in Sec-
tion 5.5. As explained, there is no nontrivial test martin-
gale for the problem in the filtration of the observations,
but there is one in the smaller filtration of conformal p-
values. This is true for any observation space, but the
shrinking sacrifices safety. This sacrifice is unnecessary
for small discrete alphabets, where an e-process is avail-
able in the original filtration, that appears in experiments
to be at least as powerful as the conformal test martingale.

The picture is a little different for the test martingales in
a shrunk filtration constructed by Pérez-Ortiz et al. (2022)
for the problem of testing group-invariant hypotheses
(such as the t-test example of Cox (1952) and Lai (1976)
discussed in Section 4.1). These are not e-processes with
respect to the original filtration, but are in the shrunk one,
and thus have a weaker guarantee under the null, but they

still maximize the rate of growth amongst all e-processes,
even those with respect to the original filtration. Thus,
they have worse safety properties but better growth prop-
erties than competitors like universal inference.

When can one shrink the filtration in order to design
useful new e-processes, and when are these more or less
powerful than ones in the original filtration?

8.2.3 Admissibility. Can one characterize admissibil-
ity of an e-process succinctly, with a condition that is
both necessary and sufficient? Ramdas et al. (2020) de-
fine an an e-process E ≡ (Et)t≥1 for P to be inadmissible
if there exists another e-process E′ for P such that E′ ≥ E
(E′t ≥ Et almost surely P, for all P ∈ P and all t ≥ 1),
and E′t > Et with positive probability under some P ∈ P
and some t ≥ 1; E is admissible if it is not inadmissible,
meaning no such E′ exists. Ramdas et al. (2020) provide
both necessary and sufficient conditions for admissibility,
but currently these do not match. For example, they prove
that, if there exists a common dominating measure, then
E being admissible implies that Et = infP∈P MP

t , where
MP

t is a test martingale for P. The universal inference e-
process has this form. But this condition is not sufficient
for admissibility: e-processes satisfying Et = infP∈P MP

t
may not always be admissible (indeed, universal inference
has this form, and we know examples where it is inad-
missible). For admissibility, the {MP

t }P∈P need to agree to
some extent—they need to be large or small on similar
events; if on each event, some test martingales are large
while others are small, the infimum will always be small.
Given that admissibility is a low bar, delineating this need
for agreement is an important open problem.

8.2.4 Questions about RIPr. When exactly does the
RIPr procedure applied to data Xt separately for each
sample size t yield an e-process? (Section 3.3). When the
RIPr yields an e-process, there is strong justification to
use it, but how much is lost if it is replaced by the (al-
ways applicable) universal inference e-process? Under-
standing the power of universal inference is itself quite
open; progress was made in the Gaussian setting by Dunn
et al. (2022). In current applications the GRO-optimal
RIPr e-variables are sometimes given by simple, analytic
formulas (Section 4.2 and 4.1), but for other applications
numerical optimization is required (Section 4.3). An al-
gorithm presented by Li (1999) can be used for this, but it
is slow. Do there exist practically effective algorithms?
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APPENDIX A: SAVI AS A FREQUENTIST –
EVIDENTIAL – BAYESIAN MIDDLE GROUND?

E-values can be seen as a evidence against a null hy-
pothesis and are quite meaningful even without being
used for a sequential test required to have some error
probability, and even in a batch setting such as the mul-
tiple testing settings above. E-values lack some of the
properties of p-values that make the latter less suitable to
think of as ‘evidence’ (such as the p-value’s dependency
on whether or not particular actions are taken in counter-
factual situations) and generalize the likelihood ratio that
is embraced by the likelihoodists as the ‘right’ formaliza-
tion of relative evidence (Royall, 1997).

Comparing our methods to Bayesian ones, we see that,
with simple nulls, e-processes and Bayes factors always
coincide; in parametric tests with composite nulls, e-
processes and Bayes factors sometimes (e.g in the group
invariant setting of Section 4.1) but not always coincide;
and with nonparametric tests they start differing quite a
lot. If it comes to confidence sequences and e-confidence
intervals, we find that even in one-dimensonal paramet-
ric settings, (1 − α)- e-confidence intervals (and equiva-
lently stopped confidence sequences) do not coincide with
Bayesian (1−α)-posterior credible intervals, the latter be-
ing significantly narrower. To see this, note that, from Sec-
tion 3.2 (and defining e-CIs as in Section 6.3), we find
that, for any fixed prior density w on Θ ⊂ R, the family of
e-variables {Eθ

τ : θ ∈Θ} for data Xτ with

P̄(θ | Xτ) :=
1
Eθ
τ

=
pθ(Xτ)∫

pθ′(Xτ)w(θ′)dθ′

(this is just the reciprocal of the prior-posterior ratio mar-
tingale of Section 8.1.1 stopped at time τ) defines an e-
confidence interval at level (1 − α) as {θ : P̄(θ | τ) ≥ α},
whenever the latter set is an interval. By Bayes’theorem,
the Bayes posterior based on the same prior w is given by

w(θ | Xτ) =
w(θ) · pθ(Xτ)∫
pθ′(Xτ)w(θ′)dθ′

= w(θ) · P̄(θ | Xτ),

and defines a posterior credible interval at level (1−α) as
[θL, θR] chosen so that

Eθ∼W[1θ∈[θL,θR] · P̄(θ | Xτ)] =
∫ θR

θL

w(θ | Xτ) = 1 − α.

We see that all elements θ of an e-confidence interval must
have P̄(θ | Xτ) ≥ α; for a Bayesian credible interval this
only has to hold in average over the prior, causing the
latter to be narrower in practice.

Intriguingly though, some Bayesian statisticians have
noted that the standard Bayesian posterior credible inter-
val has no clear ‘evidential’ interpretation. They instead
propose a Bayesian support interval (Wagenmakers et al.,
2020)—also called ‘evidential support interval’— where
the k- support interval is the interval containing all param-
eter values under which the observed data Xτ are at least
k times as likely than under the Bayesian marginal dis-
tribution’. As Pawel, Ly and Wagenmakers (2022) note,
for simple nulls and k < 1, this actually coincides pre-
cisely with the (1 − k)-e-confidence interval based on the
family of e-values based on the same prior density w as
the Bayes marginal. If one were to consider growing se-
quences of data and use the same prior at each sample size
t, the resulting process of support intervals would also be
a standard confidence sequence in our sense.

We would venture that, for models Π with parameter of
interest θ = ϕ(P) and additional nuisance parameters, and
also in nonparametric settings, the e-confidence intervals
based on a family {Eθ

τ : θ ∈ Θ} still have an ‘evidential’
interpretation, although in this case they will usually not
be equal to a Bayesian support interval any more.

Taking the ‘e-values are similar to, but different from
Bayes factors’ line of reasoning even further, one could
daringly suggest to define P̄(θ | Xτ) := 1/Eθ

τ as an ana-
logue of the Bayesian posterior or confidence distribu-
tions, even for multiparameter and nonparametric prob-
lems in which it does not coincide with the Savage-
Dickey density ratio. This was done informally in (Waudby-
Smith and Ramdas, 2020, Appendix E7) who visualize
uncertainty by drawing P̄(θ | Xτ) as a function of θ. Grün-
wald (2022) shows that this e-posterior can be motivated
not just evidentially, but also decision-theoretically. Just
like the Bayes posterior can, assuming the prior was cho-
sen well, be used to obtain optimal decisions for arbi-
trary loss functions by combining posterior and loss in a
certain way (minimizing Bayes-posterior expected loss),
the e-posterior can be used as a basis for obtaining de-
cisions with minimax optimality guarantees for arbitrary
loss functions by combining e-posterior and loss in a cer-
tain, different way. The guarantees hold irrespective of the
chosen prior, but become weaker the more atypical the
data look with respect to the prior. In the same paper (see
also Bates et al. (2022) for related insights), it is shown
that, even in a nonsequential context, standard Neyman-
Pearson testing is not adequate if the decision problem at
hand (e.g. choose between the four actions { vaccinate no-
one; only adults; only the elderly; or everyone}) has more
actions than just the ‘reject’ and ‘accept’ of the Neyman-
Pearson theory; with a decision rule based on e-variables



22

one can effectively deal with such—realistic—settings.
This has direct repercussions for the reproducibility cri-
sis: the standard Neyman-Pearson based approaches may
simply not be suitable for the complex real-world prob-
lems that we apply our test results to.

In conclusion, let us stress that we do not view the
above observations as disqualifying the Bayesian, eviden-
tial or Neyman-Pearsonian paradigm. Rather, we feel that
SAVI methods effectively unify some of the fundamental
ideas of each; respectively: one should allow for the pos-
sibility to infuse prior knowledge into one’s procedures;
one should output numbers with a clear evidential mean-
ing; and one should ensure that one’s procedures allow for
error control and coverage.
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