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A B S T R A C T

Nowadays, video surveillance systems are commonly found in most public and private spaces. These systems
typically consist of a network of cameras that feed into a central node. However, the processing aspect is
evolving towards distributed approaches, leveraging edge-computing. These distributed systems are capable of
effectively addressing the detection of people or events at each individual node. Most of these systems, rely
on the use of deep-learning and segmentation algorithms which enable them to achieve high performance, but
usually with a significant computational cost, hindering real-time execution. This paper presents an approach
for people detection and action recognition in the wild, optimized for running on the edge, and that is able
to work in real-time, in an embedded platform. Human Action Recognition (HAR) is performed by using a
Recurrent Neural Network (RNN), specifically a Long Short-Term Memory (LSTM). The input to the LSTM is
an ad-hoc, lightweight feature vector obtained from the bounding box of each detected person in the video
surveillance image. The resulting system is highly portable and easily scalable, providing a powerful tool for
real-world video surveillance applications (in the wild and real-time action recognition). The proposal has
been exhaustively evaluated and compared against other state-of-the-art (SOTA) proposals in five datasets,
including four widely used (KTH, WEIZMAN, WVU, IXMAX) and a novel one (GBA) recorded in the wild, that
includes several people performing different actions simultaneously. The obtained results validate the proposal,
since it achieves SOTA accuracy within a much more complicated video surveillance real scenario, and using
a lightweight embedded hardware.
1. Introduction

Nowadays, the fast developing of both hardware and software tech-
nologies, has caused that sciences such as Artificial Intelligence (AI)
have evolved faster. This has allowed the field of computer science to
propose interesting solutions in different areas (Pouyanfar et al., 2018;
Shinde & Shah, 2018), such as banking management (Aziz & Dowling,
2019; Lee & Shin, 2020), healthcare (Ali et al., 2020; Castiglioni et al.,
2021; Esteva et al., 2019; Hinton, 2018; Zhou et al., 2020), or computer
vision (Cob-Parro, Losada-Gutiérrez, Marrón-Romera, Gardel-Vicente,
& Bravo-Muñoz, 2021; Howard et al., 2017; Wu, Lv, Jiang, & Song,
2020).

Computer vision research has been growing in the last decade (Fe-
ichtenhofer, Pinz, & Wildes, 2017). It attempts to provide software so-
lutions through the use of images. In this context, in recent years com-
puter vision researchers have used AI to give solutions to more complex
problems such as people detection, where recognition solutions are
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given for RGB or depth images as shown in the works (Fuentes-Jimenez
et al., 2020; Spinello & Arras, 2011) or pattern recognition as explained
in the work (Suri, 2000). Another very active area within computer
vision is Human Action Recognition (HAR), which focuses on detecting
of patterns for people in motion. For this purpose, spatio-temporal
analysis techniques are used to identify actions (Kong & Fu, 2022).

HAR has been one of the most studied areas in computer vision
in recent years (Pareek & Thakkar, 2021). Taking into account the
definition given in Chaquet, Carmona, and Fernández-Caballero (2013),
actions are considered to be human activities that can be recognized
with less than two seconds of recording, such as jumping, running,
sitting, falling, walking, clapping, etc. In the first works related to
HAR, RGB video streams were analyzed using different techniques for
action classification, being most of these works based on the extraction
of ad-hoc feature descriptors (Baptista-Ríos, Martínez-García, Losada-
Gutiérrez, & Marrón-Romera, 2016a; Klaser, Marszałek, & Schmid,
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2008; Oreifej & Liu, 2013; Sulong & Mohammedali, 2014), followed
by a classifier. These proposals obtain good results with small datasets,
but their performance decreases when the dataset size increases.

With the improvement of technology, the techniques used for clas-
sifying actions have gradually migrated towards models based on Deep
Learning (DL), which generally extract the features and perform the
classification in the network itself. DL based systems are not only used
in classification, but also in regression as in Atlam, Torkey, El-Fishawy,
and Salem (2021) in which patients with COVID-19 are selected with
the best chance of survival and predict the most acute symptoms
(characteristics) that affect the probability of survival.

The strength of models built on layered architectures is that they
specialize in extracting the most appropriated features to classify the
input through training. This training process is usually lengthy and
requires extensive and well-organized datasets. Furthermore, despite
their excellent results, these systems suffer from the drawback of re-
quiring a high computational cost. Larger network complexity yields
superior results but incurs in higher computational overhead.

Within the models that use DL based architectures, there are dif-
ferent types, such as Convolutional Neural Networks (CNNs) (Gupta,
Nunavath, & Roy, 2019; Kumaran, Vadivel, & Kumar, 2018; Liu,
Campbell, & Guo, 2017; Zhou, Paiement, & Mirmehdi, 2017), pri-
marily used in the field of artificial vision and Recurrent Neural
Networks (RNNs) (Selvin, Vinayakumar, Gopalakrishnan, Menon, &
Soman, 2017; Wang et al., 2016; Yin, Kann, Yu, & Schütze, 2017) used
for the detection and prediction of time series. The latter include not
only the classical RNNs, simple neural networks with feedback, but also
Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTMs),
systems that include the concept of memory.

In this context, in this paper it is proposed a new approach for HAR
based on LSTM (Yu, Si, Hu, & Zhang, 2019) and edge computing. To do
that, it has been defined a novel light feature vector that is classified
using an LSTM, making the model able to accurately classify actions
in the wild, with a much lower computational cost than a standard
DL model. The proposal includes three different stages. Initially, there
is a people detector. It has been chosen a MobileNetV2-SSD (Howard
et al., 2017) due to its balance between accuracy and computational
cost, however, in this stage, any people detection algorithm capable
of extracting Bounding Boxes (BBs) around each identified person in
the video frames can be applied. Subsequently, this information is
processed to create a ultralight feature vector. These vectors are charac-
terized by requiring a lower computational cost than other alternatives
such as optical flow or a position skeletons, for both extraction and
inference. These vectors include features related to the spatial position
and size of BBs that enhance its capabilities. On the other hand,
the proposed architecture for HAR, which includes LSTM, defines the
temporal component necessary for HAR.

The depicted architecture is proposed as a modular and scalable
system, being able to operate in real-time in embedded systems. Addi-
tionally, the system has proven to work well in different environments,
since it has been tested with up to five different datasets, obtain-
ing an accuracy in the results comparable to those of the related
state-of-the-art (SOTA) works.

Thus, the main contributions of this work are listed below:

1. It is proposed a novel modular architecture for HAR, consisting
of a person detector and an action classification. Furthermore,
it has been defined an ad-hoc, light feature vector from the
people detector output that is then classified using a LSTM
based neural network. This allows obtaining low inference times,
even in embedded systems, for real-time execution with results
comparable to other SOTA proposals.

2. The action detector layers have been carefully defined to reduce
the computational cost and optimize the results. In addition,
the people detector has been optimized using the OpenVino
framework (OpenVino VPU architectures, 2023) and integrated
2

with dedicated hardware designed specifically for computer vi-
sion such as Visual Processing Units (VPUs) (Intel, 2020). This
allows the system to run in an embedded processor such as an
UpSquared V2 (UPS2) (Intel, 2022b), which works at 30 Frames
Per Second (FPS) and can be powered by portable batteries.

3. Five different datasets have been used to validate the pro-
posal in distinct environments and with diverse people actions.
Four of the datasets are publicly available and widely used in
HAR works: WVU (Kulathumani, 2011), IXMAS (EPFL, 2006),
KTH (KTH, 2004) and WEIZMANN (Gorelick, Blank, Shecht-
man, Irani, & Basri, 2007). Furthermore, in this work, it is
presented a new dataset named GEINTRA Behavior Analysis
(GBA) (GEINTRA, 2022a, 2022b) that has been recorded at
the Polytechnic School of the University of Alcalá. This dataset
is characterized by including sequences in the wild, with real
environments and people acting spontaneously. Besides, GBA
includes both individual and group actions. This dataset has
been made available to the scientific community (GEINTRA,
2022a).

4. The proposal has been evaluated by obtaining metrics for both
recognition performance and computational cost on different de-
vices. This evaluation confirms the system’s ability to operate in
real-time, obtaining results that validate the proposal accuracy.

To summarize, we propose a novel human action detection system
optimized to work in embedded systems in the wild. It is a modular
system intended to be flexible in software technology allowing the
use of new technologies/developments. The proposal first two modules
generate an ultralight vector with the most salient features of the BBs.
The last one is based on LSTMs that collects the BB feature vectors, and
predicts the action performed for each individual. As mentioned above,
the system is designed and optimized to work in real-time (> 30𝐹𝑃𝑆)
nd with accuracy levels similar to those in SOTA. Additionally, a
articularly focused on actions in the wild, GBA dataset, is also pre-
ented and validates the proposal. This allows testing its performance in
omplex situations where overlaps, brightness and multiple individuals
imultaneously carry out different actions.

Regarding the proposal novelty, it is worth to highlight that the
ain contributions are the original light feature vector described in

his work, capable of extracting information about the movement of
ach detected person in the scene, and the architecture based on LSTMs
or HAR, that has been carefully designed and train to detect human
ctions in different contexts in the wild.

The rest of the paper is organized as follows. Section 2 presents a
tudy of the main previous works related to HAR, as well as different
dge computing hardware and software tools used in the video surveil-
ance research area. Then, Section 3 describes the developed algorithms
nd hardware implementation. After that, Section 4 presents and ana-
yzes the main experimental results performed to validate the proposal.
inally, in Section 5, conclusions and future work are presented.

. Related works

As mentioned in the introduction, one of the most extensively
tudied areas in the field of computer vision is HAR. In the begin-
ing, there was a lot of disparity between the concepts of action,
ctivity, behavior, and that is why works like (Ahad, 2011) explains
he differences between them based on the time and complexity of
he action execution. HAR using RGB images started with the analysis
f hand-crafted features (Bregonzio, Gong, & Xiang, 2009; Gorelick
t al., 2007; Laptev, Marszalek, Schmid, & Rozenfeld, 2008; Sadanand

Corso, 2012), extracting them through image processing and us-
ng machine learning based models to perform classification. For this
urpose, systems such as the one proposed by Kong et al. (2019),
ian, Zhou, Zhao, Wei, and Fei (2013), Zeng and Ma (2010) using
istogram of Oriented Gradients (HOG) and filtering with a Support
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Vector Machine (SVM) classification model were used, which allowed
performing object detection tasks with satisfactory results. However,
regarding action recognition, the results were not that remarkable. As
technology advanced, innovative solutions were proposed, such as the
use of DL (Dargan, Kumar, Ayyagari, & Kumar, 2020; Singh, Ahuja,
Kumar, Kumar, & Sachdeva, 2021; Wang et al., 2022) based systems,
which extract image features automatically. This type of neural net-
works are trained with adequate datasets to adjust a set of filters for
detecting the desired features (Agatonovic-Kustrin & Beresford, 2000;
Han, Kim, Kim, & Youn, 2018).

An example of this type of networks were CNNs, architectures
based on convolutional layers that work as filters (adjusted during
training) allowing the automatic extraction of features (Alzubaidi et al.,
2021; Bhatt et al., 2021). These architectures achieved better results
compared to the first mentioned models in which feature extraction
was performed manually, especially in detection (Gayathri, Gopi, &
Palanisamy, 2021; Hedjazi, Kourbane, & Genc, 2017; Mete & Ensari,
2019). Furthermore, they can also have other applications, such as
encoder and decoder for human segmentation in video surveillance
systems, as demonstrated in Gruosso, Capece, and Erra (2021).

These CNN-based systems have two main problems regarding HAR
(Cho & Yoon, 2018; Ragab, Abdulkadir, & Aziz, 2020). First, most of
them require an extremely high computational cost, that is, they need
hardware devices such as GPUs (Körez & Barışçı, 2019; László, Szolgay,
& Nagy, 2012; Potluri, Fasih, Vutukuru, Al Machot, & Kyamakya, 2011)
to be able to operate in real-time. Despite this handicap, there are works
that try to solve this situation by using edge technology (Cob-Parro
et al., 2021; Rivas-Gomez, Pena, Moloney, Laure, & Markidis, 2018),
employing Vision Processing Units (VPU) and specialized frameworks
to reduce the computational cost. Secondly, CNNs do not have temporal
context, which means that these architectures analyze frame by frame
but do not consider the following or previous frames, and as mentioned
above, actions have a temporal and spatial component. For adding
the temporal component, many works add another dimension to the
system input by adding depth such as (Das, Koperski, Bremond, &
Francesca, 2017; Xia, Chen, & Aggarwal, 2012; Zhang et al., 2019), or
supplementary technologies such as those in Berlin and John (2020),
Kumar and John (2016), Tanberk, Kilimci, Tükel, Uysal, and Akyokuş
(2020), which used optical flow for HAR from RGB images, since they
embed the temporal dependence needed. However, most of these works
are still limited by that temporal component.

To incorporate the temporal component to the neural networks, the
use of RNNs (Almiani, AbuGhazleh, Al-Rahayfeh, Atiewi, & Razaque,
2020; Hibat-Allah, Ganahl, Hayward, Melko, & Carrasquilla, 2020; Li,
Li, Cook, Zhu, & Gao, 2018) is proposed. Within the RNNs, there
are different types of architectures depending on their complexity.
Classical RNNs are the simplest, having output feedback in the neurons.
Other more recent types of architecture with greater temporal capacity
are the Gated Recurrent Unit (GRU) (Ullah et al., 2021) and the
LSTMs (Sun, Xu, & Liu, 2021), which add the concept of memory
to the RNNs, able to predict time series with limited periods. The
most pioneering architectures in the signal analysis are those known as
transforms (Mazzia, Angarano, Salvetti, Angelini, & Chiaberge, 2022),
which have demonstrated far superior capabilities to GRU and LSTMs
but with a higher computational cost.

This type of architectures have the ability to consider previous mo-
ments in a series to predict later ones (Raj et al., 2019). It can be used
in different fields such as economic series (Naik & Mohan, 2019), where
they are used to analyze stock market values or health (Chantamit-
o pas & Goyal, 2018) where LSTM are used for stroke prediction.
This is precisely the reason for combining these networks with CNNs,
aiming to yield a response that encompasses both spatial and temporal
responses (Ajao, Bhowmik, & Zargari, 2018; Khaki, Wang, & Archon-
toulis, 2020; Nasir, Khan, & Varlamis, 2021; Zhou, Li, & Liang, 2020),
what allows improving the results against those works than only use
3

CNNs. Transformers have also demonstrated a good performance for
several computer vision applications, including action recognition (Liu
et al., 2022), but also with a high computational cost, even for those
alternatives adapted for mobile devices (Mehta & Rastegari, 2021;
Wang, Zhang, Wang, & Yang, 2022).

Besides, these recurrent architectures only exacerbates one of the
previously mentioned problems:the high computational cost. By merg-
ing CNN and LSTM (Li, Abdel-Aty, & Yuan, 2020; Xia, Huang, & Wang,
2020; Xu, Li, & Deng, 2015), systems require more powerful hardware
to achieve the same execution speed. This, together with the silicon
crisis (Frieske & Stieler, 2022), makes it necessary to find alternatives
and develop architectures to obtain the same results but at a much
lower cost.

For this reason, alternatives using CNN and LSTM that require
a lower computational cost have been proposed. One approach to
accomplishing this cost reduction involves minimizing the complexity
of the models’ inferences. To this end, one alternative is the use of
smaller input datasets. Conventional CNNs used every single pixel of
the input image in the process of information extraction, and it is worth
mentioning that RGB images contain three times as much information
as a gray-scale image, what results in a substantial computational
burden during the inference execution. As a consequence, there are
solutions that use skeleton models (Berlin & John, 2020; Luvizon,
Picard, & Tabia, 2020; Xia et al., 2012; Yan, Xiong, & Lin, 2018;
Zhang, Liu, Li, Chen, & Davis, 2017), in which a sequence of vectors
representing the joints of an individual are fed into the network to
predict the movements, instead of using whole images.

Another alternative is that the CNN itself generates an input vector
smaller than the original image (Gu & Sung, 2021; Khan et al., 2021;
Sun et al., 2021), that are then passed to the corresponding RNN or
LSTM network that analyzes the temporal part of the image. These
approaches provide good results, however, they face challenges in
distinguishing the actions of individuals when multiple people are
present within the image.

The systems based on DL methods usually provide better accuracy
that those based on classical techniques, however these DL approaches
require much higher computational costs. The hefty computational
demands of these methodologies render them unfit for deployment in
embedded systems for real-world applications, since they require very
powerful hardware for real-time execution. It is, therefore necessary
to find a balance between the architecture size and achieved results
performance. In this context, the use of low-cost specialized hardware
such as VPUs, the optimization of these architectures and the input
data preprocessing can improve the computational efficiency to run DL
models in real-time on the edge.

Consequently, after the analysis of the SOTA, this paper proposes
a system to extract a set of characteristics and translate them into an
ultralight vector. This is then processed by an architecture based on
LSTMs to obtain the temporal component capable to retrieve the indi-
viduals’ actions. Thus, a model capable of recognizing human actions
in a robust way is proposed, obtaining results that are comparable to
other works in the SOTA, but with a lower computational cost what
allows its implementation on the edge.

3. Proposed HAR architecture

As explained in the introduction, this paper presents a robust sys-
tem, based on DL models, to detect human actions. In addition, the
proposal has a reduced computational burden, thereby enabling real-
time execution in embedded systems while maintaining an accuracy
comparable to that of SOTA.

This section explains each component that constitutes the proposal’s
architectural framework, shown in Fig. 1. As it can be seen, it in-
cludes a first module for people detection and tracking. Then, for each
detected person, the HAR algorithm is executed, which includes: a pre-
processing of the input data, a DL architecture based on LSTMs for
extracting features, that are then classified with a Deep Neural Network
(DNN).

Below, each of the modules included in Fig. 1 are explained in

detail.
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Fig. 1. General architecture of the proposed system for HAR.
3.1. People detection and tracking

As it is shown in Fig. 1, the first module is the people detector,
which comprises two different blocks: a CNN, which is a MobileNetV2-
SSD, and a bank of Kalman filters.

The reason for using the MobileNetV2-SSD is that it attains a
balance between computational cost and accuracy. Different SOTA
architectures for people detection have been evaluated and compared,
each of them trained using the COCO dataset (Tsung-Yi Lin et al.,
2015).

The experiments have been conducted using architectures that are
valid and specifically tailored for execution on the VPU provided by the
UPS2. A comparative analysis of the different architectures has been
conducted, taking into consideration their computational efficiency
and cost. It is important to note that the OpenVino framework has
been utilized for coding such architectures on the VPU. The official
OpenVino documentation (OpenVino VPU architectures, 2023) provides
a comprehensive list of architectures that have been optimized for
execution on a VPU.

To facilitate real-time execution on the embedded platform, there
have been prioritized those architectures that demonstrate minimal
computational cost while achieving enough accuracy: a mean average
precision (mAp) with the COCO dataset above 25%.

Table 1 shows the obtained results for the different architectures an-
alyzed using YOLO (Wang, Bochkovskiy, & Liao, 2022) and
MobileNetV2-SSD. There are shown both, mAp and the number of FPS
that can be processed within the UPS2.

Moreover, it is worth noting that the designed architecture is based
on the optimization of hardware resources to allow the simultaneous
analysis of actions by multiple individuals (it has to be able to detect
them and to perform the HAR). Hence, it requires the detection process
to be lightweight and maintain a stable level of precision when detect-
ing people. Thus, computational cost has been prioritized to ensure that
the detector does not become a bottleneck in an embedded system like
the UPS2.

Analyzing the values in Table 1, it can be seen that YOLOv2 and
YOLOv3 have higher mAp values for COCO, but they do not allow
real-time operation (𝐹𝑃𝑆 ≥ 30). Regarding YOLO tiny and MobileNet
approaches, YOLOv3 tiny is the one with better mAp, but it cannot
run in real-time in the embedded hardware. It can be seen that only
YOLOv2 tiny, MobileNetV1-SSD and MobileNetV2-SSD are able to pro-
cess at least 30 FPS, being the MobileNetV2-SSD the one with higher
accuracy.

Thus, as it has been mentioned before, the MobileNetV2-SSD has
been chosen due to its balance between accuracy and computational
cost, that allows obtaining good results with reduced processing times.

The MobileNetV2-SSD is characterized for using depth-wise convo-
lutional layers (Howard et al., 2017), which are more computationally
efficient than standard ones, and for introducing the inverted residual
blocks with bottlenecking, that reduce the computational cost.

This architecture has been trained not only with COCO (Lin et al.,
2014) (used for comparison), but also with VOC07 (Everingham, Van
Gool, Williams, Winn, & Zisserman, 2007) and VOC12 (Everingham,
Van Gool, Williams, Winn, & Zisserman, 2012) datasets. It has also been
optimized using the OpenVino framework, which allows seeding-up the
inference process and fits the architecture to run on edge systems such
as VPUs.
4

Table 1
Comparison of different architectures for object detection running in the VPU, in terms
of mAp and computational cost.

Architecture FPS mAp with COCO (%)

YOLOv2 5.40 56.43
YOLOv3 2.31 67.72
YOLOv2 tiny 30.80 29.12
YOLOv3 tiny 20.19 39.70
MobileNetV1-SSD 139.14 19.32
MobileNetV2-SSD 142.81 30.75

Table 2
Characteristics of the layers in the SSD module.

Layer Feature size Aspect ratio Number of default boxes

Conv_11 20 × 20 {1,2,1/2} 4
Conv_13 10 × 10 {1,2,1/2} 5
Conv_14 5 × 5 {1,2,1/2} 5
Conv_15 3 × 3 {1,2,1/2} 5
Conv_16 2 × 2 {1,2,1/2} 5
Conv_17 1 × 1 {1,2,1/2} 5

To improve people detection, the MobileNetV2-SSD has been
trained with VOC 2007 + VOC 2012 and COCO. The choice of these
datasets is driven by the substantial number of person instances avail-
able, as demonstrated in the work (Lin et al., 2014), which encompasses
nearly one million instances of person detections across various scenar-
ios and actions, providing significant generality to the system. Since
these datasets include several classes (not only people), at the output
of the DL architecture, all classes are filtered out except the person one.
Furthermore, last layers of the architecture, related to the SSD module,
have been configured to optimize people detection. Table 2 shows the
characteristics of the used SSD modules.

In order to avoid multi-BBs in detection, the system also includes
a Non Maximum Suppression (NMS) method. This allows filtering BBs
with a low level of intersection over union. The NMS consists of two
thresholds, the confidential threshold and the intersection over union
one. The first allows discarding those BBs with scores lower than
0.25, whereas the second threshold indicates that the overlap between
different BBs must be at least 45% to be accepted by the NMS.

The people detector includes two modules: the MobileNetV2, which
extracts the features of the images, and the Single Shot Detection
(SSD) (Liu et al., 2016), which manages the classification.

The loss function for the SSD module is comprised of two different
loss functions: the confidence loss 𝐿𝑐𝑜𝑛𝑓 and the localization loss 𝐿𝑙𝑜𝑐 ,
as shown in Eq. (1), where 𝑁 is the number of matched default boxes,
and 𝛼 is a parameter used to balance the 𝐿𝑐𝑜𝑛𝑓 and 𝐿𝑙𝑜𝑐 .

𝐿(𝑋,𝐶𝑥, 𝐶𝑦, 𝑐, 𝑙, 𝑔) =
1
𝑁

(𝐿𝑐𝑜𝑛𝑓 (𝑋, 𝑐) + 𝛼𝐿𝑙𝑜𝑐 (𝐶𝑥, 𝐶𝑦, 𝑙, 𝑔)) (1)

The localization loss function uses a smooth 𝐿1 loss to quantify
the difference between the predicted box (𝑙𝑖) and the ground-truth one
(𝑔𝑗), where 𝑋𝑝

𝑖𝑗 represents if a particular default box (𝑖) match with a
particular ground truth box (𝑗) of one class 𝑝 (being 1 if the answer is
positive and 0 if there is no match). It is defined for the values of the
default box (𝑑), comparing the center point offsets (𝐶𝑥, 𝐶𝑦) with the
default box 𝑑, width (𝑊 ) and height (𝐻) of the BB, as shown in Eq. (2):
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Fig. 2. General block diagram of the people detector module.
𝐿𝑙𝑜𝑐 (𝑋,𝐶𝑥, 𝐶𝑦, 𝑙, 𝑔) =
𝑁
∑

𝑖∈𝑃𝑜𝑠

∑

𝑚∈𝐶𝑥 ,𝐶𝑦 ,𝑊 ,𝐻
𝑋𝑝

𝑖𝑗𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(

𝑙𝑚𝑖 − 𝑔𝑚𝑗
)

(2)

where 𝑔𝐶𝑥
𝑗 =

(𝑔𝐶𝑥𝑗 −𝑑𝐶𝑥𝑖 )

𝑑𝑊𝑖
, 𝑔

𝐶𝑦
𝑗 =

(𝑔
𝐶𝑦
𝑗 −𝑑

𝐶𝑦
𝑖 )

𝑑𝐻𝑖
, 𝑔𝑊𝑗 = 𝑙𝑜𝑔(

𝑔𝑊𝑗
𝑑𝑊𝑖

) and 𝑔𝐻𝑗 =

𝑙𝑜𝑔(
𝑔𝐻𝑗
𝑑𝐻𝑖

).
Regarding the confidence loss, it is used when there are multiple

classes. Thus, the confidence loss 𝐿𝑐𝑜𝑛𝑓 represents the loss of making
a class prediction. For every positive match prediction, this loss is
penalized according to the confidence score of the corresponding class,
whereas for negative match predictions, the loss is penalized according
to the confidence score of the class ‘‘0’’ (corresponding to no object is
detected). The 𝐿𝑐𝑜𝑛𝑓 expression is shown in Eq. (3), where 𝑐 defines the
match confidence

𝐿𝑐𝑜𝑛𝑓 (𝑋, 𝑐) = −
𝑁
∑

𝑖,𝑗=1
𝑋𝑝

𝑖𝑗 𝑙𝑜𝑔(𝑐
𝑝
𝑖 ) −

∑

𝑖∈𝑁𝑒𝑔
𝑙𝑜𝑔(𝑐0𝑖 ) ∕ 𝑐𝑝𝑖 =

𝑒𝑥𝑝(𝑐𝑝𝑖 )
∑

∀𝑝 𝑒𝑥𝑝(𝑐
𝑝
𝑖 )

(3)

In order to enable the system to run robustly in real environments,
where multiple individuals are executing different actions simultane-
ously, a tracking stage is necessary to follow each detected person
along a sequence of images. To do that, it is included a set of Kalman
filters (Welch, Bishop, et al., 1995) (one for each detected person)
similarly to Cob-Parro et al. (2021).

Incorporating the tracking stage also enhances the detection results.
Given the nature of the Kalman filter, if the detected person BB dis-
appears (which can occur due to occlusion or a false negative error
from the detector) the system is still capable of maintaining a prediction
of the BB’s position within the scene over several frames, until a new
detection is done. This improves the robustness of the people detector
against occlusions, as it was demonstrated in Cob-Parro et al. (2021).

Since the number of tracked BB is variable, it is necessary to incor-
porate an association stage to relate the obtained BBs with the Kalman
filters predictions. The association is carried out in a recursive loop,
with a Nearest Neighbors (NN) (Konstantinova, Udvarev, & Semerdjiev,
2003) based approach. It worths mentioning that this tracking system
further improves the robustness of the proposal against partial or total
people occlusions. The general block diagram of the people detector is
shown in Fig. 2.

As it has been stated before, due to the modular structure of the
proposal, the MobileNetV2-SSD can be easily replaced by other people
detection approaches such as classical ones based on HOG descriptors
and a SVM classifier (Kong et al., 2019) or a model with higher com-
putational load such as YOLOv7 (Wang, Bochkovskiy, & Liao, 2022),
depending on the available hardware resources and the performance
requirements. This is because only the information provided by the BB
is needed in the following stages of the algorithm. As a result, the model
described in this paper can be effortlessly customized to accommodate
any other people detector.
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3.2. Feature extraction

The next module in the architecture is the feature extraction one,
that obtains a light, ad-hoc, feature vector. This module generates a
descriptor with 11 components for each detected person, from the BB
generated by the people detector.

The vectors obtained from multiple consecutive images within a
sequence need to be stacked before introducing them in the action
recognition neural network, to insert the temporal component that
defines an action. The length of the analyzed sequence must be enough
to detect the action, but if it is too long, the computation time increases
and it is possible that the sequence includes more than one action,
worsening the results. After an experimental analysis, it has been deter-
mined that 0.5s is enough to make a decision on the action classification
in the video surveillance context. Therefore, the variable 𝐿 is defined,
indicating the number of vectors introduced in the LSTMs architecture
for action recognition as shown in Eq. (4).

𝐿 = 𝐹𝑃𝑆∕2 (𝑓𝑟𝑎𝑚𝑒𝑠) (4)

Fig. 3 shows the different measurements and coordinates that com-
pose the elements of the proposed ultralight vector, where:

• 𝑑𝑖𝑚𝑥 and 𝑑𝑖𝑚𝑦 are the image resolution (width and height, respec-
tively).

• 𝑈1 (x-axis) and 𝑉1 (y-axis) correspond to the coordinates of the
upper left corner of the BB, and 𝑈2 and 𝑉2 to the lower right
corner.

• 𝐶𝑢 and 𝐶𝑣 are the coordinates of the BB centroid.
• 𝑊 and 𝐻 are the width and height of the BB respectively.

It is important to note that, all these variables are in pixels, and
they are associated with a specific frame 𝑡, thus, all of them are
time-dependent except the image resolution 𝑑𝑖𝑚𝑥 and 𝑑𝑖𝑚𝑦.

The elements that comprise the feature vector are described in the
following. In order for the LSTM architecture to work optimally, the
values are normalized between −1 and 1.

• 𝑉𝑛_𝑛𝑜𝑟𝑚 and 𝑈𝑛_𝑛𝑜𝑟𝑚: correspond to the normalized coordinates of
both the upper left corner (with 𝑛 = 1) and the lower right corner
(with 𝑛 = 2). Eq. (5)shows how the values of 𝑈1, 𝑉1, 𝑈2 and 𝑉2
are normalized.

𝑈𝑛_𝑛𝑜𝑟𝑚(𝑡) =
2𝑈𝑛(𝑡) − 𝑑𝑖𝑚𝑥

𝑑𝑖𝑚𝑥
𝑉𝑛_𝑛𝑜𝑟𝑚(𝑡) =

2𝑉𝑛(𝑡) − 𝑑𝑖𝑚𝑦

𝑑𝑖𝑚𝑦
, 𝑛 = 1, 2.

(5)

• 𝐶𝑢_𝑛𝑜𝑟𝑚, 𝐶𝑣_𝑛𝑜𝑟𝑚: are the normalized values of the centroids of the
BB, obtained as shown in Eq. (6).
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.

Fig. 3. Elements of the proposed ultralight vector in a sample frame.

Table 3
Recurrent neural networks comparison in terms of performance and computational cost

Layer RNNs GRU LSTMs

Accuracy 87.32 92.13 99.31
Recall 89.15 93.03 99.09
F1-Score 90.03 91.45 99.06
Time(ms) 0.123 0.241 0.298

𝐶𝑢_𝑛𝑜𝑟𝑚(𝑡) =
𝑈2(𝑡) + 𝑈1(𝑡) − 𝑑𝑖𝑚𝑥

𝑑𝑖𝑚𝑥
𝐶𝑣_𝑛𝑜𝑟𝑚(𝑡) =

𝑉2(𝑡) + 𝑉1(𝑡) − 𝑑𝑖𝑚𝑦

𝑑𝑖𝑚𝑦

(6)

• 𝐻𝑛𝑜𝑟𝑚, 𝑊𝑛𝑜𝑟𝑚: correspond to the normalized values of the di-
mensions (height and width respectively) of the BB, as shown
in Eq. (7).

𝐻𝑛𝑜𝑟𝑚(𝑡) =
2𝐻(𝑡) − 𝑑𝑖𝑚𝑦

𝑑𝑖𝑚𝑦
𝑊𝑛𝑜𝑟𝑚(𝑡) =

2𝑊 (𝑡) − 𝑑𝑖𝑚𝑥
𝑑𝑖𝑚𝑥

(7)

• RhW : defines the relationship between the height (𝑉2 − 𝑉1) and
the width (𝑈2−𝑈1) of the BB, computed and normalized between
−1 and 1 using the expressions in Eq. (8).

𝑅ℎ𝑊 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝑓 𝑊 (𝑡) < 𝐻(𝑡) → 𝑊 (𝑡)−𝐻(𝑡)
𝐻(𝑡)

𝑖𝑓 𝑊 (𝑡) > 𝐻(𝑡) → 𝐻(𝑡)−𝑊 (𝑡)
𝑊 (𝑡)

𝑖𝑓 𝑊 (𝑡) = 𝐻(𝑡) → 0

(8)

• 𝐴𝑢, 𝐴𝑣: represent the direction and magnitude of the BB centroid
movement between two consecutive frames. Thus, Eq. (9) defines
in which direction the BB is moving, and can determine if and
how much it moves.

𝐴𝑢(𝑡) =
𝐶𝑢(𝑡) − 𝐶𝑢(𝑡 − 1)

2
𝐴𝑣(𝑡) =

𝐶𝑣(𝑡) − 𝐶𝑣(𝑡 − 1)
2

(9)

After extracting the features, the obtained vectors are concatenated
within a temporal window of size 𝐿, to add the temporal component to
that set of vectors, obtaining a set of 𝐿 ultralight vectors (see Eq. (10)).
So, the concatenated feature vector, with dimensions 11×𝐿, is then fed
to the HAR architecture explained in Section 3.3. This vector collects
the fluctuations that BBs undergo during 𝐿 consecutive frames in a
sequence. These fluctuations are able to describe the action through
the BB position in the image, its change in aspect ratio, and direction
and magnitude of this variation. Our hypothesis is that this information
about spatio-temporal changes in the BB allows the HAR system to
6

effectively classify different actions.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑈1_𝑛𝑜𝑟𝑚(𝑡) 𝑈1_𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝑈1_𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝑉1_𝑛𝑜𝑟𝑚(𝑡) 𝑉1_𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝑉1_𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝑈2_𝑛𝑜𝑟𝑚(𝑡) 𝑈2_𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝑈2_𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝑉2_𝑛𝑜𝑟𝑚(𝑡) 𝑉2_𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝑉2_𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝐶𝑢_𝑛𝑜𝑟𝑚(𝑡) 𝐶𝑢_𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝐶𝑢_𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝐶𝑣_𝑛𝑜𝑟𝑚(𝑡) 𝐶𝑣_𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝐶𝑣_𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝐻𝑛𝑜𝑟𝑚(𝑡) 𝐻𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝐻𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝑊𝑛𝑜𝑟𝑚(𝑡) 𝑊𝑛𝑜𝑟𝑚(𝑡 + 1) ⋯ 𝑊𝑛𝑜𝑟𝑚(𝑡 + 𝐿 − 1)
𝑅ℎ𝑊 (𝑡) 𝑅ℎ𝑊 (𝑡 + 1) ⋯ 𝑅ℎ𝑊 (𝑡 + 𝐿 − 1)
𝐴𝑢(𝑡) 𝐴𝑢(𝑡 + 1) ⋯ 𝐴𝑢(𝑡 + 𝐿 − 1)
𝐴𝑣(𝑡) 𝐴𝑣(𝑡 + 1) ⋯ 𝐴𝑣(𝑡 + 𝐿 − 1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10)

It is noteworthy that matrix in Eq. (10) is computed and processed
to obtain the performed action for each detected person, so, as the
number of people in the scene is larger, the computational cost in-
creases. However, the proposal has been designed and optimized to
take advantage of the parallel processing capacity of the VPU (or
GPU if available). Furthermore, the light feature vector (with only
11 × 𝐿 elements) and the proposed LSTM architecture allows a low
computational cost, even when several people are detected in the scene,
as it will be shown in Section 4.2.

3.3. Human action recognition

As it has been explained before, the input for HAR is a matrix
containing features for 𝐿 consecutive images. Moreover, it is used an
sliding window approach with a shift of one image, providing results
(recognized action) for each window.

To perform the recognition task, RNNs have been employed. Within
this category of networks, various architectures are available, with the
most well-known being RNNs, GRUs and LSTMs. In terms of complex-
ity, RNNs are the simplest, with lower computational costs. Regarding
GRUs and LSTMs, although there are several differences between them,
the primary distinction lies in the fact that LSTM incorporates three
gateways for short-term memory, namely forget, output, and input
gates. In contrast, GRU comprises only two gates, namely update and
reset gates. Additionally, GRU architectures are less intricate, primarily
due to the reduced number of gates compared to LSTM. As a result,
LSTM architectures exhibit a more complex and sophisticated design,
leading to increased computational costs. Nevertheless, Table 4 3 shows
a comparison between the proposed architecture in Fig. 4 and var-
ious recurrent networks. The metrics were extracted using the UMN
dataset (Monitoring Human Activity, Robotics and Vision Laboratory, Uni-
versity of Minnesota, Department of Computer Science and Engineering ,
2023), while execution time was measured considering an scenario
with only one detected person.

Table 3 demonstrates that the utilization of LSTMs outperforms
other recurrent networks in terms of performance. The difference is
in execution times: LSTMs take more than twice as long as RNNs.
However, it is worth noting that the computational cost for LSTMS
remains at a reasonable level real-time processing up to 0.3 ms, obtain-
ing a favorable balance between computational cost and performance
metrics.

The proposed architecture for the HAR stage is shown in Fig. 4. As
depicted, the model consists of two LSTM layers. The key distinction
between them is that the first layer operates unidirectionally, while the
second one operates bidirectionally.

The first LSTM layer performs an initial temporal analysis to reor-
ganize the values given by the feature vector. Then, a more complex
study is carried out in the next layer with the bidirectional LSTM. After
the LSTMs processing, there are four dense layers with a size of 200,
100, 50 and 20 neurons respectively. The chosen activation functions
are tanh, due to the non-linear behavior of data in the network, and the
input normalization.
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In addition, a 20% dropout is performed between all the system
layers to avoid over-fitting and streamlining the network. A batch nor-
malization layer has also been included immediately after the dropout
one. The designed network ends with a softmax layer to carry out the
actions classification. The global process requires a total number of 3.7
mega FLOPs (floating point operations per second).

The following hyperparameters have been used to train the HAR
model: learning rate of 1e−4, 𝛽1 = 0.999, 𝛽2 = 0.9999, 𝜖 = 1𝑒−6, a decay
of 1e−5. Besides, the number of epochs has been 10,000 and the batch
size, 120. These values have been obtained experimentally to increase
accuracy while avoiding over-fitting.

Besides, it has been chosen the Adam optimizer, due to two main
reasons. First, the system applies to LSTM networks and optimizes
its loss function by adjusting the weights that compose it, aiming
to minimize this function. On the other hand, the proposal must be
deployed in an embedded system, requiring a minimal computational
cost. Adam is a first-order gradient stochastic optimization algorithm.
This makes Adam the best solution for the framework proposed, as
opposed to others that require a higher computational cost or whose
loss function optimization is not as accurate.

The input data used for the network training is fundamental for
obtaining a good performance in action classification. In this work,
initially, the videos were divided into segments, with a sliding window
of length 𝐿 with stride 𝐿, and fed into the model during training.
This gave poor results comparing with the SOTA when using datasets
recorded in the wild. One of the reasons is that some of the segments
included more than one action, and a transition between actions instead
of only one action during the whole sequence (Fig. 5).

To better test the proposed system, the different sequences in the
dataset were conveniently split in order to include only one action for
each segment of length 𝐿 during training.

Fig. 6 shows the process of reorganization and reuse. The frames of a
sequence containing an action are extracted from the whole sequence
and divided in segments of 𝐿 frames. In case the extracted sequence
length is longer than 𝐿 frames, some of them can be included in
more than one set, as shown in the example of Fig. 6, by dynamically
modifying the sliding window stride.

Regarding the loss function used for the HAR architecture, first,
Eq. (11) shows the softmax function, that allows grouping all the
predictions in a single vector with values between 0 and 1, being 1
the sum of all elements. In Eq. (11), 𝑠 is the score, 𝑖 defines the class,
and 𝑁𝐶 is the number of classes minus one.

𝑆𝐹 (𝑠)𝑖 =
𝑒𝑠𝑖

∑𝑁𝐶
𝑗 𝑒𝑠𝑗

(11)

Then, the HAR architecture uses a loss function of the categorical
cross-entropy type (Eq. (12)), being 𝑖 the class, and 𝑔 the ground-truth
value defined with a one-hot encoding (NumFOCUS, 2022).

𝐿𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑁𝐶
∑

𝑖=1
𝑔𝑖𝑙𝑜𝑔(𝑆𝐹 (𝑠)𝑖) (12)

4. Experimental results

In this section, the experimental results are presented, analyzing two
critical aspects of the system: its performance and the computational
cost. For this purpose, five different datasets are used: four of them
widely used for HAR, and the other one, a novel dataset recorded and
labeled for HAR in the wild. To measure the system’s performance, the
used metrics are: precision, recall and F1, which evaluate the system’s
behavior with different datasets and allow comparing the results with
other SOTA works. Moreover, power consumption and computational
cost are also analyzed to determine if the proposal can run in real-time
on the edge.
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Fig. 4. HAR architecture layers.

Fig. 5. Example of wrong training set organization.

4.1. Experimental setup

This section presents the setup used for the experimental evaluation
of the proposed system. For this purpose, both the hardware and
software setup, as well as the datasets used, are explained.
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Fig. 6. Training set organization scheme.
4.1.1. Hardware and software setup
The results shown in this section have been obtained using a PC

with an Intel© CoreTM i7-9700K CPU @ 3.60 GHz × 8 (Intel, 2022a),
a RAM memory of 32 GB (Gigabytes), a GPU NVidia GeForce RTX
2080 Ti (NVidia, 2021), and a ROM memory of 500 GB. Moreover, the
chosen operating system is Ubuntu 20.04.3 LTS (Canonical, 2022).

Furthermore, the architecture has also been tested on a real embed-
ded system, specifically in the UPS2, because the main objective is to
design a model for HAR that is lightweight, robust and with an accuracy
similar to the current SOTA for devices with reduced computational
power. The hardware features of the UPS2 are the following: an Intel
Atom x7-E3950 microprocessor, an 8 GB RAM memory, a 64 GB em-
bedded MultiMediaCard (eMMC) ROM. It is noteworthy that the UPS2
includes an Intel Movidius Myriad-X VPU (Intel, 2020) DL module, that
is a System-On-Chip (SoC) which optimizes AI inference models at a
low computational cost.

As discussed in Section 3.3, the hyperparameters employed for
training the HAR recognition architecture are as follows: learning rate of
1e−4, 𝛽1 = 0.999, 𝛽2 = 0.9999, 𝜖 = 1𝑒−6, a decay of 1e−5, with a total of
10,000 epochs and a batch size of 120. These values were determined
experimentally to optimize accuracy while preventing over-fitting.

Below, in Section 4.1.2, the portion of the dataset used for both the
training and testing segments is detailed. Additionally, a k-fold method
is employed with the aim of obtaining more generalized results from
the system for each dataset.

4.1.2. Datasets
For the study of HAR, there is a wide range of publicly available

datasets encompassing numerous classes. Among the most renowned
datasets they are UCF101 (Soomro, Zamir, & Shah, 2012) and Kinec-
tics (Kay et al., 2017), which contain hundreds of classes. However,
these datasets are not specifically designed for video surveillance sys-
tems where the camera remains fixed, and the recording angle is
constant. Moreover, in the context of video surveillance, there exists a
distinct set of actions that are clearly defined, such as walking, falling,
running, jumping, etc. Therefore, it is crucial to focus on developing
and evaluating action recognition models tailored explicitly for the
unique characteristics and requirements of video surveillance environ-
ments. For this reason the experimental evaluation of the proposal has
been carried out using five different datasets. Four of them widely used
for action recognition: KTH (KTH, 2004), WEIZMANN (Gorelick et al.,
2007), WVU (Kulathumani, 2011) and IXMAS (EPFL, 2006), whereas
the other one is a novel dataset called GBA, that contains different real-
istic scenarios in the wild, including several people performing different
actions simultaneously. The main characteristic of these datasets are
explained below.

• GBA dataset (GEINTRA, 2022a): it has been recorded at the Poly-
technic School of the University of Alcalá. The main characteristic
of this dataset is that it has been recorded and labeled for HAR
in the wild, so it includes several people performing different
actions in the scene, that can change along a sequence, instead
of just a person performing only one action during the whole
8

Fig. 7. Example of GBA classes.

sequence. A first version of the GBA dataset was presented in
the IPIN2016 (Baptista-Ríos, Martínez-García, Losada-Gutiérrez,
& Marrón-Romera, 2016b). This first version included 300 se-
quences with a duration between 15 s and 30 s. They were
recorded at 50FPS with a resolution of 1280 × 720 pixels. This
first version includes a total of 4 actions (run, walk, fall down,
sit down) with an average of 74 sequences per class. The original
GBA dataset has been extended adding a new action (stairs) and
including new sequences for all the actions. Thus, there have been
added 1450 sequences with a duration ranging from 15 s to 1 min
and 53 s. In addition, the resolution of new scenes is 1920 × 1080
pixels at 50FPS. Fig. 7 shows examples of the current dataset
actions after the update.
All the sequences in the dataset are labeled including both, the
BB for each person and the performed action. These labels are
provided in two different formats: plain text and .xml.
The rest of used datasets have been widely used in the literature
for action recognition. All of them include sequences with just one
person performing an action. In addition, none of them provide
BBs for people location in the video frames.

• KTH dataset (KTH, 2004): consists of a set of videos includ-
ing 6 classes (boxing, clapping, jogging, handshaking, running,
walking), performed by more than 25 subjects in four different
scenarios, three of them outdoors. An encoding of 25FPS is used
with a total of 600 sequences. The videos have an average du-
ration of 5s, with a total of 100 frames per video. The resolution
used for the recordings is 160 × 120 pixels with one color channel
(gray-scale). Fig. 8 shows some sample images corresponding to
each class in KTH dataset.

• WEIZMANN dataset (Gorelick et al., 2007): is a dataset focused
in HAR, consisting of a total of 90 videos divided into 10 classes
(walking, running, jumping, galloping sideways, bending, one-
hand waving, two-hands waving, jumping in place, jumping jack,
skipping) that are performed by nine people, as displayed in
Fig. 9. The videos have a resolution of 180 × 44 pixels at 25FPS.
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Fig. 8. Examples of KTH classes (KTH, 2004).
Fig. 9. Examples of WEIZMANN classes (Gorelick et al., 2007).
• WVU dataset (Kulathumani, 2011): is focused on action detec-
tion. It includes a set of 12 classes (one-hand waving, two-hand
waving, bowling, jogging, clapping, picking up, nodding head,
kicking, jumping jack, throwing, punching, standing still). This
dataset employs different orientations to give diverse perspectives
of the actions. A total of 8 cameras and 48 performers were used.
20FPS encoding is used, with a resolution of 640 × 480 pixels in
RGB. There are a total of 200 videos. Fig. 10 shows some sample
image corresponding to the classes from 2 cameras.

• IXMAS dataset (EPFL, 2006): is a dataset oriented to HAR, with
a total of 12 classes (checking watch, crossing arms, scratching
head, sitting down, getting up, turning around, waving, walking,
punching, kicking, picking up and pointing), and interpreted by
11 actors in three different iterations, as shown in Fig. 11. The
actors randomly choose their position to give more realism to the
dataset. Cameras with different orientations are used to record
the sequences. Recording encoding is 23FPS with a resolution of
390 × 291 pixels in gray-scale.

Table 4 includes a summary of the main characteristics for the
validation datasets used in this work, and described earlier in this
section. This table includes the number of classes, number of actors,
number of sequences, image size and FPS.

4.2. Performance for action recognition

In this section, the behavior of the proposal is analyzed quanti-
tatively. For this purpose, there have been extracted the accuracy,
9

Table 4
Summary of the main characteristics of the used datasets.

Dataset # classes # actors # seqs. Size (pixels) FPS

KTH 6 20 600 160 × 120 25
WEIZMANN 10 9 90 180 × 144 25
WVU 12 48 200 640 × 480 20
IXMAS 12 10 1148 390 × 291 23
GBA 5 17 1450 1920 × 1080 50

precision, recall and F1 metrics, as well as the confusion matrices for
the different classes of the five analyzed datasets. Moreover, Section 4.4
presents the comparison of the obtained results with related SOTA
works.

4.2.1. Results for KTH dataset
Fig. 12 shows the confusion matrix for the KTH dataset. To obtain

these results, the available data have been divided, using the 80% of
sequences for training and the other 20% for testing. Furthermore, to
ensure the system generality, a k-fold of 5 has been applied. The results
presented in the confusion matrix show that the accuracy is above 98%
for all actions of the dataset. The system shows a higher confusion
between running and jogging actions, as they are similar activities; even
so, the error does not exceed 2%. The rest of actions have an accuracy
higher than 98%. It is worth noting that the average values are above
99% in the performance metrics used.
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Fig. 10. Examples of WVU classes (Kulathumani, 2011).
Fig. 11. Example of IXMAS classes (EPFL, 2006).
Table 5
Metrics values obtained for KTH dataset.

Action Precision Recall F1

Boxing 99.84 100.00 99.61
Clapping 99.56 99.37 98.92
Handshaking 99.66 98.83 99.17
Jogging 98.54 99.04 98.93
Running 98.78 98.66 98.78
Walking 99.32 98.80 99.01

AVERAGE 99.28 99.11 99.06

Table 5 shows the values for each metric (Precision, Recall and F1-
score) obtained for each class in the KTH dataset. The last row shows
the average of all classes for each metric, being in all cases above 99%.

4.2.2. Results for WEIZMANN dataset
The next dataset analyzed is WEIZMANN. In this case, it has been

used a 80% training and a 20% for testing, with a k-fold of 5. In Fig. 13,
it is shown the confusion matrix corresponding to the results obtained
using the WEIZMANN dataset. Similar to KTH, the most significant
10
difficulty is found in the running and walking actions, where the
highest error is 1.5%. The rest of classes are above 98%. It can be seen
that the results are similar to those obtained for KTH, even with 5 more
classes, which suggests that the system is scalable, thus able to work
robustly regardless the number of classes.

Table 6 shows metrics values for each action included in WEIZ-
MANN dataset. Additionally, in the table’s last row, an average of the
three metrics is added, being above 99% in any case.

4.2.3. Results for IXMAS dataset
At it has been explained, IXMAS has a total of 12 classes. This

dataset is characterized by low resolution and gray-scale images, but
even so, the detection network is able to obtain the BB correctly.

The network has been trained with a 70% of the data and tested
with the other 30%. This is because there were more samples than
in the previous cases for training. The dataset has several cameras
recording the scenes, and all of them have been used for both the
training and testing processes. In addition, a k-fold of 5 has been
performed to obtain an average of training and test.

The obtained results are similar to the two previous datasets, with
a precision over a 98% in all classes, as it is shown in Fig. 14. It



Expert Systems With Applications 238 (2024) 122220A.C. Cob-Parro et al.
Fig. 12. Confusion matrix obtained for KTH dataset.
Fig. 13. Confusion matrix obtained for WEIZMANN dataset.
Table 6
Metrics values obtained for WEIZMANN dataset.

Actions Precision Recall F1

Jumping Jack 99.10 100.00 99.54
Jumping 98.18 98.31 98.71
Jumping Place 99.56 98.07 99.44
Running 99.08 98.10 99.03
Skipping 98.23 98.43 98.86
Walking 99.57 100.0 99.06
One-hand Waving 99.86 98.10 98.13
Two-hand Waving 99.67 99.19 99.23
Galloping 99.05 98.38 99.84
Bending 99.15 100.00 99.31

AVERAGE 99.14 98.91 99.11

can be observed that this dataset comprises more classes compared to
previous ones, however, the results remain stable. According to the
11
confusion matrix, it can be seen that the highest confusion is produced
between the pick-up and point classes, unlike the other datasets where
the confusion was between walking and running classes.

Table 7 shows the values obtained for the different analyzed metrics
in each action. It can be seen that for all classes, the results are above
98%. The table’s last row shows the average of all actions being above
98% in the three metrics.

4.2.4. Results for WVU dataset
There has also been analyzed the WVU dataset, with 12 actions. As

it has been explained before, this dataset is recorded with 8 cameras
from different positions. That is why this dataset is the most challenging
one, being the 80% of available sequences used for training and the
remaining 20% for testing. In addition, a k-fold of 5 has been performed
to obtain an average of training and test. However, despite the difficulty
of the dataset, the system is able to correctly relate the movements
generated by BBs to the performed actions. Confusion matrix, in Fig. 15,
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Fig. 14. Confusion matrix obtained for IXMAS dataset.
Table 7
Metric values obtained for IXMAS dataset.

Actions Precision Recall F1

Checking watch 98.54 99.14 98.55
Crossing arms 99.26 99.21 99.01
Scratching head 99.01 100.0 99.50
Turning around 98.39 98.76 98.69
Waving 98.67 99.39 98.61
Getting up 98.23 98.73 98.95
Kicking 98.91 99.67 98.68
Picking up 99.15 98.70 99.22
Pointing 99.09 98.60 98.43
Punching 98.75 98.18 97.91
Sitting down 99.03 99.82 98.90
Walking 98.87 100.0 99.27

AVERAGE 98.85 99.18 98.80

Table 8
Metrics values obtained for WVU dataset.

Actions Precision Recall F1

Standing still 99.81 99.10 99.42
Picking up 97.36 99.12 98.25
Nodding head 100.0 99.83 99.96
Clapping 99.64 99.11 99.52
One-hand waving 99.48 99.28 99.79
Two-hand waving 99.73 100.00 99.81
Jumping jack 99.30 100.00 99.16
Kicking 99.03 99.82 99.44
Throwing 98.98 98.29 98.13
Bowling 99.12 98.61 99.20
Jogging 99.29 99.84 99.55
Punching 99.55 99.85 99.70

AVERAGE 99.27 99.40 99.32

is similar to the other analyzed datasets, with more difficulties in
the actions corresponding to jogging and walking. This is due to the
similarity of BB movements for the two activities. Even so, it can be
observed that the results are above 98% for all classes.

Table 8 shows each metric extracted for each class in the dataset.
Again, last row shows all classes average for each metric, being in all
cases above 99%.
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Table 9
Metrics values for GBA dataset.

Actions Precision Recall F1

Walking 97.68 97.02 97.35
Running 85.63 91.06 88.26
Sitting down 99.29 96.99 98.12
Falling down 99.93 98.96 99.44
Stairing 100.00 98.98 99.49

AVERAGE 96.34 96.56 96.44

4.2.5. Results for GBA dataset
Finally, the GBA dataset, developed by the University of Alcalá,

has been used. Unlike the other datasets, this one shows more realistic
situations where several people move through a real scenario. In this
dataset, there are five different actions: walking, running, falling and
climbing stairs. It is noteworthy that the dataset is unbalanced concern-
ing the number of labels, including much more sequences for walking
than for other actions, such as falling or climbing stairs. Therefore,
to avoid over-fitting with the ‘‘walking’’ class, the number of walking
sequences in training has been limited to the same number as the label
with the least available samples. This way, the training is more realistic.
The network has been trained with 80% of the data and tested with the
remaining 20%. In addition, a k-fold of 5 has been performed to obtain
an average of training and test.

The obtained results are shown in Fig. 16 and Table 9. It can be
observed that the greatest confusion is between running and walking
classes, where movements are very similar, while taking into account
the added complexity of GBA videos. Even though it is worth mention-
ing that at least 97% of precision is reached in the remaining of the
classes.

4.3. Computational cost

This section evaluates the computational cost of the proposed sys-
tem for HAR in different hardware platforms. As it has been stated in
the introduction, one of the objectives of this work is to design a system
capable of running in real-time on embedded systems.

The computational cost for the two main stages of the algorithm has
been obtained independently: people detection and tracking module,
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Fig. 15. Confusion matrix obtained for WVU dataset.
Fig. 16. Confusion matrix obtained for GBA dataset.
and action recognition. This computation has been obtained for two
different hardware platforms which were previously described in Sec-
tion 4.1: a high performance PC (HPC) with a GPU and an embedded
platform UPS2 with a VPU.

In the UPS2, the people detection system based on a MobileNetV2-
SSD has been optimized with the OpenVino framework for being exe-
cuted in the available VPU (Myriad-X). In regards to the HAR module,
since it is not based on CNN, the VPU could not be used to process the
architecture based on LSTMs. As a consequence, the integrated CPU
(Intel Atom x7-E3950) has been used for HAR.

Regarding the PC, the people detection module has been run in the
CPU, and the inference for the HAR proposal has been executed on the
GPU (NVidia GeForce 2080 GTX Ti NVidia, 2021) for improving the
parallelization, reducing the computation time.

To evaluate the computational cost corresponding to the people
detector, 500 frames of each dataset have been used, obtaining the
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average time. In the case of HAR stage, since the feature vector ex-
traction and classification is carried out for each detected person, it
has been computed the processing time for different number of people
from one to ten, in order to determine if there is a relationship between
the number of people and the time. Since available datasets for HAR
described previously are characterized by only one person performing
the action, computational cost study for HAR depending on the number
of people in the scene has been carried out for GBA. It has been chosen
because in this dataset there are scenes with more than one person
performing different actions. Thus, for this analysis, there have been
used 5000 frames from GBA dataset including from 1 to 10 people.

Table 10 shows the obtained values for the average and standard
deviation of the processing time of one frame (in ms) for each of the
algorithm stages: People detection and tracking (PD&T) and HAR. As
it has been explained before, the time for HAR is shown for different
numbers of people in the scene, between one and ten. In this table,
it can be seen that the highest time consumption is associated to the
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Table 10
PC and UPS2 computational cost in ms/frame.

# people Time (ms) RAM usage

PD&T HAR Total (%)

UPS2

1

6.90 ± 0.09

0.300 ± 0.008 7.200 68.5
2 0.312 ± 0.010 7.212 68.4
3 0.321 ± 0.011 7.221 69.1
4 0.338 ± 0.009 7.248 68.9
5 0.350 ± 0.012 7.250 69.3
10 0.410 ± 0.014 7.310 70.2

HPC

1

2.24 ± 0.06

0.097 ± 0.002 2.337 32.3
2 0.098 ± 0.001 2.338 31.8
3 0.097 ± 0.003 2.337 33.0
4 0.099 ± 0.002 2.339 33.4
5 0.100 ± 0.004 2.340 33.7
10 0.108 ± 0.003 2.348 34.2

detection and tracking stages, with an average value of 6.90 ms/frame
in the UPS2, and 2.24 ms/frame in the PC, representing over the 95%
of the total time consumption.

Regarding the computational cost for the HAR stage, for the UPS2,
it can be seen that the processing time increases slightly as the number
of people is larger, but the required time is under 0.4 ms/frame for
all analyzed cases. Furthermore, it has not been observed an overload
on the microprocessor. On the other hand, results for the PC are very
similar, independently of the number of people.

Thereby, it can be seen that although the computational cost de-
pends on the number of people, the increase in time as the number of
people grows is not very significant with respect to the total processing
time. This can be explained due to the parallelization capability of the
used devices, and the low computational cost of the HAR module as
light feature vectors are used as input data.

In Table 10, the standard deviation values are also included, which
demonstrates that the obtained values are close to the average and
indicates consistent results

The fifth column in Table 10 includes the total average time, adding
times for each stage. The obtained values are lower than 7.3 ms/frame
for the UPS2 and under 2.4 ms/frame for the PC. It allows us to assert
that the system is capable of running the proposed solution in real-time
(≤ 30 ms∕frame) in an embedded system.

Finally, Table 10 also shows the percentage of RAM usage for both
devices: the UPS2 (16 GB) and the HPC (32 GB). These values increase
slightly as the number of people is larger. Considering up to ten people,
the UPS2 is always under 71% of RAM usage, whereas the PC is under
35%.

4.4. Comparison with the SOTA

In this section, there is presented a comparison of the results ob-
tained for the proposal against other SOTA approaches that provide
results for the same datasets. This comparison is carried out both, in
terms of performance and computational cost.

Table 11 shows the comparison of performance for each dataset.
There are shown the metrics provided in each work again those ob-
tained with the proposal in the same dataset.

It is observed that the results obtained in the classification for
KTH dataset are superior in the precision (99.28%) and F1 (99.06%)
metrics compared to other works, being only outperformed in recall
by Afza et al. (2021), that uses a feature vector obtained from the image
optical flow. In addition, the proposal outperforms the rest of works in
WEIZMANN dataset, with an accuracy of 99.14%, a recall of 98.91%
and an F1 of 99.11%. This can be because, in this dataset, the actors
exaggerated performed actions.

Regarding the WVU and IXMAS datasets, the main characteristic
with respect to KTH, GBA or WEIZMANN is the increase in the number
of classes up to 12. In IXMAS datasets, the proposed system outperforms
14
Table 11
Performance comparison of SOTA versus current work.

Datasets Works Precision Recall F1

KTH

Our method 99.28 99.11 99.06
Afza et al. (2021) – 100.00 99.00
Nasaoui, Bellamine, and Silkan
(2022)

95.45 95.29 –

Vishwakarma (2020) – – 96.66
Dash, Mishra, Srujan Raju, and
Narasimha Prasad (2021)

– – 90.00

WVU

Our method 99.27 99.40 99.32
Sharif, Khan, Zahid, Shah, and
Akram (2020)

99.28 99.79 99.785

Khan et al. (2021) 99.78 99.00 99.38
Ullah et al. (2021) 99.81 99.75 99.99

IXMAS

Our method 98.85 99.18 98.88
Khan et al. (2021) 97.25 97.18 97.21
Nida et al. (2022) – – 78.24
Ullah et al. (2021) 99.84 96.61 99.63

WEIZMANN

Our method 99.14 98.91 99.11
Afza et al. (2021) – 97.93 97.38
Sharif et al. (2020) 97.77 97.80 98.11
Abdelbaky and Aly (2021) – – 90.00
Vishwakarma (2020) – – 96.00

Table 12
Computational cost comparison with SOTA versus the
proposal in ms.
Dataset Our method (Khan et al., 2021)

KTH
0.315

7.15
WVU 8.60
IXMAS 2.41

other works in RECALL. Furthermore, both in WVU and IXMAS, the
obtained precision and F1-score are very close to those obtained by
other works. In WVU precision and F1-score are over 99%, whereas
in IXMAS (the most complex of the analyzed dataset), the precision
and F1-score are over 98%, outperforming results of proposals in Khan
et al. (2021), Nida, Yousaf, Irtaza, and Velastin (2022). It is noteworthy
that, the systems included in Table 11 for the IXMAS dataset are
based on CNNs requiring a high computational burden, which are not
appropriate for running on edge devices.

Since most of the analyzed proposals do not include data about
the computational cost, the comparison has been carried out against
the work (Khan et al., 2021). In the related work, authors use 10000
frames per class in each dataset to extract the time metrics, so for
a fair comparison, in this paper, the experiment has been replicated,
computing the average processing time for the HAR stage for 10000
frames. It is worth noting that the experiments in Khan et al. (2021)
have been performed with a PC that has a Core i7 CPU with 16 GB of
RAM and 8 GB NVidia GPU (not being specified the model), whereas
the times computed for our proposal are obtained in the embedded
platform UPS2 with much lower computational resources.

Even so, in Table 12 it can be observed that, in the three datasets,
the processing time obtained are more than seven times lower that
those provided in Khan et al. (2021). Moreover, since the proposal
does not process the image but a feature vector that is obtained from
the detected BB, the processing time does not depend on the dataset
or its input images size. Besides, although it depends on the number
of detected people, the increasing in time as the number of people is
larger, is not particularly significant.

5. Conclusions and future works

5.1. Conclusions

This paper describes a proposal for real-time people detection and
activity recognition in the wild, based on edge computing. The pro-

posed system is built on two modules: the first one detects and tracks
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people by using a CNN (MobileNetV2-SSD) and a set of Kalman filters,
whereas the second one recognizes the actions that is performing the
tracked person at each video frame through an LSTM neural net-
work, whose input is a lightweight feature vector extracted from its
corresponding BB.

The proposed system has been evaluated in four datasets that are
widely used in the related literature (KTH, IXMAS, WVU, WEIZMANN),
computing metrics such as precision, recall and F1-score. Moreover,
in the paper it is also presented a novel dataset for HAR in the wild
named GBA that includes several people performing different actions
simultaneously in realistic and not segmented scenes.

The obtained metric results are comparable to the SOTA ones, and
outperform some other works on WEIZMANN dataset. More specifi-
cally, in the first four datasets, they have been obtained values in the
three metrics above 98%. Within KTH, precision of 99.28% and F1
of 99.06% are remarkable. It has also to be highlighted the recall of
99.18% obtained within IXMAS. Finally when tested the proposal in
WEIZMANN dataset, a precision of 99.14%; recall of 98.00% and F1
of 99.11% overcome comparable works in the SOTA. Regarding results
within GBA, precision, recall and F1 are above 96.00%, what allows
validating the proposal also in an in the wild environment.

On the other hand, since one of the objectives was running the
proposal on real-time on edge devices, the computational cost of the
video surveillance processing has also been thoroughly evaluated and
compared against the one presented in SOTA works. Computational
cost has been obtained both, for a high performance PC and for an UPS2
embedded platform, and the obtained results show that the proposal is
run in real-time in both platforms, with a computation time seven times
lower than the one of SOTA.

Since the proposal for HAR is designed to run in real-time even
in embedded hardware platforms, the proposed feature vector only
include characteristics related to the BB of each detected person. Due
to that, the kind of actions that can be detected is limited to those that
produce a change in the BB parameters. Thus, although the proposal
obtains good results for the actions usually found in a video surveillance
context, it may not be able to classify actions that involve small
movements such as making up or teeth brushing.

Thus, it can be concluded that the proposed system is self-contained
and able to be executed in platforms with reduced hardware capabil-
ities. In addition, the proposed system performance has been demon-
strated to achieve similar detection metrics as other SOTA works. As an
added contribution in the paper, a new dataset that emulates a realistic
video surveillance scene has been used and prepared for the scientific
community, in order to verify the system reliability to work in real
environments.

5.2. Future works

In this paper, we propose a system for human action detection
in video surveillance systems. When designing the architecture, we
encountered a significant limiting factor: computational load. The sys-
tem needed to run on an embedded processor with limited hardware
resources. Therefore, the system had to be as lightweight as possible. To
address this, a method was devised to process not the entire image but
rather the BB. This approach initially reduces the computational cost of
the system. However, it imposes a limitation on the number of actions
that can be accurately classified. This is because the system analyzes
features related to the fluctuations in BBs across different frames to
classify the action. With a larger number of actions, these fluctuations
may not provide enough information for accurate classification. To
overcome this issue, introducing additional features or making a more
complex architecture would be necessary. However, these solutions
would contradict the earlier objective of a low computational cost
system.

In future research, we aim to apply this BB analysis approach in
15

different environments, such as the healthcare field, to monitor and
supervise the actions of patients or elderly individuals. Additionally,
with the improvement in the technology, the MobileNetV2-SSD can be
replace by other people detector that can also be executed in real-time
in an embedded system. Furthermore, it can also be explored the use of
other DL approaches such as those based on Transformers, that are pro-
viding good results in different computer vision applications. Finally,
the ultimate step would involve deploying this software architecture
in production environments using MLOps technology, where inference
would be performed on specialized hardware systems rather than on
the embedded system’s VPU.
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