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Elliptic triangles which are congruent to their
polar triangles

By Jarrad S. Epkey, Morgan Nissen, Noelle K. Kaminski, Kelsey R. Hall,
and Nicholas Grabill

Abstract. We construct elliptic triangles which are congruent to their polar triangles. We present

the elliptic version of Wallace-Simson lines (if a point projected onto a triangle has the three feet of

its projections collinear, that line is called a Wallace-Simson line.) We prove that an elliptic triangle is

congruent to its polar triangle if and only if six specific Wallace-Simson lines of the triangle are concurrent.

The six lines come from projecting each vertex of both triangles onto the given triangle.

1 Elliptic geometry

Even a non-Euclidean geometry like elliptic geometry has congruent triangles and
points projected onto lines. Being a space with curvature adds a twist to these ideas.

The Klein disk model of elliptic geometry starts with a unit disk. All the points of the
disk, including the boundary, count as elliptic points. The points of the plane holding
the disk are Euclidean points. Diameters of the disk and arcs of circles whose endpoints
are the endpoints of a diameter are the elliptic lines. Such endpoints are called antipodal
points and are treated as the same elliptic point. This model satisfies the negation of the
Parallel Postulate which requires no parallel lines.

Elliptic geometry resembles a flat image of one hemisphere where the lines are great
circles. An elliptic line has a unique pole, which is a point such that any line through the
pole is perpendicular to the given line. Any line could be the Equator and its pole would
be the North Pole. The line is called the polar of its pole.

Mathematics Subject Classification. 51M10, 51M15
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2 Elliptic triangles which are congruent to their polar triangles

Useful fact: Three poles are collinear if and only if their polars are concurrent. In

Figure 1A, lines
←→
AP1,

←→
EA and

←→
OA all meet at point A. Their poles are O, PEA and P1,

respectively. The poles lie on
←→
OE.

Useful fact: If two lines
←→
AO and

←→
EA are perpendicular to the same line

←→
OE, then A

must be the pole of
←→
OE.

Figure 1A. Useful facts. Figure 1B. Triangle ABC.

Three elliptic lines which are not concurrent must form a triangle with each intersec-

tion as a vertex, say triangle ABC. Each side has a pole. We name P1 as the pole of
←→
AB, P2

as the pole of
←→
AC and P3 as the pole of

←→
BC. We will use the name of the line as a subscript

for other poles, like PEA is the pole of line
←→
EA.

Triangle P1P2P3 is the polar triangle of triangle ABC, and vice-versa.

1.1 Construct two triangles congruent to their polar triangles

A theorem from spherical geometry helps us right away: an angle of one triangle and
its corresponding side from its polar triangle, like ∠A and its corresponding side P1P2,
must be supplements.[1] An elliptic segment can be seen as an arc of a circle because
elliptic lines are arcs of Euclidean circles. In order for triangle ABC to be congruent to its
polar triangle, the angles and sides of triangle ABC have to be supplements as well. The
triangle with three right angles is self-polar. We will focus on non-self-polar triangles
because the self-polar triangle, being congruent to itself, is thus congruent to its polar
triangle in the most boring way possible. The shaded triangle ABC in Figure 1B will
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J. Epkey, M. Nissen, N. Kaminski, K. Hall, and N. Grabill 3

introduce the elliptic concepts and it requires some preparation. We plan to place side
AB on the horizontal axis with A on the boundary, which gives us pole P1 for free. We
choose a constructible ∠A, in this case π

4 . We measure elliptic angles using tangents and
it just so happens that the circle centered at F through point A in Figure 1A will make
∠EAO = π

4 . (The tangent P1A in Figure 1A proves this size is correct.) The angle size

implies E is the elliptic midpoint of OP1, even though it is not the Euclidean midpoint.
We must discern between Euclidean lengths and elliptic lengths. Since the disk has

Euclidean radius OA = 1, we work as if we are on a unit sphere, which means OA is
a fourth of an Equator, so OA has elliptic length π

2 . In fact, the distance from a pole
to its polar is always π

2 . For our triangle, we must have one side whose length is the
supplement of π

4 . The circle centered at A through P1 will serve to make B the elliptic

midpoint of its radius of circle O, giving us elliptic length of AB equal to
π

2
+ π

4
= 3π

4
, the

required supplement. Now we have to incorporate an angle with measure
3π

4
and a side

length of
π

4
into our triangle ABC because we intend for this triangle to be congruent to

its polar triangle. The sketch in Figure 2 summarizes the situation.

Figure 2. Sides and angles.

The experienced reader may be pleasantly surprised to find the proposed triangle in
Figure 2 is not over-constrained, even though four parts of the triangle are determined
and only one variable remains to calculate the other two parts. In this paper we only
need one elliptic trigonometric formula, the spherical Law of Cosines:

cosb = cos a cosc + sin a sinc cosB (1)

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



4 Elliptic triangles which are congruent to their polar triangles

Formula 1 gives the relationship between ∠A and ∠B (whose measure is x.)

cos(π−x) = cos Acos(π−A)+ sin Asin(π−A)cos x

−cos x =−cos2 A+ sin2 Acos x

cos x = cos2 A

1+ sin2 A
. (2)

For our specific construction, 1
3 = cos x. This calculation explains the odd little circles

in Figure 1C. We had to construct ∠OBM using a right triangle with the ratio of adjacent
over hypotenuse being 1

3 . The Euclidean angle gave us the tangent we needed so that
our elliptic angle would be the desired size. Formula 1 also explains how elliptic ∠OP1B
and elliptic segment OB have the same size: triangle OP1B has two lengths of π2 and two
right angles which simplify Formula 1 to cos∠OP1B = cosOB. Constructing an angle in
a useful place gives us an elliptic segment with the angle’s size as its elliptic length.

Figure 1C. Constructing ∠ABC.

The point B∗ is the inverse of the reflection of point B across point O. (More specifi-

cally, on the line
←→
OB, we find the point the same distance from O as B, but on the other

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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side of point O. We call this undrawn point Y. Then we construct the inverse of Y, B∗

which has the property OY ·OB∗ = r 2. The interested reader can find a nice construction
of the inverse in [3]. Usually, we have two elliptic lines through B and we obtain B∗ by
finding the second Euclidean intersection of these two lines.) Any circle through B and
B∗ must pass through antipodal points, meaning the arc BC is on an elliptic line. [2]
The perpendicular bisector of BB∗ and the perpendicular to the tangent at B meet at
the point N. The circle with center N through B contains side BC. Our triangle ABC is
complete and its polar triangle is the reflection of this triangle across the angle bisector
of angle AOP1.

Having the corresponding sides and angles being supplements is almost enough to
verify the triangles are each other’s polar triangle. Position also matters because we can’t
just pick up the undrawn triangle P1P2P3, drop it somewhere else and expect that new
triangle to be the polar of the triangle ABC. We had P1 right from the start. The distance
from B and P2 to their polars was built to be π

2 . We can place P3 in only two places and
P3 certainly can’t be in the third quadrant.

Since cos x ≥ 0 in (2), one of the angles of the triangle must be acute. (If we allow
∠A = π

2 , we get the self-polar triangle.) Calculating the elliptic area of our Figure 2
triangle, (which is the sum of the angles minus π,) using ∠A again, we find the area to be
∠A+π−∠A+x −π= x. So the elliptic area of a triangle which is congruent to its polar
triangle has to be less than π

2 . Now we know any such triangle may always be positioned
as in Figure 2. (Actually, we can construct our triangle less conveniently located, but
we will not need those moves for this paper.) The calculation also guarantees we can
construct triangles congruent to their polars for a constructible ∠A because ∠A returns
a constructible size for x in Formula 2. Our construction method works for constructible
angle A, even sizes like arctan

(3
4

)
, though Figure 1B has to be the most convenient

version. We note the measure of angle A decides everything and knowing its measure is
essential for the construction.

Step 1: construct ∠A with its measure arctan
(3

4

)
. The Euclidean lengths EA = 3 and

ED = 4 were obtained using little circles as in Figure 1B.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



6 Elliptic triangles which are congruent to their polar triangles

Figure 3A. ∠A = arctan( 3
4 ).

The line perpendicular to Euclidean line
←→
AD at A contains our desired center because

we measure angles with tangents. An elliptic line through A must pass through its
antipodal point, so we have the desired center at J. The circle with center J and radius AJ
gives us an elliptic line through A and ∠A has measure arctan( 3

4 ).
Step 2: locate point B. We need AB = π−arctan( 3

4 ), which forces A∗B = arctan( 3
4 ).

The Formula 1 trick where right angles ∠HA∗O and ∠HBO imply cos∠A∗HB = cos A∗B
tells us to place a Euclidean angle at H so that ∠IHK = arctan( 3

4 ). The perpendicular to

IH at H intersects
←→
AB at G, the desired center for an elliptic line which locates point B.

We note that
←→
BH does not contain a side of our triangle because we do not want a right

angle at vertex B.

Figure 3B. Construct point B.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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Step 3: calculate the measure of ∠ABC = x from (2). We find cos x =
16
25

1+ 9
25

= 8

17
,

which is constructible in the same way we have constructed our other angles so far.
The authors noticed that the 3, 4, 5 Pythagorean triple which started this process has
generated another triple: 8, 15, 17. This is just a coincidence and does not generally occur
for other triples defining ∠A. (When we apply Formula (2) to the 5, 12, 13 right triangle,
cos x = 144

194 , or cos x = 25
313 , depending on the choice of acute angle A.) We construct the

Euclidean angle at point B and find the elliptic line
←→
BC in Figure 3C. We had to construct

the Euclidean ∠NBP = arctan
( 8

15

)
. Even if we did not have a Pythagorean triple, we

would have a constructible angle because, at worst, we would get square roots for side
lengths.

Figure 3C. Finish triangle ABC.

As before, the Euclidean ∠ABP and the perpendicular at B combine with the per-
pendicular bisector of BB

∗
to find the desired center Q of a circle which passes through

antipodal points and has the tangent BP. The intersection of this new elliptic line with
our first elliptic line gives us point C and the triangle ABC is complete. Our trigonometric
calculations guarantee triangle ABC is congruent to its polar triangle. Figure 3D shows
both triangles with all construction marks removed except the line of symmetry.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



8 Elliptic triangles which are congruent to their polar triangles

Figure 3D. Triangle ABC and its polar
triangle.

The similarities between our two examples suggest some specific properties might
occur for all triangles congruent to their polar triangles. A digression into projections will
reward us with an unexpected characteristic of such triangles. The connection involves
two new ideas in elliptic geometry: elliptic Wallace-Simson lines and these new triangles.

2 Wallace-Simson lines in elliptic geometry

In 1797, William Wallace published a theorem of Euclidean geometry which did
not bear his name: the Simson line theorem. Wallace proved that any point P on the
circumcircle of any triangle ABC projects onto the triangle in three collinear points and
that the points on the circumcircle are the only such points. (All the other points in the
plane project onto the triangle in the vertices of a pedal triangle.) We call the line on
which these three points lie a Wallace-Simson line.

Wallace’s proof used quadrilaterals with opposite angles supplementary but elliptic
geometry has no such quadrilaterals; so it is no surprise that his theorem fails in elliptic
geometry. Even though the theorem does not hold, we will see that for a triangle ABC
it is possible to have a point such that the feet of the projections onto the sides of the
triangle all lie on the same line. Such a point is called a point of projection and the line
is a Wallace-Simson line. In Figure 4, we compare the Euclidean and elliptic situations.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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Figure 4. Wallace-Simson lines
←→
XZ.

On the left is a Euclidean Wallace-Simson line as Wallace described. On the right, we
have a corresponding example in elliptic geometry. The point P projects onto triangle
ABC with feet X, Y, Z in both. We have right angles ∠PXA,∠PYC, and ∠PZB. The circle
O in the elliptic version is the boundary of elliptic space itself.

We can find twelve projection points with twelve Wallace-Simson lines in 4 sets of 3
each for non-self-polar triangle ABC. Briefly, each vertex projected onto each triangle
gives a Wallace-Simson line and each side can be a Wallace-Simson line for each triangle,
with a non-vertex projection point for each side. We now present examples of each type
with details. Because we will do so many projections, we will employ a small table of
steps for each projection so that the reader may check the ideas in a repetitive fashion.

In order to project a point onto a triangle, we use the poles and polars wisely. To

project P2 onto triangle ABC, we save the projection onto
←→
AC for last because any line

through P2 is perpendicular to
←→
AC. This strategy pays off as soon as we use the line of

projection
←−→
P2P1 because this line is perpendicular to both

←→
AC and

←→
AB. Our notation

matches Figure 5.
Proj Pt triangle proj lines feet WSL 3rd foot

P2 ABC
←−→
P2P1,

←−→
P2P3 R,T

←→
RT

←→
RT∩←→

AC = S

B P1P2P3
←→
BA,

←→
BC R,T

←→
RT

←→
RT∩←−→

P1P3 = M
Projecting a pole of a side of a triangle onto the triangle always gives a Wallace-

Simson line and these lines do not have a special location as a side or an altitude, so we
call such Wallace-Simson lines pole-projected Wallace-Simson lines (PPWSL).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



10 Elliptic triangles which are congruent to their polar triangles

Figure 5. PPWSL
←→
RT.

Since
←→
AP1 is perpendicular to both

←−→
P1P2 and

←→
AB, T has to be the pole of

←→
AP. Since←→

CP3 is perpendicular to both
←−→
P2P3 and

←→
BC, R is the pole of

←→
CP3. Then the intersection

of
←→
AP1 and

←→
CP3 has to be the pole of

←→
RT, and that point is Q2, which turns out to be a

projection point for both triangles, as well!
Proj Pt triangle proj lines feet WSL 3rd foot

Q2 ABC
←−→
Q2P1,

←−→
Q2P3 A,C

←→
AC

←→
AC∩←−→

Q2P2, (on
←→
AC)

Q2 P1P2P3
←−→
Q2A,

←−→
Q2C P1,P3

←−→
P1P3

←−→
P1P3 ∩←−→

Q2B, (on
←−→
P1P3)

We shall soon see that every projection point pulls double-duty as a pole of a Wallace-
Simson line.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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Figure 6. Altitude
←→
CP1 with its pole I3.

It turns out that altitudes are Wallace-Simson lines. In Figure 6, note
←→
CP1 is perpendic-

ular to
←→
AB at U because P1 is the pole of

←→
AB and

←→
CP1 is perpendicular to

←→
P2P3 at V because

C is the pole of P2P3. The intersection of
←→
AB and

←→
P2P3, I3, is the pole of

←→
CP1 because

←→
CP1

is the mutual perpendicular of these two lines. The pole of
←→
CP1 is I3 =←→

AB∩←−→
P2P3, which

acts a projection point with Wallace-Simson lines for both triangles.
Proj Pt triangle proj lines feet WSL 3rd foot

C ABC
←→
CP1 U,C

←→
CP1 C

P1 P1P2P3
←→
P1C V,P1

←→
CP1 P1

I3 ABC
←−→
I3P2,

←−→
I3P3 W,X

←−→
P2P3 I3

I3 P1P2P3
←→
I3A,

←→
I3B Z,Y

←→
AB I3

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



12 Elliptic triangles which are congruent to their polar triangles

2.1 Table of projections points and Wallace-Simson lines

We summarize in the table below.

Projection points triangle W-S lines Poles of W-S lines
P1,P2,P3 ABC P-P W-S Li Q1,Q2,Q3

A,B,C ABC altitudes I1, I2, I3

P1,P2,P3 P1P2P3 altitudes I1, I2, I3

A,B,C P1P2P3 P-P W-S Li Q1,Q2,Q3

Q1,Q2,Q3 ABC
←→
AB,

←→
AC,

←→
BC P1,P2,P3

I1, I2, I3 ABC
←−→
P1P2,

←−→
P1P3,

←−→
P2P3 A,B,C

Q1,Q2,Q3 P1P2P3
←−→
P2P3,

←−→
P1P3,

←−→
P1P2 A,B,C

I1, I2, I3 P1P2P3
←→
BC,

←→
AC,

←→
AB P1,P2,P3

More can be proved. Triangle ABC and its polar triangle share altitudes and altitudes
are always concurrent in elliptic geometry. Then the concurrent polars (altitudes) imply
the collinear poles (I points) because three poles are collinear if and only if their polars
are concurrent. A theorem of Chasles also implies the I points are collinear because the I
points occur from the same meetings of lines mentioned in his theorem. [1]

3 Main Theorem

Theorem 3.1. : A suitable triangle ABC is congruent to its polar triangle if and only if the
pole-projected Wallace-Simson lines are concurrent at the orthocenter. (By "suitable" we
mean that triangle ABC must have the potential to be congruent to its polar triangle. That
means triangle ABC requires an acute angle and an elliptic area less than π

2 . )

Proof. If triangle ABC is congruent to its polar triangle, we can place triangle ABC in
the Figure 1 position. Triangle ABC and its polar triangle are symmetric across the

angle bisector of ∠BOP2.We claim this line of symmetry is
←→
OH. We can construct the

orthocenter H from the intersection of
←→
BP2 (an altitude) and the line of symmetry. Since

the altitudes are concurrent at H, H must be on the line of symmetry.
The pole-projected Wallace-Simson lines we find when we project onto triangle ABC

are the same as when we project A,B,C onto triangle P1P2P3. When we project P2 onto

triangle ABC, we get a foot at point O and another at the intersection of
←−→
P2P3 and

←→
BC.

Both these feet are on the line of symmetry, which means the line of symmetry is the
pole-projected Wallace-Simson line for this projection. The other two pole-projected
Wallace-Simon lines must be symmetric across the line of symmetry.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



J. Epkey, M. Nissen, N. Kaminski, K. Hall, and N. Grabill 13

These other two lines have to intersect each other and the line of symmetry in a way
which obeys the symmetry and fulfills the way these Wallace-Simson lines are formed. If
L1 is the Wallace-Simson line from projecting P1 onto triangle ABC, L1 is the same line
for projecting C onto the polar triangle. But the symmetry forces the projection of point
A onto the polar triangle to be the reflection of L1 across the line of symmetry. Then the
three Wallace-Simson lines must be concurrent at a point we call W. We claim the point
W must be point H.

Suppose W ̸= H. Figure 7 illustrates both polars LH and LW . Both lines are perpen-
dicular to the line of symmetry because their poles are on that line. A line through H
and an I point and another line through W and a Q point lead to a contradiction. In
the shaded quadrilateral IPQR, we have right angles at I and Q. The line of symmetry is
perpendicular to both LW and LH. This forces ∠IPQ to be acute. However, ∠IRQ must

also be acute. (lines intersecting
←→
IH on this side of LH must have acute angles in that

position.) Switching the relative positions of H and W does not change the situation.

Figure 7. Quadrilateral IPQR.

Then the polars must be the same, giving us W = H. The three altitudes are concur-
rent at H and the pole-projected Wallace-Simson lines are concurrent at W. These are
the required six concurrent lines.

A note to the reader: Figures 7 and 8 are the only figures in the paper which have not
been constructed accurately because impossible situations needed to be illustrated.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



14 Elliptic triangles which are congruent to their polar triangles

For the converse, we do not know triangle ABC is congruent to its polar triangle. We
have W = H. We get a lot of symmetry from this assumption. We can place suitable
triangle ABC in the usual position because A is an acute angle. We get its polar triangle
as usual, too. Figure 8 lays out what we know.

Figure 8. Given W = H.

Line
←→
SO is the Wallace-Simson line from projecting P2 onto triangle ABC. The altitude

BP2 intersects
←→
SO at H = W. We’ll just call it H. Line

←→
OS is a Wallace-Simson line with

pole Q2. Segment OQ2 is perpendicular to
←→
OS. Line

←−→
Q2I2 is LH = LW : all Q and I points

are on this line. Because I2 is the pole of
←→
BP2, I2, O and H are collinear with S. Euclidean

triangle OBP2 has angle bisector OH because BP2 is a chord of the circle containing arc

BP2 and its center is on
←→
OH.

This implies ∠P2OH has to be π
4 . The perpendicular lines at H give us Euclidean

triangle OHP2 congruent to triangle OHB by ASA. The Euclidean line
←→
OH bisects the

chord BP2 and its arc. Now we can stick to elliptic objects. Elliptic segments P2H ∼= BH
and triangle BHS is congruent to triangle P2HS by SAS. Lengths P3S and CS are both π

2
because that is how far a pole is from its polar. Subtracting BS and P2S, we get CB = P3P2.

The relationships between angles of one triangle and side lengths of its polar triangle
give us π−∠A = P1P2. We obtain OB ∼= OP2 from our congruent triangles, so AB ∼= P1P2.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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Our triangles also give us ∠OP2S ∼=∠OBS; their supplements, ∠P3P2P1 and ∠ABC must
be congruent. Our triangle ABC is congruent to its polar triangle P1P2P3 by SAS.

We have incidentally proved a triangle is congruent to its polar triangle if and only if
the corresponding vertices of the triangles are pair-wise equidistant from H. We could
make such a statement about any point on the line of symmetry when the triangles are
in Figure 1 position. It is best to make this statement about a point which will work
no matter where triangle ABC is situated. For instance, point O is equidistant from
corresponding pairs of vertices in Figure 1B. But if our triangles were off-center, point O
might not have this property because it might not be on the line of symmetry.

Our theorem shows a connection between the elementary concepts of congruent
triangles, polar triangles and the new concept of Wallace-Simson lines in elliptic geome-
try. A Euclidean theorem, modified to fit elliptic geometry, has joined with introductory
ideas to give an insight. We have seen the same development when squaring the circle
in non-Euclidean geometry [4] [5]. When Euclidean theorems fail in non-Euclidean
geometry, geometers have their modifications to consider.
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