
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 24 
Issue 2 Article 11 

Further Generalizations of Happy Numbers Further Generalizations of Happy Numbers 

E. Simonton Williams 
Bryn Mawr College, esimontonwilliams@outlook.com 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

 Part of the Number Theory Commons 

Recommended Citation Recommended Citation 
Williams, E. Simonton (2023) "Further Generalizations of Happy Numbers," Rose-Hulman Undergraduate 
Mathematics Journal: Vol. 24: Iss. 2, Article 11. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol24/iss2/11 

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol24
https://scholar.rose-hulman.edu/rhumj/vol24/iss2
https://scholar.rose-hulman.edu/rhumj/vol24/iss2/11
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/183?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol24/iss2/11?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages


Further Generalizations of Happy Numbers Further Generalizations of Happy Numbers 

Cover Page Footnote Cover Page Footnote 
Many thanks to Helen Grundman and the anonymous reviewers. 

This article is available in Rose-Hulman Undergraduate Mathematics Journal: https://scholar.rose-hulman.edu/rhumj/
vol24/iss2/11 

https://scholar.rose-hulman.edu/rhumj/vol24/iss2/11
https://scholar.rose-hulman.edu/rhumj/vol24/iss2/11


Rose-Hulman Undergraduate Mathematics Journal
VOLUME 24, ISSUE 2, 2023

Further Generalizations of Happy Numbers

By E. S. Williams*

Abstract. I n this paper we generalize the concept of happy numbers in several ways.
First we present known results of Grundman and Teeple and establish further results,
not given in that work. Then we construct a similar function expanding the definition of
happy numbers to negative integers. Using this function, we compute and prove results
extending those regarding higher powers and sequences of consecutive happy numbers
that El-Sidy and Siksek and Grundman and Teeple proved to negative integers. Finally,
we consider a variety of special cases, in which the existence of certain fixed points and
cycles of infinite families of generalized happy functions can be proven.

1 Introduction

Happy numbers have been studied for many years, although the origin of the concept
is unclear. Consider the sum of the square of the digits of an arbitrary positive integer.
If repeating the process of taking the sums of the squares of the digits of an integer
eventually gets us 1, then that integer is happy.

The goals of this paper are to provide an overview of existing research into happy
numbers, extend that research into the quartics, construct a new function to generalize
happy numbers into the negatives, and examine several patterns that became evident
during the research.

In Section 2 we describe basic happy numbers. Then, in Section 3, we summarize
existing work on generalizations of the concept to other bases and extend some earlier
results for the cubic case to the quartic case.

In Section 4, we extend the happy function S to negative integers, constructing a
function Q :Z→Zwhich agrees with S over Z+ for this purpose. We then generalize Q
to various bases and higher powers. In Section 5 we consider consecutive sequences of
happy numbers, as is traditional in the study of special numbers, and generalize this
study to Q, including studying sequences of consecutive 0-attracted and −1-attracted
numbers.

*Many thanks to Helen Grundman and the anonymous reviewers.
Mathematics Subject Classification. 11A63
Keywords. happy numbers, special numbers, consecutive numbers
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2 F. G. Happy Numbers

Finally, in Section 6, we study several special cases suggested by patterns in the fixed
points and cycles of S and Q. First we consider two patterns that occur under S, and
then we examine two patterns which occur under Q in the negative numbers.

2 Traditional Happy Numbers

Definition 2.1. Any positive integer A can be expressed as
∑n

i=0 ai 10i where, for each i ,

ai is the i th digit of A in base 10. We define the function S :Z+ →Z+ by

S(A) = S

(
n∑

i=0
ai 10i

)
=

n∑
i=0

a2
i ,

the sum of the squares of the digits of A. For m ∈Z+, define Sm to be the mth iteration of
S. A is defined to be happy if there exists some m ∈Z+ such that Sm(A) = 1.

There are infinitely many happy numbers. An intuitive proof for this is that there are
infinitely many integers of the form 10n , which have one digit equal to one and some
number of digits equal to zero. These numbers are all happy.

There are also infinitely many numbers that are not happy. Consider integers of the
form 2 ·10n with n ≥ 0. These integers each enter the cycle

4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4

under the iteration of S. In fact, for any number A that is not happy, there is some m
such that Sm(A) = 4, after which iterations of S move through the above cycle.

Thus S has exactly one fixed point and one cycle.

Theorem 2.2. Given a ∈Z, there exists some m ∈Z+ such that Sm(a) = 1 or Sm(a) = 4.

Theorem 2.2 follows from the more general Theorem 2.5, which we state and prove
below.

Grundman and Teeple (2001) [2] generalized the definition of happy numbers to
bases other than 10.

Definition 2.3. Any positive integer A can be expressed in a base b as
∑n

i=0 ai bi , with
0 ≤ ai < b for each i and an > 0. Define Sb :Z+ →Z+ by

Sb(
n∑

i=0
ai bi ) =

n∑
i=0

a2
i ,

the sum of the square of the digits in the base b expansion of A. An integer for which
there exists some m ∈Z such that Sm

b (A) = 1 is called a b-happy number.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Williams 3

Not only are different numbers happy in different bases, in some bases there are fixed
points other than 1. There are three possible outcomes of iterating Sb over a positive
integer A. Either there can be some m for which Sm

b (A) = 1, Sb(A) can enter a cycle, or,

for some integers F and r , Si
b(A) = F ∀i ≥ r . In the last case, A is referred to as being

F−attracted. Table 1, taken from Grundman and Teeple (2001) [2] and verified using
Mathematica (2015) [5], displays all fixed points and a representative of each cycle of Sb

for 2 ≤ b ≤ 10, each written in the relevant base.

Base Fixed Points Cycle Representatives
10 1 4
9 1, 45, 55 58, 82
8 1, 24, 64 4, 5, 15
7 1, 13, 34, 44, 63 2,16
6 1 5
5 1, 23, 33 4
4 1 ∅
3 1, 12, 22 2
2 1 ∅

Table 1: Fixed Points and Cycle Representatives of Sb

Grundman and Teeple (2001) [2] used the following lemma to show that Table 1 is
complete.

Lemma 2.4. If b ≥ 2 and A ≥ b2, then Sb(A) < A.

Proof. Let A be an arbitrary integer greater than or equal to b2 with n +1 base b digits.
Then A =∑n

i=0 ai bi with 0 ≤ ai ≤ b −1 for each i and an 6= 0. Then

A−Sb(A) =
n∑

i=0
ai bi −

n∑
i=0

a2
i =

n∑
i=0

ai (bi −ai ).

Note that, for each i 6= 0, because 0 ≤ ai < b, we have bi −ai > 0.
The minimum possible value of a0(b0 −a0) occurs when a0 = b −1, and is

(b−1)(1− (b−1)) = (b−1)(1−b+1) =−b2 +3b−2. For 0 < i < n, the least possible value
of ai (bi − ai ) is 0. The minimum possible value of an is 1, and so the least possible
value of an(bn − an) is bn − 1. Since A ≥ b2, we know that n ≥ 2. Thus, A− Sb(A) >
(b2 −1)+ (−b2 +3b −2) = 3b −3. Since b ≥ 2, we see that A−Sb(A) > 0.

Lemma 2.4 implies that, for any integer A ≥ b2, there is some r such that Sr
b(A) < b2.

This allows us to use the Mathematica program presented below to calculate all fixed
points and cycles of Sb .

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



4 F. G. Happy Numbers

S[x_] := Tot al [(Integ er Di g i t s[x,b])2]
T = {1}
For [a = 1, a < b2 +1, a ++, U = {}; Pr i nt [a];
For [d = a, Fr eeQ[T,d ], d = S[d ],
I f [Member Q[U,d ], AppendTo[T,S[d ]]; Pr i nt [T], AppendTo[U,d ]]]]
Pr i nt [T].

This Mathematica formula first defines the function Sb in terms Mathematica can un-
derstand, then makes a set containing 1, which we know is a fixed point in all bases.
Then we begin the actual calculations with the For loops. The outer For loop chooses
the number on which to iterate Sb , calling it a, and repeating the iteration for all values
of a < b2+1, increasing a by one every time the inner For loop hits a stop condition. The
outer For loop also defines an empty set U and prints a.

The inner For loop iterates Sb(a) until it reaches a stop condition. It is here that U
and T come into play – these sets are used to define the stop conditions. The inner For
first checks that a ∉ T, and stops if this is not satisfied, that is, if a ∈ T. If a ∉ T, then the
program finds Sb(a). If Sb(a) is also not in T, and not in U, the program adds it to U,
finds Sb(Sb(a)), and repeats the process. If the result is in U, this is a stop condition, and
Sb(Sb(a)) is added to T. Then the program repeats with a+1 and the expanded T.

When this program has completed calculations for all integers 0 < A < b2, T contains
all the fixed points of Sb , and a representative of each of the cycles. The other elements
of the cycles are found by direct calculation.

This calculation completes the proof of the following theorem.

Theorem 2.5. Table 1 lists all fixed points of Sb , and a representative of each cycle.

3 Higher Powers

Happy numbers are defined in terms of squaring, but Grundman and Teeple (2001) [2]
consider the parallel construction using cubing. The function S3,b is defined for any
A ∈Z+ by S3,b(A) =∑n

i=0 a3
i , where ai is the i th digit of A in base b. Grundman and Teeple

(2001) [2] refer to numbers for which there exists some n such that Sn
3,10(A) = 1 as cubic

happy numbers.

Definition 3.1. More generally, for p ≥ 2, Sp,b is defined by Sp,b(A) = ∑n
i=0 ap

i , with ai

defined as above. A positive integer A for which there exists some integer m such that
Sm

p,b(A) = 1 is called a p-power b-happy number.

At this point, it is useful to state and prove the following lemma, as presented by
Grundman and Teeple (2001) [2].

Lemma 3.2. For all powers p ≥ 2, every positive integer is a p-power 2-happy number.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Williams 5

Proof. Fix p, and let A =∑n
i=0 ai 2i be an integer with n +1 digits base 2. Then, for each i ,

0 ≤ ai < 2, and an = 1. Hence, for each i , ap
i = ai . Thus,

A−Sp,2(A) =
n∑

i=0
ai 2i −

n∑
i=0

ap
i =

n∑
i=0

ai 2i −
n∑

i=0
ai =

n∑
i=0

ai (2i −1) ≥ 1. (1)

Suppose A ∈Z+ is not p-power 2-happy. Then Sm
p,2(A) 6= 1 for all m. By above Equation 1,

Sp,2(A) < A, and so Sm
p,2(A),Sm+1

p,2 (A) is a decreasing sequence of positive integers, which
must decrease infinitely and never reach 1, a contradiction. Thus all positive integers are
p-power 2-happy.

This gives us of the all cycles and fixed points of Sp,2 for any power p. Recall that
we found the fixed points and cycles for various bases in traditional happy numbers by
finding a value N for which, for each A ≥ N, S2,b(A) < A, and then calculating Sn

2,b(A) for
increasing values of n and for all A < N. Similarly, we need an N3 ∈Z so that S3,b(A) < A,
for all A ≥ N3. Grundman and Teeple (2001) [2] prove that is 2b3 such a bound. As
in Section 2, this bound allows us to generate the cycles and fixed points of S3,b by
calculation. These fixed points, and a representative of each cycle, are presented in
Table 2.

Theorem 3.3. For b > 2, if A ≥ 2b3, S3,b(A) < A.

Base Fixed points Cycle Representatives
10 1, 153, 370, 371, 407 55, 136, 160, 919
9 1, 30, 31, 150, 151, 570,

571, 1388
38,152,638,818

8 1, 134, 205, 463, 660,
661

662

7 1, 12, 22, 250, 251, 305,
505

2, 13, 23, 51, 160,
161, 466, 516

6 1, 243, 514, 1055 13
5 1, 103, 433 14
4 1, 20, 21, 130, 131, 203,

223, 313, 332
∅

3 1, 122 2
2 1 ∅

Table 2: Fixed Points and Cycle Representatives of S3,b

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



6 F. G. Happy Numbers

Beginning our original work, we now consider S4,b , defined by S4,b(A) = ∑n
i=0 a4

i
where ai is the i th digit of the base b expansion of A.

To find all the cycles and fixed points of S4,b , we must generalize Lemma 2.4. That is,
we need to find some bound N4 in terms of b such that, for all A greater than or equal
to N4, S4,b(A) < A. Continuing the pattern from square and cubic happy numbers, we
conjectured that 3b4 will serve as such a bound.

Theorem 3.4. For all bases b ≥ 2, and any A ≥ 3b4, S4,b(A) < A.

It follows from this theorem that for each A > 0, there is some m ∈ Z+ such that
Sm

4,b(A) < 3b4.

Proof. By Lemma 4, all numbers are 4-power 2-happy, so we may consider only b ≥ 3.
Let A ≥ 3b4 be given, and let n+1 be the number of digits of A in base b. For 0 ≤ i ≤ n,

let ai ∈Zwith 0 ≤ ai < b such that A =∑n
i=0 ai bi . Then

A−S4,b(A) =
n∑

i=0
ai bi −

n∑
i=0

a4
i =

n∑
i=0

ai (bi −a3
i ).

Thus, to prove that S4,b(A) < A, it suffices to show that, taking the minimum over all
possible values of the ai ,

min

(
n∑

i=0
ai (bi −a3

i )

)
> 0.

Since we are working in Z and the values of ai , for distinct i , are independent, the
minimum of the sum is the sum of the minima of the summands. The summands of∑n

i=0 ai (bi −a3
i ) can be viewed as functions of one variable, fi (a) = a(bi −a3), 0 ≤ a < b.

For each i , the second derivative of fi (a), f ′′
i (a) =−12a2, is less than 0. So fi , for i 6= n,

is concave down on the closed interval [0,b −1], and fn is concave down on the closed
interval [1,b −1], and thus must achieve its minimum at one of the end points. Hence to
determine the minimum of fi for any i we calculate the value of the fi at both endpoints
and take the smaller.

We consider several cases.
Case 1: Let b ≥ 4. Recall that fi (ai ) = (ai )(bi − (ai )3), so fi (ai ) < 0 if ai < 0 and

bi − (ai )3 > 0 or (ai ) > 0 and bi − (ai )3 < 0. Since ai is always greater than or equal to
0, fi (ai ) < 0 if bi − (ai )3 < 0. Recall that fi reaches its minimum at ai = 0 or ai = b −1.
Thus, if fi can be negative, fi (b −1) < 0, and so bi − (b −1)3 = bi −b3 +3b2 −3b +1 =
bi −b3 +3b(b−1)+1 < 0. Since 3(b−1) and 1 are positive, bi − (b−1)3 is negative only if
bi < b3, and thus only if i = 0,1,2. By calculation, for bases 4 or greater, fi (b −1) ≤ 0 if
i = 0,1,2.

Case 1a: b ≥ 4,n = 4.
Note that fi (b −1) can be negative for i = 0,1,2, and fi (a) ≥ 0 for all a for all i > 2. As

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Williams 7

Base Fixed points Cycles
10 1, 1634, 8208,

9474
2178 → 6514 → 2178,
4338 → 4514 → 1138 → 4179 → 9219 → 13139 → 6725 →
4338

9 1, 432, 2446 5553 → 2613 → 1818 → 12214 → 352 → 882 → 12223 →
136 → 1801 → 5553,
137 → 3358 → 6625 → 4382 → 6083 → 7451 → 4447 →
4311 → 472 → 2115 → 786 → 10233 → 218 → 5570 →
5006 → 2564 → 3006 → 1800 → 5552 → 2531 → 883 →
12312 → 137

8 1, 20, 21, 400, 401,
420, 421

∅

7 1 22 → 44 → 1331 → 323 → 343 → 1135 → 2031 → 200 → 22,
2544 → 3235 → 2225 → 1651 → 5415 → 4252 → 2443 →
1530 → 166 → 10363 → 4153 → 2544,
5162 → 5436 → 6404 → 5162,
516 → 5414 → 3214 → 1014 → 516,
613 → 4006 → 4345 → 3360 → 4152 → 2422 → 613

6 1 3 → 213 → 242 → 1200 → 2545 → 1201 → 112 → 4 →
1104 → 1110 → 3,
10055 → 5443 → 5350 → 10055,
4243 → 2453 → 4310 → 1322 → 310 → 214 → 1133 →
432 → 1345 → 4243

5 1, 2124, 2403,
3134

2323 → 1234 → 2404 → 4103 → 2323
2324 → 2434 → 4414 → 2324
3444 → 11344 → 4340 → 4333 → 3444

4 1, 1103, 3303 3 → 1101 → 3
3 1 121 → 200 → 121

122 → 1020 → 122

Table 3: Fixed Points and Cycles of S4,b

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



8 F. G. Happy Numbers

before, the minimal values of all fi occur at a = b −1 or a = 0. For i = 0,1,2 the minimal
value occurs at a = b −1, but the minimal value for i = 3,4 occurs at a = 0, and thus is
zero. Since the bound we proposed is 3b4, however, a4 ≥ 3. Thus

min(
n∑

i=0
ai (bi −a3

i )) = f0(b −1)+ f1(b −1)+ f2(b −1)+ f4(3),

which makes min(
∑4

i=0 ai (bi−a3
i )) = b2(13b−18)+12b−85. Since b ≥ 4, min(

∑4
i=0 ai (bi−

a3
i )) ≥∑4

i=0 ai (4i −a3
i ) = 507. Since this is much larger than 0, for any A ≥ 3b4, S4,b(A) < A

for n = 4, as desired.
Case 1b: b ≥ 4,n > 4.

As above, min( fi (a)) = f (b−1) for i = 0,1,2, and min( fi (a)) = fi (0) = 0 for i = 3, ...n. Since
A has n+1 digits and an 6= 0 min( fn(a)) is either fn(1) = 1(bn−13) or fn(b−1) = (b−1)(bn−
(b−1)3) where n ≥ 5. Since n ≥ 5, for all a and i > 2, fn(ai ) ≥ f5(ai ), so we can consider the
minima of f5. f5(1) = b5−1 and f5(b−1) = (b−1)(b5−(b−1)3) = (b−1)(b5−b3+3b2−3b+1),
so, by basic algebra, f5(b −1) = b6 −b5 −b4 +2b2(2b −3)+4b −1. Note that, since b > 4,
2b −3 > 0 and 4b −1 > 0, so f5(b −1) > b6 −b5 −b4. In turn, b6 −b5 −b4 > b6 −2b5, so
f5(b−1) > b6−2b5 = b5(b−2). Since b ≥ 4, b−2 > 0, so f5(b−1) > b5(b−2) > b5−1 = f5(1).
Then

min(
5∑

i=0
ai (bi −a3

i )) = f0(b −1)+ f1(b −1)+ f2(b −1)+ f5(1),

which implies min(
∑n

i=0 ai (bi −a3
i )) = b4(b−3)+b2(13b−18)+12b−5. Since b ≥ 4, (b−

3) ≥ 0 and (13b −18) ≥ 0 as well. Thus min(
∑n

i=0 ai (bi − a3
i )) > 0, so, for any A ≥ 3b4,

S4,b(A) < A for n > 4 and bases greater than or equal to 4, as desired.
Since S4,b(A) < A for n = 4 and n > 4 for bases greater than or equal to 4, 3b4 is an

adequate bound for these bases.
Case 2: b = 3 As we are here in a specific base, we may consider specific numbers.

Recall that the bound we are considering is 3b4. Since 3 = b in this case, 3b4 = b5.
The closed interval over which we evaluate fi is [0,2]. Consider ai = b −1 = 2 for i =

0,1,2. Then f0(a0) = 2(1−23) =−14, f1(a1) = 2(3−23) =−10, and f2(a2) = 2(32−23) = 2.
As above, fi (b−1) ≤ 0 when i = 0,1. However, f2(b−1) is greater than 0. Thus, min( f2(a2))
occurs when a2 = 0, and

min(
n∑

i=0
ai (bi −a3

i )) = an(bn −a3
n)+ (−10)+ (−14).

Recall that n ≥ 5 Thus, we consider fn(an)+ f1(a1)+ f0(a0). As A has n +1 digits,
min(an) = 1. f5(1) = 1(35 −1) and f5(2) = 2(35 −2) = 2(35)− (4). Since 35 −1+4 < 2(35),
f5(1) < f5(2). Hence min(

∑n
i=0 ai (bi −a3

i )) ≥ 242+−10+−14 > 0, and so for any A ≥ 3b4,
S4,b(A) < A for base 3, as desired.

The cycles and fixed points generated in Table 3 are complete.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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4 Generalization to the Negatives

We now define a function Q that extends S to all integers. Any integer A 6= 0 can be
expressed as A =±∑n

i=0 ai bi where 0 ≤ ai < b are the digits of the base b expansion of A.
We define the function Q2,b by Q2,b(0) = 0 and

Q2,b(A) = sg n(A)a2
n +

n−1∑
i=0

a2
i

for A 6= 0.
Note that if A > 0, Q2,b(A) = S2,b(A), so all fixed points and cycles of S2,b are also fixed

points and cycles of Q2,b . Further, by Lemma 2.4, for each A > 0, there is some k ∈Z+

such that Qk
2,b(A) < b2.

Thus, to prove that calculating over a finite interval will determine all possible cycles
and fixed points of Q we need only find a bound for negative values of A. That is, we
need to find a value B < 0 such that Q2,b(A) > A for all A ≤ B.

Theorem 4.1. For A <−b, Q2,b(A) > A.

Proof. Let A be an integer A <−b. Q2,b(A) > A is equivalent to Q2,b(A)−A > 0. Represent
A as −∑n

i=0 ai bi , with 0 ≤ ai ≤ b −1 and an 6= 0. Then, using the definition of Q2,b(A),
Q2,b(A)−A = sg n(A)(an)2 +∑n−1

i=0 a2
i − (−∑n

i=0 ai bi ). Since A < 0,

Q2,b(A)−A =−(a2
n)+anbn +

n−1∑
i=0

a2
i +

n∑
i=0

ai bi .

As all summands of
∑n−1

i=0 a2
i +

∑n−1
i=0 ai bi are nonnegative, the minimum value of these

sums is 0, and we need only concern ourselves with min(−(a2
n)+ anbn). Recall from

the proof of Theorem 6 that, since 0 < an < b, min(−(a2
n)+anbn) occurs when an = 1 or

an = (b −1). Then
min(−(a2

n)+anbn) =−(12)+1bn = bn −1

or
min(−(a2

n)+anbn) =−(b −1)2 + (b −1)bn =−b2 +2b −1+bn+1 −bn .

Since A <−b, n ≥ 1. Thus, min(−(a2
n)+anbn) = b−1 or −b2+2b+b2−b−1 = b−1, and

so min(−(a2
n)+anbn) > 0, as desired.

Thus calculating over the interval (−b,b2) yields all fixed points and cycles of Q2,b .

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



10 F. G. Happy Numbers

Base Fixed Points Cycles
10 -1, 0, 1 4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4
9 -1, 0, 1, 45, 55 58 → 108 → 72 → 58

75 → 82 → 75
8 -1, 0, 1, 24, 64 -7 →−61 →−43 → -7

-4 →−20 → -4
4 → 20 → 4
5 → 31 → 12 → 5
15 → 32 → 15

7 -1, 0, 1, 13, 34, 44, 63 2 → 4 → 22 → 11 → 2
16 → 52 → 41 → 23 → 16

6 -1, 0, 1 5 → 41 → 25 → 45 → 32 → 21 → 5
5 -1, 0, 1, 23, 33 4 → 31 → 30 → 4
4 -1, 0, 1 -3 →−21 → -3
3 -1, 0, 1, 12, 22 2 → 11 → 2
2 -1, 0, 1 ∅

Table 4: Fixed points and Cycles of Q2,b

4.1 Higher Powers

As with S, Q can be generalized to higher powers. Define the function Qp,b :Z→Z by
Qp,b(0) = 0 and

Qp,b(A) = sg n(A)ap
n +

n−1∑
i=0

ap
i

for A =±∑n
i=0 ai bi . For A > 0, Qp,b(A) = Sp,b(A), so all fixed points and cycles of Sp,b are

also fixed points or cycles of Qp,b . To find all fixed points and cycles of Qp,b , however,
we need to find those generated by negative numbers as well. We use a proof parallel to
that for Q2,b to prove that we find all such cycles and fixed points by calculating Qp,b for
numbers greater than −bp−1 and less than 0.

Theorem 4.2. For all A <−bp−1, Qp,b(A) > A.

Proof. Fix A =−∑n
i=0 ai bi , an integer less than −bp−1. Thus

Qp,b(A)−A =−ap
n +

n−1∑
i=0

ap
i − (−

n∑
i=0

ai bi ) ≥−ap
n +anbn .

Then Qp,b(A)− A ≥ an(bn − ap−1
n ). Since A < −bp−1, n ≥ p −1, and so Qp,b(A)− A ≥

an(bp−1 − ap−1
n ). Thus, since 0 < an < b, an(bp−1 − ap−1

n ) > 0. Hence Qp,b(A) > A, as
desired.
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Base Fixed points Cycle Representatives
10 -1, 0, 1, 153, 370, 371, 407 55, 136, 160, 919
9 -30, -1, 0, 1, 30, 31, 150, 151,

570, 571, 1388
38,152,638,818

8 -1, 0, 1, 134, 205, 463, 660, 661 662
6 1, 243, 514, 1055 13
7 -1, 0, 1, 12, 22, 250, 251, 305,

505,
2, 13, 23, 51, 160,
161, 466, 516

5 -1, 0, 1, 103, 433 14
4 -20, -1, 0, 1, 20, 21, 130, 131,

203, 223, 313, 332
∅

3 -21, -1, 0, 1, 122 2
2 -1, 0, 1 ∅

Table 5: Fixed Points and Cycle Representatives of Q3,b

While the lower bound for the interval over which Qp,b must be calculated is generally
defined, the upper bound is not. We know that S3,b(A) < A for A ≥ 2b3, and S4,b(A) < A
for A ≥ 3b4, but we do not have such a bound for S5,b . Since Qp,b = Sp,b , we only have
upper bounds for Qp,b where p < 5. For Q3,b and Q4,b , we have the following:

Corollary 4.3. For all A <−b2 or A > 2b3, |Q3,b(A)| < |A|.
Corollary 4.4. For all A <−b3 or A > 3b4, |Q4,b(A)| < |A|.

These theorems gives us finite intervals over which to calculate to find all cycles and
fixed points of Q3,b and Q4,b . For Q3,b the interval is (−b2,2b3), and for Q4,b the interval
is (−b3,3b4). Thus Table 5 and Table 6 are complete.

5 Consecutive Sequences

5.1 Traditional Happy Numbers

In the second edition of Unsolved Problems in Number Theory, 2004 [4], Guy raised
the question, "How many consecutive happy numbers can there be?" Since there is
an infinite number of numbers that aren’t happy, there cannot be an infinite number
of consecutive happy numbers. However, El-Sidy and Siksek [1] proved in 2000 that
there can be arbitrarily long finite strings of consecutive happy numbers. As Q = S for
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Base Fixed points Cycles
10 -1, 0, 1, 1634,

8208, 9474
2178 → 6514 → 2178,
4338 → 4514 → 1138 → 4179 → 9219 → 13139 → 6725 → 4338

9 -1, 0, 1, 432,
2446

5553 → 2613 → 1818 → 12214 → 352 → 882 → 12223 → 136 →
1801 → 5553,
137 → 3358 → 6625 → 4382 → 6083 → 7451 → 4447 → 4311 →
472 → 2115 → 786 → 10233 → 218 → 5570 → 5006 → 2564 →
3006 → 1800 → 5552 → 2531 → 883 → 12312 → 137

8 -400, -20, -1, 0,
1, 20, 21, 400,
401, 420, 421

∅

7 -21, -1, 0, 1 22 → 44 → 1331 → 323 → 343 → 1135 → 2031 → 200 → 22,
2544 → 3235 → 2225 → 1651 → 5415 → 4252 → 2443 → 1530 →
166 → 10363 → 4153 → 2544,
5162 → 5436 → 6404 → 5162,
516 → 5414 → 3214 → 1014 → 516,
613 → 4006 → 4345 → 3360 → 4152 → 2422 → 613

6 -423, -1, 0, 1 3 → 213 → 242 → 1200 → 2545 → 1201 → 112 → 4 → 1104 →
1110 → 3,
10055 → 5443 → 5350 → 10055,
4243 → 2453 → 4310 → 1322 → 310 → 214 → 1133 → 432 →
1345 → 4243

5 -310, -1, 0, 1,
2124, 2403,
3134

2323 → 1234 → 2404 → 4103 → 2323
2324 → 2434 → 4414 → 2324
3444 → 11344 → 4340 → 4333 → 3444

4 -1, 0, 1, 1103,
3303

3 → 1101 → 3

3 -1, 0, 1 121 → 200 → 121
122 → 1020 → 122

2 -1, 0, 1 ∅

Table 6: Fixed Points and Cycles of Q4,b
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all positive integers, there are also arbitrarily long finite strings of consecutive positive
happy numbers for Q. Grundman and Teeple (2007) [3] proved that there exist arbitrarily
long finite strings of consecutive b-happy numbers for even bases. Noting that there
are no even b-happy numbers, and thus there are no strings of consecutive b-happy
numbers for odd bases, they also proved that there are, however, arbitrarily long finite
strings of consecutive odd b-happy numbers for all bases under S2,b . Both of these
results generalize to produce arbitrarily long finite strings of consecutive or consecutive
odd r -attracted numbers for any fixed point r of S2,b . However, neither the proof El-
Sidy and Siksek used nor the proof Grundman and Teeple (2007) used for S applies to
non-positive fixed points of Q.

5.2 1-attracted Numbers

Recall that a number A is said to be F-attracted if there is some positive integer k such
that Qi (A) = F for all i ≥ k. Thus a 1-attracted number is a happy number. We can use
the fact that there are arbitrarily long finite strings of consecutive or consecutive odd
positive b-happy numbers to construct arbitrarily long finite strings of consecutive [odd]
negative numbers that are 1-attracted.

Theorem 5.1. For every n ∈Z+ and even [odd] b ≥ 2 there is a string of consecutive [odd]
1-attracted negative numbers of length n under Q2,b .

Proof. Let A1, A2, ..., An be a string of consecutive [odd] b-happy numbers. Let m denote
the number of digits of the largest An . Then we construct B1,B2, ...,Bn by Bi =−(10m+2 +
10m+1 +Ai ). Then Q2,b(Bi ) = sg n(Bi )(1)2 +12 +Q2,b(Ai ). Since Bi < 0 for all i ,

Q2,b(Bi ) =−(12)+12 +Q2,b(Ai ) = Q2,b(Ai ) = S2,b(Ai ).

For each i , as Ai is b-happy, there exists some r ∈ Z+ such that Sr
2,b(Ai ) = 1, and so

Qr
2,b(Bi ) = Qr

2,b(Ai ) = Sr
2,b(Ai ) = 1. Thus B1,B2, ...,Bn is a string of n consecutive [odd]

1-attracted negative numbers of length n.

5.3 −1-attracted Numbers

We also consider the other fixed points of Q2,10. One of these fixed points is −1. Since,
for A > 0, Q2,10(A) > 0, all −1-attracted numbers are negative. There are not, in fact,
arbitrarily long strings of consecutive −1-attracted numbers under Q2,10. Quite the
contrary: there cannot be more than two −1-attracted numbers in a row. A direct search
shows that the greatest numbers forming such a string are −6135,−6134.

Theorem 5.2. Any consecutive pair of−1-attracted numbers is of the form A−1 =−an an−1...5,
A =−an an−1...4.
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14 F. G. Happy Numbers

Proof. Recall that Q2,10(A) = sg n(A)a2
n +∑n−1

i=0 a2
i with ai the digits of A in base 10, an >

0,0 ≤ ai ≤ 9. Thus, Q2,10(A) ≥ −81 for any integer A, so if A is −1-attracted, Q2,10(A)
is a −1-attracted integer greater than or equal to −81. By direct calculation, the only
such integers are −10 and −1. Thus, for any consecutive string of −1-attracted numbers
A−1, A, we have

{Q2,10(A),Q2,10(A−1)} ⊆ {−1,−10}.

Hence, |Q2,10(A−1)−Q2,10(A)| ∈ {9,0}. Let A be a negative integer. If a0 = 9, Q2,10(A) ≥
−92 +92 = 0, so A is not −1-attracted.

Let A−1, A be −1-attracted integers. Then a0, the last digit of A, is not 9, so A−1 =
−∑n

i=1 ai bi − (a0 +1). If the difference Q2,10(A−1)−Q2,10(A) is 0, then

sg n(A)a2
n +

n−1∑
i=1

a2
i +a2

0 = Q2,10(A−1) = Q2,10(A) = sg n(A)a2
n +

n−1∑
i=1

a2
i + (a0 +1)2.

Thus a2
0 = (a0 + 1)2, which implies a0 = −1

2 , a contradiction. Hence |Q2,10(A − 1) −
Q2,10(A)| = 9.

So

9 =|Q2,10(A−1)−Q2,10(A)|

=
∣∣∣∣∣−a2

n +
n−1∑
i=1

a2
i + (a0 +1)2 +a2

n −
n−1∑
i=1

a2
i −a2

0

∣∣∣∣∣
=2a0 +1.

Thus a0 = 4.
{Q2,10(A− 1),Q2,10(A)} = {−1,−10} if and only if a0 = 4, so A− 1, A is only a pair of

consecutive −1-attracted numbers if and only if a0 = 4.

Corollary 5.3. There are no more than two consecutive −1-attracted numbers under
Q2,10(A).

Proof. The only possible form for a string of two consecutive −1-attracted numbers
is A = an an−1...4, A−1 = an an−1...5. Thus there do not exist any three consecutive −1-
attracted numbers.

5.4 0-attracted

Note that 0 is also a fixed point of Q2,10. As with -1, all 0-attracted numbers are non-
positive and there are no strings of 0-attracted numbers longer than two in a row. It is
easy to see that −65, and −66 are the greatest numbers that form such a string. Strings of
0-attracted numbers may be of the form ...6, ...5, the form ...5, ...4, the form ...2, ...1, or
the form ...1, ...0.
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Theorem 5.4. There does not exist any string of three consecutive 0-attracted numbers.

Proof. As with−1-attracted numbers, if an integer A =−∑n
i=0 ai 10i is 0-attracted, Q2,10(A)

is a 0-attracted number greater than −81. By direct calculation, the set of such integers is

p = {−77,−74,−66,−65,−55,−44,−33,−22,−11,0}.

Thus, for any two consecutive 0-attracted numbers,

|Q2.10(A)−Q2,10(A−1)| ∈ {0,1,3,8,9,10,11,12,19,21,22,

30,32,33,41,43,44,52,54,55,

63,65,66,74,77}.

Since, for a0 6= 9, |Q2,10(A)−Q2,10(A−1)| = 2a0 +1, and max(2a0 +1) = 17, however,
|Q2,10(A)−Q2,10(A−1)| must be odd and less than 17. Thus

|Q2,10(A)−Q2,10(A−1)| ∈ {1,3,9,11}.

By calculation, the values of a0 for which this can be true are 0,1,4, and 5.
Note that in a string of three 0-attracted numbers, the first two numbers must be the

first numbers in a pair of 0-attracted numbers. Thus, the first two numbers of a string
must end with the digits 0,1,4,5, or 9.

There are then three possibilities for strings of three consecutive 0-attracted num-
bers:,

A =−an an−1...a19 → A−1 =−an an−1...(a1 +1)0 → A−2 =−an an−1...(a1 +1)1,

A =−an an−1...0 → A−1 =−an an−1...1 → A−2 =−an an−1...2

and
A =−an an−1...4 → A−1 =−an an−1...5 → A−2 =−an an−1...6.

Recall that Q2,10(A) = sg n(A)a2
n +∑n−1

i=0 a2
i .

Case 1: Let A = an an−1...9. Then Q2,10(A) ≥ −a2
n + 81. Thus, Q2,10(A) ≥ 0, and is

equal to 0 if and only if an = 9, so any 0-attracted number with a0 = 9 is of the form
A =−9an−1...a19 with ai = 0 for all 0 < i < n. Assume that A is a 0-attracted number with
n +1 digits.

Let n = 1. Then A = −99, and so A− 1 = −100. Q2,10(A− 1) = −1, so A− 1 is not
0-attracted.

Let n > 1. Then A =−9 ·10n −9, and so A−1 =−9 ·10n −10. Thus Q(A−1) =−92+1 =
−80. Since −80 is not 0-attracted, A−1 is not 0-attracted. Hence A, A−1 is not a string
of 0-attracted numbers, and so A, A−1, A−2 is not a string of consecutive 0-attracted
numbers.
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16 F. G. Happy Numbers

Case 2: Let A =−an an−1...0, A−1 =−an an−1...1, and A−2 = an an−1...2. Consider

Q2,10(A) =sg n(A)a2
n +

n−1∑
i=1

a2
i +02

Q2,10(A−1) =sg n(A)a2
n +

n−1∑
i=1

a2
i +12

Q2,10(A−2) =sg n(A)a2
n +

n−1∑
i=1

a2
i +22

Let B = sg n(A)a2
n +∑n−1

i=1 a2
i . We need B+0,B+1,B+4 ∈ p, so B must be an element

of p −0, p −1, and p −4, where

p ={−77,−74,−66,−65,−55,−44,−33,−22,−11,0},

p −1 ={−78,−75,−67,−66,−56,−45,−34,−23,−12,−1},

p −4 ={−81,−78,−70,−69,−59,−48,−37,−26,−15,−4}.

There are no elements shared by all three sets, so there is no possible value for B such
that A, A−1, and A−2 are all 0-attracted.

Case 3: Let A = −an an−1...4, A−1 = −an an−1...5, and A−2 = −an an−1...6. As with
Case 1, consider

Q2,10(A) =sg n(A)a2
n +

n−1∑
i=1

a2
i +42

Q2,10(A−1) =sg n(A)a2
n +

n−1∑
i=1

a2
i +52

Q2,10(A−2) =sg n(A)a2
n +

n−1∑
i=1

a2
i +62.

Let B = sg n(A)a2
n +∑n−1

i=1 a2
i . We need B+16,B+25,B+36 ∈ p, so B must be an element

of p −16, p −25, and p −36, where

p −16 ={−93,−90,−82,−81,−71,−60,−49,−38,−27,−16}

p −25 ={−102,−99,−91,−90,−80,−69,−58,−47,−36,−25}

p −36 ={−113,−110,−102,−101,−91,−80,−69,−58,−47,−36}

Again, there are no elements shared by all three sets, so there is no value of B such that
A, A−1, and A−2 are all 0-attracted.

Thus, the longest possible string of 0-attracted numbers is two.

The above proof leads to the following corollary:
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Corollary 5.5. Any consecutive pair of 0-attracted numbers are of the form A − 1 =
−an an−1...6, A =−an an−1...5,
A−1 =−an an−1...1, A =−an an−1...0, or
A−1 =−an an−1...2, A =−an an−1...1.

Proof. In the beginning of the proof of Theorem 14, we found possibilities for the final
digit of the first of a pair of consecutive 0-attracted numbers. The possibilities were
0,1,4,5, and 9. Case 3 of the above proof proves that there are no string of consecutive
numbers A, A− 1 where a0 = 9. To see that there are no strings with a0 = 4 we may
consider the sets p −x as in the previous proof.

Let us consider A = an an−1...4, A−1 = an an−1...5. Then B = sg n(A)a2
n +

∑n−1
i=1 a2

i must
be an element of p −16 and p −25:

p −16 ={−93,−90,−82,−81,−71,−60,−49,−38,−27,−16}

p −25 ={−102,−99,−91,−90,−80,−69,−58,−47,−36,−25}

There is a shared element of these sets, −90. However, B = sg n(A)a2
n +∑n−1

i=1 ai can
never equal −90 – the minimum value of B is −81. Therefore there are no consecutive
0-attracted numbers of the form an an−1...4, an an−1...5.

6 Special Cases

6.1 Statements Involving Only Positive Integers

6.1.1 Bases of the form 2` in S`+1,2` . The functions S3,4 and S4,8 share the fixed points

1, 20, and 21. In both of these cases, the bases in question can be expressed as 2` for
some ` ∈ Z+: 4 = 22, and 8 = 23. Rewriting S3,4 as S3,22 and S4,8 as S4,23 , it becomes clear
that the functions can be expressed as S`+1,2` . Other functions of this structure, S3,9 and
S5,16 display a similar pattern, as shown in Table 7. This suggests the following results.

Theorem 6.1. For a base b = a`, ` ≥ 2, and k < `, the number (ab)k is a fixed point for
S`+1,b .

Proof. Given ak < b, (ab)k = ak bk has one nonzero digit, ak , so

S`+1,b((ab)k ) = (ak )`+1.

Recall that b = a`. Then,

(ab)k = ak bk = ak a`k = (ak )`+1 = S`+1,b((ab)k ).

Hence, S`+1,b((ab)k ) = (ab)k , and so (ab)k is a fixed point of S`+1,b .
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18 F. G. Happy Numbers

Theorem 6.2. For a base b = a`,` ≥ a, let P = {0,1,2, ...,`−1}, and let I be a nonempty
subset of P. Then

∑
i∈I(ab)i is a fixed point of S`+1,b .

Proof. Note that
∑

i∈I(ab)i = ∑
i∈I(ai bi ). For all i ∈ I, i < `, so the nonzero digits of∑

i∈I(ab)i base b are {ai |i ∈ I}. Thus,

S`+1,b

(∑
i∈I

(ab)i

)
=∑

i∈I
(ai )`+1.

Recall that b = a`. Thus

(ab)i = ai bi = ai (a`)i = ai`+i = (ai )`+1.

Hence,
∑

i∈I(ab)i =∑
i∈I(ai )`+1. So we have

S`+1,b

(∑
i∈I

(ab)i

)
=∑

i∈I
(ai )`+1 =∑

i∈I
(ab)i ,

and so
∑

i∈I(ab)i is a fixed point of S`+1,b .

Table 7 displays several base and power combinations which satisfy the requirements
for Theorems 6.1 and 6.2. Note that, as we have not found the interval in which all
fixed points and cycles of S5,b are represented, those presented here for S5,16 are not
necessarily all possible cycles and fixed points of the function. The extra digits required
for base 16 are as provided in standard hexidecimal, so a=10, b=11, c=12, d=13, e=14, and
f=15.

Base Power Fixed points Cycles
16 5 1, 20, 21, 400, 401, 420, 421,

c80e1, 8000, 8001, 8020, 8021,
8400, 8401, 8420, 8421

135, a354, c5a9,
234bdf

8 4 1, 20, 21, 400, 401, 420, 421 ∅
9 3 1, 30, 31, 150, 539, 570, 571,

151, 755, 1388
38, 152, 638

4 3 1, 20, 21, 130, 131, 203, 223,
313, 332

∅

Table 7: Fixed points and cycles of S`+1,a`
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6.1.2 Bases with exponents of the form 2n +1.

Theorem 6.3. Let a ≥ 2, and n ∈Z+. Then S2,a2n+1 has a cycle of length 2n with represen-
tative a2.

Proof. Let a ≥ 2 and n ∈Z+, and let the base b = a2n+1.

We will show that, for 0 ≤ k ≤ n−1, Sk
2,a2n+1 (a2) = a2k+1

. Since a2 < a2n+1, S2,a2n+1 (a2) =
a4. Observe that a20+1 = a2 and a4 = a21+1

, so the statement holds for the base case. For
k ≤ n −1, a2k+1 < a2n+1, and thus has one digit.

Assume Sk
2,a2n+1 (a2) = a2k+1

for some k ≤ n −1. Then

Sk+1
2,a2n+1 (a2) = (a2k+1

)2 = a2·2k+1 = a2(k+1)+1
,

as desired.
If n ≤ k ≤ 2n−1, then express Sk

2,a2n+1 (a2) as Sn+ j

2,a2n+1 (a2). We will show that, for 0 ≤ j ≤
n −1, Sn+ j

2,a2n+1 (a2) = a2n−(2 j+1−1)(a2n+1). By the argument for 0 ≤ k ≤ n −1, Sn−1
2,a2n+1 = a2n

,

and so

Sn
2,a2n+1 = (a2n

)2 = a2n+1 = a2n+1−2n−1(a2n+1) = a2n−1(a2n+1) = a2n−(20+1−1)(a2n+1).

Thus the statement holds for the base case.
Let Sn+ j

2,a2n+1 (a2) = a2n−(2 j+1−1)(a2n+1). Then

Sn+ j+1

2,a2n+1 (a2) = (a2n−(2 j+1−1))2 = a2n+1−2 j+2+2 = a2n+1−2n−2(2 j+1)+2−1a2n+1 = a2n−(2 j+2−1)a2n+1,

as desired.
Then Sn+n

2,a2n+1 (a2) = (a2n−(2n−1))2 = a2.

6.2 Statements Involving the Negative Integers

6.2.1 Bases that are powers of 2 in Q2,b . As with S, the behavior of Q2,4 and Q2,8 is
unusual. In both of these bases, Q has a cycle of negative integers. Q2,4 has the cycle
−3 → −2121 → −3, and Q2,8 has the cycle −7 → −61 → −43 → −7. Each cycle has a
representative of the form −b +1, and each base is a power of 2. This gives the following
theorem.

Theorem 6.4. For a base b = 2n , n > 1, Q2,2n has a cycle of length n with representative
−(2n −1).
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Proof. Fix b = 2n ,n > 1. We will show that, for all 1 ≤ i < n,

Qi
2,2n (−2n +1) =−((2n −2i )2n + (2i −1)).

Consider Q2,2n (−2n +1). Since −2n <−2n +1 < 2n , it has one digit. Thus

Q2,2n (−2n +1) =−(−2n +1)2 =−22n +2n+1 −1 =−((2n −2)2n +1),

Then

Q2
2,2n (−2n +1) =−(2n −2)2 +12 =−(22n −2n+2 +22)+1 =−((2n −22)2n + (22 −1)).

. Thus the assertion holds for i = 2, the base case.
Let there be some 1 < k < n such that

Qk
2,2n (−2n +1) =−((2n −2k )2n + (2k −1)).

Then Qk+1
2,2n (−2n +1) =−(2n −2k )2 + (2k −1)2, so

Qk+1
2,2n (−2n +1) =−(22n −2n+k+1 +22k )+22k −2k+1 +1

=−(2n −2k+1)2n −22k +22k −2k+1 +1

=−((2n −2k+1)2n − (2k+1 −1)).

Thus the assertion holds for all 1 < i < n.
Consider i = n. Qn

2,2n (−2n +1) = Q2,2n (Qn−1
2,2n (−2n +1)). By the above, then,

Qn
2,2n (−2n +1) = Q2,2n (−((2n −2n−1)2n − (2n−1 −1))

=−(2n −2n−1)2 + (2n−1 −1)2

=−(22n −2n−1+n −2n−1+n +22n−2)+ (22n−2 −2n−1 −2n−1 +1)

=−(22n −22n−1+1 +22n−2)+ (22n−2 −2n +1)

=−22n−2 +22n−2 −2n +1

=−2n +1

Thus −2n +1 is a cycle representative of Q2,2n for all n.

6.2.2 Bases that are perfect squares in Q3,b . In Q3,b bases 4 and 9 have negative fixed
points which are not −1. −20 is a fixed point of Q3,4 – as is 20 – and −30 and 30 are fixed
points of Q3,9. This suggests the following theorem:

Theorem 6.5. For any a ≥ 2 and base b = a2, ab and −ab are fixed points of Q3,b .

Proof. Let b = a2. Since −ab has the single non-zero digit a, Q3,b(−ab) = −a3 +03 =
−a3.As b = a2, a3 = ab, so Q3,b(−ab) =−ab. Identically,Q3,b(ab) = a3+03 = a3 = ab.
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