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Abstract   

Drought is currently a serious threat for farming especially in rice cultiva-

tion, due to its substantial water requirements throughout its lifecycle. 

Drought is one of the major environmental constraints disrupting the 

growth and yield of rice plants, affecting them at physiological, morphologi-

cal, biochemical, and molecular levels. Global climate change exacerbates 

this issue, leading to substantial economic losses. As rice is a major food 

crop worldwide, the demand for rice production is increasing in tandem 

with the expanding human population. Consequently, it has become imper-

ative to utilize drought-prone areas for agriculture and develop drought-

tolerant rice genotypes. In addition to conventional breeding methods, the 

application of multi-omics approaches proves most effective in meeting the 

need to enhance drought tolerance in rice plants. Protective mechanisms, 

such as morphological adaptation, physiological acclimatization, cellular 

adjustments, and antioxidant defense, play pivotal roles in helping plants 

overcome drought stress. Plant-microbial interactions are important for 

plants to overcome drought-induced adversities. Furthermore, applications 

of conventional approaches, omics approaches and nanotechnology are 

very promising for generating climate smart agriculture. Our aim in this  

review is to focus on drought stress tolerance in rice including drought-

tolerant rice genotypes, their adaptation mechanisms, the unveiling the 

genes, transcription factors, microRNAs (miRNA) involved, microbial assis-

tance, and exploring approaches to mitigate drought stress in rice plants. 

The present review might throw some light on understanding the mecha-

nism of drought stress tolerance in rice, including its molecular crosstalk 

and biochemical dynamics, for future researchers.   
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Introduction   

The global population is projected to increase from the current 7.6 billion to 
9.8 billion by 2050 (1). Food production needs to increase by 70% by 2050 to 

keep pace with the population explosion (2). It has been observed that   

population growth is much higher in poorest country compared to rich 

country. According to a report, increment of population density from      

1950-2010 in a poorest country was 330% whereas it was only 50% in 

wealthier countries (3). In the context of the present day, drought is one of 

the major constraints on agriculture (4). Drought is a natural phenomenon 
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resulting from the combined effect of climatic, environ-

mental, and hydrological forces, leading to insufficient 

rainfall for agricultural production over long periods of 

time (5). Irregular, inadequate, and unpredictable rainfall 

significantly reduces the yield of rainfed lowland rice (6). 

Drought stress causes cell dehydration, resulting in         

osmotic stress and electrolyte imbalance (7). Drought cell 

also leads to a significant decrease in relative water con-

tent, plant growth, chlorophyll, and carotenoid contents 

while increasing the production of reactive oxygen species 

(ROS), which can cause oxidative damage (7, 8). 

 Typically, water is absorbed from the soil by the 

roots, maintaining the soil-plant-atmosphere continuum, 

as depicted in Fig. 1.  

 During drought stress, soil water potential is rela-

tively low compared to the plant body, which is the        

primary cause of plant cell dehydration. Drought stress 

triggers numerous changes in plants, including morpho-

logical, physiological, and biochemical dynamics, and also 

leads economic losses (9, 10). An overall understanding of 

morphological-physiological-biochemical changes and 

metabolic pathways in plants in response to drought 

stress, along with drought stress coping strategies (9-11), 

is diagrammatically presented in Fig. 2. 

 In response to drought stress, plants are catego-

rized into three broad groups:  tolerant, avoiders, and sen-

sitive, as stated in Fig. 3. Avoiders encompass three       

classes: water savers, water spenders, and drought escap-

ers.  

 Globally, more than one-third of the total cultivated 
area is under drought stress (12). In Asia approximately   

8.0 × 106 hm2 of upland and 3.4 ×107 hm2 of rainfed lowland 

rice have been reported to be affected by drought stress 

(13). 

 Rice plants due to their limited ability to absorb soil 

water beyond a depth of 60 cm, generally exhibit lesser 

resilience to water-scarce environments compared to oth-

er cereals (14). Drought stress is a significant factor ham-

pering the overall plant growth and development,      

affecting plant physiology, biochemistry, reproduction, 

and crop yield (15). Drought stress can severely hinder rice 

plants growth, resulting in substantial economic losses 

during the reproductive stage (48-94%) and grain-filling 

stage (90%) (13, 16). For instance, the application of 30% 

polyethylene glycol-6000 (PEG6000) for 120h has been  

reported to reduce heading rate by 85-97% of rice plants 

(17). Prolonged drought stress has been reported to     

hamper crop yield by affecting stages like flowering and 

grain filling (15). 

 Drought stress significantly impacts plant nutrient 

availability (18). Both nitrogen (N) and phosphorus (P) are 

crucial for plant growth, and drought stress (18) has the 

potential to disrupt ecosystem N and P cycles. Studies 

have shown that drought stress can hinder plant growth 

by affecting the uptake, transport, and redistribution of N 

and P (19). As soil moisture levels decrease, there is a nota-

ble decline in N and P uptake by plants (18). Additionally, 

under drought stress conditions, plants can experience 

increased N loss, although there have been reports of a 

positive induction of the N:P ratio in plants (18). N and P 

are very important macronutrients to alleviate the adverse 

effects of drought stress. Application of P has also been 

reported to decrease drought stress effects by enhancing 

water uptake through roots, net photosynthetic rate, and 

leaf water content (20). Recovery of P is very important for 

plant nutrition. Regeneration of nutrients by biochar is a 

widely used and promising method (21). Biochar activated 

with divalent cations has been demonstrated as an        

important agent for producing phosphorous compound 

useable for plant nutrition (22, 23). In agriculture, biochar 

is an important agent to promote overall farming produc-

tivity by improving soil fertility, plant nutrition, and plant 

growth (24). Moreover, application of raw biochar to soil 

has been proven to ameliorate drought stress (15% rough-

ly) (24). 

 Undoubtedly, rice is one of the world’s most vital 

food crops (25). More than 50% of the global population 

solely relies heavily on rice to extenuate their daily caloric 

requirements (26). 

 Therefore, the development of drought-tolerant 

rice varieties is of paramount importance to ensure food 

security (27). Over the past two decades, scientists from 

Bangladesh, India, and the Philippines have made signifi-

cant strides in creating drought-tolerant rice accessions. 

Bangladesh has produced the highest number of drought-

tolerant 'Aus' accessions, while India leads in 'Indica'     

accessions (12). Table 1 highlights some of the key drought

-tolerant rice genotypes. 

 In response to drought stress, various physiological, 

biochemical, and molecular changes are activated in 

plants to lead to drought stress tolerance (15). Different 

regulatory factors, including genes, proteins, and tran-

scription factors (12, 36-56) have been reported to play 

drought  tolerance roles in rice (Table 2).  

 Moreover, studies have revealed the investment of 

plant growth-promoting microbes (PGPMs) in drought 

stress tolerance in rice (57). 

Fig. 1. Soil-plant-atmosphere continuum during normal condition and direc-
tion of water movement within plant cell under normal and drought stress 
conditions.  
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Fig. 2. Morphological-physiological-biochemical changes and metabolic pathways in plants in response to drought stress along with drought stress coping strate-
gies (FAS, R AcCoA and ACP represent fatty acid synthesis, regulate, acetyl CoA and acyl carrier protein respectively. ‘=’ sign indicates interrelationship between 
each other. Genetic factors regulate biochemical, physiological and morphological changes in plants in response to drought stress. Integrated action of genetic, 
biochemical, physiological and morphological traits help to promote drought stress tolerance in plants. To overcome drought stress, secondary metabolites 
(Flavonoids, Terpenes, Phenylalanine), sugar (Ribose, Glucose), sugar alcohol (Mannitol), amino acid (Threonine, Isoleucine) and fatty acid (16:0, 18:0) enhance in 
plants. Green upright arrows indicate increased level).  

Fig. 3. Classification of plants on the basis of drought stress tolerance and approaches of promoting drought stress tolerance in plants.  
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 Several studies have been conducted to explore rice 

drought tolerance comprehensively. This review aims to 

delve into topics including drought-tolerant rice geno-

types, strategies involving microfloral assistance in en-

hancing plant drought stress tolerance, and approaches 

for inducing drought tolerance in rice plants, as depicted 

in Fig. 2.  

Strategies: conferring drought stress tolerance         

Plant tolerance to minimum moisture levels in the cyto-

plasm (water content ~23% of fresh tissue) is defined as 

drought tolerance (58). Plant defense against water   scar-

city stress includes some subsequent stages like reduction 

in turgor-dependent activities, differential allocation of 

photosynthates towards the root, abscission of leaves due 

Drought tolerant rice plants Reported from 

Champavu, Chuvannamodan, Eravapandi, Karavala, Karnellu, Kallele, Kalladiyaryan, 
Karuthapandi, Karuthamodan,  Kettamodan, Kochuvithu, Mundon, Parapilarppan, Pa-
rambuvattan, Pookulathari, Thondi, Veliyan, Vellathan, Vykatharayan 

Reported from Kerala 

Sukhadhan-1, Sukhadhan-2, Sukhadhan-3, Sukhadhan-4 Reported from Nepal 

Sahbhagi Dhan Developed by IRRI- collaboration with different Indian institutions 

CR Dhan 801 Developed by ICAR-NRRI 

Bahuguni dhan-1,2 Reported from Nepal 

BRRI Dhan 56 Reported from Bangladesh 

Swarna Shreya Developed by ICAR-collaboration with IRRI, Phillipines 

CR Dhan 40, Anjali, Vandana Developed by CRURRS, Hazaribag 

IR 64 Drt 1 Developed by DRR, Hyderabad- collaboration with BAU, Ranchi 
and IRRI, Phillipines 

Shusk Samrat Developed by NDUAT, Uttar Pradesh 

Table 1. Important drought tolerant rice plants (28-35).  

Table 2. List of some regulatory factors involved in drought stress tolerance in rice (12, 36-56).  

Regulatory factors Functions 

OsITPK2 ROS homeostasis and reduction of the levels of inositol triphosphate. 

OsNAC5, OsNAC10 OsLEA3-1, OsbZIP46, OsbZIP71, 
OsWRKY47 Enhancement of grain yield in rice under drought. 

OsDREB1E, OsDREB1G, OsDREB2B Overexpression- significantly improves drought tolerance in rice. 

OsAHL1 Contributes drought avoidance and drought tolerance capacity in rice, overexpression of it provides 
multiple stress tolerance in rice. 

SNAC1 Overexpression- significantly improves drought tolerance in transgenic rice lines. 

OsAL Significantly associated with drought resistance in rice. 

OsPYL2, OsPYL10 Provide drought tolerance in rice through stomatal closure. 

OsNAC17 Provides drought tolerance in rice promoting lignin biosynthesis in roots and leaves. 

NOG1-1, NOG1-2 Minimize transpirational water loss and confer drought stress tolerance in rice. 

OsERF83 Confers drought tolerance in rice, establishes cross talk between abiotic and biotic stress. 

OsMFT1 Promotes drought tolerance in rice. 

OsbZIP66, osbMYB26 Overexpression- significantly improves drought tolerance in rice. 

OsP5CS Under osmotic stress, expression of it increases in drought tolerant rice lines. 

OsHSFA3 Provide drought tolerance by decreasing ROS level, water loss and modulating polyamine biosynthesis. 

ALM1, OsAPX2, OsCATC, OsPOX1 Confer drought stress tolerance by enhancing antioxidant enzymes activity. 

OsSPS1, OsSUS7 Enhance fructose, sucrose content to maintain osmotic balance during drought stress. 

TDC2, ASMT1 Under drought stress, enhance melatonin synthesis to promote drought tolerance in rice. 

MSRB2 Provides drought tolerance in rice by defending chloroplast targeted genes. 

CaMsrB2 Maintains subsequent quantum yield, boosts photosynthetic pigments and improve relative water con-
tent to confer drought tolerance in rice. 

HVA1 Through cell membrane protection provides dehydration tolerance in rice. 

OsEm1 Enhance drought tolerance and ABA sensitivity. 

OsLEA3-1 Overexpression- exerts drought tolerance in transgenic rice lines. 

OsABA8ox3 Controls ABA level and provides drought stress resistance in rice. 

https://plantsciencetoday.online


5 

Plant Science Today, ISSN 2348-1900 (online) 

to ethylene (C2H4), and closure of stomata due to abscisic 

acid (ABA). Various morphological, physiological, and   

molecular mechanisms have been found to impart 

drought stress tolerance in rice (12).  

Drought stress tolerance: morphological adaptations, 

physiological acclimatization and cellular adjustments       

Plants employ a range of protective mechanisms to over-

come drought stress, including morphological adapta-

tions, physiological acclimatization, and cellular adjust-

ments (58). Morphological adaptation involves delaying 

leaf senescence, enhancing green leaf area, decreasing 

leaf weight and size, promoting root length, thickness, and 

leaf covering with waxy material (59). Physiological        

acclimatization is another critical strategy, which includes 

reducing transpiration rates, enhancing plant storage and 

assimilation, decreasing stomatal conductance, improving 

soil water uptake by modifying root growth, and maintain-

ing osmotic balance (60). Essential plant traits encompass-

ing root, shoot and inflorescence traits, play a vital role in 

inducing physiological adjustments in crop plants against 

drought stress (12). Furthermore, an augmented harvest 

index, improved chlorophyll content, and lessened           

osmotic potential invoke cellular adjustments for drought 

tolerance in plants (59). 

 Under drought stress, changes in the morphological 

and physiological traits of the roots maintain the absorp-

tion of water and nutrients from the soil and regulate the 

normal physiology, growth, and metabolism of crop plants 

(61). Important root traits, including enhanced root depth, 

root density, small fine root diameters, increased root-to-

shoot ratio, and long specific root length, have been      

reported to adjust proper water balance in rice crops and 

sustain crop productivity under water scarcity (14, 62). 

 Certain tolerant rice cultivars, such as Chuanguy-

ou208 and Deyou4727, have demonstrated higher root 

number, root weight, and greater root length, along with 

increased expression of important enzymatic antioxidants 

such as superoxide dismutase (SOD) and peroxidase (POD) 

under drought stress conditions (63). Studies have indicat-

ed that the promotion of root length in rice is associated 

with an increase in ABA concentration in roots during 

drought stress (64). Rice genotypes with profound and 

prolific root systems, along with the ability to sprout many 

branches, show better adaptability in drought stress toler-

ance (14). Sometimes, plants maintain growth under     

severe water deficit conditions by increasing turgor pres-

sure in root cells (65). An increase in root hydraulic proper-

ties under drought stress in rice has been reported to be 

due to the development of a denser and deeper root      

system that improves water transport from the soil to the 

plant shoot (66). Furthermore, ammonium (NH4+) supple-

mentation has been shown to promote water uptake    

during drought stress by increasing root tip number and 

root length in rice seedlings (67). In addition to growth and 

metabolism, the initiation of new aerial organs is           

hampered by drought stress (68). Some important shoot 

traits, such as a significant reduction in leaf elongation 

rate, leaf rolling, reduced stomatal number, reduced leaf 

size, poor conduction system, and leaf surface cutiniza-

tion, have been observed under drought stress (69-71).  

 Reducing the rate of leaf expansion and leaf size 

induces physiological adaptations in crop plants that limit 

water loss from the plant body through respiration. Leaf 

surface cutinization also prevents excessive water loss 

from the plant body under drought conditions. Moreover, 

leaf rolling has been considered an important adaptive 

trait to overcome water deficit stress by maintaining water 

balance in crop plants (72).  

 Stomatal closure under water-limited conditions 

prevents excessive water loss from plants, inhibits the flow 

of carbon dioxide into leaves, and leads to the generation 

of excess electrons that produce reactive oxygen species. 

Reduction of photosynthesis during drought stress is at-

tributed to limited gaseous exchange, stomatal closure, 

low carbon dioxide (CO2) uptake, and reduced turgor pres-

sure (73). Furthermore, it has been reported that the loss 

of photosynthesis under drought stress results from the 

weakening of the photosynthetic machinery (73).  

 In response to drought, factors such as water availa-

bility in the root zone and the photosynthetic capacity of 

the leaves are the main causes of yield reduction in        

susceptible rice varieties (73). Certain genotypes with  

higher photosynthetic capacity delay senescence during 

stress periods and optimize photosynthetic capacity and 

nitrogen assimilation under water deficit conditions (74). 

Early-morning flowering is an important inflorescence trait 

to improve spikelet fertility under water-deficit conditions. 

qEMF3, an important quantitative trait locus of  Oryza offic-

inalis, has been reported to enhance the fertility of spike-

lets in rice (75). The proliferation of drought-tolerant rice 

requires in-depth investigation to develop important flow-

ering traits, although DST (drought and salt tolerance) pro-

teins in rice facilitate flowering under stress (75). 

 Another important trait is the role of phytohor-

mones in enhancing drought tolerance in rice cultivars. 

The regulation of phytohormones such as auxin (AUX), 

abscisic acid (ABA), cytokinin (CK), ethylene (C2H4), 

jasmonic acid (JA), and salicylic acid (SA) is directly or   

indirectly involved in abiotic stress tolerance in rice (14). 

Auxin plays a critical role in root development. Overex-

pression of the AUX/IAA genes, OsIAA6 and YUC genes has 

been reported to overcome drought stress in rice and sus-

tain plants in harsh environments (76, 77). ABA-dependent  

signaling pathways invoke Ca++ dependent signaling path-

ways, enhancing drought stress tolerance by modulating 

downstream drought-responsive transcription factors like 

NF-Y, NACs, MYB/MYC, and WRKYs (78), as illustrated in  

Fig. 4. Overexposure to JERF1, an ethylene response      

factor, has been shown to promote drought stress toler-

ance in rice seedlings, reduce water loss in transgenic rice, 

increase proline content in rice, and activate stress-

responsive genes (79). The exogenous application of JA 

has been reported to promote drought stress tolerance in 

crops by increasing the activity of antioxidant enzymes 

(80).  
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 In plants, osmoregulation is one of the essential 

processes to cope with stressful conditions. Osmoregula-

tory substances are organic or inorganic compounds that 

maintain osmotic adjustment without interfering with   

enzymatic activity in the plant body, thereby preventing a 

decrease in somatic potential. Osmolytes include proline, 

betaine, total free amino acids, sorbitol, mannitol, treha-

lose, phenolics, and soluble sugars, plays an important 

role in drought stress tolerance in plants (70). Proline, a 

non-protein amino acid, serves as a vital biochemical 

marker in response to drought stress by regulating         

stomatal conductance and leaf turgor (13, 81). Higher   

accumulation of proline has been reported to contribute 

to drought stress tolerance in rice under water deficit   

conditions (81, 82). Carbohydrates especially fructans, 

oligosaccharides, and disaccharides provide energy to 

plants for biomass retention and stress management (12). 

Additionally, macro and micronutrients (83, 84) also play a 

pivotal role in drought stress tolerance in crops (Table 3). 

Drought stress tolerance: molecular mechanisms         

To cope with environmental constraints, plants express 

various stress-responsive genes and synthesize functional 

Fig. 4. ABA dependent and Calcium (Ca++) signaling pathway to enhance drought stress tolerance in plants (Drought signal perception activates Abscisic acid 
(ABA) dependent pathway. ABA binds to its receptor PYR/PYL/ICAR and interferes Protein Phosphatase (PP2C) - Snrk2 Kinase binding. ABA binding with its recep-
tor activates ABA responsive elements to regulate downstream stress responsive genes. ABA also modulates the activities of different transcription factors (TFs) 
like, MYBs, NAC, MYCs, WRKYs and NF-Ys. In addition to that, drought stress produces Reactive oxygen species (ROS), ABA and activates Ca++ dependent signaling. 
Ca++ dependent signaling is also activated by ROS and ABA. ABA induced Ca++ dependent signaling induces stomatal closure. ABA again indirectly activates ROS 
generation. Moreover, Ca++ dependent signaling promote Ethylene/Jasmonic acid/ABA (ET/JA/ABA) responsive TFs by activating Mitogen activated protein kinas-
es (MAPks), Calcium dependent protein kinases (CDPKs) and CBL interacting protein kinases (CIPKs). ET/JA/ABA responsive TFs modulate AOX enzyme activity 
and inhibit ROS activity).  

Nutrients Functions 

Macronutrients 

Nitrogen Improves water use efficiency, improves nitrate reductase activity, enhances nitrate uptake and improves plant 
growth and yield. 

Phosphorus 
Enhances stomatal conductance, improves photosynthesis, maintains higher water relation, cell membrane stabil-
ity maintenance, improves plant root growth, maintains water potential in leaf, improves nr activity, enhances 

nitrate assimilation, enhances nutrient uptake and improves plant growth and yield. 

Potassium Maintains osmotic potential, maintains cell turgor, regulates stomatal conductance, improves photosynthesis and 
improves plant root growth. 

Calcium Maintains cell structure, activates plasma membrane ATPase   enzyme, plays role as Calmodulin to control plant 
metabolic pathway and improves plant growth and yield. 

Magnesium Increases root growth, increases root surface area, improves water and nutrient uptake, improves sucrose translo-
cation from leaves to roots, interferes photo-oxidative damage and ROS generation. 

Table 3. Macro and micronutrients involved in drought stress tolerance in crops (83, 84).  
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proteins (85). Different quantitative trait loci (QTL) are  

important in this regard. Notably, PUP1, DRO1 (DEEPER 

ROOTING 1), and important root QTLs are associated with 

phosphorus uptake, and root depth, respectively (86, 87). 

Several significant QTLs related to drought stress toler-

ance (12, 88, 89) have been identified in rice, and they are 

detailed in Table 4. 

 About 5000 and 6000 genes have been reported to 

be upregulated and downregulated, respectively, in rice 

after exposure to drought (90). They regulate biochemical, 

physiological, and molecular processes that enables 

plants to cope with water scarcity. Various regulatory    

factors like genes, proteins, and transcription factors,   

contribute to drought stress tolerance in rice by facilitating       

osmotic adjustment, hormone regulation, lignin synthesis, 

AOX defense, photosynthesis improvement, quantum yield 

maintenance, relative water content improvement, and 

cell membrane protection, as listed in Table 2.   

 ABA-dependent (Fig. 4) and ABA-independent      
(Fig. 5) regulatory systems for drought stress management 

include numerous gene and transcription factors (78).  

 The ABA-independent regulatory systems also     

invoke hormonal regulation to overcome drought stress 

(78). EcNAC67, the OsPYL/RCAR5 genes of the ABA-

dependent regulatory system, has been reported to inter-

fere with leaf rolling and promote higher root and shoot 

mass when  exposed to drought (91).  

Micronutrients 

Boron Reduces hollowing of stem, improves sugar transport, improves pollen formation and germination, reduces stunt-
ed appearance and improves floral retention. 

Copper Reduces leaves yellowing, overcomes stunted growth, enhances nitrogen metabolism and reduces dieback of 
twigs and stem. 

Zinc Enhances IAA production, enhances root growth, regulates hormonal level, interferes ROS generation by reducing 
the membrane bound NADPH oxidase, enhances AOX (CAT, POD and SOD) activity. 

QTLs Associated traits 

qDTY1.1, qDTY12.1, qDTY9.1A, qDTY6.1, qDTY2.2, 
DTY2.1, qDTHI2.3 Grain yield 

qDLR8.1, qLR9.1 Leaf rolling 

qDTR8 Transpiration 

qRWC9.1 Relative water content 

qLD9.1 Leaf drying 

qSF9.1 Spikelet fertility 

qHI9.1 Harvest index 

Table 4. Some important rice QTLs related to drought stress tolerance (12, 88, 
89).  

Fig. 5. ABA independent signaling pathway to enhance drought stress tolerance in plants.  
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 To combat drought stress, root morphological    

adaptations in rice have been linked to significant genes 

like OsDREB1F, OsDREB2B, and CYP735A (14). The investi-

gation of genes like AtDREB1A, OsDREB2A, EDT1/HDG11, 

OsMIOX, OsCPK9, and OsTPS1 has shown promising       

results in promoting the survival of transgenic rice by    

enhancing osmoregulation, stomatal regulation, enhanced 

photosynthesis, improved antioxidant enzyme activity and 

higher water use efficiency (12). miRNA, a type of small 

non-coding RNA, plays a crucial role in regulating gene 

expression at the post-transcriptional level during abiotic 

stress (92). The mechanism of miRNA is illustrated in Fig. 6.  

 Upregulation and downregulation of miRNAs have 

been observed in rice under drought stress (93). Several 

miRNAs involved in drought stress tolerance in rice have 

been reported to date, and some of them are listed in   

Table 5. 

Drought stress tolerance: antioxidant (AOX) defense         

Reactive oxygen species (ROS), a natural by-product of 

aerobic metabolism, can cause cellular damage and cell 

death in plants. Various abiotic and biotic stresses have 

been reported to stimulate ROS production (12).  Drought 

stress, in particular, has been shown to lead to the        

Fig. 6. Diagrammatic representation of miRNA mechanism and its positive and negative regulations to stress tolerance in plants.  

miRNA Sequence miRNA Sequence 

osa-MIR1317 TATGGGAATAAGGGTTCCCTTA osa-MIR167a GAAGCTGCCAGCATGATCT 

osa-MIR1318 GACACCGACATCGCCGGAATT osa-MIR167b ATCATGCTGTGACAGTTT 

osa-MIR1319 TAATATATTATAGGTGTCGGT osa-MIR167c GAAGCTGCCAGCATGATCT 

osa-MIR1320 GGAACGGAGGAATTTTATA osa-MIR167d GAAGCTGCCAGCATGATCTGA 

osa-MIR1423 TATTTGGGAGGCAACTACACGTT osa-MIR167e GAAGCTGCCAGCATGATCT 

osa-MIR1427 TCCGCAGCAGGGACATGCGCC osa-MIR167f GAAGCTGCCAGCATGATCTGA 

osa-MIR1428a TGAACTGAGTACGCGATGAT osa-MIR167g GAAGCTGCCAGCATGATCTGA 

osa-MIR1428d TGAACTGAGTACGCGATGAT osa-MIR167h GAAGCTGCCAGCATGATCT 

osa-MIR1428g TGAACTGAGTACGCGATGAT osa-MIR167i GAAGCTGCCAGCATGATCT 

osa-MIR1431 AGGCAAAATTAGTAGGTAACCCGT osa-MIR168a GATCCCGCCTTGCACCAA 

osa-MIR1432 GACACCGACATCGCCGGAATT osa-MIR169a AGGATGACTTGCCGATCGATCG 

osa-MIR1436 TTATGGGACGGAGGGAGT osa-MIR166b GAGATGAGAGTAGATGTCTGTAGA 

osa-MIR1437 CGGGGAGGGAGGGAACGG osa-MIR166c TTTCGGACCAGGCTTCAT 

osa-MIR1440 GTGGTATTTGAGCACTGGCAT osa-MIR166d CTGATCTCGGACCAGGCTTC 

osa-MIR1441 GTCACATCGGACGTTTAACCGGAT osa-MIR166f GTCTCGGACCAGGCTTCATTC 

Table  5. A list of Oryza miRNAs, involved in drought stress tolerance in rice (43).  

https://plantsciencetoday.online


9 

Plant Science Today, ISSN 2348-1900 (online) 

overproduction of ROS, including hydroxyl radicals (OH•), 

hydrogen peroxide (H2O2), and superoxide radicals (O2•-), 

resulting in membrane and protein damage, lipid peroxi-

dation, and cellular death (94). In rice, an imbalance      

between ROS production and ROS quenching due to 

drought stress has been reported (12). 

 Plants have developed antioxidant (AOX) defense 

mechanisms to mitigate the harmful effects of ROS. AOX 

includes non-enzymatic components such as ascorbate 

(AsA), glutathione (GSH), phenolic compounds, flavonoids, 

alkaloids, carotenoids etc., and enzymatic AOX such as 

ascorbate peroxidase (APX), catalase (CAT), glutathione 

reductase (GR), glutathion-S-transferase (GST), guaiacol 

peroxidase (GPX), dehydroascorbate reductase (DHAR), 

monodehydroascorbate reductase (MDHAR), and            

superoxide dismutase (SOD). In rice, increased activity of 

the ASA-GSH pathway (Halliwell-Asada pathway) and     

increased production of GPX, GSH, and ascorbic acid are 

considered vital defense mechanisms for managing stress 

under drought stress conditions (94, 95). 

Drought stress tolerance: Through plant–microbe inter-

actions           

Plant-microbial interactions enhance plant growth and 
development and also mitigate environmental stresses 

(12) as illustrated in Fig. 7.  

osa-MIR156a GTGACAGAAGAGAGTGAGCA osa-MIR166g CGGACCAGGCTTCATTCCT 

osa-MIR156b GCTCACTCTCTATCTGTCAGCC osa-MIR166h CGGACCAGGCTTCATTCCT 

osa-MIR156c ACATGGTGACTTTCTTGCATGCTGAA osa-MIR166j CTTGTGATATGGGGGATATGCAAC 

osa-MIR156d ATCCCGTCCTCGCCGCGTG osa-MIR166k GGACCAGGCTTCAATCCCT 

osa-MIR156e GTGACAGAAGAGAGTGAGCA osa-MIR166l GGACCAGGCTTCAATCCCT 

osa-MIR156f GCGGCCAGACTGCATCGATCTATCA osa-MIR166n GAATGACGTCCGGTCTGA 

osa-MIR156g GCTCACTTCTCTCTCTGTCA osa-MIR164d TGGAGAAGCAGGGCACGTGCTCGACG 

osa-MIR156h TGCTCGCTCCTCTTTCTGTCAG osa-MIR164e AGGGCACGTGAGCGGCCATCC 

osa-MIR156i TCACTGCTCTGTCTGTCATC osa-MIR166a GCGGTTTTGAGGATGATTTGTGCA 

osa-MIR156j TGCTCGCTCCTCTTTCTGTCAG osa-MIR160d CTGGCTCCCTGTATGCCA 

Fig. 7. Plant microbial interaction-important to improve plant growth and development and ameliorate drought stress (PGPM, E, ACC, EPS, IAA, GA and CK repre-
sent plant growth promoting microbes, endophytes, 1- aminocyclopropane 1 carboxylic acid, exopolysaccharide, indole acetic acid, gibberellic acid and cytokinin 
respectively).  
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 Soil microflora plays a significant role in influencing 

plant biodiversity (96). The colonization of arbuscular    

mycorrhizae in plant roots contributes to water stress 

management within plant tissues (97, 98). Extreme 

drought stress can lead to a decrease in the soil carbon to 

nitrogen ratio (99), but soil microbes help maintain soil 

fertility and nutrient cycles. Inoculation of rice with  Tricho-

derma asperellum (T42) and Pseudomonas           fluorescens 

has been reported to protect rice plants from drought 

stress by strengthening intrinsic biochemical and molecu-

lar mechanisms in rice that help in ROS amelioration (99). 

Microbial inoculation has been confirmed to induce en-

zyme activity and activity of PAL gene expression leading 

to promote polyphenolics accumulation in plants 

(100). Piriformospora indica, a root endophytic fungus, has 

been reported to confer drought tolerance in rice (101). In 

addition, the inoculation of drought-tolerant rhizobacteria 

improves the drought tolerance of sensitive rice genotypes 

by altering the expression levels of genes responsive to 

growth and stress (102). Bacillus,  a Gram-positive plant 

growth-promoting rhizobacteria (PGPR), can capable to 

alleviate drought stress by reducing oxidative stress levels, 

and promoting grain yield and higher biomass accumula-

tion (90). A PGPR consortium containing P. synxantha R81, 

Arthrobacter nitroguajacolicus strain YB3, and YB5, and      

P. jessenii  R62 has been reported to enhance plant growth 

by inducing enzymatic AOXs such as ascorbate peroxidase 

(APX), catalase (CAT), peroxidase (PX), superoxide           

dismutase (SOD) and lowering malondialdehyde (MDA) 

and hydrogen peroxide (H2O2) in drought tolerance 

(Sahbhagi) and drought-sensitive (IR-64) rice plants (103). 

Moreover, rhizospheric microbes are important sources of 

enzymes such as 1-aminocyclopropane-1-carboxylate   

deaminase (ACC deaminase), phytohormones such as aux-

in (AUX), cytokinin (CK), and ethylene (ET) and metabolites 

such as exopolysaccharide (EPS) that induce systemic  

tolerance against drought (104). However, extreme water 

scarcity has been observed to decrease the activity of   

microorganisms (105). 

Approaches for developing drought tolerance in rice 

plants         

Conventional breeding is an important approach to devel-

oping novel genetic traits that include crosses of inter-

specific and inter-generic types, induced mutation, recur-

rent selection, and pedigree selection, but these are all 

time-consuming approaches (58). The international rice 

research institute (IRRI) has been reported to carry out 

marker-assisted breeding approaches for developing a 

vast range of elite drought-tolerant rice cultivars (58). The 

drought-tolerant rice variety MR219 has been successfully 

developed by incorporating QTLs such as qDTY12.1, 

qDTY3.1, and qDTY2.2 (106). TDK1, a drought-tolerant rice 

variety developed by the incorporation of qDTY3.1, 

qDTY6.1, and qDTY6.2, is capable of high yields under 

drought stress (107).  

 Advanced research has improved our knowledge of 

how plants cope with water deficit conditions at the mo-

lecular level. Several genes, TFs, miRNAs, and QTLs related 

to drought stress tolerance have been identified        

(Tables 2, 4, 5). Generally, biotechnological methods are 

applied to develop genetic resistance to drought stress in 

plants (58).  Furthermore, for a more comprehensive     

understanding of the mechanisms underlying drought 

stress tolerance in plants, omics approaches, including 

phenomics,  genomics, transcriptomics, proteomics,     

ionomics, and metabolomics, have proven to be invalua-

ble, as depicted in Fig. 3. 

 In modern biology, phenomics is a screening    

method that focuses on the study of plant activities in  

response to genetic mutation or environmental influences. 

High-throughput phenotyping methods, including            

red-blue-green, near-infrared, infrared, and fluorescence 

imaging systems, have proven valuable for distinguishing 

between drought-tolerant and susceptible rice crops (108). 

Evaluation of photosynthetic efficiency, plant tempera-

ture, and water content of rice has been done using fluo-

rescence, infrared, and near-infrared images respectively 

(108). Drought spotter, a high-throughput phenotyping 

technology, has been reported to determine plants’ tran-

spiration rate, water use efficiency, and the rate of water 

loss by plants (108).  

 Other advanced technical approaches like zinc   
finger nucleases (ZFNs), transcription activator-like effec-
tor nucleases (TALENs), CRISPER/Cas, MAS selection, and 
identification of QTLs are included in genomics useful for 
investigating the gene structure and functional dynamics 
of non-coding, and coding sequences of genes applicable 
to crop improvement (58). In rice plants, applications of 
genomics methods have been reported to identify critical 
drought-responsive mechanisms of QTL, genes including 
OsCPK9, OsCPK10, RD22, SNAC1, CBF2, PP2C, and tran-
scription factors such as OsbZIP46, DST, DREB, etc. (58). 
Innovative genomic breeding strategies (IGBS) are promis-
ing opportunities for developing drought-adapted crops 
worldwide (60). IGBS includes various methods such as, 
haplotype-based breeding, genome editing, systems biolo-
gy based breeding, genomic selection and speed breeding 
(60). Haplotype based breeding is promising with low    
financial investment to identify superior haplotypes for 
breeding programs and to design future crops with desira-
ble adaptive characters (60, 109). Genome editing is a  
highly efficient technique for creating desired changes in 
crops (60). CRISPR-Cas 9 mediated editing has been       
reported to develop drought tolerant traits in crop plants 
(60). The application of systems biology-based breeding 
methods is crucial for developing ideotypes of crops with 
complex genomes. Adaptation to drought stress involves a 
complex regulatory network composed of transcription 
factors, phytohormones, and kinases. Systems biology 
helps identify specific biological phenomena that indicate 
suitable candidates for breeding programs (60). In crop 
improvement, the combined strategy of speed breeding 
and genomic selection, referred to as Speed GS, holds the 
potential to accelerate the genetic gain rate (60).            
Haplo-GS, another combined technique involving superior 
haplotype and genomic selection, aids in uncovering mul-
tifaceted relationships between phenotypes and geno-
types and is useful in the rapid generation of new breeding 
lines (60, 110). Transcriptomic studies have revealed the 
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TFs (58) involved in ABA-dependent and independent 
drought responsive pathways, as stated in Fig. 4, 5. Tran-
scriptomic studies provide information about the total 
transcripts present in organisms. Some important modern 
technologies, such as microarrays, RNA-sequencing, quan-
titative real-time PCR, serial analysis of gene expression 
(SAGE), SAGE-sequencing, and differential display reverse 
transcription PCR are applicable to transcriptomic studies 
(58). Transcriptomic analysis based on RNA sequencing is a 
promising technology to analyze gene, gene networks  
governing plant regulatory mechanisms during drought 
stress (15). Microarray-based RNA profiling, affymetrix 
gene technology, and expressed sequence tags are         
important technologies that provide new insights to eluci-
date multiple gene functions during drought stress (15). 

 Moreover, proteomics, an omics approach is used 
to unravel the proteomes of a cell or organism. Because 
environmental conditions affect the proteome on a large 
scale, the study of proteomes helps to uncover differences 
in plant responses to stress at the molecular level (111). 
Under drought stress conditions, plant’s regulatory          
systems (antioxidant mechanism, redox homeostasis, and 
signal transduction) are regulated by multiple proteins. 
Differential protein expression helps to reveal upregulating 
and downregulating proteins under environmental stress 
conditions (15).  

 Proteomics studies can be done with gel-based and 
gel-free techniques. Gel-based technique includes: differ-
ence gel electrophoresis (DIGE), mass spectrometry (MS) 
and two-dimensional gel electrophoresis (2-DE) and the 
techniques like the isotope-coded affinity tag (ICAT),     
isobaric tags for relative and absolute quantitation 
(iTRAQ), matrix-assisted laser desorption ionization-time 
of flight mass spectrometry (MALDI-TOF MS), stable iso-
tope labelling by amino acids in cell culture (SILAC), multi-
dimensional capillary liquid chromatography, sequential 
windowed acquisition of all theoretical fragment ion mass 
spectra (SWATH-MS) and liquid chromatography-
electrospray ionization/multi-stage mass spectrometry  
(LC-ESI/MS/MSn) are important gel-free techniques for pro-
teomics study (75). In rice, 32 up-regulated proteins have 
been identified under drought stress conditions using 
iTRAQ and LC-MS/MS (112). BGI seq-500 has been reported 
to be used to reveal the role of OsMIOX in drought stress 
tolerance by identifying up-regulating and down-
regulating genes under drought stress conditions (113). 

 Ionomics is an important approach for enhancing 
plant resilience to abiotic stress. Important tools for study-
ing ionomics in plant science like nuclear magnetic reso-
nance (NMR) spectroscopy, liquid chromatography cou-
pled to mass spectrometry (LC-MS), Fourier transform-ion 
cyclotron resonance mass spectrometry (FT-ICR/MS),    
liquid chromatography coupled to photodiode array/mass 
spectrometry (LC-PDA/MS), X-ray fluorescence (XRF), gas 
chromatography coupled to mass spectrometry (GC-MS),  
capillary electrophoresis mass spectrometry (CE-MS) and 
plasma optical emission spectroscopy (ICP-OES) have 
been reported to be used to study homeostasis between 
different ions (114).  

 Metabolomics studies in plant systems help to 

measure changes in the expression of primary and second-

ary metabolites in response to drought stress (75). Higher 

accumulation of carbohydrates in drought-tolerant rice 

cultivars compared to susceptible cultivars under water 

deficit conditions has been validated by metabolomics 

analysis (115). Major techniques for metabolomic studies 

include 2D chromatography and capillary electrophoresis-

mass spectrometry (CE-MS), mass spectrometry (MS), gas 

chromatography (GC), high performance liquid chroma-

tography (HPLC), ultra HPLC, gas chromatography-mass 

spectrometry (GC-MS), LC/MS and fourier transform ion 

cyclotron resonance (FT-ICR).  

 Epigenomics, an another omics-based approach, 

plays a vital role in the analysis of epigenetic changes 

throughout entire plant genome in response to drought 

stress. It is very crucial to understand the epigenetic modi-

fications under drought stress conditions for developing 

drought smart crop plants (15). In rice, the percentage of 

cytosine methylation has also been shown to be a good 

indicator of drought stress tolerance. Cytosine hyper-

methylation and hypo-methylation have been reported as 

indicators of drought sensitive and drought tolerant rice 

cultivars, respectively (116). 

 Moreover, databases like MetaCyc, RiceCyc, Kyoto 

encyclopedia of genes and genomes (KEGG), DrDMassPlus, 

KNApSAcK, OryzaCYC, MetaboLights and Plant Reactome 

are important for metabolomic study including the snap-

shot of plant metabolic pathways, enzymes, substrate, 

reactions and chemical compounds (117-123).  

 Since omics-based approaches are interdependent 

and overlapping, the integration of multi-omics approach-

es is undoubtedly a powerful strategy for studying plant 

cellular dynamics under water-deficit conditions (75). 

 The estimation of grain yield in drought tolerant 

rice, produced through a combination of conventional and 

modern technologies, holds significant economic            

importance. It's crucial to employ efficient technologies 

with low financial investment to develop drought-tolerant, 

high-yielding rice varieties. Several reports have been pub-

lished regarding the grain yield of drought-tolerant rice 

under drought conditions. 

 Based on field trials, IRRI has suggested that the 

average productivity of drought tolerant rice varieties such 

as DRR dhan 42, DRR dhan 43, DRR dhan 44, and       

Sahbhagi dhan under drought stress conditions typically 

ranges from 1.0-1.5 t ha-1 (124). Notably, the yield of the 

tolerant rice variety B15231-MR-10-1 was found to be  

higher (4.81 t ha-1) compared to the popular rice variety 

Situ Bagendit (4.56 t ha-1) but slightly lower than another 

popular rice line Ciherang (5.09 t ha-1) (125).  

 According to another report the grain yield of 

Sahbhagi dhan is 3.8-4.5 t ha-1 under normal growing con-

ditions and 2.0-2.5 t ha-1 under drought stress conditions 

(35). According to Rai et al., the yield of Sahbhagi dhan is 

reported to be 36.5 q ha-1 (126). Drought-tolerant rice vari-

eties like Khandagiri and Satyabhama have grain yields of 

28.3 q ha-1 and 34.3 q ha-1, respectively (126). Furthermore, 



CHOUDHURY ET AL   12     

https://plantsciencetoday.online 

drought tolerant rice cultivars developed through conven-

tional breeding methods and marker assisted methods 

have been reported to maintain grain quality and quantity 

with grain yield of 0.8-1.2 t ha-1 under drought stress at 

breeding stage (127). 

 The Bangladesh Rice Research Institute (BRRI) has 

developed drought tolerant rice varieties viz., BRRI Paddy 

56, BRRI Paddy 66 and BRRI Paddy 71. It has been            

estimated that the yield of drought tolerant paddy varie-

ties can be 5-3.3 ha-1 without the need for water applica-

tion during the reproductive stage (128). 

 In modern agriculture, the use of nanotechnology 

holds great promise for sustaining agriculture (129). Nano-

particles are effective agents to enhance abiotic stress  

tolerance in plants and improve grain quality and quantity 

(130). Application of zinc nanoparticles has been reported 

to increase grain yield and antioxidant activity under 

drought stress conditions (129, 131). Silica is one of the 

most important compounds for increasing environmental 

stress tolerance in crops. Silica nanoparticles have wide 

applications in agriculture. The application of silicon nano-

particles at low concentrations has been found to increase 

seedling germination. Synthesis of silica nanoparticles 

using tetra ethyl ortho silicate and lignin has been report-

ed as a low-cost strategy for mass production of silica      

nanoparticles (132). Nanoparticles have also been report-

ed to enhance drought stress tolerance in plants by main-

taining membrane stability, promoting nutrient and water 

uptake, and improving photosynthesis, grain production, 

and harvest index (133). Soil composition plays an          

important role in agriculture. Soil organic matter is very 

important for maintaining soil water holding capacity. 

Drought stress has the adverse effect of inhibiting the   

accessibility and activity of soil microbes, crucial compo-

nents of soil organic matter (134). Nanotechnology has 

proven to be a valuable tool in enhancing soil fertility, as it 

facilitates interactions between nanoparticles and rhizo-

spheric bacteria, ultimately leading to improvements in 

both plant growth and soil health (135). In addition, bio-

char emerges as a potential agent for improving soil quali-

ty. Biochar serves as a valuable source of nutrients and 

organic matter, and its application results in increased soil 

N, soil P, organic carbon, soil pH, cation exchange capaci-

ty, and soil EC (136). Moreover, biochar application not 

only improves soil quality but also promotes plant nutrient 

uptake (137). 

 Besides breeding and omics methods, some bio-

chemical and mechanical methods, including exogenous 

application of phytohormones (AUX, BR, C2H4, GA, and 

ABA), nutrient management, water management, and 

maintenance of perfect sowing times, have also been    

reported as promising opportunities to mitigate drought 

stress or enhance drought stress tolerance in crop plants 

(15).   

 

Conclusion   

Drought stress possess a significant challenge to rice plant 
growth and yield worldwide. Scientists are continuously 

exploring strategies to help rice plant adapt to drought 
stress and enhance growth and production under adverse 
conditions. Developing drought stress tolerance in rice is a 
complex task that necessitates a comprehensive             
approach, encompassing of biochemical, physiological, 
and molecular aspects. The emergence of innovative     
omics-based approaches has revealed some molecular 
factors, including important genes, TFs, miRNAs, proteins, 
and metabolites related to drought stress tolerance in rice. 
Although significant progress has been achieved through 
marker-assisted breeding, we still have several critical is-
sues in molecular breeding to improve drought stress tol-
erance in rice. Furthermore, plant-associated beneficial 
microbes are good agents for improving drought stress 
tolerance in plants in an environmentally friendly manner. 
Transgenic approaches show a promising role in improv-
ing plant traits and productivity . Therefore, it would be an 
efficient technology for producing rice plants with drought
-tolerant high yielding capacity. In this review, we have 
focused on various strategies, including morphological 
adaptation, physiological acclimatization, cellular adjust-
ments, molecular mechanisms, metabolic pathways, anti-
oxidant defense, and plant-microbial interactions, all of 
which contribute to drought stress tolerance in plants. 
Furthermore, we have outlined approaches for developing 
drought tolerance in rice plants. Although ongoing         
research continues to expand our understanding of whole-
plant stress management, our knowledge remains incom-
plete. The application of advanced technologies in crop 
breeding, crop physiology, and molecular genetics         
enhances our comprehension of rice drought stress toler-
ance and facilitates genetic improvements in drought-
tolerant rice varieties. Therefore, leveraging advanced 
technologies, further research is essential to develop cli-
mate-smart rice and maintain sustainable rice production 
under drought-stress conditions.   
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