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Abstract

In 2023, the Antimicrobial Peptide Database (currently available at https://aps.

unmc.edu) is 20-years-old. The timeline for the APD expansion in peptide entries,

classification methods, search functions, post-translational modifications, binding

targets, and mechanisms of action of antimicrobial peptides (AMPs) has been

summarized in our previous Protein Science paper. This article highlights new

database additions and findings. To facilitate antimicrobial development to com-

bat drug-resistant pathogens, the APD has been re-annotating the data for anti-

bacterial activity (active, inactive, and uncertain), toxicity (hemolytic and

nonhemolytic AMPs), and salt tolerance (salt sensitive and insensitive). Compari-

son of the respective desired and undesired AMP groups produces new knowledge

for peptide design. Our unification of AMPs from the six life kingdoms into “natu-
ral AMPs” enabled the first comparison with globular or transmembrane proteins.

Due to the dominance of amphipathic helical and disulfide-linked peptides, cyste-

ine, glycine, and lysine in natural AMPs are much more abundant than those in

globular proteins. To include peptides predicted by machine learning, a new “pre-
dicted” group has been created. Remarkably, the averaged amino acid composi-

tion of predicted peptides is located between the lower bound of natural AMPs

and the upper bound of synthetic peptides. Synthetic peptides in the current APD,

with the highest cationic and hydrophobic amino acid percentages, are mostly

designed with varying degrees of optimization. Hence, natural AMPs accumulated

in the APD over 20 years have laid the foundation for machine learning predic-

tion. We discuss future directions for peptide discovery. It is anticipated that the

APD will continue to play a role in research and education.

KEYWORD S

antimicrobial peptides, data re-annotation, machine learning, natural AMPs, predicted
peptides, synthetic AMPs

1 | INTRODUCTION

The antimicrobial peptide (AMP) research remains to be
active and appealing at least due to the following three
reasons: (1) our attempt to decipher the functional roles

of AMPs in a variety of organisms; (2) our growing inter-
est in microbiota that can be shaped by AMPs; and
(3) our desire of developing AMPs into novel antibiotics
(Fjell et al., 2011; Gallo & Hooper, 2012; Hanson
et al., 2023; Lazzaro et al., 2020; Salzman &
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Bevins, 2013). The AMP research may be classified into
three main phases. The first phase was started with the
discovery of lysozyme in 1922 (Fleming, 1932), which is
the first antimicrobial polypeptide according to Robert
Lehrer (Personal communication). This early stage of
AMP search overlapped with the golden era of antibiotics
(1940s–1960s), characterized by the discovery of multiple
nonribosomally synthesized peptide antibiotics. Gramici-
din was documented as the first peptide antibiotic for
clinical use (Dubos, 1939). Colistin, a cyclic lipopeptide,
is the last resort of peptide antibiotic against gram-
negative pathogenic bacteria (Stansly et al., 1947).
Although the discovery of lysozyme did not win Alexan-
der Fleming a Nobel prize, penicillin (discovered in 1928)
did. Notably, penicillin is a derivative of the dipeptide
cysteine-valine. The second phase was initiated with the
discovery of cecropins, defensins, pardaxins, daptomycin,
magainins, bactenecin, and histatins in the 1980s
(Eliopoulos et al., 1986; Ganz et al., 1985; Gennaro
et al., 1989; Oppenheim et al., 1988; Steiner et al., 1981;
Thompson et al., 1986; Zasloff, 1987). The invention of
two-dimensional nuclear magnetic resonance spectros-
copy (2D NMR) and its application in structural determi-
nation of small proteins and peptides in the 1970s–1980s
(Jeener & Alewaeters, 2016; Wüthrich, 1983) enabled us
to see how AMPs look like (Gesell et al., 1997; Wang
et al., 2014). The availability of 3D structures of these cat-
ionic peptides in membrane-mimetic environments con-
solidated the amphipathic idea. These structures
stimulated the research on the mechanisms of action of
antimicrobial peptides, leading to stave-barrel, carpet,
detergent, and interfacial models (Ludtke et al., 1996;
Oren & Shai, 1998; Vogt & Bechinger, 1999;
Wimley, 2010). The research at this phase is also charac-
terized by the efforts in developing magainins into new
antibiotics (Jacob & Zasloff, 1994) because it is believed
that the rapid membrane disruption by cationic AMPs
makes it difficult for pathogens to develop resistance
(Zasloff, 2002). The journey in elucidating the molecular
mechanism of AMP expression in drosophila resulted in
the discovery of Toll and Imd pathways (Lemaitre
et al., 1996). This discovery won Jules Hoffmann a Nobel
prize in 2011. This milestone discovery inspired the con-
tinued search of novel functional roles of these innate
immune peptides in coat color, sleep and lifespan till
today (Candille et al., 2007; Hanson & Lemaitre, 2023;
Toda et al., 2019). The third phase was triggered by the
applications of the proteomic and genomic technologies
to AMP research. We entered the omic era with the com-
pletion of the sequencing of the human genome in 2003
(Human genome project website, visited 2023). The grow-
ing research on microbiota added a new dimension to
AMP research due to its connection with a variety of

human diseases (Wang et al., 2023; Wehkamp
et al., 2005). AMPs are important players that shape
microbiota (de San et al., 2022; Pierre et al., 2023;
Snelders et al., 2021). Remarkably, a Paneth cell peptide
YY was able to selectively eliminate pathogenic hyphae
but not the commensal yeast form of Candida albicans
(Pierre et al., 2023). The omic approaches have also been
utilized to AMP discovery (Bishop et al., 2017; Conlon
et al., 2006; Lai, 2010; Moyer et al., 2021). Our imagina-
tion has gone beyond the classic territories and reached
deep in the sea and uncultivable bacteria in soil (Lee
et al., 2001; Ling et al., 2015). These studies increased our
chances of discovering novel peptide antibiotics to com-
bat drug-resistant bacteria, fungi, viruses, and parasites.
The omic approaches have also been applied to the study
of immune regulation of host defense peptides, signifi-
cantly expanding our picture on the roles of AMPs in
immune response (Mansour et al., 2014; Mookherjee
et al., 2007; Mookherjee et al., 2009).

In the spirit of omics, the Wang laboratory estab-
lished the antimicrobial peptide database (APD) in 2003
(Wang & Wang, 2004). It is 20-year-old at the time when
this manuscript was completed. This database was origi-
nally conceived as a tool for antimicrobial and anticancer
drug development. Hence, the first version of the APD
constructed the following database interfaces: About,
Database, Prediction, Peptide design, Statistic Data,
Links, and Contact info (to view a picture of the historic
website, see Reference Wang, Zietz, et al., 2022). The
APD provided the first peptide calculation, empirical pre-
diction, and peptide design tools for AMPs. These data-
base tools were welcomed as echoed by the development
of the Grammar approach for peptide design in 2006 and
machine learning prediction in 2007, respectively (Lata
et al., 2007; Loose et al., 2006). After we demonstrated
the template-based design based on our database (Wang
et al., 2005), we also conducted database screening to
identify novel peptides against human immunodeficiency
virus type 1 (HIV-1) or methicillin-resistant Staphylococ-
cus aureus (MRSA; Menousek et al., 2012; Wang
et al., 2010). This database provided a statistical tool,
allowing users to view the amino acid composition signa-
ture for each AMP or a family of peptides
(e.g., antibacterial, antiviral, hemolytic, and anticancer).
The APD first defined frequently occurring amino acids
(>10%), which depend on the source, structure, and
activity of AMPs. These abundant amino acids consti-
tuted a minimal set for de novo peptide design (Wang
et al., 2009). The APD created a powerful search engine
by stringing the filters together into a pipeline so that the
users can filter the peptide information at their will.
Coupled with the statistical information, these database
filters laid the foundation for our development of the
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database filtering technology for designing novel antimi-
crobials from the beginning (ab initio; Mishra &
Wang, 2012a). Our database filtering idea had been
extended from in silico to in vitro and in vivo, leading to
the discovery of the importance of low cationicity for sys-
temic efficacy (Mishra et al., 2019).

The subsequent two database versions significantly
expanded peptide entries, search functions, chemical
modification types, 3D structures, binding targets, and
mechanisms of action (Wang et al., 2009, 2016). Our
database took the lead in systematically annotating over
26 searchable peptide functions (e.g., antibacterial, anti-
diabetic, wound healing, anti-toxin, anticancer, antiviral)
for two decades. Some of these peptide functions are
depicted in Figure 1. In addition, the APD has annotated
over 26 types of post-translational modifications of AMPs
in a systematic manner (searchable using the XX code;
Wang, Zietz, et al., 2022; Wang et al., 2016). A complete
list of these functions and chemical modifications can be
found in our previous publication (Wang, Zietz,
et al., 2022). The APD considered the effects of chemical
modifications on peptide properties such as net charge.

The data scope of the APD evolved with time. While
the APD2 collected all peptides reported as AMPs in the
literature, including those without activity data (Wang
et al., 2009), the APD3 established a set of criteria for data
registration by focusing on natural AMPs with known
amino acid sequences and activity (minimal inhibitory
concentration MIC <100 μM) (Wang et al., 2016). The
APD3 also unified the peptide classification methods
based on biological sources (six life kingdoms), 3D struc-
tures (α, β, αβ, and non-αβ structures), and peptide chain
bonding patterns (UCLL, UCSS, UCSB, and UCBB)
(Wang, 2022). The six life kingdoms in the APD include

bacteria, archaea, protists, fungi, plants, and animals.
Currently known AMPs for each kingdom are summa-
rized in Figure 1. The four unified structural classes are
α-helical peptides (α class), β-sheet peptides (β class), pep-
tides with both α and β structures (αβ class), and AMPs
with neither α nor β structures (non-αβ class). Represen-
tative structures for each class are depicted in Figure 1.
Due to limited known 3D structures (�13%) for natural
AMPs determined by multidimensional NMR spectros-
copy and/or x-ray crystallography, the APD also adopted
a universal classification scheme based on their covalent
bonding patterns. Linear peptides (L) such as human
cathelicidin LL-37 and magainins are represented with
UCLL (searchable in the name field of the APD). Some
linear peptides require two independent chains (LL) to be
active. Sidechain–sidechain linked peptides such as
defensins (via disulfide bonds) and lantibiotics (via
thioether bridges) are searchable using UCSS. A third
class (UCSB) has a chemical bond from the sidechain of
one amino acid to the C or N-terminus (backbone) of the
peptide. Finally, the UCBB peptides contain a chemical
bond that connects the N and C-termini of the peptide.
In addition, the APD provides a platform for understand-
ing the design principles of natural AMPs (Decker
et al., 2022; Lakshmaiah Narayana et al., 2020;
Wang, 2020a; Wang, 2020b). Peptides with different
activities, structures, and mechanisms of action can all be
grouped and analyzed. For instance, the amino acid sig-
natures for AMPs against gram-negative (more lysine)
and gram-positive pathogens (more leucine) clearly differ
(Wang, 2020a). While leucine is dominant in helical
AMPs against gram-positive bacteria, alanine, glycine,
and lysine are abundant in helical peptides against gram-
negative pathogens (Wang, 2020a). For 1000 amphibian

FIGURE 1 Current statistics for

natural antimicrobial peptides in the

antimicrobial peptide database (APD;

https://aps.unmc.edu). Peptide counts as

of July 2023 are indicated for the six life

kingdoms, four structural classes and

multiple functions (activities) first

classified in this database. Select images

are either personal pictures or were

taken from the internet. Three-

dimensional structures for AMPs were

determined by the author or

downloaded from the Protein Database

Bank (LL-37: 2K6O; RTD-1, 2LYF;

MGD-1: 1FJN, and WW295: 6NM3).
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AMPs, there is a linear increase in cationicty (mainly due
to lysine) but a decrease in hydrophobic ratio (primarily
due to leucine) with peptide length (Wang, 2020b).
Remarkably, the averaged arginine content shows a lin-
ear correlation with hydrophobic ratio for all the AMPs
in the APD (Lakshmaiah Narayana et al., 2020).

Our database expansion, reconfiguration, and infor-
mation re-annotation continue. This article reports our
recent new developments since 2021. These include
(1) the unification of the AMPs from the six life king-
doms under the same searchable umbrella “natural
AMPs”; (2) the definition of a new “predicted” group for
AMPs predicted by machine learning and other methods
(e.g., sequence alignment) followed by activity validation;
(3) establishment of a systematic scheme for a complete
record of reported antimicrobial activity; (4) definition
and classification of hemolytic and non-hemolytic AMPs;
and (5) definition and systematic annotation of salt
effects on peptide activity. Our successful establishment
of these new features in the APD not only further
enhanced this database capability but also strengthened
the notion that our database platform is user-friendly,
flexible, and expandable. These re-annotations enabled
us to compare natural AMPs with globular proteins and
painted the amino acid landscapes for natural, predicted,
and synthetic AMPs. Our results shine a novel light on
natural AMPs, peptide prediction, and design. Our core
data set for natural AMPs accumulated over 20 years has
laid the foundation for both prediction and design of
novel peptide antibiotics. Finally, we discuss future direc-
tions for AMP discovery.

2 | NEW FEATURES AND RESULTS

2.1 | A look at data growth and peptide
parameter space from a new angle

Since the third version (the APD3), natural AMPs have
been classified into six life kingdoms: bacteria, archaea,
protists, fungi, plants, and animals (current statistics in
Figure 1; Wang et al., 2016). The increase of peptide
count in each kingdom every 2 years is plotted in
Figure 2. In this plot, archaea, protists, and fungi were all
located in the valley due to small numbers in the APD
(Figure 1). Also, the peptide counts from bacteria and
plant kingdoms were below 400. Therefore, the only
kingdom that showed a clear increase in peptide number
at this scale is animal (72.8% in the APD). Further analy-
sis of the count of animal AMPs every 2 years uncovered
a linear correlation (slope 130.88 and R squared
2020: 0.9737). Plant AMPs increased linearly (slope
19.327 and R2: 0.8563) despite at a much slower pace.

Likewise, bacterial AMPs grew in proportion to a year
over 20 years (slope 22.54 and R2: 0.9788). Hence, natural
AMPs, including AMPs from bacteria, plants, and ani-
mals, all increased linearly in the APD in the past
20 years. Such linear relationships explain in part why
the amino acid signatures for AMPs from bacteria,
amphibians, insects, and plants remained the same from
2008 to 2020 (Wang, Zietz, et al., 2022).

Figure 3 shows the dot plots of net charge or hydro-
phobic percentage (Pho) as a function of peptide length
for all the peptides in the APD. In the case of net charge,
the dots were mostly condensed below 50 amino acids
and scattered between +30 to 12. Interestingly, short
peptides had a low and narrower net charge range
(Figure 3A). In contrast, they displayed a wide hydropho-
bic range. Peptides with a Pho greater than 80% were lim-
ited to those with less than 20 residues. The hydrophobic
content then shrinked to �30% with an increase in pep-
tide length (>100 aa; Figure 3B). Examples for AMPs
with 0% hydrophobic residues are special peptides. SAAP
fraction 3, a surfactant-associated anionic peptide, con-
sists of a string of aspartic acids (Brogden et al., 1996),
while shepherins comprised primarily glycine and histi-
dine residues (Park et al., 2000). These are amino acid-
rich peptides where at least one amino acid is greater
than 25% in the sequence (Decker et al., 2022). Only two
cyclic peptides, baceridin, and lugdunin, are entirely
hydrophobic (100%; Niggemann et al., 2014; Zipperer
et al., 2016). When the peptide length was increased from
0 to 50, there was a clear increase in net charge
(Figure 3A) but decrease in hydrophobic percentage
(Figure 3B). In the extreme of a low net charge, some
peptides such as amphibian temporins (Conlon

FIGURE 2 3D plot of the increase of antimicrobial peptides

from bacteria, archaea, protists, fungi, plants, and animals over

20 years from 2003 to 2023 in the APD. Animal data constitute the

colored mountain, while AMPs from bacteria, archaea, protists,

fungi, and plants form the valley.
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et al., 2009; Mangoni, 2006) tend to have a high hydro-
phobic percentage. These hydrophobic peptides, includ-
ing the two extremes (baceridin and lugdunin), are
usually active against gram-positive bacteria such as
S. aureus but not gram-negative bacteria such as Escheri-
chia coli.

2.2 | Data re-annotation for
antimicrobial development

2.2.1 | Systematic annotations of
antimicrobial activity data

Initially, the APD included very limited activity data by
considering the challenging nature in comparing the
activity of AMPs conducted in different laboratories using
different methods and conditions. So, AMPs were qualita-
tively labeled as antimicrobial (antibacterial, antiviral,
antifungal, and anticancer) in the first version of the
APD (Wang & Wang, 2004). With the increased research
on microbiota that requires selective peptide antibiotics,

it became necessary to more completely annotate the
activity of AMPs. This is because microbiota is so elegant
that even one invading pathogen can tilt its balance.
Hence, a peptide in principle can be tailored to correct
the imbalance if it can perform a targeted elimination
(Kim et al., 2019; Li et al., 2021). In 2021, the APD cre-
ated a complete activity annotation system based on our
previous definition for active and inactive peptides
(Wang, Zietz, et al., 2022). This annotation system
enables a more complete record of the reported activity
data for each AMP. In this system, peptide activities were
classified into three categories: active peptides
(MIC <100 μM), inactive peptides (MIC > 100 μM), and
uncertain (activity greater than an MIC value less than
100 μM) (summarized in Table 1). Active AMPs were
annotated in the “Additional Information” using the
abbreviated form of scientific names (e.g., E. coli,
S. aureus, and C. albicans). When E. coli was entered into
“Additional Information” followed by “search, we
obtained 1834 AMPs active against E. coli. In contrast,
peptides that did not kill a specific microbe
(MIC > 100 μM) are annotated in a different format so
that this set of inactive peptides could be searched
(e.g., E.coli, S.aureus, and C.albicans, no space). For
example, we obtained 218 peptides when we searched the
database using E.coli (Table 1). Those AMPs with uncer-
tain activity (e.g., 100 μM > MIC > any value) were
annotated in a third format (e.g., E-coli, S-aureus, and C-
albicans). In this way, all the three types of peptide activi-
ties could be searched in the APD via the “Additional
information” field. Table 1 tabulated the three types of
peptide activities annotated to date against E. coli,
S. aureus, and C. albicans. Any other microbes such as
P. aeruginosa can be searched in the same manner
as long as its activity has been entered into the APD.

There are more data for E. coli, S. aureus, and
C. albicans in the APD due to wide use of these strains in
antimicrobial screening. Hence, we first compared the
amino acid signature of active and inactive AMPs against
E. coli. In the case of helical peptides, those active against
E. coli had clearly higher contents of lysine and arginine,
although glycine and valine were only slightly higher. In
contrast, those helical AMPs with very weak or no activ-
ity against E. coli possessed higher contents of alanine,
phenylalanine, isoleucine, leucine, and serine (summa-
rized in Table 2). Clearly, cationic amino acids play an
important role in killing E. coli. We then compared AMPs
active and inactive against S. aureus. There appeared an
opposite requirement for S. aureus. Active helical AMPs
showed higher contents of phenylalanine, glycine, and
leucine, while those S. aureus-inactive helical AMPs were
higher in lysine and alanine (Table 2). These amino acids
were derived from the amino acid plots (Figure S1).

FIGURE 3 Scatter dot plot of net charge (A) and hydrophobic

percentage (B) for all the antimicrobial peptides in the APD as a

function of peptide length. The upper length limit (200 amino

acids) was defined by the APD to include human antimicrobial

proteins. This plot reveals the expansion in net charge and

shrinkage of hydrophobic content with the increase in peptide

length.
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These plots support the contention that hydrophobic
amino acids are critical in inhibiting gram-positive
MRSA. This database finding is consistent with the obser-
vation from structure–activity relationship (SAR) studies
(Li et al., 2006; Wang et al., 2018). Interestingly, helical
AMPs active against C. albicans resembled those against
E. coli since they also had higher contents of lysine and
arginine. Such a feature differed from those C. albicans-
inactive peptides with higher percentages of hydrophobic
leucine and alanine.

We then compared active and inactive AMPs with
beta structures. A consensus picture emerged irrespective
of the pathogen type: E. coli, S. aureus, or C. albicans.
Such a similarity for β-sheet AMPs may be attributed to
the broad-spectrum activity of defensin-like peptides. The
active groups with a beta structure were abundant in cys-
teine, glycine, and arginine, three critical amino acids in
defensins (10.5% R for 379 defensins). However, the three
dominant amino acids in the inactive groups were cyste-
ine, glycine, and threonine (Table 2). The low content of
arginine (4.3% or less) might be one of the major reasons
for the lack of activity of the inactive group since cysteine
and glycine are the two common amino acids required
for β-sheet structure formation.

2.2.2 | Hemolytic and nonhemolytic
peptides

The development of AMPs into a new generation of anti-
biotics requires that the peptide do a targeted pathogen
elimination without harming the host (Bobde et al., 2021;
Hancock et al., 2021). Hemolysis is frequently utilized to
gauge peptide cytotoxicity. Hemolytic peptides were
annotated in the first version of the APD (Wang &
Wang, 2004). Our statistical analysis at that time revealed
a higher hydrophobic content for hemolytic peptides
than other antimicrobial groups. To better understand
the differences between hemolytic and nonhemolytic
AMPs at the amino acid level, the APD is in the process
of re-annotating the peptides by defining criteria for
“hemolytic” and “non-hemolytic” as well. Hemolytic pep-
tides show a clear dose-dependent hemolysis with a 50%
hemolytic concentration (HC50) less than 100 μM, while
nonhemolytic peptides show no sign of hemolysis at least
at 10-fold of MIC and have a HC50 value greater than
100 μM. In many cases, however, a detailed hemolytic
curve is not provided in published papers and only HC50

may be available for this estimation. Like antimicrobial
activity, the APD is fully aware of the challenge in the

TABLE 1 A full antibacterial activity annotation system in the APD.

Activity type Active Inactive Uncertain

Definition MIC < 100 μM MIC > 100 μM For example, MIC > 16 μM but not > 100 μM

Microbe annotation and search formata E. coli, or S. aureus E.coli, or S.aureus E-coli, or S-aureus

Escherichia coli 1834 218 62

Staphylococcus aureus 1744 161 88

Candida albicans 806 163 31

aData obtained from the “Additional information” field of the database (https://aps.unmc.edu) as of July 2023 using the defined search format. Although only
three commonly used microbes were utilized here to illustrate the status of data annotations, any microbe species can be searched in the same manner.

TABLE 2 Amino acid use in desired and undesired antimicrobial peptide groupsa.

Group Desired Undesired Data source

1 Peptide target Antibacterial Non-antibacterial

E. coli K, R, V A, F, I, L, S Figure S1A

S. aureus F, G, L, P A, K, Y Figure S1B

2 Peptide scaffold Non-hemolytic Hemolytic

UCLL V, W, (P), Q, (N), K, R I, L, (F), A, G, S, (H) Figure S2A

UCSS M, (W), G, N, D, H, R I, (V), (L), F, C, (A), P, T, K Figure S2B

3 Peptide scaffold Salt-insensitive Salt-sensitive

UCLL F, G, P, H, R A, S, Q, N, E, D, K Figure S3A

UCSS V, L, T, S, N, H, R I, A, P, Q, E, D, K Figure S3B

aSignificantly different in bold, and smaller changes in parenthesis. Data obtained from the APD (https://aps.unmc.edu) in July 2023. Figure S can be found in
the Supporting Information section of this article.
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heterogeneity of hemolytic data, which can be influenced
by numerous factors, including protocols, blood cell types
(e.g., human and nonhuman), container (Eppendorf
tubes or microplate/type), blood and peptide freshness,
cell concentration, and incubation time. Preferred amino
acids for hemolytic and nonhemolytic AMPs currently
annotated in the APD are provided in Table 2 as well.
These amino acids were derived from the amino acid
plots of these two groups (Figure S2). It is evident that
hemolytic peptides from the linear class (UCLL) pos-
sessed higher contents of hydrophobic amino acids,
including isoleucine, leucine, phenylalanine, and alanine.
In contrast, the non-hemolytic group showed higher con-
tents of lysine, arginine, tryptophan, valine, glutamine,
and asparagine. We also compared the two sidechain-
linked AMP (UCSS) groups with hemolytic and non-
hemolytic activities. Again, there were more hydrophobic
residues I and F in the hemolytic group than the those in
the nonhemolytic group. The nonhemolytic group had a
substantial percentage of glycine, asparagine, and argi-
nine. It appeared that arginine was higher in both nonhe-
molytic groups irrespective of the structural scaffolds.
These comparisons may inspire the design of nonhemoly-
tic peptides.

2.2.3 | Consensus amino acids in salt-
sensitive and insensitive antimicrobial peptides

It is known that some AMPs could lose antimicrobial
activity in the presence of physiological salts (Huang
et al., 2007; Krishnakumari et al., 2013). There are some
studies in the literature aiming at designing AMPs resis-
tant to salts (Chu et al., 2020; Dou et al., 2017; Mishra
et al., 2019). However, a global picture for salt resistance
of AMPs was lacking. The APD started to pay attention
to this information before 2018, especially after the suc-
cessful extension of our in silico filters to in vitro filters
(Mishra et al., 2019). The in vitro filters include salt toler-
ance, pH sensitivity, and serum binding, which are
known hurdles that might cause a drop or even loss of
peptide activity. While data are accumulating, we docu-
mented herein the amino acid differences between the
salt-sensitive and insensitive groups of AMPs currently
annotated in the APD. Salt-sensitive AMPs changed their
MIC value four-fold or more in the presence of 150 mM
NaCl, while the MIC values of salt-insensitive peptides
remained constant (not more than two-fold change in
MIC). We narrowed down our database search to AMPs
less than 50 amino acids and further split them into two
structural classes: UCLL and UCSS based on our univer-
sal peptide classification (Wang, 2022). The results are

included in Table 2. The UCLL class consisted of linear
AMPs (22 salt-insensitive vs. 9 salt-sensitive), which
might form amphipathic helices upon interaction with
bacterial membranes. Typical examples in the UCSS class
are defensins (20 salt-sensitive vs. 6 salt-insensitive). In
the case of the linear group, both arginine and histidine
were higher in the salt-resistant group (i.e., salt-
insensitive in Table 2) than in the salt-sensitive group.
Likewise, these two amino acids were also more abun-
dant in the salt-resistant sidechain-linked group than the
salt-sensitive group. In addition, the salt-sensitive AMPs
shared a consensus set of abundant amino acids (A, Q,
E, D, and K). These amino acids were derived from the
amino acid signature plots for the respective groups
(Figure S3). It appears that there was a consensus in argi-
nine preference irrespective of the peptide structural
class. Such a discovery may inspire the design of salt-
resistant AMPs.

2.3 | New light on natural antimicrobial
peptides by comparison with globular
proteins and transmembrane proteins

The first version of the APD enabled statistical analysis of
AMPs. When the percentages of the 20 amino acids with
different antimicrobial activities were plotted, it became
clear that some amino acids (e.g., cationic K and R) are
more abundant than other amino acids (e.g., acidic D
and E). This explains why most of the AMPs in the APD
are cationic (94.4% with net charge ≥0). However, we
have never compared the amino acid composition of nat-
ural AMPs with that of globular or transmembrane pro-
teins. To facilitate this comparison, we made a new
addition to the APD by manually annotating relevant
peptide entries with a searchable indicator “natural
AMPs,” which includes all peptides from the six life king-
doms (Figure 1; Wang et al., 2016). This led to a total of
3090 natural AMPs when we conducted this search in the
name field using “natural AMPs.” This list did not
include 208 natural peptides without activity data (anno-
tated as DXWZ), which were collected into the APD prior
to the definition of data registration criteria. We then
compared the amino acid compositions of natural AMPs
with globular and transmembrane proteins (not shown;
Gromiha et al., 2005). Lysine, glycine, and cysteine of
natural AMPs on average were higher than those in
either globular or transmembrane proteins (which are
similar). These three residues resulted from a combina-
tion of dominant amino acids in α-helical (K and G) and
β-sheet AMPs (G and C) in this database (Mishra &
Wang, 2012a; Wang & Wang, 2004). To gain additional
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understanding, we also compared the amino acid compo-
sition of globular proteins with those of AMPs from bac-
teria, plants, and amphibians. In the case of bacterial
AMPs (Figure 4A), cysteine and glycine were clearly
higher, while leucine, arginine, aspartic, and glutamic
acids were much lower. Cysteine in plant AMPs was
extremely high due to the fact that these peptides fre-
quently form disulfide bonds (Figure 4B). In addition,
lysine, arginine, and glycine were slightly higher while
aspartic and glutamic acids were lower. In the case of
amphibian AMPs, residues alanine, glycine, leucine, and
lysine became dominant (Figure 4C). These are the
known frequently occurring amino acids we initially dis-
covered in the APD2 paper (Wang et al., 2009). Beyond
these amino acids, threonine was also clearly lower, but
isoleucine was higher. In addition, tyrosine, arginine, glu-
tamine, glutamic, and aspartic acids were extremely low
compared to those in globular proteins. It appeared that
these amino acids were less preferred in nature's design
of amphibian AMPs. Thus, those more abundant amino
acid signatures differed: A, C, G, and W for bacterial
AMPs, C, G, and R for plant AMPs, and A, C, G, K, and L
for amphibians (Figure 4 arrows). While C and G were
higher in all the three AMP groups than that in globular
proteins, D and E were consistently lower. Also, the use
of tryptophan differed: more in AMPs from bacteria than
from amphibian. Our new results obtained herein pro-
vided additional insight into AMP design in different life
kingdoms or classes since amino acid compositions play
an important role in determining peptide structure and
activity spectrum (Maasch et al., 2023; Mishra &
Wang, 2012a; Mishra & Wang, 2012b; Wang, Vaisman, &
van Hoek, 2022).

2.4 | A new peptide group is created in
the APD for machine learning-predicted
antimicrobial peptides: Amino acid
landscapes of natural, predicted, and
synthetic AMPs

Since the first single-label prediction of AMPs by
machine learning in 2007 (Lata et al., 2007), the APD has
also been utilized for multi-label prediction (Xiao
et al., 2013) based on a variety of peptide functions/
activities annotated therein (Figure 1). Machine learning
prediction is becoming popular these days (Maasch
et al., 2023; Wang, Vaisman, & van Hoek, 2022; Xiao
et al., 2013). It opens a new avenue for AMP discovery.
Even encrypted antimicrobial peptides from extinct
paleoproteomes were predicted by this technology in
2023 (Maasch et al., 2023). Hence, the APD cannot ignore
new peptides from these predictions, especially those pre-
dicted from genomes. As we do not have enough knowl-
edge to judge to what extent these predicted sequences
correspond to natural AMPs, we decided to create a new
group “predicted” for these peptides if their antimicrobial
activity had been proved experimentally
(i.e., MIC <100 μM). Note that the predicted AMPs in the
APD also include those sequences predicted by other
methods, such as sequence alignment. For instance,
FALL-39, initially included in the LL-37 entry (AP00310),
now occupies an independent entry (AP03566) as a clas-
sic member of the predicted family based on the highly
conserved precursor sequences of cathelicidins
(Agerberth et al., 1995). FALL-39 differs from LL-37 by
two residues and ALL-38 by only one residue. Both LL-37
(other tissues such as blood neutrophils and skin) and

FIGURE 4 Comparison of amino

acids in globular proteins (gray),

transmembrane proteins (TMB, black),

and antimicrobial peptides from

(A) bacteria (373 entries, gold), (B) plants

(281, green), and (C) amphibians (1067,

purple) from the APD. Abundant amino

acids of AMPs are pointed by arrows.

This plot indicates that AMPs were

rather different from both globular and

transmembrane proteins, which have

comparable amino acid compositions.
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ALL-38 (from human reproductive system) are isolated
AMPs (Gudmundsson et al., 1996; Sørensen et al., 2003).
Likewise, one of the two predicted forms of murine
cathelicidin differs from the isolated one by only one resi-
due (Pestonjamasp et al., 2001). These results indicate
that predictions based on sequence alignment can reach
a remarkably high accuracy for cathelicidins (95%–97%).
At the moment, we do not have data for a similar accu-
racy comparison of machine learning-predicted peptides
with natural AMPs. By the time this manuscript was
completed, the APD has registered 194 peptides predicted
by different methods, mostly AI predicted.

We then asked how the predicted peptides were devi-
ated from natural AMPs. Figure 5 compares the averaged
amino acid composition profile of natural AMPs with
that of predicted peptides in the APD. The overall trend
was remarkably similar, indicating heavy dependence of
the positive training data of natural AMPs we obtained in
the past 20 years. However, residues K and R were much
more abundant in predicted AMPs (blue), while residues
D and E were lower. Meanwhile, hydrophobic residues F,
I, L, and V were higher, but A and C were lower than
those in natural AMPs. Such a combined tilt toward
larger hydrophobic and basic amino acids by machine
learning might have increased the success of predicted
AMPs. A lower C implied an emphasis of the current pre-
dictions on linear sequences.

Synthetic peptides are human-made AMPs to under-
stand structure–activity relationships or to improve anti-
microbial therapeutic potential. They form a separate
group in the APD from the birth of the database in 2003.
Due to our previous focus on natural AMPs, not all syn-
thetic peptides have been collected yet. Among the
121 synthetic AMPs in the APD, many were designed
using amino acids known to be important for peptide
activity. In addition, some synthetic AMPs have been
optimized for high activity and low toxicity. Library
screen and SAR studies are two common in vitro

evolution methods to make the candidate peptide more
potent and less toxic (Blondelle et al., 1995; Deslouches
et al., 2005; Jacob & Zasloff, 1994; Lakshmaiah Narayana
et al., 2020; Loose et al., 2006; Mishra et al., 2019). For
instance, combi-1 and combi-2 are among the best pep-
tides discovered from combinatory libraries (Blondelle
et al., 1995), while WLBU2 is obtained from a de novo
design based on valine and arginine (Deslouches
et al., 2005). Likewise, the two best peptides D28 and D51
from the grammar approach are found in the APD
(Loose et al., 2006). Horine and verine are optimal candi-
dates identified from a family of database-designed pep-
tides (Lakshmaiah Narayana et al., 2020). We were
curious how the plot for these synthetic peptides looked
like. Remarkably, residues I, L, F, W, K, and R were high-
est, while residues A, G, N, S, and T were lowest (gold in
Figure 5) compared to both predicted and natural AMPs.
Hence, a select set of basic and hydrophobic amino acids
was elevated to the highest level in the synthetic peptides
in the current APD. Again, residue C was lowest in syn-
thetic peptides, implying a preference of linear peptides.
M was lowest to avoid loss of activity from auto-
oxidation.

It is interesting that the amino acid composition of
the predicted AMPs on average lay between those of nat-
ural and synthetic AMPs (Figure 5). Since both natural
and synthetic peptides in the APD had usually been
included in machine learning predictions, they might
have set the lower and upper parameter bounds for such
predictions. The picture is clear that natural AMPs laid
the foundation for both synthetic and predicted peptides,
which had higher cationic (K and R) and hydrophobic
amino acids (I, L, F, and W) for potency. This was
achieved by decreasing small amino acids (A, G, and S).
W is low in natural AMPs (Figure 5) but has been widely
incorporated into synthetic AMPs, especially short ones
(Blondelle et al., 1995; Chan et al., 2006; Cherkasov
et al., 2009; Lakshmaiah Narayana et al., 2020). We

FIGURE 5 Amino acid landscapes

of 3090 natural AMPs (green),

190 predicted AMPs (blue), and

121 synthetic peptides (gold) registered

in the APD as of April 2023. These

peptide classes can be searched in the

name field of the APD by entering

“natural AMPs,” “predicted,” and
“synthetic,” respectively. This plot
indicates that natural AMPs and

synthetic peptides in the APD set the

lower and upper parameter bounds for

shallow and deep learning predictions.
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conclude that the classic amphipathic concept is deeply
rooted in the prediction and design of AMPs.

3 | CONCLUSION AND FUTURE
DIRECTIONS

The APD is a founding database for the AMP field first
constructed based on the LAMP software bundle, includ-
ing Red Hat Linux operating system using the freeware
Apache web server, MySQL relational database manage-
ment system, and PHP script language (Wang &
Wang, 2004). It built numerous database features for the
first time, including unified classifications of AMPs in
numerous ways (Figure 1) (Wang, Zietz, et al., 2022).
Consequently, the APD is widely utilized in research and
education (Wang et al., 2016). To facilitate education, the
APD has put information in order by establishing multi-
ple educational web pages, including peptide discovery
timeline, glossary, nomenclature, classification, structural
determination, tools, and web links. As an educational
event, a hybrid symposium entitled “Antimicrobial Pep-
tides: Yesterday, Today and Tomorrow” will be held in
Omaha, Nebraska, USA on October 6, 2023.

To further advance AMP research, this study has uni-
fied the AMPs from bacteria, archaea, protists, fungi,
plants, and animals under a common umbrella “natural
AMPs” (searchable). Our new annotation facilitated a
comparison of natural AMPs with globular proteins, pro-
viding novel insight into the amino acid use in natural
AMPs in general and in bacteria, plants, and amphibian
AMPs in particular. Different from globular proteins
(usually > 100 amino acids), which automatically fold
under physiological conditions, many AMPs
(usually < 50 amino acids) are forced to a structural scaf-
fold via disulfide bond formation. A majority of linear
AMPs are disordered in aqueous solution and only fold
into an amphipathic helical structure upon binding to
membranes. The amphipathic concept has been dominat-
ing the field and widely utilized as a general principle to
design and improve AMPs for decades. However, some
linear peptides (e.g., proline-rich AMPs) may also adopt a
non-helical structure after association with ribosomes
(Gagnon et al., 2016).

This study also expanded the scope of AMPs in the
APD by creating a new group predicted by machine
learning followed by antimicrobial validation. However,
peptides predicted by other methods such as sequence
alignment are also included in this group. The similarity
in amino acid landscapes (Figure 5) underscores that the
natural AMPs accumulated in the APD over 20 years
have laid the foundation for machine learning prediction.
It is interesting to note that, man-made peptides, be they

predicted or designed, are deviated from the baseline set
by natural AMPs due to higher cationic and hydrophobic
amino acid incorporation to enhance antimicrobial
potency. Synthetic peptides in the APD, despite a small
set, have been designed and optimized to varying degrees,
thereby setting the parameter upper bound for peptide
prediction.

Our data re-annotation has generated new knowledge
for AMPs. Cationic amino acids are important for antimi-
crobial activity of helical peptides against gram-negative
E. coli, while leucine, phenylalanine, and glycine are
more abundant in helical peptides active against gram-
positive S. aureus, including MRSA. This is in line with
our previous discovery that high hydrophobicity is impor-
tant for anti-MRSA peptides (Mishra et al., 2019). Along
this line, there are extremes where some anti-MRSA
AMPs are entirely hydrophobic, indicating charged
amino acids are not a must for killing MRSA. These
hydrophobic extremes, together with hydrophilic
extremes (e.g., poly-aspartic AMPs), provide exceptions to
the amphipathic concept. Arginine plays a critical role in
β-sheet AMPs broadly active against E. coli, S. aureus,
and C. albicans. Among the multiple arginines in a cen-
tral peptide of human LL-37, only the sidechain of R23
can more effectively interact with anionic lipid head-
group (Wang, 2007). Arginine is important for antiviral
activity as well (Wang et al., 2010; Wang & Wang, 2004).
This study suggests that arginine might be useful in con-
ferring salt resistance to AMPs (Table 2). In certain cases,
arginine may also make the peptide more hemolytic to
human erythrocytes as it is more hydrophobic than lysine
(Mishra, Lushnikova, et al., 2017). While the first version
of the APD uncovered higher hydrophobic contents for
hemolytic AMPs (Wang & Wang, 2004), our data re-
annotation here reveals that high hydrophobicity for
hemolytic peptides results from amino acids F, I, and
L. Hence, this study has enriched our knowledge on the
design of novel AMPs.

Before closing, it is also useful to point out some pos-
sible directions for AMP discovery. In the APD3 paper,
we projected the number of natural AMPs at least in the
million range if each of the 1.3 million named species
can produce at least one such peptide (Wang et al., 2016).
After re-annotation, the APD contained 3090 “natural
AMPs” (with activity data) out of a total of 3623 peptides
as of April 2023. Therefore, the AMP field has a long way
to go to reach 1 million natural AMPs. Future studies
may explore new AMPs in those under-represented life
kingdoms, including bacteria, archaea, fungi, protists,
and plants (Figure 2 valley). Indeed, scientists are discov-
ering new AMPs from bacteria in a variety of environ-
ments, be they deep in the sea, buried in soil, or hidden
in animal guts (Hansen et al., 2020; Hatziioanou
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et al., 2017; Ling et al., 2015; Ma et al., 2022). We antici-
pate the application of various methods ranging from the
classic isolation and purification to machine learning in
future peptide discovery. With the discovery of additional
AMP members from those under-represented kingdoms
and further development of artificial intelligence algo-
rithms, we anticipate a great advance in peptide predic-
tion and design toward future antibiotics, food
preservatives, and “green” pesticides. To restore imbal-
anced microbiota, species-specific AMPs are of top inter-
est. This is a challenging task since it requires the use of
many more relevant bacterial strains in antimicrobial
assays to define the activity spectrum of a particular can-
didate before use. Our new data annotation scheme
(Table 1) has reached a more complete record of antimi-
crobial activity data. This will facilitate activity spectrum
matching for potential therapeutics. Based on the current
knowledge, bacteriocins (i.e., bacterial AMPs) constitute
excellent candidates to correct the imbalance of micro-
biota because of their frequently observed species-specific
antimicrobial activity. Therefore, we anticipate that
future AMP research will pay more attention to bacterio-
cins with a variety of structural scaffolds. Indeed, several
AMPs currently in clinic use or for food preservation are
made by microbes (Mishra, Reiling, et al., 2017).

In summary, the APD has been evolving for 20 years
with continued updates and refinement. This study has
further expanded the landscape of AMPs registered in the
APD and improved its capability for antimicrobial devel-
opment. With further developments in the future, the
APD will continue to serve the antimicrobial research
community.
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