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Divisibility Probabilities for Products of
Randomly Chosen Integers

By Noah Y. Fine

Abstract. We find a formula for the probability that the product of n positive integers, chosen at random,

is divisible by some integer d . We do this via an inductive application of the Chinese Remainder Theorem,

generating functions, and several other combinatorial arguments. Additionally, we apply this formula to

find a unique, but slow, probabilistic primality test.

1 Introduction

The problem that we solve in this paper is motivated by the following question from
FiveThirtyEight.com [1]:

If we are given three random integers x, y, and z, what is the probability that their
product xyz is divisible by 100?

In this paper, we derive a formula for the probability that a finite product of any
n "randomly chosen" positive integers is divisible by a given positive integer d . This
formula answers the question posed on FiveThirtyEight, and similar questions.

The ambiguity with this problem comes from how we define "randomly chosen".
Based on their solution [3], FiveThirtyEight clearly intended that each positive integer
be chosen using a uniform distribution. The remaining question is then: what is the set
from which we are choosing uniformly?

Two answers seem plausible and in line with FiveThirtyEight’s intent in their posing
of the problem. The first is that each integer is chosen uniformly from {1,2, . . . ,d}, or
essentially the residue classes mod d , and the second is that each integer is chosen
uniformly from {1,2, . . . ,N}, where N approaches infinity (assuming that this probability
converges).

We will answer these two questions separately. As finding the formula in a slightly
more generalized finite case can be used in solving the infinite case, we will find the
probability described when choosing our random integers uniformly from {1,2, . . . ,cd},
where c is an integer constant.

Beautifully, the answer in both the finite and infinite cases turns out to be the same:

Mathematics Subject Classification. 11N25, 11A51, 11B75
Keywords. probability, divisibility, primality test
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2 Divisibility Probabilities for Products of Randomly Chosen Integers

Theorem 1.1. The probability that d |Xn , where d =∏ℓ
i=1 pri

i is the prime factorization
of d and Xn is the product of n randomly chosen positive integers (by either definition of
"randomly chosen" described above), is

ℓ∏
i=1

(
1−

ri−1∑
k=0

(
n +k −1

n −1

)(
1− 1

pi

)n (
1

pi

)k
)

.

This formula gives the answer to FiveThirtyEight’s original problem as 0.1243, which
matches the solution given by FiveThirtyEight [3].

In order to complete this proof, we will review several well-known number theory
definitions and theorems. First, we recall the definition of a multiplicative function: an
arithmetic function f is called multiplicative if f (mn) = f (m) f (n) whenever m and n are
relatively prime positive integers [4, pp. 166–167]. Such functions are important because
their values at all positive integers are determined by their values at prime powers. This
fact inspires Proposition 2.1.

Second, we recall the Chinese Remainder Theorem: if m1,m2, . . . ,mr are pairwise
relatively prime positive integers, then the system of congruence

x1 ≡ a1 (mod m1)

x2 ≡ a2 (mod m2)

. . .

xr ≡ ar (mod mr )

has a unique solution modulo M = m1m2 · · ·mr [4, pp. 107–108]. This theorem is used in
the proof of Lemma 2.4.

And finally, we recall the Squeeze Theorem, which states that if {xn}, {yn}, and {zn}
are sequences of real numbers such that

xn ≤ yn ≤ zn

for all n, and limn→∞ xn = limn→∞ zn , then limn→∞ yn exists and

lim
n→∞xn = lim

n→∞ yn = lim
n→∞zn[2, pp.66].

This theorem is used in the proof of Theorem 3.1.

2 On Finite Intervals

First, let random variables xi be drawn uniformly from {1,2, . . . ,N}, and let Xn =∏n
i=1 xi .

We use the notation PN(d |Xn) to mean the probability that Xn is divisible by d . We will

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Noah Y. Fine 3

also use this notation for the probability of similar situations where the xi are chosen
uniformly from {1,2, . . . ,N}.

Note that, throughout the paper, PN(a|b) refers to the probability that a divides b,
not any sort of conditional probability. Further, the notation || is used in the standard
manner: pa ||q iff pa is the largest power of p which divides q .

We want to find Pcd (d |Xn). To do this, we first need a multiplicativity result:

Proposition 2.1. Suppose d =∏ℓ
i=1 pri

i . If c is a positive integer constant, then

Pcd (d |Xn) =
ℓ∏

i=1
Pcd (pri

i |Xn).

Remark 2.2. Our Proposition 2.1 seems intuitive at first, as a natural extension of
the Chinese Remainder Theorem. However, it is worth noting that we run into a
counterexample very quickly if we try to show a more general version of this holds:
PN(d |Xn) =∏ℓ

i=1 PN(pri
i |Xn).

We examine the case where N = 100, d = 5 ·230, n = 5. First, we evaluate PN(d |Xn).
There is only one possible tuple of values for (x1, . . . , x5) such that 230|Xn : namely,
(64,64,64,64,64). With any other tuple of values for (x1, . . . , x5), the product of the five
variables does not contain enough powers of 2 in its prime factorization to be divisible
by 230. However, if (x1, . . . , x5) = (64, . . . ,64), then 5 ∤ Xn , and in turn d ∤ Xn ; since for no
values of x1, . . . , x5 can d divide Xn , we have PN(d |Xn) = 0.

Now, we evaluate
∏ℓ

i=1 PN(pri
i |Xn) = PN(230|Xn) ·PN(5|Xn). As only one tuple of pos-

sible values for (x1, . . . , x5) (out of 1005 possible such tuples) satisfies 230|Xn , we have
PN(230|Xn) = 1

1010 . Further, the probability of none of the integers x1, . . . , x5 being divisible

by 5 is
(4

5

)5
, so the probability that at least one of them is divisible by 5 (and therefore

5|Xn) is 1− (4
5

)5
. So, PN(230|Xn) ·PN(5|Xn) = 1

1010 ·
(
1− (4

5

)5
)
̸= 0. Therefore, in this case,

PN(d |Xn) ̸=∏ℓ
i=1 PN(pri

i |Xn).
Our concern is that we could somehow run into similar issues as in the example above

even with the conditions laid out in Proposition 2.1. So, we will prove Proposition 2.1
rigorously. Rather than attempting to apply the Chinese Remainder Theorem to Xn , we
will inductively apply it to each x j . To avoid such issues as in the example above, we will
set conditions like a < r in some of the lemmas below. These variables will be explained
shortly.

To prove the proposition, we need the two lemmas below:

Lemma 2.3. Let p be a prime and suppose pr ||d, and a < r . Then,

Pcd (pa ||Xk+1) =
a∑

j=0
Pcd (pa− j ||Xk ) ·

(
1− 1

p

)
· 1

p j
.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



4 Divisibility Probabilities for Products of Randomly Chosen Integers

Proof. First, observe that

Pcd (pa ||Xk+1) = Pcd

(
pa ||

k+1∏
i=1

xk+1

)
= Pcd (pa ||Xk · xk+1)

=
a∑

j=0
Pcd (pa− j ||Xk and p j ||xk+1).

Since all of the xi ’s are independent and identically distributed (i.i.d.), the two events
pa− j ||Xk and p j ||xk+1 are independent. So, we have

a∑
j=0

Pcd (pa− j ||Xk and p j ||xk+1) =
a∑

j=0
Pcd (pa− j ||Xk )Pcd (p j ||xk+1).

Now, we want to find Pcd (p j ||xk+1) when 0 ≤ j ≤ a. We do this via counting:
xk+1 is chosen randomly and uniformly from the set {1,2, . . . ,cd}. Of these inte-

gers, p j ,2p j , . . . , and
⌊

cd
p j

⌋
p j are divisible by p j . Further, of these, p j+1,2p j+1, . . . , and⌊

cd
p j+1

⌋
p j+1 are also divisible by p j+1. So,

⌊
cd
p j

⌋
−

⌊
cd

p j+1

⌋
of the possible values of xk+1 are

divisible by p j but not p j+1.
Note, though, that both cd

p j and cd
p j+1 are integers: since j ≤ a < r , we know j +1 ≤ r .

Then, p j+1|d , so cd
p j and cd

p j+1 are integers.

Then, since xk+1 takes on one of cd values uniformly, and cd
p j − cd

p j+1 of these values

are such that p j ||xk+1, we have

Pcd (p j ||xk+1) =
cd
p j − cd

p j+1

cd

= 1

p j
− 1

p j+1
.

Therefore,

Pcd (p j ||xk+1) =
(
1− 1

p

)
· 1

p j
. (1)

Now, we can use this result in our earlier equation to find
a∑

j=0
Pcd (pa− j ||Xk )Pcd (p j ||xk+1) =

a∑
j=0

Pcd (pa− j ||Xk ) ·
(
1− 1

p

)
· 1

p j

and we have shown

Pcd (pa ||Xk+1) =
a∑

j=0
Pcd (pa− j ||Xk ) ·

(
1− 1

p

)
· 1

p j
.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Noah Y. Fine 5

We need one more lemma before we can show multiplicativity:

Lemma 2.4. Suppose d =∏ℓ
i=1 pri

i , and let S ⊆ {1,2, . . . ,ℓ}.
Let ai < ri for all i ∈ S. Then,

Pcd (pai
i ||Xn ,∀i ∈ S) = ∏

i∈S
Pcd (pai

i ||Xn).

Proof. We show Pcd (pai
i ||Xn ,∀i ∈ S) =∏

i∈S Pcd (pai
i ||Xn), when ai < ri for all i , via induc-

tion on n:
First, we want to show Lemma 2.4 holds in the base case, n = 1. Here, Pcd (pai

i ||Xn ,∀i ∈
S) = Pcd (pai

i ||x1,∀i ∈ S), where x1 is an integer chosen uniformly from {1,2, . . . ,cd}. By
the Chinese Remainder Theorem, these events are independent, so we have

Pcd (pai
i ||x1,∀i ∈ S) = ∏

i∈S
Pcd (pai

i ||x1) = ∏
i∈S

Pcd (pai
i ||Xn).

So, Lemma 2.4 holds when n = 1.
Now, suppose Lemma 2.4 holds when n = k. We want to show Lemma 2.4 holds

when n = k +1. Let’s start with the right-hand side.
First, we focus on the Pcd (pa1

1 ||Xk+1) term on the right-hand side of Lemma 2.3 with
n = k +1. We apply Lemma 2.3 for

Pcd (pa1
1 ||Xk+1) =

a1∑
j=0

Pcd (pa1− j
1 ||Xk ) ·

(
1− 1

p1

)
· 1

p j
1

and apply this without loss of generality over all i in S to find

∏
i∈S

Pcd (pai
i ||Xk+1) = ∏

i∈S

ai∑
j=0

Pcd (pai− j
i ||Xk ) ·

(
1− 1

pi

)
· 1

p j
i

= ∑
m∈S

∑
0≤ jm≤am

∏
i∈S

Pcd (pai− ji
i ||Xk ) ·

(
1− 1

pi

)
· 1

p ji
i

.

Now, we turn our attention to the term on the inside of the sums,∏
i∈S

Pcd (pai− ji
i ||Xk ) ·

(
1− 1

pi

)
· 1

p ji
i

.

First, since ai − ji ≤ ai < ri for all i , we can apply our inductive hypothesis to say∏
i∈S

Pcd (pai− ji
i ||Xk ) = Pcd (pai− ji

i ||Xk ,∀i ∈ S).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



6 Divisibility Probabilities for Products of Randomly Chosen Integers

Additionally, by Equation (1) from the proof of Lemma 2.3, we have
(
1− 1

pi

)
· 1

p
ji
i

=
Pcd (p ji

i ||xk+1), for all i . So,

∏
i∈S

Pcd (pai− ji
i ||Xk ) ·

(
1− 1

pi

)
· 1

p ji
i

= Pcd (pai− ji
i ||Xk ,∀i ∈ S)

∏
i∈S

Pcd (p ji
i ||xk+1).

Further, by the Chinese Remainder Theorem,
∏

i∈S Pcd (p ji
i ||xk+1) = Pcd (p ji

i ||xk+1,∀i ∈ S).
So,

Pcd (pai− ji
i ||Xk ,∀i ∈ S)

∏
i∈S

Pcd (p ji
i ||xk+1) = Pcd (pai− ji

i ||Xk ,∀i ∈ S) ·Pcd (p ji
i ||xk+1,∀i ∈ S)

= Pcd (pai− ji
i ||Xk and p ji

i ||xk+1,∀i ∈ S)

as these events are independent.
Now, consider the event pai− ji

i ||Xk
⋂

p ji
i ||xk+1. Since pai− ji

i ||Xk and p ji
i ||xk+1 if and

only if pai
i ||Xk+1 and p ji

i ||xk+1, we find

Pcd (pai− ji
i ||Xk and p ji

i ||xk+1,∀i ∈ S) = Pcd (pai
i ||Xk+1 and p ji

i ||xk+1,∀i ∈ S).

So, returning to our original sum, we can now find

∑
m∈S

∑
0≤ jm≤am

∏
i∈S

Pcd (pai− ji
i ||Xk ) ·

(
1− 1

pi

)
· 1

p ji
i

= ∑
m∈S

∑
0≤ jm≤am

Pcd (pai
i ||Xk+1 and p ji

i ||xk+1,∀i ∈ S).

Each term represents the probability that pai
i ||Xk+1 and p ji

i ||xk+1 for ji = 0,1, . . . , ai ,
for all i ∈ S. Note that this encompasses all cases such that pai

i ||Xk+1 is true, as in this

event it must be that p ji
i ||xk+1 for one of ji = 0,1, . . . , ai . So,∑

m∈S

∑
0≤ jm≤am

Pcd (pai
i ||Xk+1 and p ji

i ||xk+1,∀i ∈ S)

= ∑
m∈S

∑
0≤ jm≤am

Pcd (pai− ji
i ||Xk and p ji

i ||xk+1,∀i ∈ S) = Pcd (pai
i ||Xk+1,∀i ∈ S)

and we have shown that Lemma 2.4 holds for n = k implies that Lemma 2.4 holds for
n = k +1.

By induction, therefore, we have shown Pcd (pai
i ||Xn ,∀i ∈ S) = ∏

i∈S Pcd (pai
i ||Xn),

when ai < ri for all i ∈ S.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Noah Y. Fine 7

With the two lemmas above, we can now show multiplicativity: -

Proof of Proposition 2.1. Let’s start with the right-hand side.
Note first that pri

i |Xn if and only if p0
i ||Xn , p1

i ||Xn , . . ., and pri−1
i ||Xn are all not true.

More formally, the event pri
i |Xn is equivalent to the complement of the union of the

events pa
i ||Xn for all a ∈ {0,1, . . . ,ri −1}. So,

ℓ∏
i=1

Pcd (pri
i |Xn) =

ℓ∏
i=1

(
1−

ri−1∑
j=0

Pcd (p j
i ||Xn)

)

= ∑
I⊆{1,2,...,ℓ}

(−1)|I|
∏
i∈I

ri−1∑
j=0

Pcd (p j
i ||Xn)

= ∑
I⊆{1,2,...,ℓ}

(−1)|I|
∑
m∈I

∑
0≤ jm≤rm−1

∏
i∈I

Pcd (p ji
i ||Xn).

By Lemma 2.4,
∏

i∈I Pcd (p ji
i ||Xn) = Pcd (p ji

i ||Xn ,∀i ∈ I), and we can apply this to the
line above to obtain ∑

I⊆{1,2,...,ℓ}
(−1)|I|

∑
m∈I

∑
0≤ jm≤rm−1

∏
i∈I

Pcd (p ji
i ||Xn)

= ∑
I⊆{1,2,...,ℓ}

(−1)|I|
∑
m∈I

∑
0≤ jm≤rm−1

Pcd (p ji
i ||Xn ,∀i ∈ I).

Now, observe that pri
i ∤ Xn if and only if p ji

i ||Xn for some 0 ≤ ji ≤ ri −1. So, we have∑
m∈I

∑
0≤ jm≤rm−1 Pcd (p ji

i ||Xn ,∀i ∈ I) = Pcd (pri
i ∤Xn ,∀i ∈ I), and therefore∑

I⊆{1,2,...,ℓ}
(−1)|I|

∑
m∈I

∑
0≤ jm≤rm−1

Pcd (p ji
i ||Xn ,∀i ∈ I) = ∑

I⊆{1,2,...,ℓ}
(−1)|I|Pcd (pri

i ∤Xn ,∀i ∈ I).

Then, by the inclusion-exclusion principle,∑
I⊆{1,2,...,ℓ}

(−1)|I|Pcd (pri
i ∤Xn ,∀i ∈ I) = Pcd (pri

i |Xn ,∀i ∈ {1, . . . ,ℓ})

= Pcd (d |Xn).

We have shown that Pcd (d |Xn) =∏ℓ
i=1 Pcd (pri

i |Xn). This completes the proof of Propo-
sition 2.1.

Now that we have shown that the formula for Pcd (d |Xn) is multiplicative, we need to
find its value when d is a prime power. Then, for any d , we can simply use Proposition 2.1
to obtain the value of Pcd (d |Xn).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



8 Divisibility Probabilities for Products of Randomly Chosen Integers

Lemma 2.5. Suppose that n is a fixed positive integer, p is a prime number, and r ∈N is
such that pr ||d. Then,

Pcd (pr |Xn) = 1−
r−1∑
k=0

(
n +k −1

n −1

)(
1− 1

p

)n (
1

p

)k

.

Proof. Let m j be such that pm j ||x j , and m =∑n
j=1 m j .

Observe that

Pcd (pr |Xn) = Pcd (m ≥ r ) = 1−Pcd (m < r ) = 1−
r−1∑
k=0

Pcd (m = k).

So, we can obtain Pcd (pr |Xn) by obtaining the values of Pcd (m = k) for all k integers less
than r . This avoids the problems described in Remark 2.2.

Define the generating function

F(T) =
∞∑

k=0
Pcd (m = k)Tk .

Then, ∞∑
k=0

Pcd (m = k)Tk =
∞∑

k=0

∑
k1+...+kn=k

Pcd
(
(m1, . . . ,mn) = (k1, . . . ,kn)

)
Tk

=
∞∑

k=0

∑
k1+...+kn=k

Pcd (m1 = k1)Tk1 · · ·Pcd (mn = kn)Tkn (as the xi ’s are i.i.d.)

= ∑
0≤k1+...+kn<∞

Pcd (m1 = k1)Tk1 · · ·Pcd (mn = kn)Tkn

=
n∏

i=1

∞∑
ki=0

Pcd (mi = ki )Tki

=
n∏

i=1

∞∑
k=0

Pcd (mi = k)Tk .

We use this generating function only to find coefficients of terms of degree less than
r . As discussed above, we do not care about coefficients beyond Tr−1, nor do we want to
work with them because of problems similar to those described in Remark 2.2. We can
remove unneeded terms by saying

n∏
i=1

∞∑
k=0

Pcd (mi = k)Tk =
(

n∏
i=1

r−1∑
k=0

Pcd (mi = k)Tk

)
+O (Tr )

where O (Tr ) denotes an unspecified sum of powers Tr and higher in a power series.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Noah Y. Fine 9

Now, we can apply Equation (1) from the proof of Lemma 2.3 to say Pcd (mi = k) =
1

pk

(
1− 1

p

)
, so(

n∏
i=1

r−1∑
k=0

Pcd (mi = k)Tk

)
+O (Tr ) =

(
n∏

i=1

r−1∑
k=0

1

pk

(
1− 1

p

)
Tk

)
+O (Tr ).

We can "pull terms out" of the O (Tr ) to change the summation bound from r −1 to ∞ to
find (

n∏
i=1

r−1∑
k=0

1

pk

(
1− 1

p

)
Tk

)
+O (Tr ) =

(
n∏

i=1

∞∑
k=0

1

pk

(
1− 1

p

)
Tk

)
+O (Tr )

=
( ∞∑

k=0

1

pk

(
1− 1

p

)
Tk

)n

+O (Tr )

=
(
1− 1

p

)n
( ∞∑

k=0

1

pk
Tk

)n

+O (Tr ).

Now, let S = T
p . Then,

(
1− 1

p

)n
( ∞∑

k=0

1

pk
Tk

)n

+O (Tr ) =
(
1− 1

p

)n
( ∞∑

k=0
Sk

)n

+O (Tr )

=
(
1− 1

p

)n (
1

1−S

)n

+O (Tr )

by sum of a geometric series.
From the binomial expansion of (1−S)−n =∑∞

k=0

(−n
k

)
(−S)k , and the identity

(−n
k

)=
(−1)k

(n+k−1
k

)
, we have found the generating function for Pcd (m = k) as a function of the

formal variable T to be

F(T) =
∞∑

k=0

(
n +k −1

n −1

)(
1− 1

p

)n (
T

p

)k

+O (Tr ).

We can now use the generating function to find Pcd (m ≥ r ):

Pcd (m ≥ r ) = 1−Pcd (m < r ) = 1−
r−1∑
k=0

Pcd (m = k) = 1−
r−1∑
k=0

(
n +k −1

n −1

)(
1− 1

p

)n (
1

p

)k

.

Equivalently,

Pcd (pr |Xn) = 1−
r−1∑
k=0

(
n +k −1

n −1

)(
1− 1

p

)n (
1

p

)k

.
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10 Divisibility Probabilities for Products of Randomly Chosen Integers

With this lemma, we can now obtain a formula as desired in the finite case:

Theorem 2.6. Suppose d =∏ℓ
i=1 pri

i . If c is a positive integer constant, then

Pcd (d |Xn) =
ℓ∏

i=1

(
1−

ri−1∑
k=0

(
n +k −1

n −1

)(
1− 1

p

)n (
1

p

)k
)

.

Proof. By Proposition 2.1,

Pcd (d |Xn) =
ℓ∏

i=1
Pcd (pri

i |Xn)

and we can apply Lemma 2.5 to obtain

ℓ∏
i=1

Pcd (pri
i |Xn) =

ℓ∏
i=1

(
1−

ri−1∑
k=0

(
n +k −1

n −1

)(
1− 1

p

)n (
1

p

)k
)

.

We have now found a formula for the probability that d divides the product of n
integers chosen randomly from {1, . . . ,d} - simply apply Theorem 2.6 with c = 1.

We can restate the result from Theorem 2.6 to obtain the following, which will be
useful in Corollary 4.1:

Corollary 2.7. Suppose d =∏ℓ
i=1 pri

i . If c is a positive integer constant, then

Pcd (d |Xn) =
ℓ∏

i=1

n−1∑
k=0

(
ri +n −1

k

)(
1− 1

pi

)k (
1

pi

)ri+n−1−k

.

This corollary follows from setting x = 1
p in the following lemma.

Lemma 2.8. Let n be a positive integer, r a non-negative integer, and x a real number
with 0 < x < 1. Then,

1−
r−1∑
k=0

(
n +k −1

n −1

)
(1−x)n xk =

n−1∑
k=0

(
r +n −1

k

)
(1−x)k xr+n−1−k .

Proof. We show this via induction on r .
First, we want to show Lemma 2.8 holds in the base case, r = 0. Here, the sum is

empty, so

1−
r−1∑
k=0

(
n +k −1

n −1

)
(1−x)n xk = 1 = (x + (1−x))n−1.
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Then, as the Binomial Theorem states that for variables x and y and positive integer n,
(x + y)n =∑n

j=0

(n
j

)
xn− j y j [4, pp. 12-13], we have

(x + (1−x))n−1 =
n−1∑
k=0

(
r +n −1

k

)
(1−x)k xr+n−1−k .

and Lemma 2.8 holds in the base case.
Now, suppose Lemma 2.8 holds when r = j , for some non-negative integer j . We

want to show that Lemma 2.8 holds when r = j +1.
Since

( j+n
k

)= ( j+n−1
k−1

)+ ( j+n−1
k

)
, for k ≥ 1, we have (starting from the right side)

n−1∑
k=0

(
j +n

k

)
(1−x)k x j+n−k

= x j+n +
n−1∑
k=1

(
j +n −1

k −1

)
(1−x)k x j+n−k +

n−1∑
k=1

(
j +n −1

k

)
(1−x)k x j+n−k . (2)

With a change of bounds, we can see that the first sum is

n−1∑
k=1

(
j +n −1

k −1

)
(1−x)k x j+n−k =

n−2∑
k=0

(
j +n −1

k

)
(1−x)k+1x j+n−(k+1)

= (1−x)

(
n−1∑
k=0

(
j +n −1

k

)
(1−x)k x j+n−(k+1) −

(
j +n −1

n −1

)
(1−x)k x j

)
.

Then, since Lemma 2.8 holds when r = j , we find the above is equal to

(1−x)

(
1−

j−1∑
k=0

(
n +k −1

n −1

)
(1−x)n xk −

(
j +n −1

n −1

)
(1−x)k x j

)
.

The second sum, meanwhile, is

n−1∑
k=1

(
j +n −1

k

)
(1−x)k x j+n−k =

n−1∑
k=0

(
j +n −1

k

)
(1−x)k x j+n−k −x j+n

= x

(
n−1∑
k=0

(
j +n −1

k

)
(1−x)k x j+n−k−1

)
−x j+n .

And since Lemma 2.8 holds when r = j , we find the above is equal to

x

(
1−

j−1∑
k=0

(
n +k −1

n −1

)
(1−x)n xk

)
−x j+n .
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12 Divisibility Probabilities for Products of Randomly Chosen Integers

Returning to Equation (2), we see

x j+n +
n−1∑
k=1

(
j +n −1

k −1

)
(1−x)k x j+n−k +

n−1∑
k=1

(
j +n −1

k

)
(1−x)k x j+n−k

= (1−x)

(
1−

j−1∑
k=0

(
n +k −1

n −1

)
(1−x)n xk −

(
j +n −1

n −1

)
(1−x)k x j

)

+x

(
1−

j−1∑
k=0

(
n +k −1

n −1

)
(1−x)n xk

)

= 1−
j−1∑
k=0

(
n +k −1

n −1

)
(1−x)n xk − (1−x)

(
j +n −1

n −1

)
(1−x)k x j

= 1−
j∑

k=0

(
n +k −1

n −1

)
(1−x)n xk

and we have shown that Lemma 2.8 holds for r = j implies that Lemma 2.8 holds for
r = j +1.

By induction, therefore, we have proved the lemma.

3 The Infinite Case

Theorem 3.1. Suppose d =∏ℓ
i=1 pri

i . Then,

lim
N→∞

PN(d |Xn) =
ℓ∏

i=1

(
1−

r−1∑
k=0

(
n +k −1

n −1

)
(1− 1

p
)n(

1

p
)k

)
.

Proof. Let xi be uniformly chosen from {1, . . . ,N} for all i ∈ {1, . . . ,n}, and let Xn =∏n
i=1 xi .

Let SN be the set of all possible ordered tuples of values of (x1, . . . , xn) such that
d |Xn . Note that each tuple in SN is of equal likelihood, as each xi is chosen uniformly at
random. Note further that Nn total tuples of values of (x1, . . . , xn) are possible, as there
are n elements in the tuple, each of which can take on any of N distinct values. So, clearly,

PN(d |Xn) = |SN|
Nn

.

Now, let c = ⌊N
d

⌋
, so cd ≤ N < (c +1)d .

Note that |Scd | ≤ |SN| ≤ |S(c+1)d |; this follows immediately from the definition of the
sets.

Now,
|Scd |

((c +1)d)n
≤ |SN|

Nn
≤ |S(c+1)d |

(cd)n
.
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Equivalently, ( c

c +1

)n |Scd |
(cd)n

≤ |SN|
Nn

≤
(

c +1

c

)n |S(c+1)d |
((c +1)d)n

.

Using PN(d |Xn) = |SN|
Nn , we have

( c

c +1

)n
Pcd (d |Xn) ≤ |SN|

Nn
≤

(
c +1

c

)n

P(c+1)d (d |Xn).

Note that the right-hand side in Theorem 2.6 is independent of c . Therefore, Pcd (d |Xn) =
Pd (d |Xn), and we obtain( c

c +1

)n
Pd (d |Xn) ≤ |SN|

Nn
≤

(
c +1

c

)n

Pd (d |Xn).

Let’s now consider the limit case for the left-hand side; recall that c = ⌊N
d

⌋
:

lim
N→∞

( c

c +1

)n
Pd (d |Xn) = lim

N→∞

( ⌊N
d

⌋⌊N
d

⌋+1

)n

Pd (d |Xn) = Pd (d |Xn)

since limN→∞
( ⌊ N

d

⌋⌊ N
d

⌋+1

)n

= 1.

Similarly,

lim
N→∞

(
c +1

c

)n

Pd (d |Xn) = lim
N→∞

(⌊N
d

⌋+1⌊N
d

⌋ )n

Pd (d |Xn) = Pd (d |Xn).

Since PN(d |Xn) = |SN|
Nn is bounded above and below by values for which the limit exists

and is the same, the Squeeze Theorem says that

lim
N→∞

PN(d |Xn) = Pd (d |Xn).

So, by Theorem 2.6, we see

lim
N→∞

PN(d |Xn) =
ℓ∏

i=1

(
1−

ri−1∑
k=0

(
n +k −1

n −1

)(
1− 1

pi

)n (
1

pi

)k
)

which is the desired formula.

4 Special Cases

First, we can find a unique property with powers of 2: namely, the probability is 1
2 that

the product of n integers uniformly randomly chosen from {1, . . . ,2n} is divisible by 2n .
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14 Divisibility Probabilities for Products of Randomly Chosen Integers

Corollary 4.1. For a positive integer n,

P2n (2n |Xn) = 1

2
.

Proof. By Corollary 2.7,

P2n (2n |Xn) =
n−1∑
k=0

(
n +n −1

k

)(
1− 1

2

)k (
1

2

)n+n−1−k

=
n−1∑
k=0

(
2n −1

k

)(
1

2

)2n−1

=
(

1

2

)2n−1 n−1∑
k=0

(
2n −1

k

)

=
(

1

2

)2n
(

n−1∑
k=0

(
2n −1

k

)
+

n−1∑
k=0

(
2n −1

k

))
.

Since
(2n−1

k

)= ( 2n−1
2n−1−k

)
, this is simply the sum of the entries in the (2n −1)th row of

Pascal’s Triangle. Famously, the sum of all terms in row R of Pascal’s Triangle is 2R, so we
obtain (

1

2

)2n

22n−1 = 1

2

as desired.

Next, we can find a unique property pertinent to primes. Let p be a prime. The
probability that the product of p integers uniformly randomly chosen from {1, . . . , p}
divides p approaches 1− 1

e as p approaches ∞.

Corollary 4.2. Suppose we have p j , the j th prime. Then,

lim
j→∞

Pp j (p j |Xp j ) = 1− 1

e
.

Proof. By Theorem 2.6,

Pp j (p j |Xp j ) = 1−
1−1∑
k=0

(
p j +k −1

p j −1

)(
1− 1

p j

)p j
(

1

p j

)k

= 1−
(
1− 1

p j

)p j

.

Then,

lim
j→∞

Pp j (p j |Xp j ) = lim
j→∞

(
1−

(
1− 1

p j

)p j
)

.
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Recall the well-known formula limn→∞(1− 1
n )n = 1

e [2, pp. 77, 376]. Since j →∞
implies p j →∞, we have lim j→∞

(
1− 1

p j

)p j = e−1, so

lim
j→∞

Pp j (p j |Xp j ) = 1− 1

e
.

This, of course, could also be proved by observing that for a prime p,

Pp (p ∤Xp ) =
p∏

i=1
Pp (p ∤ xi ) =

(
1− 1

p

)p

.

5 A Primality Test

From the above theorems, we obtain an amusing but extremely impractical primality
test. To avoid weaker results for small numbers, we restrict to integers greater than or
equal to 10. To implement this test, we must first define an upper bound for Pd (d |Xn)
when d is prime, and a lower bound when d is not prime.

Proposition 5.1. If d ≥ 10 is prime,

Pd (d |Xd ) < 0.65.

Proof. First, note that since d ≥ 10 is prime, d ̸= 10. So, d ≥ 11.
Since d is prime, by Theorem 2.6,

Pd (d |Xd ) = 1−
1−1∑
k=0

(
d +k −1

d −1

)(
1− 1

d

)d (
1

d

)k

= 1−
(
1− 1

d

)d

.

We need the following lemma.

Lemma 5.2. Let 0 < x < 1. Then, (1−x)
1
x < e−1, and (1−x)

1
x is decreasing as x increases.

Proof. It is well known that limx→0+(1−x)
1
x = e−1. Now, it suffices to show that (1−x)

1
x

is decreasing as x increases.

Further, it suffices to show g (x) = log
(
(1−x)

1
x

)
= log(1−x)

x is decreasing. By the quo-

tient rule,

g ′(x) =
−x

1−x − log(1−x)

x2
.
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16 Divisibility Probabilities for Products of Randomly Chosen Integers

To show g ′(x) is negative, it now suffices to show that its numerator, n(x) = −x
1−x −log(1−x),

is negative.
First, note n′(x) = −1

(1−x)2 + 1
1−x = −x

(1−x)2 < 0 for 0 < x < 1. So, n(x) is decreasing.
Then, observe n(0) = 0. Since n(x) is decreasing, n(x) is negative for all 0 < x < 1, and

we are done.

We restate the above lemma as (1−x)
1
x is increasing as x decreases. So, we find that

(1− 1
d )d is increasing as d > 1 increases. Equivalently, 1− (

1− 1
d

)d
is decreasing as d

increases. Therefore, when d ≥ 11,

1−
(
1− 1

d

)d

≤ 1−
(
1− 1

11

)11

< 0.65.

Proposition 5.3. If d ≥ 10 is composite,

Pd (d |Xd ) > 0.85

Proof. Let’s first treat the case where d is a prime power: d = pr with r ≥ 2. Within this
case, we will further subdivide into three cases: p = 2, r ≥ 4; p ≥ 5, r = 2; and p ≥ 3, r ≥ 3.
These three cases will cover all prime powers d ≥ 10.

In the first case, d = 2r , r ≥ 2. We observe

Pd (d |Xd ) = P2r (2r |X2r ) = 1−P2r (2r ∤X2r )

Note that r ≥ 4 implies 2r ≥ 4r .
In order for 2r ∤

∏2r

j=1 x j to be true, we need

2r ∤
r∏

j=1
x j , 2r ∤

2r∏
j=r+1

x j , 2r ∤
3r∏

j=2r+1
x j , and 2r ∤

4r∏
j=3r+1

x j

to all be true. This means P2r (2r ∤X2r ) ≤ P2r (2r ∤Xr )4. So,

1−P2r (2r ∤X2r ) ≥ 1−P2r (2r ∤Xr )4.

Using Corollary 4.1, we see P2r (2r |Xr ) = 1
2 , so P2r (2r ∤Xr ) = 1

2 . Then,

1−P2r (2r ∤Xr )4 = 1−
(

1

2

)4

= 15

16
> 0.85

and we have completed the case where d = 2r , r ≥ 2.
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Let’s now examine the case where d = p2, p ≥ 5. Here, by Theorem 2.6,

Pd (d |Xd ) = 1−
1∑

k=0

(
p2 +k −1

p2 −1

)(
1− 1

p

)p2 (
1

p

)k

= 1−
(

p2 −1

p2 −1

)(
1− 1

p

)p2

−
(

p2

p2 −1

)(
1− 1

p

)p2
1

p

= 1−
(
1− 1

p

)p2

(1+p)

Then, by Lemma 5.2,

1−
(
1− 1

p

)p2

(1+p) = 1−
((

1− 1

p

)p)p

(1+p) > 1−e−p (1+p).

The derivative of 1− e−p (1+ p) is p2e−p > 0 for all p > 0. So, this function is strictly
increasing, meaning

1−e−p (1+p) ≥ 1−6e−5 ≈ 0.96 > 0.85

for all p ≥ 5. We have completed the case where d = p2, p ≥ 5.
Finally, we address the case where d = pr , p ≥ 3, and r ≥ 3 via induction. While we

have a base case for p ≥ 5 with r = 2, we do not have one for p = 3. We therefore first
show that Pd (d |Xd ) > 0.85 when d = 33.

By Theorem 2.6,

P33 (33|X33 ) = 1−
2∑

k=0

(
26+k

26

)(
1− 1

3

)27 (
1

3

)k

> 0.999 > 0.85.

Now, we can use induction in the following manner: suppose

Ppr (pr |Xpr ) > 0.85

for some p ≥ 3, r ≥ 2. We want to show that this is true for p, r +1.

Similarly to what we did in the powers of 2 case, observe the following. If pr |∏2pr

j=1 x j

and p|∏3pr

j=2pr +1 x j are both true, then pr+1|∏pr+1

j=1 x j . Therefore,

Ppr+1 (pr+1|Xpr+1 ) ≥ Ppr+1 (pr |X2pr )Ppr+1 (p|Xpr ).

Looking at Ppr+1 (pr |X2pr ) = 1−Ppr+1 (pr ∤ X2pr ), we similarly observe that pr ∤ X2pr

can only be true if pr ∤
∏pr

j=1 x j and pr ∤
∏2pr

j=pr +1 x j . So, Ppr+1 (pr ∤X2pr ) ≤ Ppr+1 (pr ∤Xpr )2.

By our inductive hypothesis, Ppr+1 (pr ∤Xpr )2 < 0.152, and

1−Ppr+1 (pr ∤X2pr ) > 1−0.152.
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18 Divisibility Probabilities for Products of Randomly Chosen Integers

Further, we observe by Theorem 2.6 that Ppr+1 (p|Xpr ) = 1−
(
1− 1

p

)pr

= 1−
((

1− 1
p

)p)pr−1

.

By Lemma 5.2, we see 1−
((

1− 1
p

)p)pr−1

> 1−e−pr−1
. Since 1−e−pr−1

is increasing as p

and r increase, and p ≥ 3 and r ≥ 2, we have 1−e−pr−1 > 1−e−3. So,

Ppr+1 (p|Xpr ) > 1−e−3

Returning to our original equation, we have

Ppr+1 (pr+1|Xpr+1 ) ≥ Ppr+1 (pr |X2pr )Ppr+1 (p|Xpr )

= (1−Ppr+1 (pr ∤X2pr ))Ppr+1 (p|Xpr )

= (1−0.152)(1−e−3) ≈ 0.93 > 0.85.

Therefore we have shown P(d |Xd ) > 0.85 when d is a prime power that is not a prime.
Now assume d is not a prime power, so we can write d =∏ℓ

i=1 pri
i with ℓ≥ 2. Then

Pd (d |Xd ) =
ℓ∏

i=1

(
1−Pd (pri

i ∤Xd )
)

.

We need to show Pd (pr ∤Xd ) is small.
If pr ∤ Xd , then pr doesn’t divide any of the individual factors Xd that are chosen

independently from {1,2, . . . ,d}. Therefore,

Pd (pr ∤Xd ) ≤ Pd (pr ∤ x1)d = (
1−p−r )d .

Then, by Lemma 5.2, (
1−p−r )d = (

1−p−r )pr · d
pr < e

−d
pr .

The case ℓ= 2 is now straightforward: we have d = pr1
1 pr2

2 . Without loss of generality,
say p1 < p2; since d ≥ 10, we have p1 ≥ 2, p2 ≥ 5. Then,

Pd (d |Xd ) = (
1−Pd (pr1

1 ∤Xd
)(

1−Pd (pr2
2 ∤Xd )

)
≥ (1−e−p

r2
2 )(1−e−p

r1
1 ) ≥ (1−e−5)(1−e−2) > 0.85.

Henceforth, we may assume ℓ≥ 3.

Lemma 5.4. If x ≥ 3, then e−x ≤ 1.35/x3.

Proof. x3e−x takes its maximum value of 27/e3 ≈ 1.34 when x = 3.

Lemma 5.5. Suppose xi ≥ 0 for 1 ≤ i ≤ m. Then

m∏
i=1

(1−xi ) ≥ 1−
m∑

i=1
xi .
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Proof. The case m = 1 is trivial and the case m = 2 is the inequality

(1−x1)(1−x2) = 1− (x1 +x2)+x1x2 ≥ 1− (x1 +x2).

The general statement follows by induction.

Suppose that d
pr = 2 for some p. The only way this can happen is when d = 2pr for

some odd prime p, which means ℓ= 2, which is the case we just treated. Therefore, we
assume d

pr ≥ 3 for all p. The first two lemmas yield

Pd (pr ∤Xd ) ≤ (
1−p−r )d ≤ e

−d
pr ≤ 1.35

(
pr

d

)3

.

Therefore,

Pd (d |Xd ) ≥
ℓ∏

i=1

(
1−1.35

(
pr

d

)3)
≥ 1−1.35

ℓ∑
i=1

p3ri
i

d 3
.

This last sum is obtained by taking the cubes of ℓ distinct integers, taking the products of
all but one of them, and summing the reciprocals of these numbers. If we replace these
numbers by the smaller numbers 2,3,4, . . . ,ℓ+1, the reciprocals get larger, so

ℓ∑
i=1

p3ri
i

d 3
≤

ℓ+1∑
j=2

j 3

(ℓ+1)!3
≤

ℓ+1∑
j=1

j 3

(ℓ+1)!3
= (ℓ+1)2(ℓ+2)2

4(ℓ+1)!3
,

where we have used the formula
∑n

j=1 j 3 = n2(n+1)2

4 .

The sequence (ℓ+1)2(ℓ+2)2

4(ℓ+1)!3
is decreasing for ℓ≥ 2 since the ratio of two successive terms

is less than 1. Therefore, we can bound it by the ℓ= 3 term, which is 25
3456 , and obtain

Pr (d |Xd ) ≥ 1−1.35
25

3456
≈ 0.99 > 0.85.

This completes the proof of Proposition 5.3, though it should be noted that by restricting
d even further, we can significantly raise the lower bound of Pd (d |Xd ).

Remark 5.6. From Proposition 5.1 and Proposition 5.3, we obtain a probabilistic pri-
mality test. The test works in the following manner: choose a positive integer m which
represents the number of trials to run. Then, for each trial, select d integers from the set
{1, . . . ,d} uniformly at random. If their product is divisible by d , call the trial a success;
otherwise, call it a failure. After all m trials are run, observe the proportion which are
a success. If this proportion is above 0.75, then we classify the number as non-prime.
Otherwise, we classify it as prime.

Though such a primality test is extremely slow relative to other primality tests, it is
a fun consequence of the main theorems. Below, we see the results of running 10,000
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simulations for each number from 10 to 100 to test its primality; numbers near the red
line (y = 0.65) appear to be prime, and numbers above the yellow line (y = 0.85) appear
to be composite.

Note the near-straight line just above 0.85: these are 2 ·p, for primes p.
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