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Vǐsegradska 33, 18000 Nǐs, Serbia
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Universidad Politécnica de Madrid, Spain

E-mail: 1
pecko@pmf.ni.ac.rs, 2

miroslav.ciric@pmf.edu.rs, 3
alberto.lastra@uah.es

4
rafael.sendra@uah.es, 5

juana.sendra@upm.es

Abstract

This paper investigates representations of outer matrix inverses with prescribed range and/or null
space in terms of inner inverses. Further, required inner inverses are computed as solutions of appro-
priate linear matrix equations (LME). In this way, algorithms for computing outer inverses are derived
using solutions of appropriately defined LME. Using symbolic solutions to these matrix equations it
is possible to derive corresponding algorithms in appropriate computer algebra systems. In addition,
we give sufficient conditions to ensure the proper specialization of the presented representations. As a
consequence, we derive algorithms to deal with outer inverses with prescribed range and/or null space
and with meromorphic functional entries.
Keywords: outer inverse; inner inverse; matrix equation; computer algebra; specialization of matrices;
matrices with functional entries.
Mathematics Subject Classification: 15A09

1 Introduction

For a given matrix A, an important characterization of generalized inverses arises from the following
Penrose equations with respect to X:

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA. (1.1)

The Moore-Penrose inverse A† of A is the unique solution to (1.1). The Drazin inverse AD of A ∈ Cn×n is
the unique matrix X ∈ Cn×n which fulfills the matrix equation (2) in conjunction with

(1k) Al+1X = Al, l ≥ ind(A), (5) AX = XA.

Here, ind(A) = min
{
j| rank(Aj) = rank(Aj+1)

}
means the index of A. The group inverse X = A#

coincides with the Drazin inverse in the case ind(A) = 1. The set of generalized inverses defined by the
equations implied by S ⊆ {1, 2, 3, 4, 1k, 5}, such that the equation (i) is satisfied for each i ∈ S, is denoted
by A{S}. Any element from A{S} is termed as S-inverse of A and is denoted by A(S).

Let R( ) and N ( ) denote the range space and the null space of a given matrix, respectively. Arbitrary

X ∈ A{S}, constrained by R(X) = R(B) (resp. N (X) = N (C)) is termed as A
(S)
R(B),∗ (resp A

(S)
∗,N (C)).
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A selected X ∈ A{S} which fulfils R(X) = R(B), N (X) = N (C) will be denoted by A
(S)
R(B),N (C).

The collection A{S} with known R(B) (resp. N (X) = N (C)) will be termed as A{S}R(B),∗ (resp.
A{S}∗,N (C). Generalized inverses satisfying (2) (resp. (1)) form {2}-inverses or outer inverses (resp. inner
or {1}-inverses). For other important properties of generalized inverses see [1, 31].

Most important generalized inverses A†, AD and A# are particular outer inverses [31]:

A† = A
(2)
R(A∗),N (A∗), AD = A

(2)

R(Ak),N (Ak)
, A# = A

(2)
R(A),N(A). (1.2)

Representations and numerical algorithms for computing {2}-inverses have been investigated in a num-
ber of researches, among others, those in [2, 4, 5, 14, 22, 33, 34].

Symbolic computation of different varieties of generalized inverses is constituted as an important area of
computer algebra and scientific computing. It is well known that numerical algorithms often lack numerical
stability and some small quantities are identified as zeros. Also, the discontinuity of the pseudoinverse
causes certain problems in numerical computation. During the symbolic implementation, variables are
stored in “exact” form without numerical values, so that cumulative round off errors are completely removed
[10].

Moreover, algorithms developed for processing matrices in symbolic form, with unevaluated entries, are
applicable to certain classes of matrices and to as well as to a much broader class of problems compared
to widespread traditional numerical algorithms which are applicable to constant matrices with certain
numerical values. Results generated with unassigned symbols can be used in defining various classes of
test problems and, consequently, in the attestation of some hypothesis.

On the other hand, symbolic computation has certain disadvantages. Primarily, generating solutions
in analytical form occupies a large amount of memory and it is time consuming. For this purpose, simpli-
fications in symbolic computation are important. But, when analytical algorithms become unattainable or
unusable it always remains possible to use approximate numerical methods in any particular instance.

Various algorithms for error-free and symbolic construction of various generalized inverses have been
proposed and extensively investigated. Algorithms for symbolic computation of matrix generalized in-
verses can be separated in two different approaches: approach that uses an appropriate representation of
the polynomial elements and the approach based upon the matrix interpolation method. Also, effective
versions of these algorithms, appropriate for polynomial matrices where only a few polynomial coefficients
are nonzero, are developed. The set of one-variable as well as the set of multiple-variable matrices are
considered. Effective representations of multiple-variable polynomial matrices are described in [16].

Single-modulus and multiple-modulus residue arithmetic algorithms for the exact pseudoinverse compu-
tation of a matrix with rational element were developed in [18]. Various error-free Leverrier-Faddeev-type
algorithms, applicable to polynomial matrices, were investigated in [6, 9, 10, 11, 12]. Several extensions of
the Greville’s partitioning method from [7], that are applicable to matrices whose entries are unevaluated
rational expressions and/or polynomials expressions, were identified in [16, 17, 25, 29]. The algorithm based
on the LDL∗ factorization and aimed to exact computation of {1, 2, 3}, {1, 2, 4} inverses was proposed in
[23]. An efficient algorithm for the exact evaluation of the QDR decomposition and its application in

developing corresponding algorithm for symbolic computing A
(2)
T,S inverses of univariate unevaluated poly-

nomial or rational matrices was given in [26]. Yu and Wang in [35] introduced an algorithm for generating
{2}-inverses of polynomial matrices. In [19], the authors proposed an algorithm which is able to reduce
the computation of the Drazin inverse over certain computable fields whose entries are rational functions
of finitely many transcendental elements over a complex field into the computation of the Drazin inverse of
matrices with multivariate rational entries. The main idea consists in replacing the functions that appear
in functional entries by new variables. As a consequence, the computation of generalized inverses of ma-
trices with rational functional entries is reduced to an equivalent but simpler computational problem on
matrices whose entries are rational numbers. In this way, the problem of symbolic calculation of generated
inversions as well as calculations in matrix algebra is reduced to a simplified form. The key point in this
approach is to find sufficient conditions for matrices over a field to ensure that a generalized inverse is
stable with respect to the specialization.

Groebner basis approach for generating the Drazin inverse was originated in [21].
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Major outcomes of the present manuscript can be highlighted as follows.

(i) An extension of the Urquhart formula from [30] is proposed. This extension gives representations of
outer matrix inverses with prescribed range and/or null space in terms of inner inverses.

(ii) An algorithm for obtaining effectively generalized inverses is proposed on the basis of proposed represen-
tations. This algorithm consists of two major steps: generate required inner inverse by solving appropriate
linear matrix equation (LME) and then multiply the obtained result by appropriate matrix expressions.

(iii) New approach in symbolic computation of outer generalized inverses over the field K(x) of rational
functions with coefficients in the field K and with respect to variables x is proposed. The approach is based
on solving appropriate LME symbolically.

(iv) Our important topic is symbolic computation of generalized inverses of matrices with functional
entries over a field with or without an involution. We show how to reduce the generalized inversion over
certain computable fields to a simpler computation on matrices with rational functions as entries. As a
consequence, we derive an algorithm to compute, in symbolic form, {2}-inverses with determined range
and/or null space. The characterizations and representations for the Moore-Penrose and the Drazin inverse
are derived in particular cases.

The overall organization of sections is as follows. Representations of outer and inner generalized inverses
with prescribed range and/or null space in the form B(CAB){1}C are considered in Section 2. Section 3
is aimed to representations and symbolic computation of generalized inverses of matrices which entries are
multivariate rational expressions. Section 4 gives some representative examples in symbolic and generic
form. Properties of generalized inverses with respect to specializations are considered in Section 5. More
precisely, that section investigates the behavior of generalized inverses after the replacement of functional
entries f = (f1, . . . , fp) by unknown variables x = (x1, . . . , xp) and future value assignments defined after
the replacement of the unknowns x = (x1, . . . , xp) by constant field elements c = (c1, . . . , cp).

Throughout this paper we will use the following notation. A field of characteristic zero is termed as K,
x = (x1, . . . , xp) is a p-tuple of indeterminates. We will denote by K[x] the polynomial ring with coefficients
in the field K and variables x. Similarly, K(x) is the field of rational functions with coefficients in the field
K and with respect to unknown variables x; i.e. K(x) is the quotient field of K[x]. For a field F, say e.g.
F = K or F = K(x), we denote by Fm×n the set of m × n matrices over F. Moreover, for M ∈ Fm×n, we
denote by R(M) and by N (M) the range and null space of M over F, respectively.

2 Representations of outer generalized inverses over K(x)

The key idea for the design of our algorithms is the use of particular representations of the outer inverses
by means of inner inverses. In [24], we provide a complete description of this type of representations over an
arbitrary field, that in fact are inspired in [13], [28]. Here, we slightly give a different approach for the case
of K(x) as ground field, although they are applicable for arbitrary fields, and where the precise description
of the representations are emphasized. In order to simplify presentation, the notation %(A1, . . . Ak) will be
used instead of rank(A1) = · · · = rank(Ak).

We start recalling that K(x)m×n is a regular (Von Neumann) ring (see e.g. [24, Lemma 2.1.]). The
next result gives a useful correlation between inner inverses and outer inverses with predefined range.

Corollary 2.1. If A ∈ K(x)m×n and B ∈ K(x)n×k satisfy %(AB,B), then

A{2}R(B),∗ = B(AB){1}. (2.1)

Proof. See Theorem 2.3. in [13] and Theorem 3.3. in [24].

Computationally, the direct consequence of Corollary 2.1 is that the outer inverses, with prescribed
range, are of the form BU , where U ∈ K(x)k×m is a solution of the LME (AB)U(AB) = AB with respect
to U ∈ K(x)k×m. However, (AB)U(AB) = AB can be simplified into BU(AB) = B. Details are provided
in Corollary 2.2.
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Corollary 2.2. If A ∈ K(x)m×n and B ∈ K(x)n×k satisfy %(AB,B), then

A{2}R(B),∗ =
{
BU |U ∈ K(x)k×m, BUAB = B

}
(2.2)

Proof. It follows from Theorem 2.3. in [13], and using that K(x)m×n is regular.

Theorem 2.1 gives an analogous representation of outer inverses with prescribed range on the basis of
the LME BUCAB = B, where C ∈ K(x)l×m.

Theorem 2.1. Let A ∈ K(x)m×n, B ∈ K(x)n×k, C ∈ K(x)l×m.

(a) The next assertions are equivalent:

(i) there is X ∈ A{2} of the form X := B(CAB)(1)C ∈ K(x)n×m such that R(X) = R(B), denoted

by A
(2)
R(B),∗;

(ii) there exists U ∈ K(x)k×l which provides BUCAB = B;

(iia) there exists X ∈ K(x)n×l, X ∈ R(B), which provides XCAB = B;

(iii) N (CAB) = N (B);

(iv) B(CAB)(1)CAB = B;

(v) %(CAB,B).

(b) In addition, if (a) holds for A,B,C, then

{BUC | U ∈ K(x)k×l, BUCAB = B, %(CAB,B)} (2.3)

=
{
B
(

(CAB)(1) + Y
(
Il − CAB(CAB)(1)

))
C
∣∣∣ Y ∈ K(x)k×l

}
(2.4)

= B(CAB){1}C (2.5)

= A{2}R(B),∗. (2.6)

Proof. (a) (i)⇒(ii). Let X ∈ K(x)n×m satisfy XAX = X and X := B(CAB)(1)C. Then there exists some
U ∈ K(x)k×l satisfying X = BUC. Also, R(X) = R(B) implies the existence of W ∈ K(x)m×k such that
B = XW . These two facts further imply B = XW = XAXW = XAB = BUCAB.

(ii)⇒(iii). Using known result N (B) ⊆ N (CAB) in conjunction with BUCAB = B for some U ∈ K(x)k×l,
it follows N (CAB) ⊆ N (BUCAB) = N (B), and later N (CAB) = N (B).

(iii)⇒(iv). As N (CAB) = N (B) initiates B = V CAB, for some V ∈ K(x)n×l, it follows that

B = V CAB = V CAB(CAB)(1)CAB = B(CAB)(1)CAB.

(iv)⇒(i). Let B = B(CAB)(1)CAB, and set X = B(CAB)(1)C. Then XAX = X immediately follows.
Now, using X = B(CAB)(1)C and B = B(CAB)(1)CAB = XAB one concludes X ∈ A{2}R(B).

(ii)⇔(iia). Follows from X := BU .

(iv)⇔(v). Evidently.

(b) Since N (B) = N (CAB), it follows that B(CAB)(1)CAB = B, which implies solvability of the equation
BUCAB = B. In addition, U is of the general form

B(1)B(CAB)(1) + Y −B(1)BY CAB(CAB)(1),

which implies that X := BUC is given by (2.4).
The equation XAX = X can be verified straightforward. Clearly, R(X) ⊆ R(B). On the other hand

XAB = BUCAB = B implies rank(X) = rank(B) and further R(X) = R(B).
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Finally, using Urquhart result and [1, Corollary 1, P. 52.], we can obtain{
B
(

(CAB)(1) + Y
(
Il − CAB(CAB)(1)

))
C
∣∣∣ Y ∈ K(x)k×l

}
=
{
B
(

(CAB)(1) + Y − (CAB)(1)CABY CAB(CAB)(1)
)
C
∣∣∣ Y ∈ K(x)k×l

}
= B(CAB){1}C.

Finally, after the verification of {B(CAB){1}C| rank(B) = rank(CAB)} = A{2}R(B),∗ the proof is fin-
ished.

In Theorem 2.1, outer inverses of A, with a prescribed range described by B, are expressed in terms of a
third matrix C. Taking into account this, for fixed and arbitrary matrices A ∈ K(x)m×n, and B ∈ K(x)n×k,
and for every l ∈ N, we introduce the set

Cl(A,B) =
{
C ∈ K(x)l×m | %(CAB,B), rank(B) ≤ rank(C)

}
.

as well as
QC = B(CAB){1}C, C ∈ Cl(A,B).

In this situation, the following theorem holds.

Theorem 2.2. The set of outer inverses of A ∈ K(x)m×n defined by the range of B ∈ K(x)n×k is equal to

A{2}R(B),∗ =
⋃
l≥1

⋃
C∈Cl(A,B)

QC . (2.7)

Proof. Clearly, Theorem 2.1 leads to QC ⊆ A{2}R(B),∗, for each C ∈ Cl(A,B). Further, Corollary 2.1
implies A{2}R(B),∗ = QIm . So,

A{2}R(B),∗ = QIm ⊆
⋃
l≥1

⋃
C∈Cl(A,B)

QC ⊆ A{2}R(B),∗,

which completes the proof.

The previous development admits a dual treatment for the case of outer inverses with predefined null
space. Theorem 2.3 is dual to Theorem 2.1. Before stating it, it is important mentioning that Theorem
3 proposed in [28, Theorem 5] offers several equivalent characterizations and computationally efficient
representations of A{2}∗,N (C). Also, the following dual result with respect to Corollary 2.1 also holds.

Corollary 2.3. If A ∈ K(x)m×n and C ∈ K(x)l×m satisfy %(CA,C), then

A{2}∗,N (C) = (CA){1}C. (2.8)

Theorem 2.3. Let A ∈ K(x)m×n and C ∈ K(x)l×m be fixed and B ∈ K(x)n×k.

(a) The next statements are equivalent

(i) there is X ∈ A{2} of the form X := B(CAB)(1)C ∈ K(x)n×m which meets N (X) = N (C),

denoted by A
(2)
∗,N (C);

(ii) there is V ∈ K(x)k×l such that CABV C = C;

(iia) there is X ∈ K(x)k×m, X ∈ N (C), satisfying CABX = C;

(iii) R(CAB) = R(C);

(iv) CAB(CAB)(1)C = C;

(v) %(CAB,C).
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(b) In addition, if (a) holds for A,B,C, then{
BV C | V ∈ K(x)k×l, CABV C = C, %(CAB,C)

}
(2.9)

=
{
B
(

(CAB)(1) +
(
Ik − (CAB)(1)CAB

)
Y
)
C
∣∣∣ Y ∈ K(x)k×l

}
(2.10)

= B(CAB){1}C (2.11)

= A{2}∗,N (C). (2.12)

Also, using Theorem 2.10. in [13], and the fact that every field is a right FP-injective ring (see Def.
2.6. in [13]), one gets the dual version of Corollary 2.2.

Corollary 2.4. If A ∈ K(x)m×n and C ∈ K(x)l×m satisfy KC = KCA, then

A{2}∗,N (C) =
{
CV |V ∈ K(x)n×l, CAV C = C

}
(2.13)

Now, for every k ∈ N, and for fixed and arbitrary A ∈ K(x)m×n, C ∈ K(x)l×m we introduce the set

Bk(A,C) =
{
B ∈ K(x)n×k | %(CAB,C), rank(C) ≤ rank(B)

}
.

as well as

QB = B(CAB){1}C, B ∈ Bk(A,C).

In this situation, Theorem 2.4 is valid.

Theorem 2.4. Let A ∈ K(x)m×n, C ∈ K(x)l×m. Then

A{2}∗,N (C) =
⋃
k≥1

⋃
B∈Bk(A,C)

QB . (2.14)

Proof. According to Corollary 2.3 and Theorem 2.3,

A{2}∗,N (C) = QIn ⊆
⋃
k≥1

⋃
B∈Bk(A,C)

QB ⊆ A{2}∗,N (C),

and the proof follows immediately.

In the essence, we investigate the influence of the matrix C ∈ K(x)l×m with variable dimension l
satisfying rank(CAB) = rank(B) in Theorem 2.1. Analogously, the influence of the matrix B ∈ K(x)n×k

with variable dimension k satisfying %(CAB,C) is considered in Theorem 2.3.

Result for A
(2)
R(B),N (C) is a consequence of theorems 2.1 and 2.3.

Corollary 2.5. Let A ∈ K(x)m×n, B ∈ K(x)n×k and C ∈ K(x)l×m. Then A
(2)
R(B),N (C) possesses the

following representation:{
A

(2)
R(B),N (C)

}
=
{
BV C | V ∈ K(x)k×l, CABV C = C, %(CAB,B,C)

}
(2.15)

=
{
BUC | V ∈ K(x)k×l, BUCAB = B, %(CAB,B,C)

}
(2.16)

= {BUC | V ∈ K(x)k×l, BUCAB = B,CABUC = C, %(CAB,B,C) (2.17)

= {B(CAB){1}C| %(CAB,B,C)} . (2.18)

Also, the following notation is useful:

QB,C = B(CAB){1}C, B ∈ Bk(A,C), C ∈ Cl(A,B).

6



Corollary 2.6. The outer inverse X := A
(2)
R(B),N (C) of A ∈ K(x)m×n is represented as

A
(2)
R(B),N (C) = QB,C .

¿From the previous results one gets a complete description of the inner and outer inverses.

Corollary 2.7. Let A ∈ K(x)m×n, then

A{1} =
⋃
k∈N

⋃
l∈N

{
B(CAB)(1)C |B ∈ K(x)n×k, C ∈ K(x)l×m, %(CAB,A)

}
.

Corollary 2.8. Let A ∈ K(x)m×n and C ∈ K(x)l×m. Then,

A{2}∗,N (C) =
⋃
k∈N

{
B(CAB)(1)C |B ∈ K(x)n×k, %(CAB,C)

}
.

Corollary 2.9. Let A ∈ K(x)m×n and B ∈ K(x)n×k. Then,

A{2}R(B),∗ =
⋃
l∈N

{
B(CAB)(1)C |C ∈ K(x)l×m, %(CAB,B)

}
.

Remark 2.1. Urquhart representation investigated a fixed expression X := B(CAB)(1)C and then gives
corresponding statements about X. Our representations derived in theorems 2.1, 2.3 and Corollary 2.5 offer
complete characterizations of outer inverses in terms of B(CAB){1}C. More precisely, our representations
imply that all outer inverses can be presented in the form B(CAB){1}C.

3 Symbolic computation of generalized inverses based on LME

In general, presented results offer one specific and efficient computational-algorithmic framework based
on solving appropriate equations and then multiplying the obtained solution by appropriate matrices. A
selected approach used in solving underlying equations can generate corresponding class of algorithms.
Approach based on the usage of Gradient Neural Networks (GNN) and Zeroing Neural Network (ZNN) is
very popular and based on the Frobenius on the error matrix which is defined on the basis of an appropriate
matrix equation which is being solved. The GNN evolution design is defined upon the Frobenius norm
of the matrix corresponding to the equation which is being solved. In [28], starting from theoretical
characterizations and representations, the GNN evolution was used in solving underlying matrix equations
and proposed a number of algorithms for calculating outer and inner inverses with predefined range and/or
null space for matrices over a field. In time-varying case, ZNN evolution is defined using, so called,
Zhang functions which represent the underlying equation in matrix, vector or scalar case [8, 36]. Also,
the hyperpower iterative method with numerous modifications are defined using the powers of the residual
matrix corresponding to the underlying matrix equation [27, 32].

In the present article, an approach based on finding symbolic solutions to underlying matrix equations
over an arbitrary field is proposed.

According to the results presented in Theorems 2.1, 2.3 and Corollary 2.5 it is possible to state the
Algorithm 1 for computing B(CAB)(1)C.

Algorithm 1 Computing outer inverse with prescribed range and/or null space.

Require: A ∈ K(x)m×n, B ∈ K(x)n×k, C ∈ K(x)l×m.
1: Solve symbolically the LME
BUCAB = B if %(CAB,B) or
CABUC = C if %(CAB,C).

2: Compute X := BUC.
3: Return X.

The output of Algorithm 1 is defined in Corollary 2.5.
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Corollary 3.1. Let A ∈ K(x)m×n, B ∈ K(x)n×k, C ∈ K(x)l×m. Then the output X of Algorithm 1
satisfies

(1) X = A
(2)
R(B),∗ ⇐⇒ %(CAB,B);

(2) X = A
(2)
∗,N (C) ⇐⇒ %(CAB,C);

(3) X = A
(2)
R(B),N (C) ⇐⇒ %(CAB,B,C);

(4) X = A
(1,2)
R(B),N (C) ⇐⇒ %(CAB,B,C,A).

Proof. Follows from theorems 2.1, 2.3 and Corollary 2.5.

The output of Algorithm 1 depending on specific values of A,B,C is defined in Corollary 3.2. For the
core-EP inverse, in statement (8) in Corollary 3.2, we refer to [15].

Corollary 3.2. Let K(x) be taken as C(x). The output X := B(CAB)(1)C of Algorithm 1 satisfies:
(5) X = AD if B = C = Ak, k ≥ ind(A).
(6) The group inverse X = A# if B = C = A.
(7) X = A† if B = C = A∗ or when BC = A∗ is a rank factorization of A∗.

(8) The core-EP inverse X = A �O = Ak
(
(Ak)∗Ak+1

)(1)
(Ak)∗ = A

(2)

R(Ak),N ((Ak)∗)
if B = Ak, C = (Ak)∗.

(9) The core inverse X = A#O = A
(
A∗A2

)(1)
A∗ = A

(2)
R(A),N (A∗) if B = A, C = A∗.

The following Mathematica function GinvBC[A , B , C ] is aimed to perform the implementation of
Algorithm 1, which requires the computation of X := BUC, where BUCAB = B or CABUC = C.

GinvBC[A_, B_, C_] :=

Module[{m, n, k, l, U, C1 = C.A.B},

{n, k} = Dimensions[B]; {l, m} = Dimensions[C];

If[MatrixRank[C1] < MatrixRank[B] && MatrixRank[C1] < MatrixRank[C], Return[{}]];

U = Table[Subscript[u, i, j], {i, k}, {j, l}];

vars = Flatten[U];

If[MatrixRank[C1] == MatrixRank[B],

ret = Solve[B.U.C1 == B, vars] // Simplify,

ret = Solve[C1.U.C == C, vars] // Simplify

];

ret = vars /. Sort[Flatten[ret]];

U = Table[ret[[(i - 1)*l + j]], {i, k}, {j, l}];

Return[B.U.C] // Simplify

];

4 Examples on symbolic computation of outer inverses

This section gives some representative examples in symbolic form. Unknown matrix U is considered in
generic form, with arbitrary entries, in order to obtain some general conclusions.

Example 4.1. Consider general nonzero matrices

A =
[
a1,1 a1,2

]
, C =

[
c1,1

]
, a1,1 6= 0, c1,1 6= 0.

(a) If we take nonzero matrices in unevaluated form

B1 =

[
b1,1
b2,1

]
, U =

[
u1,1

]
,
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then rank(CAB1) = rank(C) = rank(B1) = 1. So, GinvBC[A,B1,C] generates family of points (each
specialization generates a particular point):⋃

B1∈B1(A,C)

QB1 =
⋃

C∈C1(A,B)

QC = QB1,C

= A
(2)
R(B1),N (C) =

 b1,1
a1,1b1,1+a1,2b2,1

b2,1
a1,1b1,1+a1,2b2,1

 , a1,1b1,1 + a1,2b2,1 6= 0.

It is important to note that the nonzero outer inverse does not exist in the case a1,1b1,1 + a1,2b2,1 = 0,
corresponding to rank(CAB1) = 0. In general case, GinvBC[A,B1,C] generates the family{

b1,1
a1,1b1,1 + a1,2b2,1

+
a1,2
a1,1

b2,1
a1,1b1,1 + a1,2b2,1

− 1

a1,1
= 0

}
.

So, all the points A
(2)
R(B2),N (C) belong to the line

x+
a1,2
a1,1

y =
1

a1,1
. (4.1)

(b) Consider

B2 =

[
b1,1 b1,2
b2,1 b2,2

]
, U =

[
u1,1
u2,1

]
.

(b1) Let us observe the situation rank(B2) = 2 firstly. If B2 satisfies 1 = rank(CAB2) = rank(C), then
GinvBC[A,B2,C] generates the infinite family (only one line) (each specialization generates a particular
line or point):

⋃
B2∈B2(A,C)

QB2
=

{[
a1,2b1,1b2,2c1,1u1,1+b1,2(1−a1,2b2,1c1,1u1,1)

a1,1b1,2+a1,2b2,2
a1,1b1,2b2,1c1,1u1,1+b2,2(1−a1,1b1,1c1,1u1,1)

a1,1b1,2+a1,2b2,2

]
, u1,1 ∈ K

}
.

If we use the replacements

x :=
a1,2b1,1b2,2c1,1u1,1 + b1,2 (1− a1,2b2,1c1,1u1,1)

a1,1b1,2 + a1,2b2,2
, y :=

a1,1b1,2b2,1c1,1u1,1 + b2,2 (1− a1,1b1,1c1,1u1,1)

a1,1b1,2 + a1,2b2,2
,

one can verify that the line generated by GinvBC[A,B2,C] is defined as (4.1). All the points A
(2)
∗,N (C) belong

to this line.

(b2) Our choice in this part is B2 = I2. Since rank(CAI2) = rank(CA) = rank(C), in view of Corollary
2.3, GinvBC[A,I2,C] produces the infinite family (line)

QI2 = A{2}∗,N (C) =


{[

c1,1u1,1
1−c1,1a1,1u1,1

a1,2

]
, u1,1 ∈ C

}
, a1,2 6= 0{[ 1

c1,1a1,1

u2,1

]
, u2,1 ∈ K

}
, a1,2 = 0.

In the case a1,2 6= 0 we can use x := c1,1u1,1. Then y :=
1−c1,1a1,1u1,1

a1,2
=

1−a1,1x
a1,2

, which implies that (x, y)

satisfy (4.1).

(c) Further, use

B3 =

[
b1,1 b1,2 b1,3
b2,1 b2,2 b2,3

]
, U =

 u1,1
u2,1
u3,1

 .
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(c1) Let us observe the situations rank(B3) = 2 firstly. Then 1 = rank(CAB3) = rank(C), but not
rank(CAB3)<rank(B3)=2. So, GinvBC[A,B3,C] generates the infinite family (line)

⋃
B∈B3(A,C)

QB =

{[
a1,2b2,3c1,1(b1,1u1,1+b1,2u2,1)−b1,3(a1,2c1,1(b2,1u1,1+b2,2u2,1)−1)

a1,1b1,3+a1,2b2,3
a1,1b1,3c1,1(b2,1u1,1+b2,2u2,1)−b2,3(a1,1c1,1(b1,1u1,1+b1,2u2,1)−1)

a1,1b1,3+a1,2b2,3

]
, u1,1, u2,1 ∈ C

}
.

The replacements

x :=
a1,2b2,3c1,1 (b1,1u1,1 + b1,2u2,1)− b1,3 (a1,2c1,1 (b2,1u1,1 + b2,2u2,1)− 1)

a1,1b1,3 + a1,2b2,3

y :=
a1,1b1,3c1,1 (b2,1u1,1 + b2,2u2,1)− b2,3 (a1,1c1,1 (b1,1u1,1 + b1,2u2,1)− 1)

a1,1b1,3 + a1,2b2,3

confirms that GinvBC[A,B3,C] is again the line (4.1).

(c2) Now, observe the matrix

B3S =

[
0 0 b1,3
0 0 b2,3

]
which satisfies rank(B3S) = 1. Then rank(CAB3S) = rank(C) = rank(B3S) = 1. So, GinvBC[A,B3S,C]
generates the infinite family (line)

⋃
B∈B3(A,C)

QB =

{[
b1,3

a1,1b1,3+a1,2b2,3
b2,3

a1,1b1,3+a1,2b2,3

]}
.

The replacements

x :=
b1,3

a1,1b1,3 + a1,2b2,3
, y :=

b1,3
a1,1b1,3 + a1,2b2,3

confirms that GinvBC[A,B3S,C] is again the line (4.1).

General conclusion is that each B3 of rank 2 generates the same line (4.1). Moreover, each B3 of rank
1 generates a point, but all these points belong to (4.1).

Example 4.2. (a) Consider the symmetric matrix S5 from [37]:

S5 =


t+ 1 t t t t+ 1
t t− 1 t t t
t t t+ 1 t t
t t t t− 1 t

t+ 1 t t t t+ 1


and the following matrices B and C:

B =


2t+ 1 t t
t 2t− 1 t
t t 2t+ 1
t t t

2t+ 1 t t

 , C =

 t2 + 1 t2 t2 t2 t2 + 1
t2 t2 − 1 t2 t2 t2

t2 t2 t2 + 1 t2 t2

 .
The unique solution to BUCS5B = B is given by

U = (CS5B)−1

=


−36t5−18t4+6t3+3t2+1

−63t6−21t5+41t4+t3+10t2+12t+4

t(42t4+57t3+8t2+19t+2)
−63t6−21t5+41t4+t3+10t2+12t+4 − t(6t4+39t3−10t2−5t+6)

−63t6−21t5+41t4+t3+10t2+12t+4

−63t4−21t3+5t2+t
63t5−42t4+t3−2t2−8t−4

2(63t4+21t3+22t2+10t+2)
63t5−42t4+t3−2t2−8t−4 − 7t2(9t2+3t−2)

63t5−42t4+t3−2t2−8t−4
t(21t4+30t3−8t2+2t+3)

(t+1)(63t5−42t4+t3−2t2−8t−4) − t2(77t3+42t2+11t+22)
(t+1)(63t5−42t4+t3−2t2−8t−4)

4(14t5+3t4−4t3−1)
(t+1)(63t5−42t4+t3−2t2−8t−4)

 .
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The unique outer inverse (S5)
(2)
R(B),N (C) of S5 corresponding to B and C can be generated by the expression

X = GinvBC[S5, B, C], and it is equal to

(S5)
(2)

R(B),N(C)
= BUC = B(CS5B)

−1
C =

−10t5+6t4+3t3−t2+t+1

−63t5+42t4−t3+2t2+8t+4

t
(
15t4+t3+6t2−2

)
63t5−42t4+t3−2t2−8t−4

t
(
−15t4+13t3−8t2+4t+2

)
63t5−42t4+t3−2t2−8t−4

t2
(
−20t3+6t2+3t−1

)
63t5−42t4+t3−2t2−8t−4

−10t5+6t4+3t3−t2+t+1

−63t5+42t4−t3+2t2+8t+4

t
(
−2t4+3t3+8t2−3t−2

)
63t5−42t4+t3−2t2−8t−4

−66t5+13t4−25t3+2t2+12t+4

63t5−42t4+t3−2t2−8t−4

t
(
3t4+t3+16t2−8t−4

)
63t5−42t4+t3−2t2−8t−4

t2
(
67t3−9t2−18t−4

)
63t5−42t4+t3−2t2−8t−4

t
(
−2t4+3t3+8t2−3t−2

)
63t5−42t4+t3−2t2−8t−4

t
(
−16t4+13t3−6t2+3t+2

)
63t5−42t4+t3−2t2−8t−4

t
(
39t4−7t3+8t2−4

)
63t5−42t4+t3−2t2−8t−4

−24t5+7t4+15t3−6t2+4t+4

−63t5+42t4−t3+2t2+8t+4

t2
(
−31t3+13t2+2t−4

)
63t5−42t4+t3−2t2−8t−4

t
(
−16t4+13t3−6t2+3t+2

)
63t5−42t4+t3−2t2−8t−4

t
(
2t4−3t3+t2−5t+1

)
−63t5+42t4−t3+2t2+8t+4

−
t
(
3t4+29t3+6t2+18t+4

)
63t5−42t4+t3−2t2−8t−4

t
(
3t4+t3−2t2+10t−4

)
63t5−42t4+t3−2t2−8t−4

t3
(
4t2+33t−1

)
63t5−42t4+t3−2t2−8t−4

t
(
2t4−3t3+t2−5t+1

)
−63t5+42t4−t3+2t2+8t+4

−10t5+6t4+3t3−t2+t+1

−63t5+42t4−t3+2t2+8t+4

t
(
15t4+t3+6t2−2

)
63t5−42t4+t3−2t2−8t−4

t
(
−15t4+13t3−8t2+4t+2

)
63t5−42t4+t3−2t2−8t−4

t2
(
−20t3+6t2+3t−1

)
63t5−42t4+t3−2t2−8t−4

−10t5+6t4+3t3−t2+t+1

−63t5+42t4−t3+2t2+8t+4


.

(b) Consider now the function GinvBC[S5,Tanspose[S5],Tanspose[S5]] with the aim to compute S†5.
This particular choice corresponds to the assignments A = S5, B = C = ST

5 . The matrix system
BUCAB = B becomes ST

5 US
T
5 S5S

T
5 = ST

5 . The expression U = Table[Subscript[u, i, j], {i, k},
{j, l}] generates the 5 × 5 matrix U = [uij ] with symbolic entries uij . Then the solution to the system
ST
5 US

T
5 S5S

T
5 = ST

5 can be obtained using the expression Solve[ST
5 US

T
5 S5S

T
5 = ST

5 , vars] // Simplify
and it is equal to

U =


u1,1 u1,2 u1,3

u2,1 − 49t3

4
− 31t2

4
− 3t− 1 1

4
t
(
49t2 + 3t+ 4

)
u3,1

1
4
t
(
49t2 + 3t+ 4

)
− 49t3

4
+ 25t2

4
− 3t+ 1

u4,1 − 1
4
t
(
49t2 + 31t+ 12

)
1
4
t
(
49t2 + 3t+ 4

)
u5,1

1
4

(
t
(
49t2 + 10t+ 3

)
− 4u1,2

)
1
4

(
t
(
−49t2 + 18t− 7

)
− 4u1,3

)
u1,4 u1,5

− 1
4
t
(
49t2 + 31t+ 12

)
1
4

(
t
(
49t2 + 10t+ 3

)
− 4u2,1

)
1
4
t
(
49t2 + 3t+ 4

)
− 1

4
t
(
49t2 − 18t+ 7

)
− u3,1

− 49t3

4
− 31t2

4
− 3t− 1 1

4

(
t
(
49t2 + 10t+ 3

)
− 4u4,1

)
1
4

(
t
(
49t2 + 10t+ 3

)
− 4u1,4

)
1
4

(
−49t3 + 11t2 − 3t− 4u1,1 − 4u1,5 − 4u5,1 + 1

)


and the result is the Moore-Penrose inverse of S5, equal to

ST
5 US

T
5 = S†5 =


1
4 −

t
4

t
2 − t

2
t
2

1
4 −

t
4

t
2 −t− 1 t −t t

2
− t

2 t 1− t t − t
2

t
2 −t t −t− 1 t

2
1
4 −

t
4

t
2 − t

2
t
2

1
4 −

t
4

 .

(c) In this part of the example we consider

S3 =

 t+ 1 t t+ 1
t t− 1 t

t+ 1 t t+ 1

 ,
the matrix B as in the previous cases, but assume that C := C1 is defined as

B1 =

 2t+ 1 t t
t 2t− 1 t
t t t

 , C1 =

[
t2 + 1 t2 t2

t2 t2 − 1 t2

]
.

Now, rank(C1S3B1) = rank(C1) < rank(B1). So, GinvB[S3,B1,C1] is not applicable. On the other hand,
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GinvC[S3,B1,C1] produces the following outer inverse with prescribed null space:
t3+(t3+t2+t+1)u1,2t

2−t+(t+1)(t2+1)
2
u1,1+1

2(t2+1)
1
2

(
(t+ 1)u1,1t

2 + t+ (t− 1)(t+ 1)2u1,2
)

− t(t2+t−1)
t2+1 −t− 1

−−t
3+(t3+t2+t+1)u1,2t

2+t+(t+1)(t2+1)
2
u1,1−1

2(t2+1)
1
2

(
−(t+ 1)u1,1t

2 + t− (t− 1)(t+ 1)2u1,2
)

t2(−2t+(t3+t2+t+1)u1,1+(t3+t2+t+1)u1,2+1)
2(t2+1)
t2(2t+1)
t2+1

− t2(2t+(t3+t2+t+1)u1,1+(t3+t2+t+1)u1,2−1)
2(t2+1)

 .
Example 4.3. (a) Consider the two-variable rational matrix from [21]:

A =

 1
z2

z1 0

0 1
z2

z1
0 0 0

 .
Since the index of A is ind(A) = 1, we can ask the group inverse of A in symbolic form by the expression
X = GinvBC[A,A,A]. This particular choice corresponds to the assignments B = C = A. The matrix
system BUCAB = B becomes AUAAA = A. The expression U = Table[Subscript[u, i, j], {i,
k}, {j, l}] generates the 3× 3 matrix U = [uij ] which contains unassigned symbols uij . The solution to
AUAAA = A can be obtained using the expression Solve[AUAAA = A, vars] // Simplify and it is
equal to

U =

 u1,1 −z1z2
(
2z32 + u2,2

)
u1,3

z3
2−u1,1

z1z2
u2,2 u2,3

u1,1−z3
2

z2
1z

2
2

z3
2−u2,2

z1z2
u3,3

 .
The result X = AUA is the same as in [21]:

X = AD = A# =

 z2 −z1z22 −2z21z
3
2

0 z2 z1z
2
2

0 0 0

 .
(b) Further, consider GinvB[A,Transpose[A],Transpose[A]]. The general solution to ATUATAAT is
equal to

U =


u1,1

z21z52+z32
z41z42+z21z22+1

−u1,1

z1z2

u1,1−
2z21z52+z32

z41z42+z21z22+1

z2
1z

2
2

z1z2

(
− z3

2

z4
1z

4
2+z2

1z
2
2+1
− u2,2

)
u2,2

z21z52+z32
z41z42+z21z22+1

−u2,2

z1z2

u3,1 u3,2 u3,3


and the final result is ATUAT coincides with the Moore-Penrose inverse of A:

A† =


z2
1z

3
2+z2

z4
1z

4
2+z2

1z
2
2+1

− z1z
2
2

z4
1z

4
2+z2

1z
2
2+1

0
z3
1z

4
2

z4
1z

4
2+z2

1z
2
2+1

z2
z4
1z

4
2+z2

1z
2
2+1

0

− z2
1z

3
2

z4
1z

4
2+z2

1z
2
2+1

z2
2(z2

2z
3
1+z1)

z4
1z

4
2+z2

1z
2
2+1

0

 .
(c) Now, consider

B =

 z1z2 0
z2 z21
z1z2 z32

 , C =

[
z1 z22 0
0 z21 z1z2

]
.
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Clearly, the requirement rank(CAB) = rank(B) = rank(C) = 2 = rank(A) is satisfied. Then GinvBC[A,B,C]

produces the {1, 2}-inverse

A
(1,2)
R(B),N (C) =


z2(z4

2+z1)
z5
2+z4

2−z3
1z

2
2+z1

− z2
1z

2
2

z5
2+z4

2−z3
1z

2
2+z1

− z3
2(z5

2+z1z2+z3
1)

z2
1(z5

2+z4
2−z3

1z
2
2+z1)

− z2
2(z3

1−z
3
2)

z1(z5
2+z4

2−z3
1z

2
2+z1)

z1z2
z5
2+z4

2−z3
1z

2
2+z1

− z8
2−z

3
1(z5

2+z2
2)

z3
1(z5

2+z4
2−z3

1z
2
2+z1)

− z4
2−z

3
1z2

z2
1(z5

2+z4
2−z3

1z
2
2+z1)

− z2
2(z3

1−z
2
2(z2+1))

z1(z5
2+z4

2−z3
1z

2
2+z1)

z3
2(−z5

1−z2z
3
1+z2

2(z2+1)z2
1+z4

2)
z4
1(z5

2+z4
2−z3

1z
2
2+z1)

 .

(d) Consider the same A,B as in the part (c) and

C =

 z1 z22 0
0 z21 z1z2
z2 z1 0

 .
Since rank(CAB) = rank(B) is true, GinvBC[A, B, C] produces A{2}R(B),∗, defined in the generic form



z2(z42+z1)
z52+z42−z31z

2
2+z1

− z21z
2
2

z52+z42−z31z
2
2+z1

z2
((

z21 − z32
)
u1,1 − z42+z1z

2
2+z1

z52+z42−z31z
2
2+z1

)
− z22(z31−z32)

z1(z52+z42−z31z
2
2+z1)

z1z2
z52+z42−z31z

2
2+z1

z2

(
−

z42+z1z22+z1

z52+z42−z31z22+z1
+(z21−z32)u1,1+z1

(
z2z21+z22+z2+1

z52+z42−z31z22+z1
+

z1(z21−z32)u2,1

z2

))
z1

− z42−z31z2

z21(z52+z42−z31z
2
2+z1)

− z22(z31−z22(z2+1))
z1(z52+z42−z31z

2
2+z1)

z1z2


(

z2z21+z22+z2+1

z52+z42−z31z22+z1
+

z1(z21−z32)u2,1

z2

)
z32

z31
+

(z21−z32)u1,1−
z42+z1z22+z1

z52+z42−z31z22+z1

z1




.

5 Computing generalized inverses via specializations

In this section we analyse the behavior of generalized inverses when unknown variables included in
x = (x1, . . . , xp) are substituted by field elements c = (c1, . . . , cp). The results are stated for the case of
matrices over the field K(x). However, the results can be extended for the case of quotient fields of integral
domains of characteristic zero.

In the sequel, for a matrix A(x) ∈ K(x)m×n and c ∈ Kp, A|x!c
indicates the specialization of A(x) at

x = c.

5.1 Rank invariance under specialization

The entries of a matrix A = (aij) ∈ K(x)m×n are rational expressions of polynomials in K[x]. Thus,
each aij can be represented as

aij =
num(aij)

den(aij)
, where gcd(num(ai,j),den(ai,j)) = 1.

Then, we define the denominator of the matrix A as den(A) = lcm{den(aij)}, where lcm stands for the least
common multiple. The numerator of the matrix is defined similarly as num(A) = lcm{num(aij) | aij 6= 0}.

On the other hand, associated with any matrix we introduce an appropriate polynomial to ensure that,
under specializations, the rank is preserved. For this purpose, we recall the notion of square-free part of a
polynomial. If f =

∏q
i=1 f

ki
i ∈ K[x], with fi irreducible over K, the square-free part of f is

SqFree(f) =

q∏
i=1

fi.
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In this situation, the association is as follows. Let A ∈ K(x)m×n be non-zero. Let U be the upper triangular
matrix output by the Gaussian elimination process when applied to A. Let us say that the process generates
the sequence of matrices {A[0] := A,A[1], . . . , A[`] := U}. The notation G(A) is used with the meaning

G(A) = {den(A[i]) num(A[i]) | i = 0, . . . , `}.

Then, we define the rank polynomial of A as the polynomial

RankPol(A) = SqFree

 ∏
u(x)∈G(A)

u(x)

 . (5.1)

Let
KA = {c ∈ Kp |RankPol(A)(a) 6= 0} ⊂ Kp.

The following result ensures that the rank is preserved when specializing with elements in KA.

Theorem 5.1. Let A ∈ K(x)m×n. For every c ∈ KA it holds that

%(A|x!c
, A).

Proof. Let U be the output of the Gaussian elimination process applied to A. By construction, none
denominator appearing through the Gaussian elimination process vanishes at c. Moreover, since the
numerators do not vanish either, one has that U|x!c

is the output of the Gaussian elimination process
applied to A|x!c

. Furthermore, since the first non-zero entries of the non-zero rows of U vanish at c, we
get

%(A,U,U|x!c
, A|x!c

),

which was our initial intention.

Remark 5.1. We observe that

1. If c ∈ KA, then den(A)(c) 6= 0, and hence A|x!c
is well-defined.

2. For simplicity we have taken num(A[i]) in the definition of G(A). However, our reasonings are also
valid if we take only the numerator of the first non-zero entries of each non-zero row of every A[i].

3. If A is not the zero matrix, since K(x) has infinitely many elements, and RankPol(A) is not the zero
polynomial, one deduces that KA has infinitely many elements.

4. Let {Aj}j∈{1,...,`} be non zero matrices over K(x). Taking into account the previous remark, and the
fact that Kp is irreducible, one has that KA1

∩· · ·∩KA`
6= ∅, and indeed has infinitely many elements.

Example 5.1. Let

A =



x1
x1 + x2

x2x3

1
x2
x3

1

x22x3
0

 ∈ C(x1, x2, x3)3×2.

The matrix U is

U =


x1

x1 + x2
x2x3

0 −
x2
(
x3

2x1 + x3
2x2 − x1

)
x3x1

0 0

 .
Therefore,

RankPol(A) = (x1 + x2)x2x3x1(x3
2x1 + x3

2x2 − x1).
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5.2 Generalized inverses for matrices with rational entries

Our motivation is to extend the specializations of the Moore-Penrose inverse from Proposition 5.1 as
well as of the Drazin inverse from [3, 19] to various classes of generalized inverses.

Lemma 5.1. Let A ∈ K(x)m×n, with x = (x1, . . . , xp), and let c = (c1, . . . , cp) ∈ Kp. If an inner inverse
A(1) of A satisfies

den(A)(c) · den(A(1))(c) 6= 0

then the following statement is satisfied:

(A(1))|x!c
=
(
A|x!c

)(1)
.

Proof. According to the assumption, both the specializations A|x!c
and (A(1))|x!c

are defined well. Fur-
ther, it is possible to conclude the following:

A|x!c
= (AA(1)A)|x!c

= A|x!c
(A(1))|x!c

A|x!c
.

So, (A(1))|x!c
=
(
A|x!c

)(1)
and the proof is completed.

Theorem 5.2. Let A ∈ K(x)m×n, B ∈ K(x)n×k, C ∈ K(x)l×m, and let c = (c1, . . . , cp) ∈ Kp. Let
X := B(CAB)(1)C ∈ K(x)n×m, then the following statements hold.

(1) Let %(CAB,B). For every c ∈ KCAB ∩KB satisfying

den((CAB)(1))(c) · den(A)(c) · den(C)(c) 6= 0,

it holds that
X|x!c

=
(
A

(2)
R(B),∗

)
|x!c

=
(
A|x!c

)(2)
R(B|x!c),∗

.

(2) Let %(CAB,C). For every c ∈ KCAB ∩KC satisfying

den((CAB)(1))(c) · den(A)(c) · den(B)(c) 6= 0,

it holds that
X|x!c

=
(
A

(2)
∗,N (C)

)
|x!c

=
(
A|x!c

)(2)
∗,N (C|x!c)

.

(3) Let Let %(CAB,B,C). For every c ∈ KCAB ∩KB ∩KC satisfying

den((CAB)(1))(c) · den(A)(c) 6= 0,

it holds that
X|x!c

=
(
A

(2)
R(B),N (C)

)
|x!c

=
(
A|x!c

)(2)
R(B|x!c),N (C|x!c)

. (5.2)

(4) Let %(CAB,B,C,A). For every c ∈ KCAB ∩KB ∩KC ∩KA satisfying

den((CAB)(1))(c) 6= 0,

it holds that
X|x!c

=
(
A

(1,2)
R(B),N (C)

)
|x!c

=
(
A|x!c

)(1,2)
R(B|x!c),N (C|x!c)

.

Proof. We prove statement (1); the reasoning for the other statements is analogous by using Theorem 2.3
and Corollary 2.5.

Let us use the notation MA = A|x!c
, MB = B|x!c

, MC = C|x!c
, MCAB = (CAB)|x!c

. By the
hypotheses, den(A)(c) den(C)(c) 6= 0. So, MA, and MC are well-defined. Moreover c ∈ KCAB ∩ KB , and
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by Remark 5.1 (1) we get that MCAB and MB are also well defined. Furthermore, den((CAB)(1))(c) 6= 0.
Thus, ((CAB)(1))|x!c

is well-defined,

Using %(CAB,B), by Theorem 2.1, we get X = A
(2)
R(B),∗. Further, since c ∈ KCAB ∩KB , by Theorem

5.1, it holds that

%(MCAB , CAB,B,MB).

On the other hand,

X|x!c
= MB((CAB)(1))|x!c

MC

= MB(MCAB)(1)MC (see Lemma 5.1)
= MB(MCMAMB)(1)MC

Thus, applying Theorem Theorem 2.1, we get that

X|x!c
= (MA)

(2)
R(MB),∗

Therefore,

X|x!c
= (A

(2)
R(B),∗)|x!c

= (MA)
(2)
R(MB),∗ =

(
A|x!c

)(2)
R(B|x!c),∗

.

Remark 5.2. In each statement of Theorem 5.2 appears a different condition for ensuring the correspond-
ing specialization. Nevertheless, one may simplify and give a global conditions for all cases. More precisely,
it is sufficient to require that

RankPol(CAB) · RankPol(B) · RankPol(C) · RankPol(A) · den((CAB)(1)) (5.3)

does not vanish at c.

In the last part of the section we consider (K, ϕ), where K is a field of characteristic zero and ϕ is
an involutory automorphism of K. In addition, let ϕe the natural extension of ϕ to the field K(x). If
the field K(x) is a Moore-Penrose field (MP field shortly, see [20] for the notion of MP field), then it is
possible to use the Moore-Penrose inverse instead of arbitrary {1}-inverse. Then we will need the notation
Kϕ = {x ∈ K | ϕ(x) = x} and Kp

ϕ := Kϕ × · · · ×Kϕ︸ ︷︷ ︸
p times

.

Proposition 5.1. ([20, Theorem 13]) Let (K(x), ϕe) be an MP field. Let A ∈ K(x)m×n, with x =
(x1, . . . , xp), and let c ∈ Kp

ϕ satisfy

den(A)(c) · den(A†)(c) 6= 0.

Then

(A†)|x!c
=
(
A|x!c

)†
.

Corollary 5.1. Let A ∈ K(x)m×n, B ∈ K(x)n×k, C ∈ K(x)l×m, with x = (x1, . . . , xp) and let (K(x), ϕe)
be an MP field. Let c ∈ Kp

ϕ ∩KCAB ∩KB ∩KC ∩KA satisfy

den
(
(CAB)†

)
(c) 6= 0. (5.4)

Then X := B(CAB)†C ∈ K(x)n×m satisfies the statements of Theorem 5.2.
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5.3 Computing generalized inverses for matrices with functional entries

Algorithms proposed in this subsection are applicable to matrices whose entries are rational expressions
of functions. Let Ω ⊂ C be open and connected, and let Mer(Ω) denote the meromorphic functions over Ω.
Choose the functions F = {f1(z), . . . , fp(z)} ⊂ Mer(Ω)}. The tuple f = (f1(z), . . . , fp(z)) will be shortly
denoted as f .

To start with, we assume in the beginning that the elements in F are algebraically independent over
C. In later investigations we will skip this assumption.

Elements in F are algebraically independent.
We will work with matrices whose entries belong to the field C(F), that is, matrices whose elements

are rational expressions of the elements in f . In addition, we consider the map Rat (called rationalization)
that converts a matrix with functional entries into a matrix involving rational expressions:

Rat : C(F)m×n −→ C(x)m×n

A 7−→ Rat(A) = A|f!x
.

So, the mapping Rat consists of replacing fi(z) by xi in A. In addition, we consider the mapping (called
functionalization):

Func : C(x)m×n −→ C(F)m×n

M 7−→ Func(M) = M|x!f
.

We observe that, since F is algebraically independent, Func is well-defined and, indeed, it is the inverse
map Rat. The next lemma shows how the inner inverses behave under the map Rat.

Lemma 5.2. Let A ∈ C(F)m×n, with F algebraically independent. Then, A(1) exists and meets the
following characteristics:

Rat(A(1)) = (Rat(A))
(1)

;

Func(Rat(A)(1)) = A(1).

Proof. The existence of A(1) is ensured on the basis of the fact that C(F) is a field (see e.g. Lemma
2.1. in [24]). By definition, A = AA(1)A. So, Rat(A) = Rat(AA(1)A) = Rat(A)Rat(A(1))Rat(A). Thus,
Rat(A(1)) ∈ Rat(A){1} which proves the first statement. For the second statement, we apply the inverse
function Func to the equality in the first statement.

Using Lemma 5.2, and reasoning as in the proof of Theorem 5.2, one gets Theorem 5.3.

Theorem 5.3. Let A ∈ C(F)m×n, B ∈ C(F)n×k, C ∈ C(F)l×m, with F algebraically independent. The
next statements hold for X := B(CAB)(1)C:

(1) If % (Rat(C)Rat(A)Rat(B), Rat(B)) then

X = A
(2)
R(B),∗ = Func

(
Rat(A)

(2)
R(Rat(C)),∗

)
.

(2) If % (Rat(C)Rat(A)Rat(B), Rat(C)) then

X = A
(2)
∗,N (C) = Func

(
Rat(A)

(2)
∗,N (Rat(C))

)
.

(3) If % (Rat(C)Rat(A)Rat(B), Rat(B), Rat(C)) then

X = A
(2)
R(B),N (C) = Func

(
Rat(A)

(2)
R(Rat(B)),N (Rat(C))

)
.

(4) If % (Rat(C)Rat(A)Rat(B), Rat(B), Rat(C), Rat(A)) then

X = A
(1,2)
R(B),N (C) = Func

(
Rat(A)

(1,2)
R(Rat(B)),N (Rat(C))

)
.
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Proof. Since F is algebraically independent the rank of a matrix M over C(x) and the rank of Func(M)
are the same. Thus, the proof is a consequence of theorems 2.1, 2.3 and Corollary 2.5.

Elements in F are not necessarily algebraically independent.

Let us now treat the case in which the functions in F could be algebraically dependent. In this case, the
function Func is, in general, not well-defined. More precisely, the function Func is not defined on matrices
over C(x) which denominator has non-trivial greatest common divisor with any of the polynomials that
provides the algebraic dependency of the elements in F . A second difficulty in this new theoretical frame is
that the rank may decrease during the functionalization |x!f . Therefore, in order to generalize Theorem
5.3, one needs to ensure that none of denominators during the computational process vanishes at f as well
as that the ranks of involved matrices are preserved. For this purpose, we will use the rank polynomial
introduced in (5.1) (see Theorem 5.1).

Lemma 5.3. Let A ∈ C(F)m×n, where F is not necessarily algebraically independent. Then, A(1) exists.
Moreover, if

den(Rat(A(1)))(f) 6= 0

then

Rat(A(1)) = (Rat(A))
(1)

;

(Rat(A)(1))|x!f
= A(1).

Theorem 5.4. Let A ∈ C(F)m×n, B ∈ C(F)n×k, C ∈ C(F)l×m, where F is not necessarily an algebraic
independent set. Let us assume that

RankPol(Rat(C)Rat(A)Rat(B))(f) · RankPol(Rat(B))(f) · RankPol(Rat(C))(f) ·
·RankPol(Rat(A))(f) · den(Rat((CAB)(1))(f) 6= 0.

(5.5)

The next statements hold for X := B(CAB)(1)C.

(1) If % (Rat(C)Rat(A)Rat(B), Rat(B)) then

X = A
(2)
R(B),∗ =

(
Rat(A)

(2)
R(Rat(B)),∗

)
|x!f

.

(2) If % (Rat(C)Rat(A)Rat(B), Rat(C)) then

X = A
(2)
∗,N (C) =

(
Rat(A)

(2)
∗,N (Rat(C))

)
|x!f

.

(3) If % (Rat(C)Rat(A)Rat(B), Rat(B), Rat(C)) then

X = A
(2)
R(B),N (C) =

(
Rat(A)

(2)
R(Rat(B)),N (Rat(C))

)
|x!f

.

(4) If % (Rat(C)Rat(A)Rat(B), Rat(B), Rat(C), Rat(A)) then

X = A
(1,2)
R(B),N (C) =

(
Rat(A)

(1,2)
R(Rat(B)),N (Rat(C))

)
|x!f

.

According to Theorems 5.3 we state Algorithm 2 for computing outer inverses of matrices whose entries
are rational expressions.
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Algorithm 2 Computing outer inverses of matrices of functions.

Require: A subset F = {f1(z), . . . , fp(z))} ⊂ Mer(Ω), not necessarily independent, and A ∈ C(F)m×n,
B ∈ C(F)n×k, C ∈ C(F)l×m.

1: Compute the matrices Rat(A),Rat(B),Rat(C) by replacing the function fi(z) by the variable xi in
A,B,C, for each i = 1, . . . , p. Let Rat(A) ∈ C(x)m×n, Rat(B) ∈ C(x)n×k, Rat(C) ∈ C(x)l×m be the
resulting matrices of the execution of this step.

2: Compute X := Rat(B) (Rat(C)Rat(A)Rat(B))
(1)

Rat(C) ∈ K(x)n×m applying Algorithm 1.
3: Compute the polynomial P (x) introduced in (5.5).
4: If P (f) = 0 the method fails.
5: Replace in X each variable xi by the functional entry fi(z), i = 1, . . . , p. Let X(f) = X|x!f

∈ C(F)n×m

be the result of this step.
6: Return X(f).

Generalized inverses of matrices over F with involutions.
In the last part of this section, we consider the involutory automorphism ϕ : Mer(Ω) 7→ Mer(Ω), defined

as ϕ(f(z)) = f(z), where · means the conjugation in C. Further, consider (C(z), ·e), where C(z) is the
field of the complex rational expressions in the complex variable z and the restriction ϕ|C(z) of ϕ to C(z) is
defined by

·e : C(z) 7→ C(z); ·e : R(z) :=
Υ(z)

Ψ(z)
=

∑k1

i=0 aiz
i∑k2

i=0 biz
i
7→ R(z)

e
=

∑k1

i=0 aiz
i∑k2

i=0 biz
i
.

Considering this theoretical frame, we will be able to approach the outer inverse computation problem by
means on Penrose inverses. For this purpose, we will assume in the sequel that the elements in F are
self-adjoint functions (see Def. 7 in [20]). Moreover, x = (x1, . . . , xp) and f = (f1(z), . . . , fp(z)). Further,
observe

C(F) =

{
Υ(f)

Ψ(f)
| P,Q ∈ K[x], Q(f) 6= 0

}
⊂ Mer(Ω).

We investigate matrices with elements taken from (C(F), ·e). We will treat first the algebraically indepen-
dent case to deal afterwards the algebraically dependent case.

Elements in F are algebraically independent.
In this situation, the existence of the Penrose inverse is guaranteed since (C(F), ·) and (C(F)(x), ·e)

are MP fields; see Theorems 18 an 19 in [20]. Furthermore, as a consequence of Theorem 21 in [20], if
A ∈ C(F)m×n, then

(Rat(A)†)|x!f
= A†. (5.6)

Therefore, the following result holds

Corollary 5.2. Let A ∈ C(F)m×n, B ∈ C(F)n×k, C ∈ C(F)l×m. Then X := B(CAB)†C ∈ K(x)n×m

satisfies the statements of Theorem 5.4.

Elements in F are algebraically independent.
Let us now treat the case where the elements in F are not necessarily independent. In this case, we need

to ensure that the denominators appearing throughout the process do not vanish at F . If A ∈ C(F)m×n,
and

den(Rat(A)†)(f) 6= 0

then Theorem 22 ensures that A† exists and can be computed by (5.6). As a consequence of this fact and
of Theorem 5.4 one gets the follows corollary.

Corollary 5.3. Let A ∈ C(F)m×n, B ∈ C(F)n×k, C ∈ C(F)l×m, where F is not necessarily an algebraic
independent set. Let us assume that

RankPol(Rat(C)Rat(A)Rat(B))(f) · RankPol(Rat(B))(f) · RankPol(Rat(C))(f) ·
·RankPol(Rat(A))(f) · den(Rat((CAB)†)(f) 6= 0.

(5.7)
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Then X := B(CAB)†C ∈ K(x)n×m satisfies the statements of Theorem 5.4.

As an application of the previous results, we present an algorithm for computing outer inverses of
matrices over C(F). Algorithm 3 is a generalization of Algorithm 1 from [20]. Its main idea is the
replacement of each function fi included in A by a variable xi.

Algorithm 3 Computing inner and outer inverses of matrices with functional entries.

Require: Let F = {f1(z), . . . , fp(z)} ⊂ Mer(Ω) be such that the elements in F are self-adjoint functions
(see Def. 7 in [20]), and let A ∈ C(F)m×n, B ∈ C(F)n×k, C ∈ C(F)l×m.

1: Compute D = CAB and simplify entries in D.
2: Compute the matrix Rat(D) by replacing inD the function fi(z) by the variable xi, for each i = 1, . . . , p.

Let Rat(D) ∈ C(F)l×k be the resulting matrix of the execution of this step.
3: Compute Rat(D)† := (Rat(C)Rat(A)Rat(B))† ∈ C(F)k×l.
4: Compute the polynomial P (x) introduced in (5.7).
5: If P (f) = 0 the method fails.
6: Replace in Rat(D)† the variable xi by the function fi(z), for each i = 1, . . . , p and generate D† ∈

C(F)k×l.
7: Compute X := BD†C.
8: Return X.

5.4 Examples of specializations

Example 5.2. Consider the two-variable rational matrix from [21]

A =


1
z2

z1 0

0 1
z2

z1

0 0 0

 .
and the matrices

B =


z1z2 0

z2 z21

z1z2 z32

 , C =

[
z1 z22 0

0 z21 z1z2

]
.

Since, rank(CAB) = rank(B), the function GinvBC[A,B,C] solves BUCAB = B and produces the result

X =



z2(z4
2+z1)

z5
2+z4

2−z3
1z

2
2+z1

− z2
1z

2
2

z5
2+z4

2−z3
1z

2
2+z1

− z3
2(z5

2+z1z2+z3
1)

z2
1(z5

2+z4
2−z3

1z
2
2+z1)

− z2
2(z3

1−z
3
2)

z1(z5
2+z4

2−z3
1z

2
2+z1)

z1z2
z5
2+z4

2−z3
1z

2
2+z1

− z8
2−z

3
1(z5

2+z2
2)

z3
1(z5

2+z4
2−z3

1z
2
2+z1)

− z4
2−z

3
1z2

z2
1(z5

2+z4
2−z3

1z
2
2+z1)

− z2
2(z3

1−z
2
2(z2+1))

z1(z5
2+z4

2−z3
1z

2
2+z1)

z3
2(−z5

1−z2z
3
1+z2

2(z2+1)z2
1+z4

2)
z4
1(z5

2+z4
2−z3

1z
2
2+z1)

 .

Let the specialization of X:=GinvBC[A,B,C]∈
(
A

(2)
R(B),∗

)
|z!c

be defined as X|z!c
, where z = (z1, z2) and

c = (1, 1). This replacement in Mathematica is defined by X/. {z1 → 1, z2 → 1}, and it is equal to
1 − 1

2 − 3
2

0 1
2

1
2

0 1
2

1
2

 .
The polynomial in (5.3) is

z1z2
(
z52 + z42 − z31z22 + z1

) (
z31z

2
1 + z21z2 + z21 + z22

)
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that does not vanish at c = (1, 1). After a simple verification, it can be confirmed that the same matrix is
generated using
GinvBC[A/. {z1 → 1, z2 → 1} , B/. {z1 → 1, z2 → 1} , C/. {z1 → 1, z2 → 1}].
So, the conclusion is
GinvBC[A, B,C]/. {z1 → 1, z2 → 1}=GinvBC[A/. {z1 → 1, z2 → 1} , B/. {z1 → 1, z2 → 1} , C/. {z1 → 1, z2 → 1}]
or GinvBC[A, B,C]|z!c

=GinvBC[A|z!c
, B|z!c

, C|z!c
].

Example 5.3. Consider the matrices A,B,C with respect to unknown u:

A =


i sin(u)

cos(u)+i sin(u)
i sin(u)

cos(u)−i sin(u)
i sin(u)

cos(u)+ı sin(u)
ı sin(u)

cos(u)−ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)−ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)+ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)−ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)+ı sin(u)

ı sin(u)
cos(u)+ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)−ı sin(u)

ı sin(u)
cos(u)+ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)−ı sin(u)

 ,

B =



i sin(u)
cos(u)+ı sin(u)

ı sin(u)
cos(u)−ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)−ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)+ı sin(u)

i sin(u)
cos(u)+ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)−ı sin(u)

i sin(u)
cos(u)+ı sin(u)

i sin(u)
cos(u)−ı sin(u)

 , C =


ı sin(u)

cos(u)+ı sin(u) 0 ıeu

cos(u)+ı sin(u)

cos(u) sin(u)+ı sin(u)
cos(u)−ı sin(u) 0 eu sin(u)+ı sin(u)

cos(u)+ı sin(u)

ı sin(u)
cos(u)+ı sin(u) 0 ıeu

cos(u)+ı sin(u)

 ,

where ı stands for the imaginary unit. After the replacement f ! x, given by {cos(u)→ x1, sin(u)→ x2, e
u → x3},

we obtain the next matrices with rational entries:

Rat(A) =


ıx2

x1+ıx2

ıx2

x1−ix2

ıx2

x1+ix2

ıx2

x1−ix2

x1x2+ıx2

x1−ıx2

x1x2+ıx2

x1+ıx2

x1x2+ıx2

x1−ıx2

x1x2+ıx2

x1+ıx2

ıx2

x1+ıx2

x1x2+ıx2

x1−ıx2

ıx2

x1+ıx2

x1x2+ıx2

x1−ıx2

 ,

Rat(B) =


ıx2

x1+ıx2

ıx2

x1−ıx2

x1x2+ix2

x1−ix2

x1x2+ix2

x1+ıx2

ıx2

x1+ıx2

x1x2+ıx2

x1−ıx2

ıx2

x1+ıx2

ıx2

x1−ıx2

 , Rat(C) =


ıx2

x1+ıx2
0 ıx3

x1+ıx2

x1x2+ıx2

x1−ıx2
0 x3x2+ıx2

x1+ıx2

ıx2

x1+ıx2
0 ıx3

x1+ıx2

 .

Then, one gets that

Rat(X) := Rat(B) (Rat(C)Rat(A)Rat(B))
†

Rat(C)

=



ı(x1+ıx2)(−x2
1+x2

2+2(x1+2ı)(2x1+ı)x2)
x1x2(x3

1+2ı(x2+1)x2
1−x2(x2+10)x1−8ıx2)

0
i(x1+ıx2)(x2

1−6ıx2x1−(x2−4)x2)
x1x2(x3

1+2i(x2+1)x2
1−x2(x2+10)x1−8ıx2)

− (x1+ı)(x3
1+5ix2x

2
1−3x2(x2+4)x1+ix2

2(x2+4))
x1x2(x3

1+2ı(x2+1)x2
1−x2(x2+10)x1−8ix2)

0
(x1+ı)(x3

1+ıx2x
2
1+(x2−12)x2x1+ıx2

2(x2+4))
x1x2(x3

1+2ı(x2+1)x2
1−x2(x2+10)x1−8ıx2)

(x2−ıx1)(x4
1+ı(2x2+3)x3

1−(x2(x2+8)+3)x2
1−ix2(x2+8)x1+x2(x2+4))

x1x2(x3
1+2ı(x2+1)x2

1−x2(x2+10)x1−8ıx2)
0 − (x1+ıx2)((x1+ix2)(x2

1+ı(x2+3)x1−x2)−4ix2)
x1x2(x3

1+2ı(x2+1)x2
1−x2(x2+10)x1−8ıx2)

ı(x1+ix2)(−x2
1+x2

2+2(x1+2ı)(2x1+ı)x2)
x1x2(x3

1+2i(x2+1)x2
1−x2(x2+10)x1−8ıx2)

0
ı(x1+ıx2)(x2

1−6x2x1−(x2−4)x2)
x1x2(x3

1+2ı(x2+1)x2
1−x2(x2+10)x1−8ıx2)


.

In addition, the polynomial P (x) in (5.7) is

x1x2x3

(
−2x3

1x2x
2
3 + 2x2

1x
2
2x

2
3 + 2x1x

3
2x

2
3 + x2

3x
4
2 − 4x2

1x
2
2x3 + 4x1x

2
2x

2
3 + x2

1x
2
2 − 2x2

1x2x3 + x2
1x

2
3 + x4

2 + 2x3
2x3 + x2

2x
2
3 + x1x3

)(
x6
1 + 2x4

1x
2
2 + x2

1x
4
2 − 12x4

1x2 + 20x2
1x

3
2 + 4x4

1 + 68x2
1x

2
2 − 32x2

1x2 + 64x2
2

)
(x1 + ix2) (ıx2 − x1)(

x1x3x
2
2 − 4ıx2

1x2 − 2x1x2x3 − 4ıx2
1x2x3 − 2x3

1x2x3 + ıx4
1x3 − 2ıx2

1x
2
2 − 4ıx2

1x3 − 3x3
1x3 + x1x

3
2 + 2ıx2

2x3 − 2x2
2x1 − ıx2

1x
2
2x3 + 2ıx3

2 − x2x
3
1

)(
ıx2

1x2x3 − 2ıx2
1x2 − 4ıx2

1x3 − x3
1x3 − 2ıx2

2 − 2ıx2x3 − 2x2
2x1 − 2x1x2x3 + 4x1x2 + 4x1x3

)(
2ıx3

1x2x3 + ıx2x
3
1 + 3ıx3

1x3 − ıx3
2x1 − ıx1x

2
2x3 + x4

1x3 − x2
1x

2
2x3 + 2ıx2

2x1 + 2ıx1x2x3 − 2x2
1x

2
2 − 4x2

1x2x3 − 4x2
1x2 − 4x2

1x3 + 2x3
2 + 2x3x

2
2

)(
ıx1x2x3 + ıx2

2x3 − ıx1x2 + ıx1x3 + x2
1x3 − x1x2x3 − x2

2 − x3x2

) (
2ıx2

1x2 + 2ıx2
1 + x3

1 − x2
2x1 − 8ıx2 − 10x1x2

)
(ı + x1)

(
x2
1 + x2

2

)
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In order to check whether P (f) 6= 0, we observe that P (f)(π/4) ' 4.284836934 109 − 1.372886372 1010 ı
Thus, we get that

X := Rat(X)|x!f
= B(CAB)†C =

=



(sec(u)−ı csc(u)) sin(u)((cot(u)−tan(u)−10ı) csc2(u)+4 sec(u)) tan(u)

cot(u)+2ı(csc(u)+(5ı−4 sec(u)) sec(u)+1)−tan(u)

− (cos(u)+ı)(cot(u)(cot2(u)+5ı cot(u)−12 csc(u)−3)+ı(4 csc(u)+1)) sec(u)

cos(u)(cot(u)+ı)2+2i(cot(u)(cot(u)+5ı)−4 csc(u))

(1−ı cot(u))(cos2(u)(cot(u)+ı)2−cot(u)(3 cot(u)+8ı)+ı cos(u)(cot(u)(3 cot(u)+8ı)−1)+4 csc(u)+1) sec2(u) tan(u)

cot(u)+2ı(csc(u)+(5ı−4 sec(u)) sec(u)+1)−tan(u)

(sec(u)−ı csc(u)) sin(u)((cot(u)−tan(u)−10ı) csc2(u)+4 sec(u)) tan(u)

cot(u)+2ı(csc(u)+(5ı−4 sec(u)) sec(u)+1)−tan(u)

0 (csc(u)+ı sec(u)) sec2(u)(cos(u)(cot(u)−6ı)−sin(u)+4)
2(−ı cot(2u)+csc(u)+(5ı−4 sec(u)) sec(u)+1)

0 (cos(u)+i) csc3(u) sec(u)(cos(u)−2ı cos(2u)+ı(sin(u)+6ı sin(2u)+2))
cos(u)(cot(u)+ı)2+2ı(cot(u)(cot(u)+5ı)−4 csc(u))

0 eıu csc(u) sec(u)(−ı cot(u)+3 csc(u)+ı tan(u)−sec(u)(4 sec(u)+tan(u)−4ı)+2)
8 sec2(u)+ı(cos(2u) csc(u)−10) sec(u)−2(csc(u)+1)

0 (csc(u)+ı sec(u)) sec2(u)(cos(u)(cot(u)−6ı)−sin(u)+4)
2(−ı cot(2u)+csc(u)+(5ı−4 sec(u)) sec(u)+1) .


.

Indeed, it can be verified after simplifications that

X1 := B(CAB)†C =

csc(u) sec(u)(2 cos(u
2 )+2ı sin(u

2 ))(− cos(2u)−3 sin(u)+5ı sin(2u)+sin(3u))

(2+7ı) cos(u
2 )+(6−8ı) cos( 3u

2 )−(4+ı) cos( 5u
2 )−(7+2ı) sin( z

2 )−(8−6ı) sin( 3u
2 )+(1+4ı) sin( 5u

2 )

− csc(u) sec(u)((6+4ı) cos(u
2 )−(4−2ı) cos( 3u

2 )+(4−7ı) cos( 5u
2 )−(4+ı) cos( 7u

2 )+(4+6ı) sin(u
2 )−(2−4ı) sin( 3u

2 )−(7−4ı) sin( 5u
2 )+(1+4ı) sin( 7u

2 ))
(2+7ı) cos(u

2 )+(6−8ı) cos( 3u
2 )−(4+ı) cos( 5u

2 )−(7+2ı) sin(u
2 )−(8−6ı) sin( 3u

2 )+(1+4ı) sin( 5u
2 )

(csc(u)+i sec(u))(3 cos(u
2 )+(10−8i) cos( 3u

2 )−(4+6ı) cos( 5u
2 )−(1−2ı) cos( 7u

2 )−3ı sin(u
2 )−(8−10ı) sin( 3u

2 )+(6+4ı) sin( 5u
2 )+(2−ı) sin( 7u

2 ))
2((2+7ı) cos(u

2 )+(6−8ı) cos( 3u
2 )−(4+ı) cos( 5u

2 )−(7+2ı) sin(u
2 )−(8−6ı) sin( 3u

2 )+(1+4ı) sin( 5u
2 ))

csc(u) sec(uz)(2 cos(u
2 )+2ı sin(u

2 ))(− cos(2u)−3 sin(u)+5ı sin(2u)+sin(3u))

(2+7ı) cos(u
2 )+(6−8ı) cos( 3u

2 )−(4+ı) cos( 5u
2 )−(7+2ı) sin(u

2 )−(8−6ı) sin( 3u
2 )+(1+4ı) sin( 5u

2 )

0
8e3ıu(−2−2ıeiu+2ie3ıu+e4ıu)

(−1+e2ıu)(1+e2ıu)(−4ı+8eıu+2ıe2ıu−7e3ıu+6ıe4ıu+e5ıu)

0 − 4eıu(−4−8ıeıu−2e2ıu+3ıe3ıu+6e4ıu+3ıe5ıu+2e6ıu)
(−1+e2ıu)(1+e2ıu)(−4ı+8eıu+2ie2ıu−7e3ıu+6ıe4ıu+e5ıu)

0
4e4ıu(4+2ıeıu−3e2ıu+4ıe3ıu+e4ıu)

(−1+e2ıu)(1+e2ıu)(4+8ıeıu−2e2ıu−7ıe3ıu−6e4ıu+ıe5ıu)

0
8e3ıu(−2−2ıeıu+2ıe3ıu+e4ıu)

(−1+e2ıu)(1+e2ıu)(−4ı+8eıu+2ıe2ıu−7e3ıu+6ıe4ıu+e5ıu)


.

Finally, after simplification, it is possible to verify that X −X1 coincides with the zero matrix.

6 Conclusion

This research investigates representations of outer matrix inverses with prescribed range and null space
in terms of inner inverses. More precisely, we explore the relations among the sets A{2}R(B),∗, A{2}∗,N (C)

and A{2}R(B),N (C) in terms of the set B(CAB){1}C. Further, required inner inverses are computed as
solutions of appropriate LME. More precisely, (CAB){1} is generated as the solution to BUCAB = B
under the constraint rank(CAB) = rank(B) or the solution to CABUC = C if rank(CAB) = rank(C) is
satisfied. In this way, algorithms for computing outer inverses are derived using solutions of LME.
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The underlying LME can be solved in different ways. Approach used in [28] is based on the usage of
matrix the dynamical system arising from Gradient Neural Network (GNN) approach. Here we propose
approach based on symbolic solutions to involved LME. Using symbolic solutions to these LME it is possible
to derive corresponding algorithms in appropriate computer algebra systems, such as Mathematica or Maple.
Based on two different approaches in the implementation of proposed representations and algorithms, it can
be concluded that the presented algorithms are applicable both in symbolic calculation and in numerical
calculations.

Alternative possibilities for solving BUCAB = B and CABUC remain open for further research.
Efficient solutions to these LME are important in defining efficient algorithm for computing inner and
outer generalized inverses with prescribed range and/or null space.

In addition, we study how the above representations, and hence the associated algorithms, behave
under specializations. As a consequence of this analysis, we are able to derive algorithms to compute outer
inverses of matrices with functional entries satisfying certain conditions.
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