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Abstract

This thesis explores two themes: a process of discovery in simultaneous-move
games with unawareness and a reconsideration of non-trivial unawareness in
standard information structures.1

The first theme discusses the discovery process in simultaneous-move games
with unawareness. Games with unawareness assume that at least one player is
unaware of her or his own actions or the opponents’ actions. In this scenario,
suppose that a player unaware of the opponents’ actions observes such actions.
Then, she or he may be surprised by the opponents’ moves and adjust her or
his subjective game accordingly.

Schipper (2021) proposed discovery processes as such updating models. He
demonstrated that any rationalizable discovery process converges to some extensive-
form game with unawareness possessing a rationalizable self-confirming equilib-
rium. However, he does not show that the plays of all agents converge to some
self-confirming equilibrium. That is, he fails to demonstrate a convergence of
plays to a specific solution concept.

Chapter 3 examines whether players can play to converge to a particular
solution concept via a discovery process in simultaneous-move games with un-
awareness. Before conducting analysis, this study generalizes the concept of
closedness under rational behavior (CURB) to simultaneous-move games with
unawareness and models the myopic discovery processes allowing all players
to respond optimally to their opponents’ previous moves. A key result demon-
strates that any myopic discovery process converges to specific revised subjective
games with a common realizable CURB set of which all agents are aware. Then,
in the games, supports of players’ myopic best responses constitute a subset of
the common realizable CURB set.

Chapter 4 explores discoveries of actions in coordination games with un-
awareness. In Schipper (2021) and Chapter 3, through a process of discovery,
each player adds opponents’ unnoticed actions to her or his revised subjective
game. However, in situations where successful coordination is crucial, such as
those in coordination games with unawareness, not only must players in their
subjective games know their opponents’ unnoticed actions, but they must also
be able to imitate such actions. This thesis models an imitative discovered game

1In this thesis, standard information structures include not only partitional information
structures where an information function is partitional but also non-partitional information
structures where an information function is not partitional.
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in which each player adds the opponents’ actions to their own set of actions. We
also demonstrate the existence of a successful-coordination equilibrium in which
coordination thrives in the subsequent stage game.

The second theme reexamines unawareness in the standard model of a single
agent’s information structure where an information function may be not parti-
tional. As pointed out by Dekel, Lipman, and Rustichini (1998), in standard
information structures assuming Plausibility, KU Introspection, and AU Intro-
spection, non-trivial unawareness (meaning that there is an event an agent is
unaware of) cannot be represented even if an information function is not par-
titional.2 Hence, models of unawareness structures proposed by Heifetz, Meier,
and Schipper (2006) have become the mainstream in unawareness studies. How-
ever, changing the definitions and assumptions of knowledge and unawareness
operators allows as to examine non-trivial unawareness in standard information
structures. Chapter 5 models unawareness in standard information structures
similar to Ewerhart (2001) and characterizes the knowledge and unawareness
operators. Chapter 6 explores the relationship between Symmetry and AU In-
trospection.3 According to Modica and Rustichini (1994, 1999), Dekel, Lipman,
and Rustichini (1998), and Chen, Ely, and Luo (2012), Symmetry and AU
Introspection must be equivalent to Negative Introspection in standard infor-
mation structures under several assumptions. However, if Necessitation does
not hold, the equivalence may not hold. This chapter relaxes Necessitation and
demonstrates the conditions under which Symmetry and AU Introspection are
equivalent in the presence of non-trivial unawareness. Chapter 7 reexamines the
definition of the knowledge operator and the information function. Although
the standard information function assumes that all information sets are not
empty, Necessitation holds true even if some information sets are empty. That
is, agents know all events even if they obtain a nonempty information set. This
property is counterintuitive. This thesis redefines the knowledge operator such
that the agent knows no event if the given information set is empty. In this
case, Necessitation fails under non-trivial unawareness, whereas Monotonicity
always holds. The knowledge operator in Chapter 7 is related to its Chapter 6
counterpart. Other aspects of unawareness have also been identified.

Finally, Chapter 8 concludes the dissertation with suggestions for further
research.

2Plausibility means that if an agent is unaware of some event, then she or he does not know
it, and she or he does not know that she or he does not know it. KU Introspection means
that there is no event that an agent knows that she or he is unaware of. AU Introspection
means that if an agent is unaware of some event, then the agent is unaware that she or he is
unaware of it.

3Symmetry means that an agent is unaware of some event if and only if the agent is unaware
of the complement event.

iii



Acknowledgement

This dissertation is an edited version of the following discussion papers.

• Chapter 3 is based on the author’s working papers titled “Unawareness
of Actions Closedness under Rational Behavior in Static Games with Un-
awareness” (IERCU Discussion Paper No.336, Chuo University), “Discov-
ery Process in Normal-Form Games with Unawareness: Cognitive Stabil-
ity and Closedness under Rational Behavior” (IERCU Discussion Paper
No. 343, Chuo University), and “Unawareness of Actions and Myopic Dis-
covery Process in Simultaneous-Move Games with Unawareness” (IERCU
Discussion Paper, No. 365; IERCU Discussion Paper, No. 370, Chuo
University). This chapter ’s preliminary version is presented at the 2018
Japanese Economic Association Autumn Meeting (at Gakushuin Univer-
sity; on September 8-9, 2018; in Tokyo), the 2021 Japanese Economic As-
sociation Spring Meeting (at Kwansei Gakuin University; on May 15-16,
2021; virtually), and the 2022 Asian Meeting of the Econometric Society
in East and South-East Asia (at Keio University and University of Tokyo;
on August 8-10, 2022; in Tokyo, through a hybrid format).

• Chapter 4 is based on the author’s working paper titled “Coordination
and Imitation under Unawareness” (IERCU Discussion Paper, No. 366;
IERCU Discussion Paper, No. 371, Chuo University). A preliminary
version of this chapter is presented at the 2022 Japanese Economic Asso-
ciation Autumn Meeting (at Keio University; on October 15-16, 2022; in
Tokyo through a hybrid format).

• Chapter 5 is based on the author’s working papers titled “Aumann Struc-
ture with Complete Lattice and Unawareness: Constructive Approach”
(IERCU Discussion Paper No. 347, Chuo University), “Unawareness and
Reverse Symmetry: Aumann Structure with Complete Lattice” (IERCU
Discussion Paper No.351; IERCU Discussion Paper No.352; IERCU Dis-
cussion Paper No. 353, Chuo University), and “Non-Trivial Unawareness
in (Non-)Partitional Standard Information Structures” (IERCU Discus-
sion Paper No. 359, Chuo University).

• Chapter 6 is based on the author’s working paper titled “Note: AU In-
trospection and Symmetry under Non-Trivial Unawareness” (IERCU Dis-
cussion Paper No. 357, Chuo University). A preliminary version of this

iv



chapter is presented at the Japan Association for Evolutionary Economics
Annual Meeting (at Doshisha University; on March 26-27, 2022; virtually).

• Chapter 7 is based on the author’s working papers titled “Mathematically
Characterization of the Knowledge Structure of the Information Illiterate”
(IERCU Discussion Paper No. 356, Chuo University), and “Is “Unaware-
ness Leads to Ignorance” Trivial?” (IERCU Discussion Paper No. 358,
Chuo University). A preliminary version of this chapter is presented at
the Japan Association for Evolutionary Economics Annual Meeting (at
Doshisha University; on March 26-27, 2022; virtually).

Each working paper and chapter received helpful comments from several
academicians and anonymous reviewers regarding content, style, and paper
structure. I express my gratitude towards Yasuo Sasaki, Norimasa Kobayashi,
Masakazu Fukuzumi, Taisuke Matsubae, Bart Lipman, Spyros Galanis, and
Satoshi Fukuda. I would also like to thank the examiners, Hirokazu Takizawa,
Toichiro Asada, Yoji Taniguchi, and Ryuichiro Ishikawa, who reviewed this dis-
sertation and provided a variety of comments.

v



Contents

Preface i

Abstract ii

Acknowledgement iv

I Introduction Part 1

1 Introduction 2
1.1 The Object of This Study . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Review and Motivation of the Thesis 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Inception of the Study of Unawareness . . . . . . . . . . . . 8

2.2.1 Information Structures and Common Knowledge . . . . . 8
2.2.2 Agreement Theorem . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 No-Trade Theorem . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Triviality of Unawareness . . . . . . . . . . . . . . . . . . 12
2.2.5 Unawareness Structures . . . . . . . . . . . . . . . . . . . 13

2.3 Games with Unawareness . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Mathematical Formulations of Games . . . . . . . . . . . 17
2.3.2 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Discovery Process . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Motivation of PART II . . . . . . . . . . . . . . . . . . . . 21

2.4 Unawareness in Standard Information Structures . . . . . . . . . 22
2.4.1 Motivation of PART III . . . . . . . . . . . . . . . . . . . 22

II Discovery of Actions in Simultaneous-Move Games

vi



with Unawareness 23

3 Unawareness of Actions and the Myopic Discovery Process in
Simultaneous-Move Games with Unawareness 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Simultaneous-Move Games with Unawareness . . . . . . . 26
3.2.2 Generalization of the CURB Concept . . . . . . . . . . . 27

3.3 Myopic Discovery Process . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Discovery Process and Other Solution Concepts . . . . . . . . . . 39

3.4.1 Relationships among Other Solution Concepts . . . . . . 39
3.4.2 Discovery and Equilibrium Notions . . . . . . . . . . . . . 44

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 A CURB Block Game and Economy of Cognitive Costs . 48
3.5.2 Adaptive Play . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.4 Related Literature . . . . . . . . . . . . . . . . . . . . . . 50

4 Coordination and Imitation under Unawareness 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Successful-Coordination Equilibrium . . . . . . . . . . . . . . . . 55
4.4 Discovery and Imitation of Actions . . . . . . . . . . . . . . . . . 55
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Relationship with the Generalized Nash Equilibrium . . . 62
4.5.2 Unawareness of Actions versus Lack of Conception . . . . 65
4.5.3 Related Literature . . . . . . . . . . . . . . . . . . . . . . 67

III Reexamining Unawareness in Standard Information
Structures 68

5 Non-Trivial Unawareness in Standard Information Structures 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Generalized Knowledge Operator . . . . . . . . . . . . . . . . . . 71
5.4 A Generalization of the Unawareness Operator . . . . . . . . . . 74
5.5 Generalized Triviality Theorems . . . . . . . . . . . . . . . . . . 78
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Relationships between AU Introspection and Symmetry 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Triviality Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



7 Unaware Non-Decision Makers 90
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 Information Structure . . . . . . . . . . . . . . . . . . . . 92
7.2.2 Standard Knowledge Operator . . . . . . . . . . . . . . . 92

7.3 Knowledge Operator of Non-Decision Makers . . . . . . . . . . . 93
7.4 Relationship with the Unawareness Operator . . . . . . . . . . . 96
7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 100

IV Conclusion Part 101

8 Concluding Remarks 102
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



Part I

Introduction Part

1



Chapter 1

Introduction

“I am wiser than this human
being. For probably neither of us
knows anything noble and good,
but he supposes he knows
something when he does not
know, while I, just as I do not
know, do not even suppose that I
do. I am likely to be a little bit
wiser than he in this very thing:
that whatever I do not know, I do
not even suppose I know.”

Apology of Socrates 21d
West and West (1998: 70)

1.1 The Object of This Study

This thesis examines two themes: (i) implementing discovery processes in simultaneous-
move games with unawareness and (ii) characterizing unawareness in standard
information structures. First, games with unawareness assume that players are
unaware of others’ actions. In such models, some players’ beliefs about their
opponents’ plays might not include the opponents’ actions of which they are un-
aware. When an opponent chooses an action of which players are unaware, they
may be surprised by the opponent’s choice and revise their subjective views and
beliefs about opponents’ plays accordingly. In games with unawareness, Schip-
per (2021) models discovery processes that are update processes of players’
subjective games. These models assume that if actions of which some player
is unaware are played, then all players add such actions into their subjective
games in the next-stage game. Schipper (2021) shows that in any extensive-
form game with unawareness, if all players select rationalizable strategies, then
every rationalizable discovery process converges into some game with unaware-
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ness, possessing a rationalizable self-confirming equilibrium. However, he does
not show that through any (rationalizable) discovery process, players’ choices
converge to some equilibrium or any other solution concepts. Moreover, in his
model focusing on coordination games, although each player adds the discov-
ered opponents’ actions into their action sets based on those players’ subjective
views, the discovered actions are not added into each player’s action set; in
other words, his model does not assume that opponents’ actions are imitated.
PART II of this thesis considers such issues and models another discovery pro-
cess that converges to some solution concept. Chapter 3 generalizes the concept
of closedness under rational behavior (CURB)1 to simultaneous-move games
with unawareness, models the myopic discovery processes allowing all players
to best respond to their opponents’ previous moves, and shows that any myopic
discovery process converges to specific revised subjective games with a common
realizable CURB set of which all agents are aware. Then, in the games, supports
of players’ myopic best responses constitute a subset of the common realizable
CURB set. Furthermore, it models the imitation of opponents’ actions in co-
ordination games with unawareness. Chapter 4 discusses coordination games
with unawareness, defines a successful-coordination equilibrium, and models an
imitative discovered game in which each player adds the opponents’ actions to
their own set of actions. We also demonstrate the existence of a successful-
coordination equilibrium in which coordination thrives in the subsequent stage
game.

The second theme examined by this study is characterizing unawareness in
standard information structures where an information function might be not
partitional. In such structures, given several assumptions about knowledge and
unawareness, then unawareness is trivial in that an agent is aware of all event,
as shown by Modica and Rustichini (1994, 1999) and Dekel, Lipman, and Rus-
tichini (1998). However, unawareness can be discussed in information structure
models if we relax some assumptions. Ewerhart (2001) presents a subjective
state space that is a proper subset of the objective state space, assumes that
an unaware agent does not know all the states in the complementary set, and
characterizes the knowledge operator and unawareness operator. Meanwhile,
Fukuda (2021) proposes excluding AU Introspection.2 Both studies show that
unawareness is not trivial in their frameworks. Hence, PART III of this thesis
reexamines non-trivial unawareness in standard information structures. Chap-
ter 5 models unawareness in (non-partitional) standard information structures
similar to Ewerhart (2001) and characterizes the knowledge and unawareness
operators. In the model, the knowledge operator might not satisfy Necessitation
or Monotonicity. Moreover, we show that Symmetry does not hold when un-
awareness is not trivial.3 Chapter 6 explores the relationship between Symmetry
and AU Introspection, and shows the equivalence of them. Chapter 7 redefines

1We call a generalization of a CURB set a realizable CURB set.
2AU Introspection means that if an agent is unaware of some event, then the agent is

unaware that she or he is unaware of it.
3Symmetry means that an agent is unaware of some event if and only if the agent is unaware

of the complement event.

3



the knowledge operator differently from Chapter 5 such that the agent knows
no event if the given information set is empty. In this case, Necessitation fails
under non-trivial unawareness, whereas Monotonicity always holds.

1.2 Related Literature

Since Aumann (1976), standard game theory has supposed common knowledge
of a game’s structures.4 Although this assumption is unrealistic, if theoretical
conclusions are consistent with real-world decision-making outcomes, relaxing
this assumption may no longer be needed. However, the assumption leads to a
counterintuitive conclusion. Aumann (1976) shows that under the common prior
assumption and the common knowledge of all players’ posterior probabilities,
all players’ posterior must be the same. Milgrom and Stokey (1982) prove that
if all players are risk-averse and it is common knowledge in speculative trade
that an endowment is Pareto-optimal ex ante, then no players trade. Moreover,
Rubinstein (1989) shows that common knowledge is assumed by the modeler
and not formed by the communication exchanged among the agents. Therefore,
subsequent studies have attempted to relax the common knowledge assumption.

The first model they considered was a non-partitional information structure,
as shown in the studies of Geanakoplos (2021), Samet (1990), and Shin (1993).
In this model, some agents may receive an incorrect information set. However,
when introducing unawareness that means second-order ignorance, Modica and
Rustichini (1994, 1999) and Dekel, Lipman, and Rustichini (1998) show that
unawareness is trivial under several assumptions.5

To avoid this issue, Heifetz, Meier, and Schipper (2006) propose a model of
unawareness structures. The interpretation of unawareness in their model differs
from that in a model of standard information structures. Unawareness in stan-
dard information structures including non-partitional information structures is
interpreted as a lack of knowledge, which suggests second-order ignorance. If
agents are unaware of some event, then they do not know the event and are un-
aware that they do not know the event. By contrast, in unawareness structures,
unawareness is interpreted as a lack of conception. In this model, not only do
agents fail to recognize the objective state space, they also recognize the sub-
jective state space, which is harder to describe than the objective state space.
In other words, agents cannot recognize a specific conception in the objective
state space. For example, von Neumann is both a physicist and a game theo-
rist. However, someone unfamiliar with game theory may only know that he is
a physicist and be unaware that he was a game theorist in the first place. Then,
such an individual is aware that von Neumann is a physicist but not aware
that he is a game theorist. Unawareness structures can represent non-trivial

4Lewis (1969) was the first to informally define common knowledge. Aumann (1976) defined
common knowledge as follows: Some event is common knowledge if all players know the event,
they know that they know it, they know that they know that they know it, and so on.

5Unawareness is trivial in that an agent is aware of every event. In other word, there is
no event that the agent is unaware of. In this thesis, a series of results that unawareness is
trivial is henceforth referred to as the Triviality Theorems.
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Figure 1.1: Structure of this thesis

unawareness. Therefore, subsequent mainstream studies of unawareness have
used unawareness structures in their discussions, including Heifetz, Meier, and
Schipper (2008, 2013a), Schipper (2013), Galanis (2013, 2018), and Galanis and
Kotronis (2021).6 Moreover, this idea of the lack of conception is introduced into
game theory, with the resulting game models named games with unawareness,
including the studies of Feinberg (2021), Heifetz, Meier, and Schipper (2013b),
Halpern and Rêgo (2014), Rêgo and Halpern (2012), Grant and Quiggin (2013),
C̆opic̆ and Galeotti (2006), and Meier and Schipper (2014).7

1.3 Thesis Structure

This dissertation organizes four parts and eight chapters. Figure 1.1 depicts
the structure of this thesis. The remainder of this thesis is organized as follows.
Chapter 2 describes the theoretical background, including a theoretical review of
common knowledge and unawareness. It also models simultaneous-move games
with unawareness and discusses the motivation of the thesis.

PART II discusses the discoveries of actions in simultaneous-move games
with unawareness. Chapter 3 models a myopic discovery process in which each
player best responds to opponents’ actual actions in the immediately previous-
stage game. First, this chapter generalizes the CURB (closedness under rational
behavior) concept that is one of the set-valued solution concepts in simultaneous-
move games with unawareness. Next, this study shows that through any myopic

6Another strand of the literature is similar in spirit to those arguments. For instance,
Li (2009) presents a model of unawareness using product structures. Heinsalu (2012) shows
that Li’s (2009) work is equivalent to Fagin and Halpern (1988). Meanwhile, Heinsalu (2014)
discusses universal type structures under unawareness.

7Among studies of unawareness, Karni and Vierø (2013, 2017), Vierø (2021), and Piermont
(2017) discuss decision theory under unawareness. Similarly, Filiz-Ozbay (2012) and Auster
(2013) discuss contract theory under unawareness.
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discovery process, the support of all players’ choices converges to an action sub-
set of some CURB set. Chapter 4 assumes that opponents’ actions in coordina-
tion games with unawareness can be imitated. In the model of imitation, when
some player observes an opponent’s action of which the player is unaware, the
player adds such an action into both the opponent’s action set and her or his own
action set in the subjective game in the next-stage game with unawareness. Be-
fore presenting the analysis, this study provides a novel solution concept named
the successful-coordination equilibrium that is a refinement of the generalized
Nash equilibrium. This chapter shows that every next-stage game must have a
successful-coordination equilibrium.

PART III reexamines non-trivial unawareness in standard information struc-
tures where an information function might be non-partitional. Chapter 5 revises
the standard definitions of knowledge operator and unawareness operator along
the lines of Ewerhart (2001). This chapter shows that our unawareness operator
does not satisfy Symmetry8 under non-trivial unawareness. Chapter 6 charac-
terizes Symmetry and studies the relationships between Symmetry and AU In-
trospection under non-trivial unawareness. This chapter shows that Symmetry
and AU Introspection are equivalent under non-trivial unawareness. Chapter 7
considers unaware non-decision makers. This chapter supposes that for some
state, an information set corresponding to the state might be empty. The au-
thor interprets that such an empty information set means that the agent cannot
recognize anything. Based on such an interpretation, a novel knowledge oper-
ator is defined and the properties of the knowledge operator and unawareness
operator are shown. A knowledge operator in Chapter 7 is related its Chapter
6 counterpart. Note that definitions of knowledge operators between Chapters
5 and 7 are different. Hence, in each chapter, a knowledge operator leads to
different properties. Under non-trivial unawareness, the knowledge operator in-
troduced in Chapter 5 does not satisfy Necessitation or Monotonicity, whereas
the knowledge operator introduced in Chapters 6 and 7 does not satisfy only
Necessitation. Also, properties of unawareness operators between their chapters
are different.

8Symmetry is one of the properties of the unawareness operator. It means that an agent
is unaware of some event if and only if the agent is unaware of the complement event.
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Chapter 2

Theoretical Review and
Motivation of the Thesis

2.1 Introduction

Standard game theory usually assumes common knowledge of the structures of
games.1 Informally, the common knowledge of some events means that all agents
know the event, know that they know the event, know that they know that
they know the event, and so on ad infinitum. Even if common knowledge is an
unrealistic assumption, if it adequately explains real economic phenomena, there
may be no need to relax that assumption. However, the assumption of common
knowledge leaves theoretically counterintuitive results, as shown by Milgrom
and Stokey (1982). Hence, since their work, previous studies have attempted
to relax the common knowledge assumption. The concept of unawareness was
proposed during their research. Before discussing the two themes of games with
unawareness (PART II) and the characterization of unawareness in standard
information structures (PART III), this chapter provides a theoretical review of
research on common knowledge and unawareness.2

1As aforementioned, Lewis (1969) was the first to introduce an informal definition of com-
mon knowledge and Aumann (1976) theoretically defines it. The concept of common knowl-
edge is mainly used in studies of knowledge and equilibrium (e.g., Aumann (1987), Aumann
and Brandenburger (1995), and Brandenburger (1992)).

2Several scholars have reviewed common knowledge and unawareness, including Geanako-
plos (1992, 1994). Schipper (2014) presents a historical review of unawareness and Schipper
(2015) reviews studies concerning unawareness using modal logic.
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2.2 The Inception of the Study of Unawareness

2.2.1 Information Structures and Common Knowledge

First, information structures and common knowledge are mathematically for-
mulated.3 Let Ω be the finite state space and denote a state by ω ∈ Ω. Let
I be the set of agents. Given i ∈ I, let ⟨Ω, Pi⟩ be i’s information structure.
Pi : Ω → 2Ω \ {∅} is i’s information function.4 At any ω ∈ Ω, i receives an
information set Pi(ω). The standard information function is assumed to have
the following properties.

P1 For any ω ∈ Ω, ω ∈ Pi(ω).

P2 For any ω, ω′ ∈ Ω, if ω′ ∈ Pi(ω), then Pi(ω
′) ⊆ Pi(ω).

P3 For any ω, ω′ ∈ Ω, if ω′ ∈ Pi(ω), then Pi(ω
′) ⊇ Pi(ω).

P1 means that given any state, i receives some information set possessing
the state. P2 means that for any state in some given information set, the
information set corresponding to the state is a subset of the given information
set. P3 means that for any state in some given information set, the information
set corresponding to the state is a super set of the given information set.

Next, let Pi = {Pλ}λ∈Λ be i’s partition on Ω, where Λ is an index set. That
is,

1.
∪

P∈Pi
P = Ω; and

2. For any P, P ′ ∈ Pi, if P ∩ P ′ ̸= ∅, then P = P ′.

Then, i’s information function is partitional if and only if given any ω ∈ Ω,
there exists a member of partition Pλ ∈ Pi such that ω ∈ Pλ and Pλ = Pi(ω).
Then, the following remark holds.

Remark 1. i’s information function Pi satisfies P1, P2, and P3 if and only if
Pi is partitional.

Proof. First, suppose that Pi satisfies P1, P2, and P3. Then, from P1,
∪

ω∈Ω Pi(ω) =
Ω. Pick ω, ω′ ∈ Ω. If Pi(ω) ∩ Pi(ω

′) is not empty, then there exists ω′′ ∈
Pi(ω) ∩ Pi(ω

′). Then, from P2 and P3, Pi(ω) = Pi(ω
′) = Pi(ω

′′). That is, Pi is
partitional.

Next, suppose that Pi is partitional. Then, it is obvious that P1, P2, and
P3 hold.

By Remark 1, in partitional information structures, the information function
must satisfy P1-3.

3Related work in this section includes Aumann (1976), Milgrom (1981), Cave (1983), and
Bacharach (1985).

4Standard discourse presupposes that any given information set is not empty. In Chapter
7, the assumption is relaxed, that is, there may exist some ω with Pi(ω) = ∅.
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Next, let us define i’s knowledge operator Ki : 2
Ω → 2Ω. Let E ⊆ Ω be an

event and ¬E = Ω \E. Here, given any E ⊆ Ω, Ki(E) is formulated as follows:{
ω ∈ Ki(E) if Pi(ω) ⊆ E; and

ω ̸∈ Ki(E) otherwise.

Given any ω, if some event E is a superset of agent i’s information set at ω,
then ω ∈ Ki(E) holds. Hence, this is interpreted as “at ω, i knows the event
E.” If the event E is not a superset of i’s information set at ω, ω ̸∈ Ki(E)
holds and this is interpreted as “at ω, agent i does not know the event E.”
Let ¬Ki(E) = Ω \Ki(E). Moreover, let KiKi(E) = Ki(Ki(E)) meaning that
i knows that i knows an event E, and let Ki¬Ki(E) = Ki(¬Ki(E)) meaning
that i knows that i does not know an event E. Then, as is well known, the
standard knowledge operator has the following properties.

Remark 2. Given the information structure ⟨Ω, Pi⟩, Ki satisfies the following.

K1 Necessitation:

Ki(Ω) = Ω.

K2 Monotonicity:

E ⊆ F =⇒ Ki(E) ⊆ Ki(F ).

K3 Conjunction:

Ki(E ∩ F ) = Ki(E) ∩Ki(F ).

K4 Truth:

If P1 holds, then Ki(E) ⊆ E.

K5 Positive Introspection:

If P2 holds, then Ki(E) ⊆ KiKi(E).

K6 Negative Introspection:

If P3 holds, then ¬Ki(E) ⊆ Ki¬Ki(E).

Proof.

K1 By definition, Ki(Ω) ⊆ Ω. Pick any ω ∈ Ω, then Pi(ω) ⊆ Ω obviously
holds. That is, ω ∈ Ki(Ω). Hence, Ω ⊆ Ki(Ω).

K3 First, given any ω ∈ Ki(E ∩ F ), then Pi(ω) ⊆ E ∩ F . That is, Pi(ω) ⊆ E
and Pi(ω) ⊆ F . Then, because ω ∈ Ki(E) and ω ∈ Ki(F ), ω ∈ Ki(E) ∩
Ki(F ). Hence, Ki(E ∩ F ) ⊆ Ki(E) ∩Ki(F ).

Next, given any ω ∈ Ki(E)∩Ki(F ), then Pi(ω) ⊆ E and Pi(ω) ⊆ F ; that
is, Pi(ω) ⊆ E ∩ F holds. Then, since ω ∈ Ki(E ∩ F ), Ki(E) ∩Ki(F ) ⊆
Ki(E ∩ F ).
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K2 Suppose E ⊆ F . From K3, Ki(E) = Ki(E∩F ) = Ki(E)∩Ki(F ) ⊆ Ki(F ).

K4 Suppose P1. Given any ω ∈ Ki(E), then Pi(ω) ⊆ E. From P1, since
ω ∈ Pi(ω), ω ∈ E. Hence, Ki(E) ⊆ E.

K5 Suppose P2. Given any ω ∈ Ki(E), then Pi(ω) ⊆ E. Here, from P2,
for any ω′ ∈ Pi(ω), since Pi(ω

′) ⊆ Pi(ω), Pi(ω
′) ⊆ E; that is, ω′ ∈

Ki(E). Hence, Pi(ω) ⊆ Ki(E); that is, ω ∈ KiKi(E). Therefore, Ki(E) ⊆
KiKi(E).

K6 Suppose P3. Given any ω ∈ ¬Ki(E), then since ω ̸∈ Ki(E), Pi(ω) ̸⊆
E. Given any ω′ ∈ Pi(ω), from P3, since Pi(ω

′) ⊇ Pi(ω), Pi(ω
′) ̸⊆ E.

Therefore, ω′ ∈ ¬Ki(E); that is, Pi(ω) ⊆ ¬Ki(E). Then, since ω ∈
Ki¬Ki(E), ¬Ki(E) ⊆ Ki¬Ki(E).

Necessitation means that i knows the whole state space at any state. Mono-
tonicity means that if i knows some event, then she or he knows an event that
is a super set of the event. Conjunction means that i knows an intersection of
two events if and only if she or he knows both events. Truth means that if i
knows some event then the event is true. Positive Introspection means that if i
knows some event, then i knows that i knows it. Negative Introspection means
that if i does not know some event, then i knows that i does not know it.

Now, suppose that each agent i’s information function Pi is partitional.
Given some E ⊆ Ω, E is (first-order) mutual knowledge at ω ∈ Ω if and only if
for any i ∈ I, ω ∈ Ki(E); that is, ω ∈

∩
i∈I Ki(E). Let K1(E) =

∩
i∈I Ki(E). E

is nth-order mutual knowledge at ω if and only if ω ∈ Kn(E) =
∩n

k=1(K
1)k(E).

Then, common knowledge is defined as follows.

Definition 2.2.1. An event E ⊆ Ω is common knowledge at ω ∈ Ω if and only
if ω ∈

∩∞
k=1(K

1)k(E). Let CK(E) =
∩∞

k=1(K
1)k(E).

As is well known, another definition of common knowledge exists. Given
some F ⊆ Ω, F is self-evident if and only if for any ω ∈ F and any i ∈ I,
Pi(ω) ⊆ F . Yet another definition is shown next.

Definition 2.2.2. An event E ⊆ Ω is common knowledge at ω ∈ Ω if and only
if there exists a self-evident event F such that ω ∈ F ⊆ E.

Although the proof is omitted, the two definitions are equivalent.

Remark 3. Definition 2.2.1 and Definition 2.2.2 are equivalent.

2.2.2 Agreement Theorem

This section discusses the Agreement Theorem provided by Aumann (1976).5

Consider again a finite set of states Ω and the set of agents I. For any i ∈ I, let

5Related work in this section includes Geanakoplos and Polemarchakis (1982) and Sebenius
and Geanakoplos (1983).
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µi : 2
Ω → [0, 1] be i’s probability measure. Given any E,F ⊆ Ω with µi(F ) ̸= 0,

a conditional probability is defined as µi(E|F ) = µi(E∩F )
µi(F ) . Suppose a common

prior : for any ω ∈ Ω and i, j ∈ I, µi({ω}) = µj({ω}). Let us assume that each
agent’s information function is common knowledge. Here, at ω ∈ Ω, denote
i’s posterior of E by µi(E|Pi(ω)). Let E(qi) = {ω ∈ Ω|µi(E|Pi(ω)) = qi} be
the event that i assigns probability qi to E. Then, although Aumann’s (1976)
formulation is a two-person model, we can generalize his Agreement Theorem
as follows.

Theorem 2.2.1 (Aumann 1976). Suppose that there exists a common prior on
Ω. If CK(∩i∈IE(qi)) ̸= ∅, then for any i, j ∈ I, qi = qj .

The Agreement Theorem means that if the posterior probabilities of all
agents with the same prior are commonly known, then each agent’s posterior is
the same as that of the others. In other words, “people with the same priors
cannot agree to disagree” (Aumann, 1976: 1236).

2.2.3 No-Trade Theorem

This subsection shows the No-Trade Theorem provided by Milgrom and Stokey
(1982). Let us consider l commodities. Denote the set of traders by I and
the set of commodity bundles by X ⊆ Rl

+. Each trader i has the partitional
information function Pi on the finite state space Ω. Here, for any i ∈ I,

• ei : Ω → X is i’s endowment function and ei(ω) ∈ X is i’s endowment at
ω;

• ui : Ω×X → R is i’s utility function; and

• µi : 2
Ω → [0, 1] is i’s probability measure.

Given any x ∈ X, i’s expected utility is denoted by

Eui(·, x) =
∑
ω∈Ω

µi({ω})ui(ω, x)

and i’ s expected utility at ω is denoted by

E[ui(·, x)|ω] =
∑

ω′∈Pi(ω)

µi({ω′})
µi(Pi(ω))

ui(ω
′, x).

Given any ω ∈ Ω, suppose that ui(ω, x) is strictly concave in x for each ω. This
means that i is risk-averse. Let ti : Ω → X be i’s trade function. At ω, a trade
is feasible if and only if

• For any i ∈ I, ei(ω) + ti(ω) ≥ 0; and

•
∑

i∈I ti(ω) ≤ 0.
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Finally, suppose a common prior and that all agents are rational and that
this is common knowledge. Then, Milgrom and Stokey (1982) show their No-
Trade Theorem, which they prove using the Agreement Theorem.

Theorem 2.2.2 (Milgrom and Stokey 1982). In the l-commodities market,
assume that every trader is risk-averse. Here, suppose that the followings are
common knowledge at ω.

• e = (ei)i∈I is Pareto-optimal ex ante.

• Trade is feasible.

• Every trader prefers trade to zero trade.

Then, no traders trade.

This result means that no traders trade even if they obtain private informa-
tion.

2.2.4 Triviality of Unawareness

The unrealistic result shown in the No-Trade Theorem is derived from the as-
sumption of common knowledge. Therefore, previous studies have tried to re-
lax the assumption of common knowledge and to formulate agents’ ignorance.
Geanakoplos (2021) provides a framework of non-partitional information struc-
tures. In his model, the information function might not be partitional; that
is, P1, P2, or P3 might not hold. Samet (1990) and Shin (1993) also discuss
agents’ ignorance in the non-partitional model.

However, even if we consider non-partitional information structures, it may
be impossible to discuss non-trivial unawareness. The following shows the Triv-
iality Theorem proven by Dekel, Lipman, and Rustichini (1998). First, given
i’s unawareness operator Ui : 2

Ω → 2Ω, suppose the following properties.

• Plausibility:

Ui(E) ⊆ ¬Ki(E) ∩ ¬Ki¬Ki(E).

• KU Introspection:

KiUi(E) = ∅.

• AU Introspection:

Ui(E) ⊆ UiUi(E).

Plausibility means that if i is unaware of some event, then i does not know it
and i does not know that i does not know it. KU Introspection means that there
is no event that i knows that she or he is unaware of. AU Introspection means
that if i is unaware of some event, then i is unaware that i is unaware of it.
Then, Dekel, Lipman, and Rustichini (1998) prove that the following theorem
holds.6

6Other studies proving trivial unawareness include Modica and Rustichini (1994, 1999)
and Chen, Ely, and Luo (2012).
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Theorem 2.2.3 (Dekel, Lipman, and Rustichini 1998). Suppose Ui satisfies
Plausibility, KU Introspection, and AU Introspection. Then:

• Triviality:

If Ki satisfies Necessitation, then Ui(E) = ∅ for any E ⊆ Ω.

• Unawareness Leads to Ignorance:

If Ki satisfies Monotonicity, then for any E,F ⊆ Ω, Ui(E) ⊆ ¬Ki(F ).

Proof. Pick any E ⊆ Ω. From Plausibility, KU Introspection, and AU Introspec-
tion, Ui(E) ⊆ UiUi(E) ⊆ ¬KiUi(E)∩¬Ki¬KiUi(E) = ¬∅ ∩ ¬Ki¬∅ = ¬Ki(Ω).

Here, suppose Necessitation; then, since Ki(Ω) = Ω, Ui(E) ⊆ ¬Ki(Ω) = ∅.
Suppose Monotonicity. For any F ⊆ Ω, since Ki(F ) ⊆ Ki(Ω), ¬Ki(Ω) ⊆

¬Ki(F ). That is, Ui(E) ⊆ ¬Ki(Ω) ⊆ ¬Ki(F ).

Triviality means that no event makes an agent unaware. Unawareness Leads
to Ignorance means that if an agent is unaware of some event, then she or he
knows no event.

Therefore, Necessitation and Monotonicity must be relaxed to discuss non-
trivial unawareness. However, in the standard information structures, Necessi-
tation and Monotonicity must hold according to the definition of the knowledge
operator even if an information function is not partitional. See the proof of Re-
mark 2. Hence, the standard information structures cannot discuss non-trivial
unawareness when assuming Plausibility, KU Introspection, and AU Introspec-
tion.

2.2.5 Unawareness Structures

As shown in the previous subsection, under the standard assumptions, non-
trivial unawareness cannot be discussed. To avoid this issue, Heifetz, Meier, and
Schipper (2006) propose a novel framework of unawareness named unawareness
structures.7

The interpretation of unawareness in unawareness structures differs from
that in the standard information structures in which unawareness shows higher-
order ignorance. That is, if an agent is unaware of some event, then they do
not know the event and do not know that they do not know the event. By
contrast, in unawareness structures, unawareness is interpreted as a lack of
conception. For example, the cholera bacterium existed before Koch discovered
it, but people did not know about its existence until that discovery. Then,
people were unaware of the cholera bacterium. Unawareness structures assume
that each agent recognizes a subjective state space with different expressive
power. This paper formulates unawareness structures and characterizes the

7Other studies that interpret unawareness as a lack of conception include Heifetz, Meier,
and Schipper (2008, 2013a), Li (2009), Heinsalu (2012), Schipper (2013, 2014, 2015), Galanis
(2013, 2018), Galanis and Kotronis (2021), and Fukuda (2021).
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knowledge operator and unawareness operator thereof based on Heifetz, Meier,
and Schipper (2006).

Let S = {Sλ}λ∈Λ be a family of non-empty state spaces, where Λ is an
index set. S is a complete lattice of disjoint spaces and there exists a partial
order ⪰ on S. Let Σ =

∪
S∈S S be the generalized state space. For any two

spaces S, S′ ∈ S, S ⪰ S′ means that “S has the same expressive power as S′

or S is more expressive than S′.” For any S, S′ ∈ S, let rSS′ : S → S′ be a
surjective projection. For any ω ∈ S, rSS′(ω) ∈ S′ is a restriction of ω. Here,
let rSS′(ω) = ωS′ . Then, the description of ωS′ is coarser than that of ω. For
example, let S be the family of cholera bacteria. S is the state space after
Koch discovered cholera bacteria, whereas S′ is that beforehand. Then, given
ω ∈ S and ω′ ∈ S′, the following interpretation is provided. ω means that Alice
contracted a disease caused by cholera bacteria, whereas ω′ means that Alice fell
ill. Given the three spaces S, S′, S′′ ∈ S, if S ⪰ S′ ⪰ S′′, then rSS′′ = rS

′

S′′ ◦ rSS′ .
For any B ⊆ S, BS′ = {ωS′ |For any ω ∈ B, ωS′ = rSS′(ω)}.

Next, we consider events on the generalized state space. Given any space
S ∈ S and an event B ⊆ S, let B↑ =

∪
S′∈S:S′⪰S{ω′ ∈ S′|∃ω ∈ B, rS

′

S (ω′) = ω}.
E ⊆ Σ is an event satisfing E ⊆ B↑, where S ∈ S and B ⊆ S. Then, we call
B the basis of E and S the base space of E. Let S(E) be the base space of E.
Given S and B, if B↑ is an event, ¬B↑ = Σ \B↑ is defined by (S \B)↑. Define
¬S↑ = ∅S and ¬∅S = S↑.

Now, let us consider agent i’s possibility correspondence Πi : Σ → 2Σ \ {∅}.
Heifetz, Meier, and Schipper (2006) assume the following properties.8

(0) Confinedness:

Given ω ∈ S, there exists S′ such that S ⪰ S′ and Πi(ω) ⊆ S′.

(1) Generalized Reflexivity:

For any ω ∈ Σ, ω ∈ (Πi(ω))
↑.

(2) Stationarity:

If ω′ ∈ Πi(ω), then Πi(ω
′) = Πi(ω).

(3) Projections Preserve Awareness:

If ω ∈ S, ω ∈ Πi(ω) and S ⪰ S′, then ωS′ ∈ Πi(ωS′).

(4) Projections Preserve Ignorance: If ω ∈ S and S ⪰ S′, then (Πi(ω))
↑ ⊆

(Πi(ωS′))↑.

(5) Projections Preserve Knowledge: If S ⪰ S′ ⪰ S′′, ω ∈ S, and Πi(ω) ⊆ S′,
then (Πi(ω))S′ = Πi(ωS′).

Let us now formulate the knowledge operator on the generalized state space.
Given E ⊆ Σ, i’s knowledge operator is defined as follows.

8Galanis (2013) and Galanis and Kotronis (2021) relax Projections Preserve Knowledge.
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K∗
i (E) =

{
{ω ∈ Σ|Πi(ω) ⊆ E} if it is nonempty; and

∅S(E) otherwise.

Then, the knowledge operator has the following properties.

Proposition 2.2.1 (Heifetz, Meier, and Schipper 2006). The knowledge oper-
ator K∗

i has the following properties.

K1* Necessitation:

K∗
i (Σ) = Σ.

K2* Monotonicity:

E ⊆ F implies K∗
i (E) ⊆ K∗

i (F ).

K3* Conjunction:

K∗
i (
∩

λ Eλ) =
∩

λ K
∗
i (Eλ).

K4* Truth:

K∗
i (E) ⊆ E.

K5* Positive Introspection:

K∗
i (E) ⊆ K∗

i K
∗
i (E).

The properties of the knowledge operator in unawareness structures are sim-
ilar to those in standard information structures. However, there are two differ-
ences. One is about Necessitation. Strictly speaking, in unawareness structures,
the knowledge operator does not satisfy Necessitation, but only Necessitation
for “least expressive tautology,” that is the union of all states across all spaces in
the lattice.9 The other is about Negative Introspection. Negative Introspection
may not hold in unawareness structures.

We are now in a position to discuss the unawareness operator. Let U∗
i (E) =

¬K∗
i (E) ∩ ¬K∗

i ¬K∗
i (E), and A∗

i (E) = ¬U∗
i (E). Then, the following properties

hold.

Proposition 2.2.2 (Heifetz, Meier, and Schipper 2006).

U1 KU Introspection:
K∗

i U
∗
i (E) = ∅S(E).

U2 AU Introspection:
U∗
i (E) = U∗

i U
∗
i (E).

U3 Weak Necessitation:
A∗

i (E) = K∗
i (S(E)↑).

U4 Strong Plausibility:
U∗
i (E) =

∩∞
n=1(¬K∗

i )
n(E).

9The author would like to thank an anonymous referee for pointing this out.
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U5 Weak Negative Introspection:
¬K∗

i (E) ∩A∗
i¬K∗

i (E) = K∗
i ¬K∗

i (E).

U6 Symmetry:
U∗
i (E) = U∗

i (¬E).

U7 A-Conjunction:∩
λ A

∗
i (Eλ) = A∗

i (
∩

λ Eλ).

U8 AK-Self-Reflection:
A∗

iK
∗
i (E) = A∗

i (E).

U9 AA-Self-Reflection:
A∗

iA
∗
i (E) = A∗

i (E).

U10 A-Introspection:
K∗

i A
∗
i (E) = A∗

i (E).

U1–4 are proposed by Dekel, Lipman, and Rustichini (1998); U6–9 by Mod-
ica and Rustichini (1994, 1999); and U5–9 by Halpern (2001). Heifetz, Meier,
and Schipper (2006) show an additional property, U10. In unawareness struc-
tures, non-trivial unawareness can be discussed.

Since Heifetz, Meier, and Schipper (2006), most studies of unawareness have
used unawareness structures. Heifetz, Meier, and Schipper (2013a) and Galanis
(2013, 2018) use unawareness structures and discuss and generalize Aumann’s
Agreement Theorem (Aumann, 1976) and the No-Trade Theorem (Milgrom and
Stokey, 1982). Heifetz, Meier, and Schipper (2008) propose canonical models
of unawareness. Galanis (2011) considers unawareness of theorems using a log-
ical approach, while Galanis (2013) discusses unawareness of theorems using a
set-theoretical approach, provides a property named Awareness Leads to Knowl-
edge, and shows that a knowledge operator in a more expressive state space can
better describe an agent’s knowledge than a knowledge operator in a less ex-
pressive state space. This result means that Galanis’ model allows agents to
disagree on whether opponents know about some event. Li (2009) proposes a
product of the state-space model, called an information structure with unaware-
ness. Heinsalu (2012) discusses the relationship between the work of Fagin and
Halpern (1988) and Li (2009).

2.3 Games with Unawareness

Since Heifetz, Meier, and Schipper (2006), unawareness has been interpreted as
a lack of conception. This notion has been introduced to game theory. Game
theory with unawareness assumes a lack of conception of situations faced by
unaware agents. An unaware player can be unaware of agents, actions, pay-
offs, and types. Pioneering work on games with unawareness includes Feinberg
(2021), Heifetz, Meier, and Schipper (2013b), Halpern and Rêgo(2014), Ozbay
(2007), Grant and Quiggin (2013), and Meier and Schipper (2014).

Their models differ from standard Bayesian games, which usually assume
only payoff uncertainty. While all players share the common prior of types, no
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Alice / Bob L R
U 3, 3 0, 5
B 5, 0 1, 1

Table 2.1: A prisoner’s dilemma game

Alice / Bob L R
U 4, 4 2, 5
B 5, 2 0, 0

Table 2.2: A chicken game

player knows the true value of the other players’ payoff. However, all players
know all actions and all types of players. Let us consider two games, namely, a
prisoner’s dilemma game (depicted in Table 2.1) and a chicken game (depicted
in Table 2.2).
Alice and Bob face a strategic situation. In Bayesian games, although they do
not know which game is true between Table 2.1 and Table 2.2, they know that
the true game is either Table 2.1 or Table 2.2.

By contrast, games with unawareness assume that some player is unaware of
a subset of the action set. For example, both players face a prisoner’s dilemma
game, but Bob does not know that he has an action R; that is, he believes that
he faces the game in Table 2.3.

Expressions exist in Bayesian games that mean that players ignore actions.
Harsanyi (1967) presents the ignorance of actions by assigning extremely low
payoffs to such actions. For example, if Bob does not know R, then −∞ is
assigned to his payoffs in (U,R) and (B,R), as shown in Table 2.4. However,
as pointed out by Meier and Schipper (2014), if Bob is irrational, he might
choose R. Hence, Harsanyi’s representation may be unsuitable for discussing
the ignorance of actions. Models of games with unawareness must be used to
express genuine unawareness.

2.3.1 Mathematical Formulations of Games

Let us focus on simultaneous-move situations and formulate standard Bayesian
games before modeling games with unawareness.

Definition 2.3.1. A standard Bayesian game ΓB = (I, (Ai)i∈I , (Ti)i∈I , (pi)i∈I , (ui)i∈I)
is defined as follows.

• I is the set of players. i ∈ I is one of the players.

• Ai is the set of i’s actions. Let A = ×i∈IAi.

• Ti is the set of i’s types. Let T = ×i∈ITi.

• pi : T → [0, 1] is i’s probability measure of opponents’ types.10

10A common prior assumption is that for any t ∈ T and i, j ∈ I, pi(t) = pj(t).
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Alice / Bob L
U 3, 3
B 5, 0

Table 2.3: Bob is unaware of R.

Alice / Bob L R
U 3, 3 0, −∞
B 5, 0 1, −∞

Table 2.4: Bob does not know R in the Harsanyi-style model.

• ui : A× Ti → R is i’s utility function.

The above definition indicates that the action set is fixed. That is, no agent
can be unaware of some actions.

Next, we define games with unawareness using type-based approaches. In
simultaneous-move games with unawareness, type-based approaches have been
adopted by Meier and Schipper (2014) and Perea (2022). Meier and Schipper
(2014) model Bayesian games with unawareness based on Heifetz, Meier, and
Schipper’s (2013a) probabilistic unawareness structures. By contrast, Perea’s
(2022) formulation of type spaces are similar to Harsanyi’s (1967) type spaces.
Crucial differences between Meier and Schipper (2014) and Perea (2022) exist.
The former assume that players’ types are directly associated with their views
of games, whereas the latter believes that although players’ types are associated
with their beliefs about the views of games, those types cannot be associated
with the views themselves. For simplicity, we focus on the Perea-style model of
games with unawareness.11

Before formulating the Perea-style model, note the following. Consider a
standard finite simultaneous-move game G = (I, A, u). I is a finite set of players
and I−i = I\{i}. A = ×i∈IAi, where Ai is the non-empty finite set of i’s actions
and each element of the set is ai ∈ Ai. Let A−i = ×j∈I−i

Aj . u = (ui)i∈I , where
ui : A → R is i’s utility function. Denote i’s mixed action on Ai by mi ∈ M(Ai),
where M(Ai) is the set of i’s mixed actions, and a mixed action profile on A by
m = (mi)i∈I ∈ ×i∈IM(Ai). We denote i’s expected utility for m ∈ ×i∈IM(Ai)
by Eui(m).

For any standard simultaneous-move game G, let V = ×i∈I(2
Ai \{∅}) be the

set of possible views of G (i.e., the set of a Cartesian product of a non-empty
action subset). Like most previous works, this study assumes that the set of
players is commonly known and that each player’s utility for each action profile
is the same among all possible views. Let v ∈ V be one (possible) view and Av

i

be the set of i’s actions in v. Let Av
−i = ×j∈I−i

Av
j . When a player i is given v,

i is aware of a ∈ v and unaware of a ∈ A \ v. For any v, v′ ∈ V , v is contained
in v′, denoted as v ⊆ v′, if Av

i is a subset of Av′

i for any i ∈ I; that is, Av
i ⊆ Av′

i .

11Sadzik (2021) offers another discussion of Bayesian games with unawareness. He assumes
the existence of a common prior.
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Definition 2.3.2 (Perea 2022). A simultaneous-move games with unawareness
in the Perea style, ΓP = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I), is defined as follows.

• Ti is a finite and non-empty set of i’s type.

• vi : Ti → V is i’s view function. For any i and v ∈ V , let T v
i ⊆ Ti satisfy

vi(ti) ⊆ v for any ti ∈ T v
i . Let T

v
−i = ×j∈I−iT

v
j .

• bi : Ti →
∪

v∈V ∆(T v
−i × Av

−i) with bi(ti) ∈ ∆(T
vi(ti)
−i × A

vi(ti)
−i ) is i’s

belief function. Here, ∆(T v
−i×Av

−i) is the set of probability measures over
T v
−i × Av

−i. Given ti ∈ Ti and j ∈ I−i, at bi(ti), if j’s type is tj , then
vj(tj) ⊆ vi(ti).

• For any (i, ti) ∈ I × Ti, i’s belief bi(ti) only assigns positive probability to

opponent j’s type-action pairs (tj , aj) ∈ T
vi(ti)
j ×A

vj(tj)
j .

Let us call G the objective game (in ΓP ). The objective game can be inter-
preted as the “true game” in ΓP .12 Each player i’s type ti describes their view
about the game and belief about the opponents’ types and their possible choices.
At ti, vi(ti) = v means that i is aware of v and unaware of A\ v, while bi(ti) as-
signs zero or positive probability to each ((tj)j∈I−i

, (aj)j∈I−i
) ∈ T

vi(ti)
−i ×A

vi(ti)
−i .

Then, bi(ti) means that for any opponent j ∈ I−i and a pair (tj , aj) with pos-
itive probability assigning to it, i believes that j’s type (tj)j∈I−i

, that each j’s
view is vj(tj), and that j chooses aj with positive probability.

In Perea’s (2022) framework, each player’s beliefs describe not only the oppo-
nents’ beliefs but also the opponents’ plays. By contrast, simplicity, this disser-
tation supposes that players’ beliefs describe only the opponents’ beliefs but not
the opponents’ choices. Although Chapters 3 and 4 provide non-probabilistic
models, this chapter proposes probabilistic model not Perea version as follows.13

Definition 2.3.3. Given any standard gameG, let ΓU = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I)
be a probabilistic version of a simultaneous-move game with unawareness as fol-
lows: for each i ∈ I,

• Ti is a finite and non-empty set of i’s type.

• vi : Ti → V is i’s view function. For any i and v ∈ V , T v
i ⊆ Ti satisfies

vi(ti) ⊆ v for any ti ∈ T v
i . Let T

v
−i = ×j∈I−i

Tj .

• bi : Ti →
∪

v∈V ∆(T v
−i) with bi(ti) ∈ ∆(T

vi(ti)
−i ) is i’s belief function. Here,

∆(T v
−i) is the set of probability measures over T v

−i, that is a probability
measure over some subset of T−i. For each ti ∈ Ti and t−i = (tj)j∈I−i

∈
T−i, bi(t−i|ti) ≥ 0 implies that vj(tj) ⊆ vi(ti) for all j ∈ I−i, where
bi(t−i|ti) is the probability that bi(ti) is assigned to t−i. Given any ti ∈ Ti

12Although Perea (2022) calls G a base game, this paper uses the term the objective game
in line with the previous literature.

13This formulation is similar to Kobayashi and Sasaki (2021). This non-probabilistic version
is first defined by Sasaki (2022), although he focuses on multicriteria games with unawareness.
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and tj ∈ Tj , denote by bi(tj |ti) the probability that bi(ti) is assigned to
tj .

This thesis uses a non-probabilistic version of simultaneous-move games with
unawareness in Definition 2.3.3.

2.3.2 Solution Concepts

The main solution concepts in games with unawareness have two approaches:
equilibrium notions (Feinberg 2021; C̆opic̆ and Galeotti 2006; Ozbay 2007;
Halpern and Rêgo 2014; Rêgo and Halpern 2012; Grant and Quiggin 2013;
Meier and Schipper 2014; Sasaki 2017; Schipper 2021; Kobayashi and Sasaki
2021) and rationalizability notions (Heifetz, Meier, and Schipper 2013b, 2021;
Perea 2022; Guarino 2020).14

Halpern and Rêgo (2014) generalize a Nash equilibrium in (extensive-form)
games with unawareness and name it a generalized Nash equilibrium. A gener-
alized Nash equilibrium is interpreted as an “equilibrium in beliefs.” However,
it has some problems. Games with unawareness assume unawareness of actions.
Hence, each player’s belief about opponents’ plays should exclude actions that
she or he is unaware of. However, as pointed out by Schipper (2014), if an
opponent implements an action that some players are unaware of, other players
are surprised at the play and they might revise their beliefs about the action
set that opponents possess. Then, an equilibrium before playing might not be
an equilibrium after playing. That is, it is not an “equilibrium in beliefs” in the
next-stage game.

To avoid this issue, previous work has proposed two approaches. The first
is steady-state equilibrium notions, as proposed by Sasaki (2017) and Schipper
(2021). This approach selects only one equilibrium; then, if that equilibrium
is played, it is also played in the next stage. Sasaki (2017) refines the general-
ized Nash equilibrium and proposes a generalized Nash equilibrium with stable
belief hierarchies. Schipper (2021) generalizes the self-confirming equilibrium
provided by Fudenberg and Levine (1993).15 The second set of the two ap-
proaches proposed by previous work is classified as rationalizability approaches,
as exemplified by Heifetz, Meier, and Schipper (2013b, 2021), Perea (2022),
and Guarino (2020). This approach is suitable for games in which beliefs have
not yet been formed. Additionally, since the rationalizable action set is sup-
ports of all mixed strategy equilibria, the difficulty of disproving the probability
distribution in mixed action equilibria can be overcome.

2.3.3 Discovery Process

Suppose that two players, Alice and Bob, face the objective outcome, as shown
in Table 2.1. Assume that Bob is aware of all actions, whereas Alice is unaware

14Chapter 3 discusses solution concepts, a generalized Nash equilibrium, a generalized Nash
equilibrium with stable belief hierarchies, self-confirming equilibrium, rationalizability, and
closedness under rational behavior.

15Both notions can be interpreted as the equilibrium in correct beliefs.
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of Bob’s action R; that is, she believes that a true game is that shown in Table
2.3. If Bob implements R, then Alice observes R. She is surprised at the play
and might revise her view of the game. Then, how does she revise her subjective
view? Schipper (2021) provides one answer. He models a discovery process in
which agents add observed actions into their subjective views. For example, if
Bob plays R, then Alice adds R into her view and replaces her view in Table
2.3 with that in Table 2.1. Schipper (2021) assumes that all players implement
rationalizable strategies and shows that the rationalizable discovery process in
any extensive-form game with unawareness converges to some extensive-form
structure possessing a rationalizable self-confirming equilibrium.

2.3.4 Motivation of PART II

While Schipper (2021) yields insightful results, he only shows convergence to
some structures of games, but not convergence to a self-confirming equilibrium.
In other words, in the rationalizable discovery process, players might not play
a rationalizable self-confirming equilibrium in the converged game. Is there a
model of discovery in which all participants’ plays converge to some solution
concept that is equilibrium notions or set-valued notions? Chapter 3 attempts
to answer this question by modeling myopic discovery processes in which all
players best respond to opponents’ plays in a previous-stage game. The chapter
generalizes the CURB concept,16 which is a set-valued solution concept, before
analyzing the myopic discovery processes. The result shows that the supports
of plays throughout any myopic discovery process converge to some generalized
CURB set called a realizable CURB set.

Schipper (2021) and Chapter 3 of this thesis suppose that all players update
their subjective views of a game by adding into only their opponents’ action
sets. This update is suitable when each player’s action set is not supposed to
be equivalent to opponents’ action sets. However, in coordination games, it is
natural to suppose that players add observed actions of which they are unaware
into not only opponents’ action sets but also their own action sets. In other
words, we must assume that opponents’ actions can be imitated. Chapter 4
examines coordination games with unawareness and supposes that opponents’
actions can be imitated. Before presenting the analysis, this thesis proposes a
concept of successful-coordination equilibrium. The main result in Chapter 4
shows that after only one play, the next-stage game must possess a successful-
coordination equilibrium.

16The concept of CURB is proposed by Basu and Weibull (1991). The notion is a refinement
of rationalizability.

21



2.4 Unawareness in Standard Information Struc-
tures

2.4.1 Motivation of PART III

As described in Section 2.2, when assuming Plausibility, KU Introspection, and
AU Introspection, standard information structures cannot discuss non-trivial
unawareness even if the information structures include non-partitional models.
This is why information structures are no longer used as frequently as in ear-
lier studies. However, non-trivial unawareness can be discussed by relaxing the
assumptions or revising the definitions of knowledge operator in standard infor-
mation structures. For example, Ewerhart (2001) assumes that an agent can
perceive a proper subset of the state space but cannot perceive the complemen-
tary set. The author then formulates the knowledge operator and unawareness
operator in his framework. Fukuda (2021) suggests the possibility of discussing
non-trivial unawareness by relaxing AU Introspection. PART III of this thesis
considers non-trivial unawareness in standard information structures by refor-
mulating the knowledge operator and unawareness operator.

Chapter 5 refers to the idea of Ewerhart (2001) and defines the knowledge
operator that Necessitation and Monotonicity might not hold. In that chap-
ter, unawareness is not trivial. Moreover, Chapter 5 shows that Symmetry and
Negative Introspection must be equivalent under non-trivial unawareness as well
as under trivial unawareness. In other words, under non-trivial unawareness,
Symmetry does not hold. Chapter 6 focuses on Symmetry. Modica and Rusti-
chini (1994, 1999) show that Symmetry and Negative Introspection are equiva-
lent supposing Necessitation, Monotonicity, Truth, and Positive Introspection.
Chen, Ely, and Luo (2012) show that Negative Introspection is equivalent to
AU Introspection and KU Introspection. Moreover, they show that if Neces-
sitation, Monotonicity, Truth, and Positive Introspection hold, then Negative
Introspection, AU Introspection, and Symmetry are equivalent. However, those
studies do not examine the relationships and equivalence between Symmetry
and AU Introspection without Negative Introspection. Chapter 6 shows the
equivalence of the two properties. Excluding only Necessitation, this study
shows that Symmetry is equivalent to AU Introspection under non-trivial un-
awareness. Chapter 7 supposes that the information set for some state may be
empty. Then, this empty information set is interpreted as the agent obtaining
no information. However, for the standard knowledge operator, if a given infor-
mation set is empty, then the agent knows all events. To represent that if an
empty information set is given, then the agent is unaware of every event, this
thesis revises the definition of the knowledge operator. The knowledge operator
in this chapter excludes only Necessitation.
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Part II

Discovery of Actions in
Simultaneous-Move Games

with Unawareness
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Chapter 3

Unawareness of Actions and
the Myopic Discovery
Process in
Simultaneous-Move Games
with Unawareness

3.1 Introduction

This chapter (i) generalizes the concept of CURB (closedness under rational
behavior) to simultaneous-move games with unawareness, (ii) models the myopic
discovery process, and (iii) proves the main theorem that the plays of all agents
converge to some CURB set in a discovered game in which every player does
not need to revise their subjective games further.

In spite of the wide variety in the amount of knowledge among people, a
human community seems to be relatively stable, showing some regularity in be-
havior. However, people do not always choose particular regular actions from
the outset. They often start by recognizing their decision-making or interactive
situation and find a specific solution through trial and error. The main pur-
pose of this chapter is to demonstrate how agents discover and play a specific
solution under a lack of knowledge or understanding using discovery processes
in simultaneous-move games with unawareness.

Studies of unawareness analyze decision-making and interactive situations
assuming a lack of knowledge or understanding. Models of unawareness assume
that agents are unaware of events, choices, opponents’ plays, and so on. In games
with unawareness, the outcomes of players’ implementations might differ from
their predictions of the opponents’ play because they previously did not know
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the actions of some opponents. Therefore, as players observe opponents’ plays,
they may be surprised by the plays and may realize the error of their subjective
views about the game’s situation. Thus, prior beliefs about opponents’ plays
may differ from those reformulated thereafter. Consequently, players’ next-stage
game might change. Schipper (2021) proposes models of discovery processes to
analyze belief revision and replay through the revision process.1 In a discovery
process, players add opponents’ actions of which they are unaware in each stage
game. Schipper (2021) focuses on extensive-form games with unawareness and
shows that a rationalizable discovery process in which every player implements
rationalizable actions converges to some revised game possessing a rationalizable
self-confirming equilibrium.

However, Schipper (2021) does not show that a rationalizable discovery pro-
cess converges to a self-confirming equilibrium. In other words, there is no
model of discovery converging to some solution concept. This study adopts the
idea of discovery processes and discusses the convergence of plays. To do so, we
introduce and generalize the concept of CURB, which is a set-valued solution
concept. The concept of CURB combines the characteristics of an equilibrium
notion and rationalizability notion as follows.

• When players implement actions in some CURB set, they do not have an
incentive to deviate from that CURB set as in an equilibrium. Hence, we
can find a characteristic of stable conventions in the concept of CURB.

• In a CURB set, players can only disconfirm their beliefs upon observing a
pure strategy out of the set, as in the set of rationalizable strategy profiles.

The concept of CURB possessing the above features might be a convergence
of implementations by players who best respond to opponents’ immediately
preceding plays. Indeed, Hurkens (1995) and Young (1998) show that in a
standard game, adaptive plays converge to a minimal CURB set, considering
the possibility of error. Although this paper does not assume the possibility of
error, it shows that myopic plays in which all players best respond to opponents’
preceding plays converge to some CURB set in simultaneous-move games with
unawareness.

However, in some simultaneous-move game with unawareness, some CURB
set of the objective game might not be CURB in some player’s subjective game
because the player is unaware of a subset of the CURB set. Hence, we have to try
to generalize the CURB notion to simultaneous-move games with unawareness.
The point is that each player has several types with different subjective games,

1A discovery process is different from a learning process. Learning is the process of updating
probability distributions. However, as shown by Schipper (2013), unawareness of an event is
different from assigning probability 0 to that event. Any event of which agents are unaware
is not included in the subjective state space. Hence, the agent cannot assign a probability to
the event. If such an event occurs, the subjective state space must be expanded. In games
with unawareness, the set of actions must also be increased when actions of which players
were unaware are played. Therefore, learning cannot be applied to games with unawareness.
Discovery processes are alternative models to learning processes that have been proposed to
avoid this issue.
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and only actions chosen by the “actual” type can be realized. We call the actions
that the actual type of a player can choose “realizable actions.” This study
focuses only on CURB sets on the realizable action set, namely, realizable CURB
sets. The main theorem is that players’ myopic play converges to some realizable
CURB set.2 When myopic players implement actions on some realizable CURB
set and do not deviate from that CURB set, then all players’ actions in the
CURB set are stable.3

First, simultaneous-move games with unawareness are formulated in Section
3.2 based on a type-based approach. Additionally, this section generalizes the
concept of CURB. Section 3.3 models the myopic discovery processes and ana-
lyzes the dynamics of those processes and shows the main result. The discussion
on the relationship between the CURB notion and other solution concepts and
the features of discovery processes is provided in Section 3.4. Section 3.5 con-
siders the block game notion in (simultaneous-move) games with unawareness,
adaptive plays, and the limitations of this work as well as review the related
literature.

3.2 Preliminaries

3.2.1 Simultaneous-Move Games with Unawareness

This section defines simultaneous-move games with unawareness, which are
type-based models, and generalizes the concept of CURB to those games. Let
G = (I, A, u) be a standard finite simultaneous-move game. I is a finite set of
players and I−i = I \ {i}. A = ×i∈IAi, where Ai is the non-empty finite set
of i’s actions, and each element of the set is ai ∈ Ai. Let A−i = ×j∈I−i

Aj .
u = (ui)i∈I , where ui : A → R is i’s utility function. Denote i’s mixed action on
Ai by mi ∈ M(Ai), where M(Ai) is the set of i’s mixed actions, and a mixed
action profile on A by m = (mi)i∈I ∈ ×i∈IM(Ai). We denote i’s expected
utility for m by Eui(m).

First, simultaneous-move games with unawareness is defined.4 For any stan-
dard simultaneous-move game G, let V = ×i∈I(2

Ai \ {∅}) be the set of possible
views of G (i.e., the set of Cartesian products of non-empty action subsets).
Like most previous works, this paper assumes that the set of players is com-
monly known and that each player’s utility for each action profile is the same
among all possible views. Let v ∈ V be a (possible) view or a block5 and Av

i

be the set of i’s actions in v. Let Av
−i = ×j∈I−i

Av
j . Here, when player i is

2Some realizable CURB set might not be CURB in some player’s subjective game. Hence,
we must distinguish whether the set is CURB in all subjective games of all players.

3However, this study does not show that plays converge to specific actions in the CURB
set. Players might choose to alternate actions over the CURB set.

4The definitions are similar to those of Perea (2022), with three major differences. First,
this thesis assumes that the “actual type” of players is given, whereas Perea’s (2022) model
does not. Second, the player types in Perea (2022) include not only the opponents’ subjective
views but also their choices, whereas the types in this study do not. Third, Perea (2022)
considers probabilistic beliefs, whereas this study’s players always have point beliefs.

5A block is a Cartesian product of non-empty subsets of actions.
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given v, i is aware of a ∈ v, and unaware of a ∈ A \ v. For any v, v′ ∈ V , v
is contained in v′, denoted as v ⊆ v′, if Av

i is a subset of Av′

i for any i ∈ I;

that is, Av
i ⊆ Av′

i . Let M(Av
i ) = {mi ∈ M(Ai)|Σai∈Av

i
mi(ai) = 1}. Given any

δ, δ′ ∈
∪

v∈V

∪
X∈2I\{∅} ×i∈XM(Av

i ), δ ≡ δ′ means that δ and δ′ have the same

supports and probabilities. Therefore, δ and δ′ are equivalent.
Let Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) be a simultaneous-move game with un-

awareness that is a non-probabilistic version of Definition 2.3.3 as follows:6 for
each i ∈ I,

• Ti is a finite and non-empty set of i’s types, one of which is their actual
type t∗i .

• vi : Ti → V is i’s view function.

• bi : Ti → T−i is i’s belief function, where T−i = ×j∈I−i
Tj . If bi(ti) =

(tj)j∈I−i
, then, for each j ∈ I−i, vj(tj) must be contained in vi(ti).

Moreover, given any (i, ti) ∈ I × Ti, when bi(ti) = (tj)j∈I−i
, then let

bi(ti)(j) = tj for each j ∈ I−i.

Let us call G an objective game (in Γ). An objective game can be interpreted
as the “true game” in Γ.7 Given the formulation above, i’s type ti describes i’s
view of the game and belief about opponents’ types. At ti, vi(ti) = v means
that i is aware of v and unaware of A \ v, while bi(ti) = (tj)j∈I−i means that
at ti, i believes that the others’ types are (tj)j∈I−i

and that each j’s view is
vj(tj). Given (i, ti) ∈ I × Ti, we denote a sequence of specific types of players
by ti1 , ti2 , . . . , tih , . . . , where tih is a specific type of ih, ti1 = ti, and for any
h ≥ 2, tih = bih−1

(tih−1
)(ih). Let us call such a sequence a sequence of players

and types induced by belief functions. We say that ti leads to tj if and only if
there exists a subsequence ti1 , . . . , tih such that ti1 = ti and tih = tj . This thesis
supposes

∪
i∈I Ti =

∪
i∈I{t∗ih}h≥1;t∗i1

=t∗i
.

The set of i’s realizable actions A
vi(t

∗
i )

i may be a proper subset of i’s full

action set Ai. In such a scenario, they cannot play ai ∈ Ai \ A
vi(t

∗
i )

i . Let

×i∈IA
vi(t

∗
i )

i be the realizable action set, which some players may not perceive.

3.2.2 Generalization of the CURB Concept

We generalize the CURB concept, which is a set-valued concept, to simultaneous-
move games with unawareness. the concept of CURB is proposed by Basu and
Weibull (1991). It has the features of both an equilibrium and a rationalizability
notion. A rationalizable action is a support of all mixed equilibria, whereas a
CURB set is a subset of the supports of such equilibria. In a mixed equilibrium,

6This non-probabilistic formulation is first defined by Sasaki (2022). In his model, G is a
multicriteria game.

7The term “objective game” is used by Halpern and Rêgo (2014). Feinberg (2021) refers to
such a game as the “modeler’s normal-form game” and Perea (2022) calls it the “base game.”
In this context, we follow Halpern and Rêgo (2014).
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players might be unable to disconfirm a specific distribution of mixed actions,
because they only observe a pure action. On the contrary the concept of CURB
makes us free from such considerations.

First, we define generalized strategies. For any i ∈ I, let si : Ti →
∪

ti∈Ti
M(A

vi(ti)
i )

with si(ti) ∈ M(A
vi(ti)
i ) for all ti ∈ Ti. Then, given ti, si(ti) ∈ M(A

vi(ti)
i ) is i’s

local action at ti. We denote i’s generalized strategy by si = (si(ti))ti∈Ti
and

the generalized strategy profile by s = (si)i∈I . In a generalized strategy profile
s, each player i’s actual play is si(t

∗
i ). Let us call mi ∈ M(Ai) with mi ≡ si(t

∗
i )

i’s objective outcome induced from s and the profile m = (mi)i∈I the objective
outcome induced from s.

Second, we generalize the CURB concept proposed by Basu and Weibull
(1991) to simultaneous-move games with unawareness. Basu and Weibull (1991)
define the concept of CURB on a standard game G, whereas this section defines
it on each view. Given any standard simultaneous-move game G, any possible
view v̂ ∈ V , and mixed action profile m ∈ ×i∈IM(Av̂

i ), let

βv̂
i (m−i) = {ai ∈ Ai|ai ∈ supp(mi) such that mi ∈ arg max

x∈M(Av̂
i )
Eui(x,m−i)}

be the set of i’s pure-action best responses to m−i ∈ ×j∈I−i
M(Av̂

j ). For any
v ⊆ v̂, let

βv̂
i (A

v
−i) =

∪
m−i∈×j∈I−i

M(Av̂
j ):∃m′

−i∈×j∈I−i
M(Av

j ), m−i≡m′
−i

βv̂
i (m−i)

be the set of i’s optimal actions under beliefs in ×j∈I−i
M(Av

j ) and βv̂(v) =

×i∈Iβ
v̂
i (A

v
−i).

Then, CURB is defined as follows:

Definition 3.2.1. Given a standard simultaneous-move game G and v̂ ∈ V ,
C ⊆ v̂ is a CURB set on v̂ if βv̂(C) ⊆ C. C is a minimal CURB set on v̂ if C is
CURB on v̂ and every proper subset of C is not CURB on v̂. Moreover, C ⊆ v̂
is fixed under rational behavior (FURB) in v̂ if βv̂(C) = C. C is a minimal
FURB set on v̂ if C is FURB on v̂, and every proper subset of C is not FURB
on v̂.

As pointed out by Basu and Weibull (1991), the rationalizable action set on v̂
is a maximum FURB set on v̂.

Basu and Weibull (1991) show that every standard game has a minimal
CURB set. In the present context, the next proposition holds.

Remark 4 (Basu and Weibull 1991). Given any standard game, every possible
view has a minimal CURB set.

In standard games, we only need to consider a CURB set on the full action
set. However, since a given possible view for each player may be different from
the full action set in games with unawareness, “realizable” CURB sets might
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differ for standard games and games with unawareness. Hence, we must dis-
tinguish the CURB concept between the two models. In the CURB concept
under unawareness, we define a CURB set on the realizable action set, called a
realizable CURB set, as follows.

Definition 3.2.2. Given a simultaneous-move game with unawareness Γ, let

v∗ = ×i∈IA
vi(t

∗
i )

i be the realizable action set. C ∈ V is a realizable CURB set if
C ⊆ v∗ and βv∗

(C) ⊆ C. C is a minimal realizable CURB set if it is CURB on
v∗ and every proper subset of C is not CURB on v∗.

Realizable CURB notions have the following property.

Lemma 3.2.1. Every simultaneous-move game with unawareness Γ has a min-
imal realizable CURB set; it is non-empty.

Proof. Let us construct a game G′ = (N,A′, u′) such that the following assump-
tions hold:

• N is common in Γ.

• A′ = ×i∈IA
vi(t

∗
i )

i .

• For any i ∈ I, u′
i : A

′ → R such that ui(a) = u′
i(a) for any a ∈ A′.

Following Basu and Weibull (1991), there must be a (minimal) CURB set C ⊆
A′ in G′. In other words, there exists a set C such that β′(C) ⊆ C in G′, where

β′(·) is defined in G′. Since β′(C) is defined on A′ = ×i∈IA
vi(t

∗
i )

i , C is a minimal
realizable CURB set.

Given Γ, some realizable CURB set C ∈ V may be C ⊆ vi(ti) for any (i, ti) ∈
I × Ti. However, the set might not be CURB in vi(ti) at some (i, ti). Given
a realizable CURB set, we distinguish between a case in which the realizable
CURB set is CURB in every vi(ti) for any (i, ti) ∈ I × Ti and the case in which
it is not.

Definition 3.2.3. In a simultaneous-move game with unawareness Γ, C ∈ V is
a common (minimal) realizable CURB set if C is a (minimal) realizable CURB
set and for any (i, ti) ∈ I×Ti, C ⊆ vi(ti). C is a common (minimal) CURB set
if for any (i, ti) ∈ I × (Ti \ {t∗i }), C is (minimal) CURB in vi(ti) and for any i,

β
vi(t

∗
i )

i (AC
−i) ⊆ AC

i .

A common realizable CURB set is a subset in each subjective view of each
player, but the set might not be CURB in some view. By contrast, a common
CURB set is CURB in each subjective view other than the player’s actual view8

and each player’s action thereof best responds to some action of opponents in
the CURB set in the player’s actual view.

8An agent’s actual view means the agent’s view at her or his actual type.
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Example 1. Let us consider that two players, Alice (A) and Bob (B), face the
following objective game:9

vO =

A / B b1 b2 b3
a1 3, 3 0, 5 0, 0
a2 5, 0 1, 1 0, 0
a3 0, 0 0, 0 2, 2

.

Here, if Alice in her actual type is unaware of her own action a2, then her view
is as follows:

vA =

A / B b1 b2 b3
a1 3, 3 0, 5 0, 0
a3 0, 0 0, 0 2, 2

,

If Bob in his actual type is unaware of his own action b2, then his view is as
follows:

vB =

A / B b1 b3
a1 3, 3 0, 0
a2 5, 0 0, 0
a3 0, 0 2, 2

.

Let us suppose that Alice believes that Bob’s view is the same as hers; that
is, they both believe that they hold the same view vA. On the contrary, Bob
believes that Alice’s view is the same as his; that is, again, they both believe
that they hold the same view vB .

Here, we formulate this game (with unawareness) Γ = (vO, (TA, TB), (vA, vB), (bA, bB))
as follows:

TA = {t∗A, tA}, and TB = {t∗B , tB};
For t∗A, vA(t

∗
A) = vA, and bA(t

∗
A) = tB ;

For tA, vA(tA) = vB , and bA(tA) = t∗B ;
For t∗B , vB(t

∗
B) = vB , and bB(t

∗
B) = tA; and

For tB , vB(tB) = vA, and bB(tB) = t∗A.

This formulation is depicted in Figure 3.1.
Since Alice’s realizable actions are a1 and a3, while Bob’s realizable actions

are b1 and b3, the realizable action set is shown in the following table.

vR =

A / B b1 b3
a1 3, 3 0, 0
a3 0, 0 2, 2

.

Then, there exists three CURB sets on the realizable action set (i.e., three
realizable CURB sets):

9This example is similar to Example 3 in Schipper (2018). The idea of the similar example
is borrowed from his example.
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Figure 3.1: Example 1

C1 = {a1} × {b1};
C2 = {a3} × {b3}; and
C3 = {a1, a3} × {b1, b3}.

Here, C3 is the maximum FURB set. Since, C1, C2, C3 ⊆ vA and C1, C2, C3 ⊆
vB , every realizable CURB set is a common realizable CURB set. Moreover,
C2 is the only unique common CURB set because it is CURB on vA and vB . □

3.3 Myopic Discovery Process

Standard game models study the convergence to a minimal CURB set using
a learning model or an adaptation model; see, for example, Hurkens (1995)
and Young (1998). Previous studies that adopt standard models show that
when all players best respond to opponents’ preceding plays under assuming the
possibility of error, their plays converge to some minimal CURB set. We can
also predict that in dynamics of simultaneous-move games with unawareness,
all agents’ implementations converge to some generalized CURB set when they
best respond to opponents’ preceding plays. To prove this prediction, this study
models a myopic discovery process in this section.

A discovery process represents an update process through which each player
revises their own belief about the game’s structure and opponents’ plays. This
model was first introduced into games with unawareness by Schipper (2021). He
analyzes a rationalizable discovery process in extensive-form models based on
Heifetz, Meier, and Schipper (2013b). This study models a discovery process in
simultaneous-move games with unawareness based on our framework. Although
the definition, at first glance, may seem different from that of Schipper (2021),
both are essentially the same.
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Definition 3.3.1. Consider a simultaneous-move game with unawareness Γ =
(G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) and a generalized strategy s = (si)i∈I thereof. Then,
Γ′ = (G, (T ′

i )i∈I , (v
′
i)i∈I , (b

′
i)i∈I) is a discovered game associated with (Γ, s) if:

for any (i, ti) ∈ I × Ti, and any sequence of players i1, i2, . . . , ih, . . . , with a
sequence of types induced by belief functions in Γ, ti1 , ti2 , . . . , tih , . . . , where
ti1 = ti, in Γ, there exists t′i ∈ T ′

i and a sequence of types induced by belief
functions in Γ′, t′i1 , t

′
i2
, . . . , t′ih , . . . , where t′i1 = t′i, such that for any h ≥ 1,

v′ih(t
′
ih
) = ×j∈I [A

vih (tih )

j ∪ supp(sj(t
∗
j ))],

where t∗j is j’s actual type in Γ, and

b′ih(t
′
ih
)(ih+1) = t′ih+1

.

Note that Γ′ is a novel simultaneous-move game with unawareness. Moreover,
for some Γ and Γ′, it may be that T ̸⊆ T ′ and T ′ ̸⊆ T , or T ∩ T ′ = ∅.

In a discovered game, a player’s subjective view is the union of her or his pre-
vious view and her or his actual play. Additionally, the immediately preceding
game’s types and belief functions are replaced in the discovered game.

Example 2. Consider the following objective game played by Colin (C) and
David (D):

v0 =

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c2 5, 0 1, 1 1, 0
c3 -1, 0 0, 1 2, 2

;

and two possible views as follows:

v1 =

C / D d2 d3
c1 0, 5 0, -1
c3 0, 1 2, 2

and v2 =

C / D d1 d3
c1 3, 3 0, -1
c2 5, 0 1, 0

.

Let us formulate the game with unawareness Γ = (v0, (TC , TD), (vC , vD), (bC , bD))
as follows:

TC = {t∗C , tC}, and TD = {t∗D, tD};
For t∗C , vC(t

∗
C) = v1, and bC(t

∗
C) = tD;

For tC , vC(tC) = v2, and bC(tC) = t∗D;
For t∗D, vD(t∗D) = v2, and bD(t∗D) = tC ; and
For tD, vD(tD) = v1, and bD(tD) = t∗C .

This formulation is depicted in Figure 3.2.
Here, suppose that Colin and David play a generalized strategy profile:

s = ([sC(t
∗
C) = c1, sC(tC) = c2)], [sD(t∗D) = d1, sD(tD) = d3]).
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Figure 3.2: First stage game in Example 2

The objective outcome is (c1, d1) induced by s.
Let Γ̂ be the discovered game associated with (Γ, s). Then, each player’s

type set in Γ̂ is T̂C = {t̂∗C , t̂C} and T̂D = {t̂∗D, t̂D}, where

b̂C(t̂
∗
C) = t̂D;

b̂C(t̂C) = t̂∗D;

b̂D(t̂∗D) = t̂C ;

b̂D(t̂D) = t̂∗C ;

v̂1 = v̂C(t̂
∗
C) = v̂D(t̂D) =

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c3 -1, 0 0, 1 2, 2

; and

v2 = v̂C(t̂C) = v̂D(t̂∗D).

Then, the discovered game is as depicted in Figure 3.3. □

Next, let us define a discovery process.

Definition 3.3.2. A discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . )
is defined as follows:

• For any λ, Γλ = (G, (Tλ
i )i∈I , (v

λ
i )i∈I , (b

λ
i )i∈I),
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Figure 3.3: The discovered game in Example 2

• s0 = ϕ (i.e., unspecified), while for any λ ≥ 1, sλ is a played generalized
strategy profile in Γλ, and

• For any λ ≥ 2, Γλ is a discovered game associated with (Γλ−1, sλ−1).

Let us call Γ1 the initial game with unawareness (in P ).

Each stage game is a simultaneous-move game with unawareness, and each
discovered game is connected to a pair of the immediately preceding game and
the generalized strategy profile played in it. From Definition 3.3.1, Definition
3.3.2 implicitly assumes perfect recall. If we ignore this assumption, some play-
ers may forget some action at λ even if they are aware of the action at λ− 1.

This study assumes that every player implements a pure action. Meanwhile,
standard game models might assume that every player implements and observes
a mixed action. By contrast, in games with unawareness, it does not seem
appropriate that every player implements and observes a mixed action because
under unawareness, players cannot observe the frequency of their opponents’
actions in each stage of the game during any discovery process.10

In a discovery process, cautious players might carefully revise their beliefs
about the game, opponents’ plays and rationalities, and payoff uncertainty (e.g.,
they might play rationalizable strategies). However, in the real world, agents
must pay a higher cost for revising such beliefs and implementing rationalizable
strategies. If players are myopic, they do not pay a high cost for revising their
beliefs. This section explains the myopic discovery process in which every player
best responds to opponents’ preceding plays.

First, a strategy of myopic play in a discovered game is defined as follows.

10I thank an anonymous referee for pointing this out.

34



Definition 3.3.3. Suppose that a generalized strategy profile s is played in Γ.
Let Γ′ be a discovered game associated with (Γ, s). Then, s′ is a myopic best
response in Γ′ if for any (i, t′i) ∈ I × T ′

i ,

s′i(t
′
i) ∈ arg max

x∈M(A
v′
i
(t′

i
)

i )

Eui(x, (sj(t
∗
j ))j∈I−i),

where for any j ∈ I−i, t
∗
j ∈ Tj is j’s actual type in Γ, and sj(t

∗
j ) is j’s actual

play in s.

Our definition of discovered games, Definition 3.3.1, implicitly assumes that
each agent is aware of the opponents’ payoff after discovery. For Example 2,
when Colin and David observe (c1, d1) in the first-stage game. Then, Colin is
aware of a utility for (c3, d1) after her updating even if the profile is not observed
by her. This is a weird assumption. However, the process of myopic best
responses mitigates this weirdness because players only use their own preferences
after new strategy profiles are added in the discovered game. This is in sharp
contrast with the rationalizable notion.

In a myopic best response, all players best respond to the opponents’ pre-
ceding plays in all subjective views. In Example 2, suppose Colin and David
plays s = ([sC(t

∗
C) = c1, sC(tC) = c2)], [sD(t∗D) = d1, sD(tD) = d3]) in the

initial game. Then, the objective outcome is (c1, d1), and the discovered game
associated with (Γ, s) is Γ̂. Since myopic best responses are the best responses
to the opponents’ immediately preceding plays, in Γ̂, the myopic (pure) best
response is s′ = ([sC(t̂

∗
C) = c1, sC(t̂C) = c2)], [sD(t̂∗D) = d1, sD(t̂D) = d2]).

Second, we provide a myopic discovery process.

Definition 3.3.4. Any discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . )
is called a myopic discovery process if for any λ ≥ 2, sλ is a myopic best response
at λ. A discovery process P is said to converge to Γ if there exists h such that
for any λ ≥ h, Γλ = Γ.

In a myopic discovery process, all agents implement myopic best responses
in every discovered game. A convergence of discovery process means that all
players’ update stops in some discovered game.

From the above formulations, we can show the convergence of a CURB set
as follows.

Theorem 3.3.1. Given any simultaneous-move game with unawareness Γ, ev-
ery myopic discovery process, P , converges to a discovered game, possessing a
common realizable CURB set. Thus, a subset of the supports of all agents’
myopic best responses converges to a common realizable CURB set.

Before proving this theorem, we show the following lemma.

Lemma 3.3.1. Given any standard game G = (I, A, u), any view v ∈ V , and
any mixed action m ∈ ×i∈IM(Ai). Let us define β′, Bk, and Bk as follows:

• β′(·) = βv(·) is an operator giving the set of best responses on v.
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• A sequence of Bk is defined as follows: B1 = β′(supp(m)), B2 = β′(B1),
B3 = β′(B2), . . . , Bk = β′(Bk−1), . . . . For any k, Bk ∈ V .

• For any k, Bk = ×i∈I(
∪

k A
Bk

i ).

Then, the following properties hold.

1. There exists a natural number h such that for any k ≥ h, Bk = Bh.

2. For any k, if Bk+1 ⊆ Bk, then β′(Bk) ⊆ Bk.

Proof. First property obviously holds, because the action set A is finite.
Suppose that for some k, Bk+1 ⊆ Bk, and β′(Bk) ̸⊆ Bk. Then, Bk+1 =

β′(Bk) ̸⊆ Bk. However, since Bk+1 ⊆ Bk, Bk+1 ⊆ Bk should hold. It is a
contradiction. Hence, β′(Bk) ⊆ Bk.

Proof of Theorem 3.3.1. Since we are considering a myopic discovery process,
we only have to focus on the realizable action set. Let us denote the realizable

action set by v∗ = ×i∈IA
vi(t

∗
i )

i . Consider any objective outcome in the initial
game m ∈ ×i∈IM(Av∗

i ). Let β′(·) = βv∗
(·) denote an operator giving the set

of best responses on the realizable action set and we can define a sequence of
βλ as follows: β1(m) = supp(m), β2(m) = β′ ◦ β1(m), β3(m) = β′ ◦ β2(m),

. . . , βλ(m) = β′ ◦ βλ−1(m), . . . . For any λ, let Bλ = ×i∈I(
∪

λ A
βλ(m)
i ) be the

set of observed actions by all players until λ. Then, since the set of all players’
actions is finite, by property 1 of Lemma 3.3.1, there exists a natural number n
such that for any λ ≥ n, Bλ = Bn. That is, updates by myopic plays converge.
Moreover, by property 2 of Lemma 3.3.1, since β′(Bλ) ⊆ Bλ for any λ ≥ n,
the set of observed actions is CURB and the CURB set is a common realizable
CURB set from Definition 3.3.1.

Many intuitively appealing adaptive processes eventually settle to a minimal
CURB set (e.g., Hurkens, 1995; Young, 1998). Theorem 3.3.1 thus adds to
this strand of the literature by highlighting the importance of the CURB set.
However, through this process, it converges to a generalized CURB set and, not
necessarily, a “minimal” one, as in Hurkens (1995) and Young (1998). 11

Example 2 (Continued). Let Γ be an initial game (i.e., a game at λ = 1).
Then, the realizable action set is as follows:

vR =

C / D d1 d3
c1 3, 3 0, -1
c3 -1, 0 2, 2

.

vR has three CURB sets, C1 = {c1} × {d1}, C2 = {c3} × {d3}, and C3 =
{c1, c3} × {d1, d3}.12

11Hurkens (1995) and Young (1998) show the convergence of a minimal CURB set using
the adaptive plays proposed by Young (1993). Section 3.5.2 discusses a discovery process with
adaptive plays.

12C2 is a mutual CURB set which we will define in Definition 3.4.3.
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Let us focus on two generalized strategy profiles:

s1 = ([sC(t
∗
C) = c1, sC(tC) = c2], [sD(t∗D) = d1, sD(tD) = d2]); and

s2 = ([sC(t
∗
C) = c3, sC(tC) = c2], [sD(t∗D) = d3, sD(tD) = d3]).

13

First, this study focuses on the former strategy profile, s1. The objective
outcome is (c1, d1). Since Colin is unaware of d1, he is surprised and revises his
view as follows:

v1
′
=

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c3 -1, 0 0, 1 2, 2

.

Then, at λ = 2, the discovered game is Γ′ = (G, (T ′
C , T

′
D), (v′C , v

′
D), (b′C , b

′
D)),

where

T ′
C = {t2∗C , t2C}, and T ′

D = {t2∗D , t2D};

v′C(t
2∗
C ) = v1

′
, and b′C(t

2∗
C ) = t2D;

v′C(t
2
C) = v2, and b′C(t

2
C) = t2∗D ;

v′D(t2∗D ) = v2, and b′D(t2∗D ) = t2C ; and

v′D(t2D) = v1
′
, and b′D(t2D) = t2∗C .

This formulation is depicted in Figure 3.4. At λ = 2, when they play the myopic
best response, the generalized strategy profile is

s21 = ([s2C(t
2∗
C ) = c1, s

2
C(t

2
C) = c1], [s

2
D(t2∗D ) = d1, s

2
D(t2D) = d1]).

Neither player is surprised at their opponent’s actual play. Hence, the next-
stage game, at λ = 3, is the same as that in Γ′. In Γ′, the objective outcome
induced from the play s21 is (c1, d1). The support of the objective outcome,
{c1} × {d1}, is a subset of a realizable CURB set, C1.

Second, let us focus on the latter generalized strategy profile, s2. The ob-
jective outcome is (c3, d3). Since David is unaware of c3, he is surprised and
revises his view as follows:

v2
′
=

C / D d1 d3
c1 3, 3 0, -1
c2 5, 0 1, 0
c3 -1, 0 2, 2

.

Then, at λ = 2′, Γ′′ = (G, (T ′′
C , T

′′
D), (v′′C , v

′′
D), (b′′C , b

′′
D)), where

13As will be described in section 3.4.1, the two generalized strategy profiles s1 and s2 are
generalized Nash equilibria.
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Figure 3.4: The discovered game Γ′ associated with (Γ, s1)

T ′′
C = {t2′∗C , t2

′

C}, and T ′′
D = {t2′∗D , t2

′

D};

v′′C(t
2′∗
C ) = v1, and b′′C(t

2′∗
C ) = t2

′

D;

v′′C(t
2′

C ) = v2
′
, and b′′C(t

2′

C ) = t2
′∗

D ;

v′′D(t2
′∗

D ) = v2
′
, and b′′D(t2

′∗
D ) = t2

′

C ; and

v′′D(t2
′

D) = v1, and b′′D(t2
′

D) = t2
′∗

C .

This formulation is depicted in Figure 3.5. At λ = 2′, when they play the
myopic best response, the generalized strategy profile is

s2
′

2 = ([s2
′

C (t2
′∗

C ) = c3, s
2′

C (t2
′

C ) = c3], [s
2′

D(t2
′∗

D ) = d3, s
2′

D(t2
′

D) = d3]).

Neither player discovers their opponent’s actual play. Hence, the next-stage
game, at λ = 3′, is the same as that in Γ′′.14 In Γ′′, a support of the objective
outcome, {c3} × {d3}, is a subset of a common CURB set, C2 in Γ′′. □

14Moreover, the generalized strategy profile s2
′

2 is a cognitively stable generalized Nash
equilibrium. See section 3.4.1.
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Figure 3.5: The discovered game Γ′′ associated with (Γ, s2)

3.4 Discovery Process and Other Solution Con-
cepts

3.4.1 Relationships among Other Solution Concepts

This section discusses the relationship between the CURB concept and other
solution concepts such as the generalized Nash equilibrium, the self-confirming
equilibrium, and rationalizability.

(a) Equilibrium Notions

Among the equilibrium concepts so far studies and discussed, this study fo-
cuses on the generalized Nash (Halpern and Rêgo, 2021; Sasaki, 2017) and
self-confirming equilibria (Schipper, 2021; Kobayashi and Sasaki, 2021) in this
study.

Given any generalized strategy profile s, let µ = (µi)i∈I be the belief system

in s, where for any (i, ti) ∈ I × Ti, µi(ti) ∈ M(A
vi(ti)
−i ) and µi = (µi(ti))ti∈Ti

.
This study allows correlated beliefs as well as Schipper (2021) and Kobayashi
and Sasaki (2021). Therefore, the generalized Nash equilibrium is defined as
follows. In a simultaneous-move game with unawareness Γ, s∗ is a generalized
Nash equilibrium if there exists the belief system µ such that for any (i, ti) ∈
I × Ti,

1. s∗i (ti) ∈ argmax
x∈M(A

vi(ti)

i )
Eui(x, µi(ti)), and

2. µi(ti) ≡ (s∗j (bi(ti)(j)))j∈I−i
.

A generalized Nash equilibrium is best interpreted as “an equilibrium in
beliefs” (Halpern and Rêgo, 2014: 50). However, as pointed out by Schipper
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(2014), a generalized Nash equilibrium can consist of wrong beliefs. In that
case, each player would revise their own beliefs about a game’s structure and
opponents’ play, and may not play the same generalized Nash equilibrium.

To avoid this scenario, studies have discussed refinements of the generalized
Nash equilibria in terms of steady-state notions: the stable belief hierarchies
notion, cognitive stability notion, and self-confirming notion.

First, we consider the stable belief hierarchies notion and cognitive stability
notion, as proposed by Sasaki (2017).

• The generalized Nash equilibrium s∗ has stable belief hierarchies if the
belief system µ satisfies that for any (i, ti) ∈ I×Ti, µi(ti) ≡ (s∗j (t

∗
j ))j∈I−i

.

• The generalized Nash equilibrium s∗ is cognitively stable if for any (i, ti) ∈
I × Ti, s

∗
i (ti) ≡ s∗i (t

∗
i ).

The former notion means that every player’s belief about opponents’ plays is
correct, while the latter means that every player’s decision on their arbitrary
type is equivalent to their actual play.

Sasaki (2017) expresses this as follows.

Remark 5 (Sasaki 2017). The generalized strategy profile s∗ is a generalized
Nash equilibrium with stable belief hierarchies if and only if s∗ is a cognitively
stable generalized Nash equilibrium.

In this section, such a generalized Nash equilibrium is called a cognitively
stable generalized Nash equilibrium, which has the following property.15

Remark 6. For any simultaneous-move game with unawareness Γ, let s∗ be a
cognitively stable generalized Nash equilibrium. Then, the objective outcome
m∗ ≡ (s∗i (t

∗
i ))i∈I is a Nash equilibrium on the realizable action set.

Proof. Suppose that s∗ is a cognitively stable generalized Nash equilibrium, and
let m∗ be the objective outcome induced from s∗; that is, for any (i, ti) ∈ I×Ti,

s∗i (ti) ≡ m∗
i . Then, m

∗ ≡ m ∈ ×i∈IM(A
vj(tj)
i ) for any (j, tj) ∈ I × Tj . Assume

that m′ ∈ ×i∈IM(A
vi(t

∗
i )

i ) with m′ ≡ m∗ is not a Nash equilibrium on the
realizable action set. In other words, there exists i ∈ I such that

m∗
i ≡ m′

i ̸∈ arg max
x∈A

vi(t
∗
i
)

i

Eui(x,m
′
−i).

Then, for any (i, ti) ∈ I × Ti,

m∗
i ≡ m′

i ≡ m′′
i ̸∈ arg max

x∈A
vi(ti)

i

Eui(x, µi(ti)),

where µi ≡ m′
−i ≡ m∗

−i. However, since s∗ is a cognitively stable generalized
Nash equilibrium, this is a contradiction. Therefore, m′ is a Nash equilibrium
on the realizable action set.

15A cognitively stable generalized Nash equilibrium can be interpreted as an equilibrium in
correct beliefs.
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The relationship between the concept of CURB and cognitive stability notion
has the following property.

Proposition 3.4.1. Any simultaneous-move game with unawareness possessing
a common CURB set has a cognitively stable generalized Nash equilibrium.

Proof. Assume that any simultaneous-move game with unawareness has a com-
mon CURB set C ∈ V . That is, for any (i, ti) ∈ I × Ti, C is CURB on
vi(ti). Then, following Basu and Weibull (1991), a Nash equilibrium on vi(ti),

m∗ ∈ ×j∈IM(A
vi(ti)
j ) exists, satisfying m∗ ≡ m′ ∈ ×j∈IM(AC

j ). Suppose that

m′ is not a Nash equilibrium on v. Put simply, (i, ai) ∈ I × A
vi(ti)
i exists,

such that Eui(ai,m
′
−i) > Eui(m

′). However, since C is a common CURB set,
this is a contradiction. Therefore, m′ is a Nash equilibrium on C. Thus, since
(i, ti) ∈ I × Ti is arbitrary, m

∗ ≡ m′ is a Nash equilibrium on vi(ti). Hence, s∗

with s∗i (ti) ≡ m∗
i for any i ∈ I and ti ∈ Ti is a cognitively stable generalized

Nash equilibrium.

Proposition 3.4.1 suggests one of the conditions for the existence of a cogni-
tively stable generalized Nash equilibrium in any game with unawareness. The
contraposition is that if no cognitively stable generalized Nash equilibrium ex-
ists, then no common CURB set exists. This means that if some players cannot
perceive any CURB set in the realizable action set, then they are surprised about
an actual play because each player’s belief about opponents’ plays is wrong. The
proposition suggests a condition for all players’ stable plays; that is, rational
players do not deviate from a specific play.16

The following corollary is obvious from the above proof of Proposition 3.4.1.

Corollary 3.4.1. Given any simultaneous-move game with unawareness, a
common CURB set includes the support of some cognitively stable generalized
Nash equilibrium.

Second, let us consider the self-confirming equilibrium proposed by Fu-
denberg and Levine (1993). Schipper (2021) generalizes a rationalizable self-
confirming equilibrium to include extensive-form games with unawareness. Kobayashi
and Sasaki (2021) focus on simultaneous-move games with unawareness and dis-
cuss a rationalizable self-confirming equilibrium using epistemic models. The
present study discusses the k-self-confirming equilibrium, which means that all
players in the k-th order mutually believe that all their beliefs are correct.
The following definition of self-confirming equilibria is based on Kobayashi and
Sasaki (2021). s∗ is 0-self-confirming equilibrium if for any i ∈ I, s∗i (t

∗
i ) ∈

argmax
x∈M(A

vi(t
∗
i
)

i )
Eui(x, (s

∗
j (t

∗
j ))j∈I−i). s∗ is a k-self-confirming equilibrium

(k ≥ 1) if there exists the belief system µ such that for any h = 1, . . . , k and
ih ∈ I, where ti1 = t∗i ,

1. s∗ih(tih) ∈ argmax
x∈M(A

vih
(tih

)

ih
)
Euih(x, µih(tih)), and

2. µih(tih) ≡ (s∗j (t
∗
j ))j∈I−ih

.
16I thank Masakazu Fukuzumi for this suggestion.
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(b) Rationalizable Notions

Rationalizability is proposed by Bernheim (1984) and Pearce (1984). Heifetz,
Meier, and Schipper (2013b) generalize Pearce’s extensive-form rationalizability
to games with unawareness. This notion is typically used to overcome the issue
of equilibrium notions.

As pointed out by Basu andWeibull (1991), because the rationalizable action
set is the maximum FURB set, we can use β to define rationalizability under
unawareness. In any simultaneous-move game with unawareness Γ, let t∗ =
(t∗i )i∈I be the actual type profile. Given any type profile t = (ti)i∈I ∈ ×i∈ITi,

let R(t) = ×i∈IRi(ti), where Ri(ti) ⊆ A
vi(ti)
i , and let R−i(t−i) = ×j∈I−i

Rj(tj).
Then, the rationalizability under unawareness is defined as follows.

Definition 3.4.1. In a simultaneous-move game with unawareness Γ, R =
(R(t∗), (R(ti, bi(ti)))(i,ti)∈I×Ti

) is the rationalizable strategy if and only if for
any (i, ti) ∈ I × Ti,

Ri(ti) = β
vi(ti)
i (R−i(t−i)).

For each (i, ti) ∈ I × Ti, Ri(ti) means that the set of best responses to the
opponents’ rationalizable actions in the i’s belief about the opponents’ views.
Let us call Ri(ti), i’s rationalizable action set at ti, and R(t) is the rationalizable
action set at t.

Then, the following remark represents a relationship between rationalizabil-
ity and a FURB notion.

Remark 7. In a simultaneous-move game with unawareness Γ, for any (i, ti) ∈
I × Ti, if bi(ti)(j) leads to ti for any j ∈ I−i, then βvi(ti)(R(ti, bi(ti))) =
R(ti, bi(ti)).

Proof. In Γ, given (i, ti) ∈ I × Ti, and suppose that bi(ti)(j) leads to ti for
any j ∈ I−i, then for any j ∈ I−i, vi(ti) = vj(bi(ti)(j)). By the definition of

β, βvi(ti)(R(ti, bi(ti))) = β
vi(ti)
i (R−i(bi(ti))) ×j∈I−i

β
vi(ti)
j (R−j(bj(bi(ti)(j)))).

Then, by Definition 3.4.1, β
vi(ti)
i (R−i(bi(ti))) = Ri(ti), and for any j ∈ I−i,

β
vi(ti)
j (R−j(bj(bi(ti)(j)))) = Rj(bi(ti)(j)). Since Ri(ti) ×j∈I−i Rj(bi(ti)(j)),

βvi(ti)(R(ti, bi(ti))) = R(ti, bi(ti)).

Kobayashi and Sasaki (2021) propose a k-rationalizable self-confirming equi-
librium as follows. In a simultaneous-move game with unawareness Γ, s∗ is a 0-
rationalizable self-confirming equilibrium if it is a 0-self-confirming equilibrium.
s∗ is a 1-rationalizable self-confirming equilibrium if it is a 1-self-confirming equi-
librium, and supp[(s∗i (t

∗
i ))i∈I ] ⊆ R(t∗). s∗ is a k-rationalizable self-confirming

equilibrium (k ≥ 2) if it is a k-self-confirming equilibrium, supp[(s∗i (t
∗
i ))i∈I ] ⊆

R(t∗), and for any i ∈ I, and h = 1, . . . , k, supp[(s∗i (t
∗
i ))i∈I ] ⊆ R(tih , bih(tih)),

where ti1 = t∗i . Kobayashi and Sasaki (2021) provide the following remark.

Remark 8 (Kobayashi and Sasaki 2021). s∗ is an∞-rationalizable self-confirming
equilibrium if and only if s∗ is a cognitively stable generalized Nash equilibrium.
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(c) Example

This section compares the CURB concept with other solution concepts.

Example 1 (Continued). Let us reconsider Example 1. First, this thesis con-
siders the four generalized (pure) Nash equilibria in the game:

s1 = ([sA(t
∗
A) = a1, sA(tA) = a2], [sB(t

∗
B) = b1, sB(tB) = b2]);

s2 = ([sA(t
∗
A) = a1, sA(tA) = a3], [sB(t

∗
B) = b3, sB(tB) = b2]);

s3 = ([sA(t
∗
A) = a3, sA(tA) = a2], [sB(t

∗
B) = b1, sB(tB) = b3]); and

s4 = ([sA(t
∗
A) = a3, sA(tA) = a3], [sB(t

∗
B) = b3, sB(tB) = b3]).

Then, the cognitively stable generalized Nash equilibrium is only s4.
Second, we consider the self-confirming (pure) equilibria in the game. A

0-self-confirming equilibrium and ∞-self-confirming equilibrium exist. The 0-
self-confirming equilibrium is only

s5 = ([sA(t
∗
A) = a1, sA(tA) = a1], [sB(t

∗
B) = b1, sB(tB) = b1]).

The 0-self-confirming equilibrium is not the k-self-confirming equilibrium (k ≥
1) because at k, Alice’s a1 does not best respond to Bob’s b1, while Bob’s b1
does not respond best to Alice’s a1.

By contrast, s4 is the only ∞-self-confirming equilibrium. When compar-
ing a cognitively stable generalized Nash equilibrium with an ∞-self-confirming
equilibrium, both these equilibria are the same.

Third, we consider rationalizability. Given three tuples, t1 = (t∗A, t
∗
B), t2 =

(t∗A, tB), and t3 = (tA, t
∗
B), the rationalizable strategy is R = (R(t1), R(t2), R(t3)),

and the pure rationalizable actions at t2 and t3 are as follows:

R(t2) = {a1, a3} × {b2, b3}; and
R(t3) = {a2, a3} × {b1, b3}.

Then, at t1,

R(t1) = β
vi(t

∗
A)

A ({b2, b3})× β
vi(t

∗
B)

B ({a2, a3}) = {a1, a3} × {b1, b3}.

Here, it is obvious that the 0-self-confirming equilibrium s5 is a 0-rationalizable
self-confirming equilibrium and that the ∞-self-confirming equilibrium s4 is an
∞-rationalizable self-confirming equilibrium.

Let us compare the CURB concept with the other notions in this exam-
ple. First, we compare the CURB notion with the equilibrium notion. From
Proposition 3.4.1, any common CURB set includes a support for the objec-
tive outcome, induced from the cognitively stable generalized Nash equilibrium.
Since the ∞-rationalizable self-confirming equilibrium and cognitively stable
generalized Nash equilibrium are the same, C2 includes a support for the ob-
jective outcome (a3, b3), induced from the cognitively stable generalized Nash
equilibrium and ∞-rationalizable self-confirming equilibrium, s4. By contrast,
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a common realizable CURB set C1, which is not a common CURB set, is a
support for the objective outcome (a1, b1), induced from the 0-rationalizable
self-confirming equilibrium s5. At C1 or s5, each player is rational but their
first-order belief is irrational play.17 Moreover, they might be certain about the
opponent’s irrationality.

Next, we consider the relationship with rationalizability. Given a type t1,
R(t1) = C3. As shown by Basu and Weibull (1991), a rationalizable action set
is equivalent to a maximum FURB set. By contrast, two minimal CURB sets,
C1 and C2, are subsets of the rationalizable action set; that is, any minimal
CURB set is a refined notion of rationalizability. □

As shown in the above example, a realizable CURB concept is related to
other solution concepts; that is, the CURB concept has similar characterizations
to the other concepts.

3.4.2 Discovery and Equilibrium Notions

This section discusses the relationships between discovery processes and equi-
librium notions.

(a) Rationalizable Discovery Process and Self-Confirming Equilib-
rium

Schipper (2021) models rationalizable discovery processes in which all players
implement rationalizable actions in each stage of the game. This thesis formu-
lates rationalizable discovery processes based on Perea (2022) as follows.

Definition 3.4.2. A discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . )
is a rationalizable discovery process if for any λ, Rλ is the set of rationalizable
strategies.

Schipper (2021) models a rationalizable discovery process based on Heifetz,
Meier, and Schipper (2013b) and shows that every rationalizable discovery
process (in any extensive-form game with unawareness) converges to a self-
confirming game in which every rational player does not need further revision,
and possesses some (0-)rationalizable self-confirming equilibrium.

However, this study’s framework provides a result different from Schipper’s
(2021).

Example 3. Let us consider two agents, Elena and Filip. We assume they face
a zero-sum game:

v =
E / F f1 f2
e1 1, -1 -1, 1
e2 -1, 1 1, -1

.

Here, suppose that in a zero-sum game with unawareness, there exists a view
as shown below:

17Rational play means that players maximize their utility.
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Figure 3.6: Example 3

v′ =
E / F f1 f2
e1 1, -1 -1, 1

;

TE = {t∗E , tE , t′E} and TF = {t∗F , tF };
For t∗E , vE(t

∗
E) = v and bE(t

∗
E) = tF ;

For tE , vE(tE) = v′ and bE(tE) = t∗F ;
For t′E , vE(t

′
E) = v′ and bE(t

′
E) = t∗F ;

For t∗F , vF (t
∗
F ) = v′ and bF (t

∗
F ) = t′E ; and

For tF , vF (tF ) = v and bF (tF ) = tE .

This formulation is depicted in Figure 3.6.
Then, a strategy profile that is uniquely rationalizable is

s = ([sE(t
∗
E) = e1, sE(tE) = e2, sE(t

′
E) = e1], [sF (t

∗
F ) = f2, sF (tF ) = f1]);

that is, the actual play is (e1, f2). In the play, Filip’s belief is correct, whereas
Elena’s belief is wrong because she predicts that Filip plays f1. However, both
players are aware of the actual play; that is, no discoveries occur. Hence, in
the next-stage game, they play the same s. Then, there is no n-rationalizable
self-confirming equilibrium for any natural number n (i.e., no 0-rationalizable
self-confirming equilibrium exists) because in Elena’s actual subjective view v,
a unique self-confirming equilibrium is that both players assign probability 1

2
to each of their actions, while in Filip’s actual subjective view v′, a unique
self-confirming equilibrium is (e1, f2).

By contrast, myopic discovery processes avoid the above crucial issue in
Harsanyi-Perea style. If an objective outcome (e1, f2) is observed in the first
stage game, in next-stage game, Elena best responds to Filip’s previous play
f2. Then, she choose e2. Hence, in the second-stage game, Filip observes the
novel action of Elena e2 and revises his subjective view. Then, both players’
subjective views are replaced with v in the third-stage game. □

(b) Myopic Discovery Process and Cognitive Stability

This section considers cognitively stable generalized Nash equilibria in myopic
discovery processes. First, this study provides the mutual CURB concept that
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each player’s actual view has the same CURB set.

Definition 3.4.3. In any simultaneous-move game with unawareness Γ, C ∈ V
is a mutual CURB set if for any i ∈ I, C is a non-empty CURB set in vi(t

∗
i ).

A mutual CURB concept has the following property.

Lemma 3.4.1. Every mutual CURB set is a realizable CURB set.

Proof. Given any mutual CURB set, C ∈ V , C ⊆ vi(t
∗
i ) for any i ∈ I. Suppose

that C is not a realizable CURB set; that is, there exists some i such that
β∗
i (A

C
−i) ̸⊆ AC

i in the realizable action set. Since the realizable action set is

defined by ×i∈IA
vi(t

∗
i )

i , β
vi(t

∗
i )

i (AC
−i) ̸⊆ AC

i . This contradicts that C is a mutual
CURB set. Hence, C is a realizable CURB set.

Lemma 3.4.2. In a simultaneous-move game with unawareness, if a mutual
CURB set is present in every view, then a common CURB set exists.

Proof. Suppose that the mutual CURB set C is present in every view in a
simultaneous-move game with unawareness. Suppose that for some (i, ti) ∈
I × Ti, C is not CURB in vi(ti). Since for some j ∈ I vi(ti) ⊆ vj(t

∗
j ), where

t∗j is j’s actual type and t∗j leads to ti, C is not CURB in vi(t
∗
i ). This is a

contradiction. Therefore, the mutual CURB set is CURB in every view in the
game. Then, from Lemma 3.4.1, since the mutual CURB set is a realizable
CURB set, the set is a common CURB set.

When relating the mutual CURB concept to steady-state equilibrium no-
tions, this paper shows the condition for converging to a discovered game pos-
sessing some steady-state equilibrium. Moreover, we can show the condition for
converging a game such that every equilibrium is a steady-state equilibrium.
This is proven in the following theorems.

Proposition 3.4.2. In any simultaneous-move game with unawareness, if there
exists a mutual CURB set such that the CURB set is CURB in every view in
the game with unawareness, then there exists a cognitively stable generalized
Nash equilibrium.

Proof. Suppose that some mutual CURB set is present in every view in a
simultaneous-move game with unawareness. From Lemma 3.4.2, the mutual
CURB set is a common CURB set. Then, from Proposition 3.4.1, a cognitively
stable generalized Nash equilibrium exists.

Theorem 3.4.1. Suppose a simultaneous-move game with unawareness Γ has a
mutual CURB set. Then, a myopic discovery process converging to a discovered
game possessing a cognitively stable generalized Nash equilibrium exists.

Proof. Suppose that a mutual CURB set C in Γ exists. From Lemma 3.4.1, C
is a realizable CURB set. From Theorem 3.3.1, a myopic discovery process P
converging to C exists. Since C is a common realizable CURB set from Lemma
3.4.2, from Proposition 3.4.2, a cognitively stable generalized Nash equilibrium
exists.
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Corollary 3.4.2. Suppose that every realizable CURB set is a mutual CURB
set in Γ. Then, every myopic discovery process converges to a discovered game
possessing a cognitively stable generalized Nash equilibrium.

The process considered herein starts from an arbitrary generalized strategy
profile. The convergence result holds even if the starting point is not necessarily
a generalized Nash equilibrium.18

Next, let us consider the relationship with a Nash equilibrium in an objective
game. Sasaki (2017) discusses the relationships between a cognitively stable
generalized Nash equilibrium and Nash equilibrium in an objective game in
simultaneous-move games with unawareness. Sasaki (2017) shows the following
proposition.

Proposition 3.4.3 (Sasaki 2017). Given any simultaneous-move game with

unawareness Γ, for any i ∈ I, if A
vi(t

∗
i )

i = Ai, where t∗i is i’s actual type,
then every cognitively stable generalized Nash equilibrium induces an objective
outcome that is a Nash equilibrium in an objective game G.

Proof. Given any simultaneous-move game with unawareness Γ, suppose that for

any i ∈ I, A
vi(t

∗
i )

i = Ai, where t
∗
i is i’s actual type. Suppose that the generalized

strategy profile s∗ is a cognitively stable generalized Nash equilibrium. From
Remark 6, the objective outcome induced from a cognitively stable generalized
Nash equilibrium is a Nash equilibrium of the realizable action set. Since every
player is aware of their own actions in the objective game, the realizable action
set is equivalent to the action set of the objective game. Hence, since every Nash
equilibrium of the realizable action set is a Nash equilibrium in the objective
game, the support of the objective outcome, induced by a cognitively stable
generalized Nash equilibrium, is a Nash equilibrium in the objective game.

Combining Theorem 3.3.1 and Proposition 3.4.3, we can show the following
theorem.

Theorem 3.4.2. In any simultaneous-move game with unawareness Γ, for any

i ∈ I, if A
vi(t

∗
i )

i = Ai, where t∗i is i’s actual type, then any myopic discovery
process converges to a discovered game such that any cognitively stable general-
ized Nash equilibrium induces an objective outcome that is a Nash equilibrium
in an objective game G.

18Tada (2018) discusses a revision process in which players play a generalized Nash equilib-
rium in each round and conjectures that the process converges to a cognitively stable general-
ized Nash equilibrium, if there is any. However, the conjecture wrongly assumes that players
play a generalized Nash equilibrium in each round. This study yields a result in the spirit of
that paper, but under the condition in which players play their myopic best responses.
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3.5 Discussion

3.5.1 A CURB Block Game and Economy of Cognitive
Costs

In our model, some myopic discovery processes do not converge to a discovered
game possessing a common CURB set. Some players may be certain of their
opponents’ irrationality. However, using the block game notion (e.g., Myerson
and Weibull, 2015) of a smaller game than each player’s subjective game, players
can reconstruct a block game possessing a common CURB set from a discovered
game to which a myopic discovery process converges, which then allows them
to ascertain each other’s rationality.

Let us consider the case in which a discovered game possesses a realizable
CURB set. When all players implement a generalized strategy profile so that
the objective outcome is in the realizable CURB set, if they are rational, they
do not perform actions outside the realizable CURB set. Thus, all the actions
in the complementary set of the realizable CURB set are redundant for them.
Therefore, each player excludes the actions in the complementary set to econ-
omize the cognitive costs of the true structure of the game. If they economize
those cognitive costs, their subjective games are the smallest games in which the
action set is a common realizable CURB set. The following definition represents
the “economy of knowledge” about a game’s structure.

Definition 3.5.1. Given any game with unawareness, Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I),
and any common realizable CURB set, C ∈ V in Γ, Γ′ = (G, (T ′

i )i∈I , (v
′
i)i∈I , (b

′
i)i∈I)

is an economized game by C in Γ if for any (i, ti) ∈ I × Ti, there exists t′i ∈ T ′
i

so that

• v′i(t
′
i) = C; and

• For any (j, tj) ∈ I−i × Tj with bj(tj)(j) = tj , there exists t′j ∈ T ′
j so that

b′j(t
′
j)(j) = t′j , and v′j(t

′
j) = C.

Then, GC = (I, C, uC) is called a realizable CURB block game with C, where
uC = (ui)

C
I∈I , and uC

i : C → R so that for any a ∈ C, uC
i (a) = ui(a).

In Example 2, when Colin and David play s1 in the initial game and s21 in
the next stage of the game, since the objective outcome induced by s21 is (c1, d1),

the realizable CURB block game with C1 is GC1

= (I, C1, (uC1

C , uC1

D )). Thus,

in the economized game, ΓC1

, all subjective games are GC1

.
The following remark is obvious.

Remark 9. Given any Γ, and let C is a common realizable CURB set in Γ.
Then, an economized game ΓC made by C has a cognitively stable generalized
Nash equilibrium.

In ΓC1

in Example 2, there exists a unique generalized Nash equilibrium
such that Colin and David play c1 and d1 in each subjective game, respectively.
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Thus, from the definition of cognitive stability, the generalized Nash equilibrium
is cognitively stable.

When Γ is a discovered game to which a myopic discovery process converges,
every subjective game is a realizable CURB block game with a CURB set such
that supports for players’ actual actions converge in the process. Hence, a
rationalizable discovery process is a search process for larger subjective games,
whereas this paper’s myopic discovery process is a search process for common,
smaller subjective games (i.e., realizable CURB block games).

3.5.2 Adaptive Play

This study considers myopic agents and myopic play. In the model, each player
best responds to opponents’ actual plays in the previous stage of the game.
However, a bounded rational agent may be unable to provide their best response
to opponents’ strategies. Young (1993) analyzes adaptive play models that do
not allow participants to exactly play their best responses to previous plays.
This subsection discusses a generalization of adaptive plays to simultaneous-
move games with unawareness.

First, we define adaptive plays in a discovered game.

Definition 3.5.2. Let Γ′ be a discovered game from Γ and ε > 0 be an error
rate such that ε is sufficiently small. The generalized strategy profile s′ is an
adaptive play in Γ′ if for any (i, t′i) ∈ I × Ti, with probability 1 − ε, a player i
chooses the best response to i’s beliefs µ′

i(t
′
i) ≡ (s∗j (t

∗
j ))j∈I−i

such that s∗ is a
generalized strategy profile played in Γ, and t∗j is j’s actual type in Γ; further,

with probability ε, i chooses an action in A
v′
i(t

′
i)

i at random.

The following discovery process with an adaptive play based on Definition
3.5.2 is proposed.

Definition 3.5.3. Any discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . )
is an adaptive discovery process if for any λ ≥ 2, sλ is an adaptive play profile
at λ.

In a game without unawareness, Hurkens (1995) and Young (1998) use an
adaptive play notion and show the convergence to a minimal CURB set. The
proof of Theorem 3.3.1 focuses on the realizable action set. Additionally, we
can conjecture the following.

Conjecture 1. Given any simultaneous-move game with unawareness, in any
adaptive play, the supports of the objective outcome, induced by adaptive plays,
converge to a common minimal realizable CURB set.

Informal proof. Given any simultaneous-move game with unawareness and any
adaptive discovery process, we must focus on the realizable action set as per
Theorem 3.3.1. Based on Hurkens (1995) and Young (1998), adaptive plays
converge to a minimal CURB set of the realizable action set. Then, the set is a
common minimal realizable CURB set.19

19The exact proofs are beyond the capabilities of the author and are omitted.
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3.5.3 Limitations

This research has the following limitations:

1. In a game with unawareness, in a generalized Nash equilibrium or under a
rationalizable strategy, each player may be convinced that they are play-
ing a higher-order subjective game or that their opponents are unaware
of certain actions. However, in certain plays, each player may discover
actions of which they were unaware, which may confirm that their subjec-
tive game was wrong. Here, the question of why the player was convinced
that their higher-order subjective game was correct in the initial game
with unawareness arises. In Example 2, two cognitively unstable general-
ized Nash equilibria, s1 and s2, exist in the initial game. This study does
not provide a suitable answer for which equilibrium Colin and David play
when they both implement a generalized Nash equilibrium play.

This study’s discovery process and those of previous work explain how to
build each player’s subjective game under unawareness; however, they do
not explain how to do so in an initial game with unawareness. This issue
provides a direction for future research on games with unawareness.

2. While each player pays attention to opponents’ subjective games in the
initial game with unawareness, they do not pay attention to them in a
discovered game. This thesis does not provide a suitable answer to the
question why each player ceases to pay attention.

3. Models of discovery processes suppose that each player recognizes oppo-
nents’ plays and actions of which they were previously unaware. However,
the assumptions may be too strict. For example, most preschool-aged
children would be unable to understand conversations among adults, or,
at least, would not be able to have the same conversations. Further re-
search could aim to relax this assumption and reconstruct the models of
discovery processes.

4. Section 3.4 shows that Schipper’s (2021) result might not hold in this
study’s framework. Specifically, in this model, some rationalizable dis-
covery process might not converge to any (simultaneous-move) game with
unawareness possessing a self-confirming equilibrium. This chapter thus
proposes the following open question: what are the conditions for satisfy-
ing the result of Schipper (2021) in the framework of this study?

3.5.4 Related Literature

Growing Awareness

Studying discovery processes entails analyzing growing awareness or updating
awareness. Karni and Vierø (2013, 2017) and Vierø (2021) discuss decision
making under unawareness and propose a reverse Bayesian model. As pointed
out by Schipper (2013), an agent unaware of an event differs from an agent who
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assigns probability 0 to that event. This means that an unaware agent cannot
assign a probability to an event of which they are unaware. Given such an event,
the models presented by Karni and Vierø (2013, 2017) and Vierø (2021) discuss
the way to revise such agents’ beliefs.

Galanis and Kotronis (2021) analyzes a model where all agents announce
prices to each other and generalize the results of Geanakoplos and Polemarchakis
(1982) and Ostrovsky (2012). They suppose that updating awareness is minimal
and that a true state is never excluded. Traders eventually agree on the price of
the security. Moreover, if the security is separable, traders agree on the correct
price and aggregate their information.

CURB Notions

Basu and Weibull (1991) were the first to introduce CURB notions into stan-
dard game models. CURB notions in dynamic models are discussed by Hurkens
(1995), Young (1998), and Grandjean, Mauleon, and Vannetelbosch (2017).
Voorneveld, Kets, and Norde (2005) discuss the axiom and properties of mini-
mal CURB sets. Pruzhansky (2003) shows that in extensive games with perfect
information and a finite horizon, only one minimal CURB set exists. Benisch,
Davis, and Sandholm (2010) provide algorithms for computing CURB sets.
Asheim, Voorneveld, and Weibull (2016) discuss the epistemic robustness of
CURB in epistemic models.
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Chapter 4

Coordination and Imitation
under Unawareness

4.1 Introduction

This chapter (i) focuses on coordination games with unawareness (specifically,
symmetrical games with unawareness), (ii) introduces a successful-coordination
equilibrium to coordination games with unawareness, and (iii) models a discov-
ered game with imitation and relates it to a successful-coordination equilibrium.

A game with unawareness is a model in which players are unaware of the
structures of the game, especially their own actions. Since players might be
unaware of their own actions or the opponents’ actions, they might make incor-
rect beliefs and they might not best respond to the opponents’ actual plays. If
unaware players observe opponents’ plays that they are unaware of, then they
might notice their unawareness and attempt to revise their subjective games
by adding their opponents’ actions to their action sets. Schipper (2021) and
Chapter 3 discuss such situations, and propose a model of discovery and up-
date named a discovery process. A model of discovery process assumes that if
unnoticed actions that players are unaware of is played, then in the next stage
game, players revise their subjective games by adding the unnoticed actions to
their action sets, renew beliefs about the opponents’ play, and best respond to
them. Schipper (2021) models discovery processes in extensive-form games with
unawareness based on Heifetz, Meier, and Schipper (2013b), and shows that if
all players choose rationalizable actions, then their update converges to some
subjective games possessing a rationalizable self-confirming equilibrium that
all players are aware of. Chapter 3 models discovery processes in simultaneous-
move games with unawareness in a simplified version of Perea (2022), and shows
that if all players best respond to their choices in a previous-stage game, then
their update converges to some subjective games possessing a common realizable
CURB set that is CURB in realizable action set, and supports of their plays is
a subset of the CURB set in the subjective games.
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The above studies deal with the discovery processes of general games. How-
ever, one issue arises when considering coordination games under unawareness.
Let us consider the following example. In a coordination game, there are two
players, Alice and Bob, and two actions, X and Y . Here, suppose that Alice
can play only X and Bob can play only Y . Moreover, suppose that both players
commonly believe this, that is, their beliefs are (X,Y ). For the belief, Alice’s
best response is X, and Bob’s best response is Y . Hence, they play (X,Y ).
That is, (X,Y ) is an equilibrium because it is their correct beliefs and their best
responses to the beliefs. Since their beliefs are correct, they are convinced of
their coordination failure in the equilibrium. In this case, there is no discovery,
because Alice is aware that Bob has Y and Bob is aware that Alice has X.
Thus, their coordination failures cannot be resolved using models of discovery
processes based on Schipper (2021) or Chapter 3. Suppose now the labeling
is such that, for the coordination to be successful, both have to play actions
of the same labeling. In Alice and Bob’s example, for the coordination to be
successful, Alice must be able to choose Y or Bob must be able to choose X.
That is, each other must imitate the opponent’s action.

This study investigates the case in which players observe their opponents’
action that they could not play and supposes that they can imitate the action
of their opponents. Games are constructed based on the above assumptions
and let imitative discovered games be the reconstructed games. By assuming
imitation, we can consider successful coordination under unawareness.

However, to consider successful coordination under unawareness, we must
reconsider equilibrium concepts. As shown in the above example, in some equi-
librium coordination might not be successful. Hence, this thesis introduces a
novel equilibrium concept, named the successful-coordination equilibrium. The
successful-coordination equilibrium, a specific solution concept in coordination
games with unawareness, deals only with successful coordination. The solution
concept is characterized to show that a successful-coordination equilibrium must
exist in any imitative discovered game.

Section 4.2 models a (pure) coordination game with unawareness. Next, Sec-
tion 4.3 introduces a successful-coordination equilibrium to coordination games
with unawareness and characterizes it. Section 4.4 models imitative discov-
ered games and shows that any imitative discovered game has a successful-
coordination equilibrium. Additionally, this study introduces a block game no-
tion to coordination games with unawareness. In any imitative discovered game,
players can remove the redundant actions that were not played to form a co-
ordination block game. Finally, Section 4.5 discusses the relationship between
successful coordination and cognitively stable generalized Nash equilibria. A
cognitively stable generalized Nash equilibrium, which is a generalization of
a Nash equilibrium, is interpreted as the equilibrium with the correct beliefs.
However, in some coordination games with unawareness, the cognitively stable
generalized Nash equilibrium can induce coordination failure. This shows that
the correctness of beliefs differs from the accuracy of subjective games. Sec-
tion 4.5 also discusses the assumptions of discoveries and imitations, which are
specific to unawareness, and examines these two assumptions in more details.
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4.2 Preliminaries

This section formulates a coordination game with unawareness, which is a more
strictly symmetrical game with unawareness. Let G = (I, A, u) be a standard
n-person pure coordination game.1 I = {1, . . . , n} is a finite set of players and
I−i = I \ {i}. A = ×i∈IAi, where Ai is a non-empty finite set of actions of i
and A1 = · · · = An. Let ai ∈ Ai be i’s action. u = (ui)i∈I , where ui : A → R is
the utility function of i. For any a = (a1, . . . , an) ∈ A, u1(a) = · · · = un(a) > 0
if a1 = · · · = an (in terms of the labeling), while u1(a) = · · · = un(a) = 0
otherwise.

Coordination games with unawareness is defined based on Chapter 3 of this
thesis. For any standard pure coordination game G, let V = ×i∈I(2

Ai \ {∅})
be the set of possible views or blocks of G. Similar to most studies, this thesis
assumes that the set of players is commonly known and that each player’s utility
for each action profile does not depend on awareness. Given v ∈ V , let Av

i be
the set of actions of i in v = ×j∈IA

v
j . Here, when a player i is given v, i is

aware of a ∈ v and unaware of a ∈ A \ v. For any v, v′ ∈ V , v is contained in
v′, denoted as v ⊆ v′, if Av

i is a subset of Av′

i for any i ∈ I; that is, Av
i ⊆ Av′

i .
Let Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) be a coordination game with unaware-

ness, which is described as follows: for each i ∈ I,

• Ti is a finite and non-empty set of i’s types, one of which is the actual
type t∗i .

• vi : Ti → V is i’s view function.

• bi : Ti → T−i is the belief function of i, where T−i = ×j∈I−i
Tj . If

bi(ti) = (tj)j∈I−i
, then for each j ∈ I−i, vj(tj) ⊆ vi(ti).

Let us call G an objective game, which can be interpreted as a “true game” in
Γ. i’s type, ti, describes her or his view of the game and belief about opponents’
types. Given ti, vi(ti) = v implies that i is aware of v and unaware of A\v, and
bi(ti) = (tj)j∈I−i

means that at ti, i believes that the other players’ types are
(tj)j∈I−i . Simultaneously, i believes that each view of j is vj(tj). Let bi(ti)(j)
be j’s type in bi(ti). Each player may be unaware of some types of players,
including their own. Given (i, ti) ∈ I × Ti, we denote a sequence of players’
types induced by the belief functions as ti1 , ti2 , . . . , tih , . . . , where ti1 = ti, and
for any h ≥ 2, tih = bih−1

(tih−1
)(ih). We say that ti leads to tj if and only if

there exists a subsequence ti1 , . . . , tih such that ti1 = ti and tih = tj . This thesis
supposes

∪
i∈I Ti =

∪
i∈I{t∗ih}h≥1;t∗i1

=t∗i
.

For simplicity, this study only focuses on pure actions. For any i ∈ I, let i’s

generalized strategy be si : Ti → Ai. Then, given ti, si(ti) ∈ A
vi(ti)
i is i’s local

action at ti. Let s = (si)i∈I be a generalized strategy profile. For any s, si(t
∗
i ) is

i’s actual play. The set of players’ realizable play A
vi(t

∗
i )

i may be a proper subset

of i’s full action set Ai. Then, the player i cannot implement ai ∈ Ai \A
vi(t

∗
i )

i .

1This study only focuses on pure coordination games.
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4.3 Successful-Coordination Equilibrium

This section proposes a novel equilibrium concept in (coordination) games with
unawareness, namely, the successful-coordination equilibrium.

Definition 4.3.1. In a coordination game with unawareness Γ, s∗ is a successful-
coordination equilibrium if

1. For any i ∈ I and ti ∈ Ti,

s∗i (ti) ∈ arg max
x∈A

vi(ti)

i

ui(x, (s
∗
j (bi(ti)(j)))j∈I−i);

2. For any i ∈ I and ti ∈ Ti, s
∗
i (ti) = s∗i (t

∗
i ); and

3. s∗1(t
∗
1) = · · · = s∗n(t

∗
n).

The first condition requires that players best respond to their beliefs about
opponents’ plays and the second condition requires that all players’ beliefs are
correct.2 The combination of the first condition and second condition can be
interpreted as the equilibrium in correct beliefs. However, as described below,
some equilibrium in correct beliefs might be a coordination failure. Hence, we
need the third condition that requires that the coordination be successful.

We can easily deduce the following remark and proposition.3

Remark 10. In any coordination game without unawareness, any successful-
coordination equilibrium is a Nash equilibrium and vice versa.

Proposition 4.3.1. Suppose that
∩

i∈I

∩
ti∈Ti

vi(ti) ̸= ∅ in a coordination game
with unawareness Γ. If some a ∈

∩
i∈I

∩
ti∈Ti

vi(ti) is a Nash equilibrium in G,
then a successful-coordination equilibrium exists.

Proof. Suppose that
∩

i∈I

∩
ti∈Ti

vi(ti) ̸= ∅ in Γ and that some a = (a1, . . . , an) ∈∩
i∈I

∩
ti∈Ti

vi(ti) is a Nash equilibrium in G. As G is a coordination game, the
Nash equilibrium in G satisfies a1 = · · · = an. For any (i, ti) ∈ I × Ti, let
si(ti) = ai. Then, the generalized strategy profile s satisfies the conditions of
Definition 4.3.1. That is, s is a successful-coordination equilibrium.

4.4 Discovery and Imitation of Actions

The previous section defined a successful-coordination equilibrium. However,
such an equilibrium may not exist in some coordination games with unawareness.

Remark 11. The following example shows that a successful-coordination equi-
librium may not exist.

2As explained later, the first condition is a definition of generalized Nash equilibria and
the second condition is a definition of cognitive stability.

3Proposition 4.3.1 is a special case of Sasaki (2017, Proposition 2).
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Example 4. Consider two people, Alice and Bob. They face the following
coordination game, which is an objective game:

v0 =

Alice / Bob X Y
X 1, 1 0, 0
Y 0, 0 1, 1

In v0, there exist two pure-strategy Nash equilibria, (X,X) and (Y, Y ).
Here, let us assume the followings about Alice’s belief about this game:

• Alice can implement her action X, but she cannot implement the other
action Y because she does not know how to play Y .

• Alice knows that Bob has two actions X and Y .

• Alice knows that Bob can choose only Y and that Bob does not know how
to play X; hence, she knows that Bob cannot choose X.

• Alice supposes that Bob believes that it is common knowledge that she
can choose only X, Bob can choose only Y , and the others’ actions cannot
be played.

Additionally, let us assume the following about Bob’s belief about this game:

• Bob can implement action Y , but he cannot implement the other action
X because he does not know how to play X.

• Bob knows that Alice has two actions X and Y .

• Bob knows that Alice can choose only X and that she does not know how
to play Y ; hence, he knows that Alice cannot choose Y .

• Bob supposes that Alice believes that it is common knowledge that she
can choose only X, Bob can choose only Y , and the others’ actions cannot
be played.

Then, Alice’s first-order view of this game is as follows:

v1 =
Alice / Bob X Y

X 1, 1 0, 0
;

Bob’s first-order view of this game is as follows:

v2 =

Alice / Bob Y
X 0, 0
Y 1, 1

; and

Both players’ second- or higher-order views of this game are as follows:

v3 =
Alice / Bob Y

X 0, 0
.
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Figure 4.1: The first stage game in Example 4

The mathematical formulation of this example is as follows. Denote Alice
by A and Bob by B. Suppose that TA = {t∗A, tA} and TB = {t∗B , tB} such that

vA(t
∗
A) = v1 and bA(t

∗
A) = tB ;

vA(tA) = v3 and bA(tA) = tB ;
vB(t

∗
B) = v2 and bB(t

∗
B) = tA; and

vB(tB) = v3 and bB(tB) = tA.

This formulation is depicted in Figure 4.1.
Suppose that each player is rational. No player needs to believe that their

opponent is rational. Alice then plays X in v1 as the best response to (X,Y )
in v3. Additionally, Bob plays Y in v2 as the best response to (X,Y ) in v3.
Their beliefs and decisions consist of the following generalized strategy profile:
s∗ = ([sA(t

∗
A) = X, sA(tA) = X], [sB(t

∗
B) = Y, sB(tB) = Y ]). In the strategy

profile, both players’ beliefs are correct and they best respond to the beliefs.
However, each player knows that the equilibrium play is not a Nash equilib-

rium in each first-order subjective view. Alice is aware of the Nash equilibrium
(X,X) in v1 and Bob is aware of the Nash equilibrium (Y, Y ) in v2. In the equi-
librium, coordination is not successful. Hence, they are aware of a coordination
failure. □

Noteworthy about this example is that we cannot use models of discovery
processes. A discovery process is a process of updating models under unaware-
ness proposed by Schipper (2021) and Chapter 3. In their frameworks, if a
player observes some opponent action that she or he is unaware of, then she
or he adds the action to the opponent action set in her or his subjective game.
However, in Example 4, Alice is aware of Y and Bob is aware of X, meaning
there is no discovery. Hence, they cannot update their subjective games and
coordination cannot be successful through their discovery process.
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To resolve the above issue, this study presents a model of discoveries and
imitations under unawareness based on the model of endogenously discovered
games (Schipper, 2021: Chapter 3) as follows:4 5

Definition 4.4.1. Consider a coordination game with unawareness Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I)
and a generalized strategy profile s = (si)i∈I thereof. Then, Γ

′ = (G, (T ′
i )i∈I , (v

′
i)i∈I , (b

′
i)i∈I)

is an imitative discovered game associated with (Γ, s) if: for any (i, ti) ∈ I × Ti,
and any sequence of players i1, i2, . . . , ih, . . . , with a sequence of types intro-
duced by belief functions (bi)i∈I , ti1 , ti2 , . . . , tih , . . . , where ti1 = ti, in Γ, there
exists t′i ∈ T ′

i and a sequence of types in Γ′, t′i1 , t
′
i2
, . . . , tih , . . . , where t′i1 = t′i,

such that for any h ≥ 1,

1. v′ih(t
′
ih
) = ×j∈I [A

vih (tih )

j

∪
k∈I supp(sk(t

∗
k))], where t

∗
k is k’s actual type in

Γ; and

2. b′ih(t
′
ih
)(ih+1) = t′ih+1

.

Note that Γ′ is a novel coordination game with unawareness. Moreover, it may
be that T ̸⊆ T ′ and T ′ ̸⊆ T , or T ∩ T ′ = ∅.

When both players observe each other’s play, the first condition suggests that
each player not only gains knowledge of their opponent’s feasible actions, but
also discovers (or “learns”) a way of playing such actions. The second condition
suggests that as supposed by each player, every player commonly believes that
players not only gain knowledge of the other’s feasible actions but also discover
a way of playing such actions.

Example 4 (Continued). Suppose Alice and Bob play s∗ = ([sA(t
∗
A) = X, sA(tA) =

X], [sB(t
∗
B) = Y, sB(tB) = Y ]). Then, according to the first condition, Alice

adds Bob’s action Y to not only as Bob’s choice but also as Alice’s choice in
her subjective view v1 and Bob adds Alice’s action X not only as Alice’s choice
but also as Bob’s choice in his subjective view v2. Moreover, as both players
suppose that each of them commonly believes that they gain knowledge of each
other’s feasible actions and discover a way of playing such actions according
to the second condition, both players add actions X and Y to their respective
choice in each other’s second or any higher-order view v3. Then, each agent’s
first and any higher-order views are replaced with v0.

This imitative discovered game Γ′ = (G, (T ′
A, T

′
B), (v

′
A, v

′
B), (b

′
A, b

′
B)) is for-

mulated as follows:

TA = {t′A} and TB = {t′B};
v′A(t

′
A) = v0 and b′A(t

′
A) = t′B ; and

4Karni and Vierø (2013, 2017) discuss the cases in which agents discover their own new
feasible actions. However, in their model, such actions are not endogenously discovered but
rather exogenously discovered. In other words, such actions are given to agents by modelers.

5Unlike Schipper (2021) and Chapter 3 of this thesis, this part does not deal with discovery
processes. As indicated by one of the main results, only one imitation update is required in
this model.
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Figure 4.2: The imitative discovered game in Example 4

v′B(t
′
B) = v0 and b′B(t

′
B) = t′A.

This formulation is depicted in Figure 4.2. In Γ′, Alice and Bob can choose two
actions, X and Y . □

Interestingly, any imitative discovered game has the following property.

Proposition 4.4.1. Given any n-person coordination game with unawareness
Γ and any generalized strategy profile s, an imitative discovered game Γ′ asso-
ciated with (Γ, s) has a successful-coordination equilibrium.

Proof. Suppose that s∗ is played by all agents in Γ. For any i ∈ I, ai = s∗i (t
∗
i )

is observed and imitated by them. Then, in the imitative discovered game

Γ′ associated with (Γ, s), for any (j, t′j) ∈ I × t′j , ai ∈ A
v′
j(t

′
j)

j . Hence, s′ =
((s′j(t

′
j))t′j∈T ′

j
)j∈I with s′j(t

′
j) = ai for any j ∈ I is a successful-coordination

equilibrium.

The above proposition means that for any actual play, next-stage game
must have a successful-coordination equilibrium. In Example 4, two successful-
coordination equilibria exist in Γ′: s′1 = (s′A(t

′
A) = X, sB(t

′
B) = X) and

s′2 = (s′A(t
′
A) = Y, sB(t

′
B) = Y ).

After players have discovered revised subjective games in the imitative dis-
covered game, to which set of actions do they pay attention? It seems to be
redundant that a player rationalizes their actions based on their subjective view.
Let us consider the following example.

Example 5. Consider the following objective game played by Colin (C) and
David (D):

vO =

Colin / David α β γ δ
α 1, 1 0, 0 0, 0 0, 0
β 0, 0 1, 1 0, 0 0, 0
γ 0, 0 0, 0 1, 1 0, 0
δ 0, 0 0, 0 0, 0 1, 1

.

Now, suppose that Colin believes the following view is a common belief:

59



Figure 4.3: The first stage game in Example 5

vC =
Colin / David α β

α 1, 1 0, 0
.

By contrast, David believes the following view as a common belief:

vD =

Colin / David γ δ
β 0, 0 0, 0
δ 0, 0 1, 1

.

Let us formulate this game Γ = (G, (TC , TD), (vC , vD), (bC , bD)) as follows:

TC = {t∗C , tC} and TD = {t∗D, tD};
For t∗C , vC(t

∗
C) = vC and bC(t

∗
C) = tD;

For tC , vC(tC) = vD and bC(tC) = t∗D;
For t∗D, vD(t∗D) = vD and bD(t∗D) = tC ; and
For tD, vD(tD) = vC and bD(tD) = t∗C .

This formulation is depicted in Figure 4.3.
Suppose that both players implement a generalized strategy profile s∗ =

([sC(t
∗
C) = α, sC(tC) = β], [sD(t∗D) = γ, sD(tD) = α]). In the strategy profile,

the actual play is (α, γ). Then, the imitative discovered game Γ′ = (G, (T ′
C , T

′
D), (v′C , v

′
D), (b′C , b

′
D))

is formulated as follows:

T ′
C = {t′C , t′′C} and T ′

D = {t′D, t′′D};
For t′C , v

′
C(t

′
C) = v′C and b′C(t

′
C) = t′′D;

For t′′C , v
′
C(t

′′
C) = v′D and b′C(t

′′
C) = t′D;

For t′D, v′D(t′D) = v′D and b′D(t′D) = t′′C ; and
For t′′D, v′D(t′′D) = v′C and b′D(t′′D) = t′C , where
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Figure 4.4: The imitative discovered game in Example 5

v′C =
Colin / David α β γ

α 1, 1 0, 0 0, 0
γ 0, 0 0, 0 1, 1

, and

v′D =

Colin / David α γ δ
α 1, 1 0, 0 0, 0
β 0, 0 0, 0 0, 0
γ 0, 0 1, 1 0, 0
δ 0, 0 0, 0 1, 1

.

This formulation is depicted in Figure 4.4. Then, Colin knows that two Nash
equilibria exist in v′C , namely, (α, α) and (γ, γ), whereas David knows that three
Nash equilibria exist in v′D, namely, (α, α), (γ, γ), and (δ, δ). Colin is unaware
that David’s view is v′D and David is unaware that Colin’s view is v′C .

Each player must select one of those equilibria in each other’s view. Here, let
us focus on David. Although he knows there are three equilibria, it seems odd
that he includes all the equilibria in his choices because δ is played by neither
Colin nor David. □

After players imitate opponents’ plays and revise their views, they might
exclude redundant actions that nobody plays. Then, they might reconstruct
their subjective views to exclude such actions. To provide such a representation,
we use the block game notion proposed by Myerson and Weibull (2015). A
block is a Cartesian product of non-empty subsets of players’ actions. We first
focus on the actions that each player observes and imitates. Then, we define a
coordination block game as follows.6

6Chapter 3 proposed a similar notion as a realizable CURB block game in which the block
is CURB.
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Definition 4.4.2. Given any n-person coordination game with unawareness
Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) and any block B = ×i∈IBi ∈ V , GB = (I,B, uB)
is a coordination block game if

1. B1 = · · · = Bn; and

2. uB = (uB
i )i∈I , where uB

i (a) = ui(a) for any i ∈ I and a ∈ B.

Here, B is called a coordination block.

Thus, the following proposition holds.

Proposition 4.4.2. Given any n-person coordination game with unawareness
Γ and any generalized strategy profile s, let B ∈ V be a block such that for
any i ∈ I, AB

i =
∪

j∈I sj(t
∗
j ). Then, the block game GB = (I,B, uB) is a

coordination block game.

Proof. The proof is straightforward.

In Example 5, as Colin and David play (α, γ), they focus on α and γ. That is,
David excludes δ from his choices. Then, the coordination block is {α, γ}×{α, γ}
and the coordination block game is

vB =

Colin / David α γ
α 1, 1 0, 0
γ 0, 0 1, 1

.

Hence, David can restrict his choices. Then, in their equilibrium selection, both
players will focus on α and γ.

In some coordination games (with unawareness), not only are some players
unaware of some choices but also might the set of choices be too large. Hence,
in the first play, players might be unable to select a specific (successful coordi-
nation) equilibrium or restrict action sets to a coordination block. However, by
discovering and imitating only those actions taken in the first play, players can
restrict their actions to specific coordination blocks.

4.5 Discussion

4.5.1 Relationship with the Generalized Nash Equilibrium

A successful-coordination equilibrium is related to a generalized Nash equilib-
rium. This section considers the relationships among a successful-coordination
equilibrium, a generalized Nash equilibrium, and cognitive stability. We first
define the generalized pure Nash equilibrium proposed by Halpern and Rêgo
(2014) as follows.

Definition 4.5.1 (Halpern and Rêgo 2014). s∗ is a generalized (pure) Nash
equilibrium if for any i ∈ I and ti ∈ Ti,

s∗i (ti) ∈ arg max
x∈A

vi(ti)

i

ui(x, (s
∗
j (bi(ti)(j)))j∈I−i

).
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A generalized Nash equilibrium is interpreted as an equilibrium in beliefs.
However, as shown by Schipper (2014), because games with unawareness assume
unawareness of players’ actions, a generalized Nash equilibrium might consist
of wrong beliefs. Then, players who have such wrong beliefs might revise their
subjective games and might choose different actions from the immediately pre-
ceding stage in the game. To avoid such issues, Sasaki (2017) proposes the
notion of cognitive stability or stable belief hierarchies. This notion expresses
the requirement that in an equilibrium satisfying cognitive stability or stable
belief hierarchies, all participants’ beliefs about opponents’ plays are correct.
Although Sasaki (2017) distinguishes stable belief hierarchies from cognitive
stability, he shows that the two notions are equivalent. Let us define cognitive
stability as follows.

Definition 4.5.2 (Sasaki 2017). A generalized Nash equilibrium s∗ is cogni-
tively stable if for any i ∈ I and ti ∈ Ti,

s∗i (ti) = s∗i (t
∗
i ).

Cognitive stability means that all players’ beliefs about opponents’ plays
are correct. In a cognitively stable generalized Nash equilibrium, all players’
local actions are the same. This means that each player’s belief is correct.
To compare it with a successful-coordination equilibrium, the definition of a
cognitively stable generalized Nash equilibrium is rewritten as follows.

Remark 12. s∗ is a cognitively stable generalized Nash equilibrium if for any
i ∈ I and ti ∈ Ti,

1. s∗i (ti) ∈ argmax
x∈A

vi(ti)

i

ui(x, (s
∗
j (bi(ti)(j)))j∈I−i

); and

2. s∗i (ti) = s∗i (t
∗
i ).

A cognitively stable generalized Nash equilibrium can be interpreted as the
equilibrium in correct beliefs. These two conditions of the definition of a cogni-
tively stable generalized Nash equilibrium are the same in the first and second
conditions of Definition 4.3.1. Hence, the following remark is true.

Remark 13. Under unawareness, every successful-coordination equilibrium is
a cognitively stable generalized Nash equilibrium.

This is clear from Definition4.3.1 and Remark 12. In an imitative discovered
game, a cognitively stable generalized Nash equilibrium must be a successful-
coordination equilibrium. However, in some coordination game with unaware-
ness, the opposite does not hold true; that is, in some cognitively stable general-
ized Nash equilibrium, coordination might fail. As seen in Example 4, a general-
ized strategy profile s∗ = ([sA(t

∗
A) = X, sA(tA) = X], [sB(t

∗
B) = Y, sB(tB) = Y ])

satisfies the definition of a cognitively stable generalized Nash equilibrium, but
does not satisfy the definition of a successful-coordination equilibrium.

Cognitive stability is the concept of checking the correctness of the beliefs in
a played equilibrium. In any cognitively stable generalized Nash equilibrium, all
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players confirm that their beliefs are correct. Then, they need not revise their
beliefs as well as their subjective views. This means that stability of beliefs
and stability of subjective views are entangled with each other in the concept
of cognitively stable generalized Nash equilibrium.

However, we must distinguish between the stability of beliefs and stability of
subjective views in a coordination game. In coordination games with unaware-
ness, players who play a cognitively stable equilibrium might fail to coordinate
and feet that they need to revise their subjective views as shown in Example 4.

Next, this study examines the mathematical relationships between the successful-
coordination equilibrium and cognitive stability. This relationship has the fol-
lowing properties.

Proposition 4.5.1. In a coordination game with unawareness Γ, for any i ∈ I,

if A
vi(t

∗
i )

i = Ai, i.e., the set of actions in the objective game, then every cogni-
tively stable generalized Nash equilibrium is a successful-coordination equilib-
rium and vice versa.

Before proving this proposition, we refer to Sasaki’s (2017) proposition. Al-
though his proposition includes a generalized mixed strategy profile, his result
is here restricted to pure strategies.

Proposition 4.5.2 (Sasaki 2017). In a simultaneous-move game with unaware-

ness Γ, for any i ∈ I, if A
vi(t

∗
i )

i = Ai, then in any cognitively stable generalized
Nash equilibrium, the actual plays of all players are Nash equilibria in G.

Proof. Suppose that for any i ∈ I, A
vi(t

∗
i )

i = Ai. Pick any cognitively stable gen-
eralized Nash equilibrium s∗. Then, for any (i, ti) ∈ I×Ti, ui(s

∗
i (ti), (s

∗
j (bi(ti)(j)))j∈I−i

) =
ui(s

∗
i (ti), (s

∗
j (t

∗
j ))j∈I−i

) = ui((s
∗
j (t

∗
j ))j∈I). In other words, every participant’s

actual play best responds to others’ actual plays. Suppose ((s∗j (t
∗
j ))j∈I) is not a

Nash equilibrium in G; that is, there exist (i, ai) ∈ I ×Ai such that ai ̸= s∗i (t
∗
i )

and ui(ai, (s
∗
j (t

∗
j ))j∈I−i) > ui((s

∗
j (t

∗
j ))j∈I). However, since s∗ is a cognitively

stable generalized Nash equilibrium, this is a contradiction. Hence, ((s∗j (t
∗
j ))j∈I)

is a Nash equilibrium in G. Because t∗i denotes i’s actual type, ((s∗j (t
∗
j ))j∈I)

refers to all players’ actual plays.

Proof of Proposition 4.5.1. Suppose that for any i ∈ I, A
vi(t

∗
i )

i = Ai. A co-
ordination game with unawareness is a special case of a simultaneous-move
game with unawareness. Therefore, from Proposition 4.5.2, in every cogni-
tively stable generalized Nash equilibrium s∗, the actual plays of all players
(s∗i (t

∗
i ))i∈I form a Nash equilibrium in the standard coordination game G. In

any standard coordination game, a Nash equilibrium a∗ = (a∗1, . . . a
∗
n) satisfies

a∗1 = · · · = a∗n. From the definition of an actual play, for any i ∈ I, since
si(t

∗
i ) = a∗i , s

∗
1(t

∗
1) = · · · = s∗n(t

∗
n). Therefore, s∗ satisfies every condition of

Definition 4.3.1.
The opposite clearly holds true by Remark 13.
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4.5.2 Unawareness of Actions versus Lack of Conception

Studies of unawareness distinguish between two approaches: one is a lack of
conception (e.g., Heifetz, Meier, and Schipper, 2006) and the other is a lack of
knowledge (e.g., Geanakoplos, 2021).

1. Lack of conception: The cholera bacterium was discovered by Koch in
1884. It had existed before 1884, but people were unaware of its existence.
Therefore, before 1884, people infected with cholera bacteria battled the
disease without realizing they were infected.

2. Lack of knowledge: As recently shown, some COVID-19-infected patients
are asymptomatic and remain unaware that they are asymptomatically
infected unless they undergo PCR testing, at which point they learn that
asymptomatic patients with COVID-19 exist.

The original motivation for analyzing games with unawareness was to an-
alyze what happens in situations where players lack conception of their game
structures. However, the author wonders whether the models of games with un-
awareness are really dealing with “lack of conception.” In most models, players
are only assumed to be unaware of their actions and to simply add the discov-
ered actions to their action set upon discovery. This formulation seems to be
closer to a model of “lack of knowledge” rather than “lack of conception.”

However, even when focusing on unawareness of actions, we may seriously
consider the difference between “lack of conception” and “lack of knowledge.”
For example, if a meeting place is a well-known location such as Big Ben, people
can travel there without needing directions. However, if it is not a widely known
place, people may not know how to journey there, even if they are told how to.
Many people may then ask their opponents to change the meeting place to a
more recognizable location. Knowing those choices influences decision making;
however, whether the choices are understandable and feasible also influences
decision making. From this perspective, it is important how accurately players
can observe opponents’ actions.

This study assumes that if agents observe opponents’ actions of which they
were unaware, then they can understand and imitate those actions. However, as
shown above, players do not necessarily understand opponents’ actions. When
opponents choose unnoticed actions of which players were unaware, their play
can be classified and discussed as follows.

Unawareness that opponents have already made a decision

When opponents implement actions of which the agent is unaware, the latter
cannot recognize such actions. Then, the following two cases may exist:

• Games are not completed: Shiso Kanakuri, who was a marathon runner
at the 1912 Summer Olympics, fell sick with sunstroke during the compe-
tition. He did not wake up until the day after the race, meaning that he
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involuntarily abstained. However, his decision to abstain was not commu-
nicated to the Olympic Committee. Shiso’s competition time did not stop
until March 21, 1967 when he officially crossed the finish line. In other
words, his decisions were not tied to the outcome of the game.

• Not realizing being in a game’s situation: Companies advertise their prod-
ucts and consumers decide whether to buy such products based on the
advertisements. However, companies may use subliminal effects in their
advertising. Consumers ignorant of advertising strategies using subliminal
effects may not realize that they are being put in a game situation with
the company.

Awareness of opponents’ decision making, but unawareness of what
opponents have decided

Players are aware that their opponents are making a decision when their oppo-
nents take actions of which they are unaware. However, it is not always possible
to know exactly how those opponents have played.

• Misrecognition: Let us assume there are three entrances: east, west, and
south. Of the three, you know the east and west entrances exist, but do
not know the south entrance exists. If I go to the south entrance and you
go to the east entrance, we cannot meet. Then, you may be misled into
thinking that I went to the west entrance because you do not know the
south entrance exists.

• Not recognized as symbols: Famous sites such as the White House and
Big Ben sound familiar—even to first-time visitors to the area. However,
if you have never heard of a company name or a niche restaurant, you may
not know where to find it—even by looking at a map. For example, Lake
Kawaguchi, located at the foot of Mt. Fuji, is one of the most famous
lakes in Japan, but you might not know of it, even if you know where Mt.
Fuji is. Then, you may not understand whether I am at Lake Kawaguchi.

Awareness of what opponents have played, but unawareness of their
way of playing

Even if we know opponents’ choices exactly, we may be unable to imitate them.
In other words, we may never reach there—even in the case of famous places
such as the White House, Big Ben, and Mt. Fuji. When watching a game of
soccer or baseball, only a limited number of people can imitate players’ moves.
For us to imitate opponents’ behavior, we also need to recognize how they did
it.

However, it is not necessary to recognize it exactly. If it is a tall building
such as Big Ben, it will stand out and we can travel there. In other words, the
ability to imitate the behavior of others depends on the ease of imitation.
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Of the three types described above, the first and second are caused by a lack
of conception, whereas the third is due to a lack of knowledge. The study of
discovery processes is clearly the third.7 As shown by the three types above,
there is a strong assumption under unawareness that players can know exactly
what opponents are doing and imitate their behavior.

As pointed out by Schipper (2014), unawareness means a lack of conception
rather than a lack of knowledge. By contrast, in most games with unaware-
ness, unawareness of actions means a lack of knowledge rather than a lack of
conception.8

4.5.3 Related Literature

The model in this chapter is based on the literature on growing awareness,
updating awareness, and discoveries, including Karni and Vierø (2013, 2017),
Schipper (2021), Galanis and Kotronis (2021), and Chapter 3 in this thesis.
Previous studies indicate that agents additionally know such information as
states, events, consequences, and actions of which they were previously unaware.
The model in this chapter refers to the growing awareness of how opponents play
their games rather than the growing awareness of opponents’ plays.

7Most games with unawareness also seem to assume the third type of unawareness.
8The spirit of the lack of the conception of actions can be seen in such studies as Heifetz,

Meier, and Schipper (2013b) and Halpern and Rêgo (2014), who discuss one’s awareness of
the unawareness of actions. In their frameworks, players know that opponents undertake some
action, but do not know what those actions are.
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Part III

Reexamining Unawareness
in Standard Information

Structures
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Chapter 5

Non-Trivial Unawareness in
Standard Information
Structures

5.1 Introduction

In standard discussions of partitional information structures, common knowl-
edge entails counterintuitive conclusions such as the Agreement Theorem of
Aumann (1976) and the No-Trade Theorem of Milgrom and Stokey (1982). To
solve this issue, Geanakoplos (2021) proposes non-partitional information struc-
tures. However, under several assumptions, unawareness is trivial, meaning that
there is no unawareness of events in standard information structures includ-
ing Geanakoplos’ (2021) information structure. Modica and Rustichini (1994,
1999) show that if the knowledge operator satisfies Necessitation, Monotonicity,
Truth, and Positive Introspection and the unawareness operator is defined by
second-order ignorance, then Symmetry and Negative Introspection are equiv-
alent. Dekel, Lipman, and Rustichini (1998) suppose that the unawareness op-
erator satisfies Plausibility, KU Introspection, and AU Introspection and show
that Necessitation leads to Triviality, which is Negative Introspection. More-
over, if Monotonicity holds, then Unawareness Leads to Ignorance holds. This
property means that if an agent is unaware of some event, then the agent knows
no event. Based on the above conclusions, the unawareness structure model
has become the dominant model in previous studies, leading the information
structure model to be used less frequently.

This does not mean, however, that non-trivial unawareness cannot be dis-
cussed in the standard information structure model. Ewerhart (2001) succeeds
in expressing non-trivial unawareness of events by assuming that an agent’s sub-
jective state space is a proper subset of the objective state space and that the
agent cannot recognize the complementary set. Fukuda (2021) focuses on the
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equivalence between AU Introspection and Negative Introspection, as proven by
Chen, Ely, and Luo (2012), and suggests that non-trivial unawareness can be
discussed by not assuming AU Introspection. This thesis conjectures that non-
trivial unawareness can be discussed in other ways in (non-partitional) standard
information structures.

Assuming that agents cannot recognize the complement of their subjective
state space including a non-partitional model, Ewerhart (2001) characterizes the
knowledge operator and the unawareness operator and generalizes the Agree-
ment Theorem. Specifically, he discusses Plausibility, KU Introspection, and AU
Introspection of the unawareness operator. We use his model with a restriction
that the complement of agents’ subjective state spaces is not state-dependent.
In this setting, the study examines other properties of the unawareness opera-
tor than Ewerhart (2001) examines. First, this chapter defines the knowledge
operator that does not satisfy Necessitation, Monotonicity, and Conjunction in
the setting where the agent’s subjective state space is a proper subset of the
objective state space. Then, unawareness is not trivial; that is, there is some
event of which the agent is unaware. Next, this thesis shows that Symmetry
and Negative Introspection are equivalent. As mentioned above, Modica and
Rustichini (1994, 1999) prove that if Necessitation, Monotonicity, Truth, and
Positive Introspection hold and unawareness is defined by a second-order un-
known, then the equivalence of Symmetry and Negative Introspection holds.
By contrast, when the subjective state space is a proper subset of the objective
state space (i.e., Necessitation and Monotonicity do not hold), Symmetry does
not hold. Then, Symmetry is equivalent to not only Negative Introspection but
also Necessitation and Monotonicity. Finally, this chapter generalizes the Trivi-
ality Theorems that unawareness is trivial under several assumptions, as shown
by Modica and Rustichini (1994, 1999), Dekel, Lipman, and Rustichini (1998),
and Chen, Ely, and Luo (2012).

The remainder of this chapter is organized as follows. Section 5.2 defines
the standard information structure and Section 5.3 redefines the generalized
knowledge operator in contrast to the standard knowledge operator. Section
5.4 characterizes the unawareness operator based on the generalized knowledge
operator. Section 5.5 generalizes the Triviality Theorems. Finally, Section 5.6
concludes.

5.2 Preliminaries

This section defines the standard information structure ⟨Ω, P ⟩. Let Ω be the
objective state space and ω ∈ Ω be a state. P : Ω → 2Ω is the information
function.

Let us introduce the agent’s subjective state space Z ⊆ Ω as follows:

Z =
∪
ω∈Ω

P (ω).

At this point, the following assumptions can be made about the information
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function.

P0 For any ω ∈ Ω, P (ω) ̸= ∅.

P1 For any ω ∈ Z, ω ∈ P (ω).

P2 For any ω, ω′ ∈ Ω, if ω′ ∈ P (ω), then P (ω′) ⊆ P (ω).

P3 For any ω, ω′ ∈ Ω, if ω′ ∈ P (ω), then P (ω′) ⊇ P (ω).

P0 states that every information set is non-empty; that is, the agent must
obtain some information set. P1 suggests that for any state in the subjective
state space, the information set contains that state. P2 means that every state
in some information set makes the subset of the information set. P3 means that
every state in some information set makes the superset of the information set.
In what follow, we assume P0. Then, the following remark holds.

Remark 14. Suppose that the information function P satisfies P1. Then,
Z = Ω if and only if

P1* For any ω ∈ Ω, ω ∈ P (ω).

Proof. When Z = Ω, this is obvious. Suppose that Z ̸= Ω; that is, Z is a proper
subset of Ω. Then, for any ω ∈ Ω \ Z, ω ̸∈ P (ω) is obvious. Hence, P1* does
not hold.

Standard discussions about information structures assume the partitional
information function with P1*, P2, and P3. This study examines the infor-
mation function with relaxed assumptions, which we call partially partitional
information function.

Definition 5.2.1. Given the information structure ⟨Ω, P ⟩, P is partitional if
and only if P satisfies P1*, P2, and P3. Moreover, P is partially partitional if
and only if P satisfies P1, P2, and P3.

5.3 Generalized Knowledge Operator

This section generalizes the knowledge operator. As shown by previous work
(e.g., Modica and Rustichini, 1994, 1999; Dekel, Lipman, and Rustichini, 1998;
Chen, Ely, and Luo, 2012), a standard knowledge operator has the following
issue: under several assumptions, unawareness is trivial in the standard infor-
mation structure even if an information function is not partitional, which means
that the agent must be aware of all events in the structure. Thus the knowledge
operator must be redefined to discuss non-trivial unawareness.

To do so, we refer to Ewerhart (2001). His model assumes that the agent is
aware of all events in the subjective state space, but aware of no state outside
the subjective state space. The idea of a generalized knowledge operator in
this study is basically built on Ewerhart’s model. However, in his model, the
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subjective state space may depend on each state, whereas the subjective state
space in this study is fixed.

Let us denote the knowledge operator as K : 2Ω → 2Ω, and let E ⊆ Ω be
an event. Also let Z be the subjective state space. Then, for any ω ∈ Ω and
E ⊆ Ω, the knowledge operator K is generalized as follows:{

ω ∈ K(E) if P (ω) ⊆ E and E ⊆ Z; and

ω ̸∈ K(E) otherwise.

This means that if E ̸⊆ Z, then K(E) = ∅.
This generalized knowledge operator works in the same way as the standard

knowledge operator if any event is a subset of the subjective state space. How-
ever, if an event is not included in the subjective state space, then the agent
knows nothing about it.

The generalized knowledge operator has the following properties.

Proposition 5.3.1. Given the information structure ⟨Ω, P ⟩, K satisfies the
followings.

K1 Necessitation:

Z = Ω if and only if K(Ω) = Ω.

K2 Monotonicity:

Z = Ω if and only if for any E,F ⊆ Ω, if E ⊆ F , then K(E) ⊆ K(F ).

K3 Conjunction:

Z = Ω if and only if for any E,F ⊆ Ω, K(E ∩ F ) = K(E) ∩K(F ).

K4 Truth: (Ewerhart 2001)

If P1 holds, then K(E) ⊆ E.

K5 Positive Introspection: (Ewerhart 2001)

If P2 holds, then K(E) ⊆ KK(E).

K6 Negative Introspection:

If P3 holds, Z = Ω if and only if ¬K(E) ⊆ K¬K(E).

Proof. K1 : K(Ω) ⊆ Ω is obvious according to the definition of the generalized
knowledge operator. First, suppose Z = Ω. For any ω ∈ Ω, because
P (ω) ⊆ Ω, ω ∈ K(Ω). Hence, since Ω ⊆ K(Ω), K(Ω) = Ω.

Next, suppose that Z ̸= Ω; that is, Z is a proper subset of Ω. Then,
since Ω ̸⊆ Z, from the definition of the generalized knowledge operator,
K(Ω) = ∅. Therefore, K(Ω) ̸= Ω.
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K3 : First, suppose Z = Ω. Given any ω ∈ K(E ∩ F ), then E,F ⊆ Z,
and P (ω) ⊆ E and P (ω) ⊆ F hold. Then, from the definition of the
generalized knowledge operator, since ω ∈ K(E) and ω ∈ K(F ), ω ∈
K(E) ∩ K(F ); that is, K(E ∩ F ) ⊆ K(E) ∩ K(F ). Next, given any
ω ∈ K(E) ∩K(F ), then E,F ⊆ Z, and P (ω) ⊆ E and P (ω) ⊆ F . That
is, P (ω) ⊆ E ∩F . Then, since ω ∈ K(E ∩F ), K(E)∩K(F ) ⊆ K(E ∩F ).
Hence, K(E ∩ F ) ⊆ K(E) ∩K(F ).

Next, suppose Z ̸= Ω; that is, Z is a proper subset of Ω. Let us suppose
E = Z and F = Ω. Then, K(E∩Ω) = K(E) ̸= ∅, whereas K(E)∩K(Ω) =
∅ because K(Ω) = ∅ from the definition of the generalized knowledge
operator.

K2 : First, suppose that Z = Ω given any E,F ⊆ Ω with E ⊆ F . Then, the
following remark holds.

Remark 15. K3 implies K2.

This proof is as follows. From K3, K(E) = K(E ∩ F ) = K(E) ∩K(F ) ⊆
K(F ).

Next, suppose Z ̸= Ω, E = Z and F = Ω. Then, K(E) ̸= ∅ and K(Ω) =
∅ from the definition of the generalized knowledge operator. Therefore,
K(E) ̸⊆ K(F ).

K4 : Suppose that P1 holds. If K(E) is empty, the assertion obviously holds.
Pick any ω ∈ K(E). Then, P (ω) ⊆ E and E ⊆ Z hold. From P1,
ω ∈ P (ω), K(E) ⊆ E.

K5 : Suppose that P2 holds. If K(E) is empty, the assertion obviously holds.
Pick any ω ∈ K(E). Then, P (ω) ⊆ E and E ⊆ Z are satisfied. Pick any
ω′ ∈ P (ω). Then, from P2, since P (ω′) ⊆ P (ω), P (ω′) ⊆ E. Therefore,
ω′ ∈ K(E); that is, P (ω) ⊆ K(E). Hence, K(E) ⊆ KK(E).

K6 : First, suppose that Z = Ω and P3 hold. Suppose ω ∈ ¬K(E). Then,
because ω ̸∈ K(E), P (ω) ̸⊆ K(E). For any ω′ ∈ P (ω), from P3, since
P (ω′) ⊇ P (ω), P (ω′) ̸⊆ E; that is, ω′ ̸∈ K(E). That is, ω′ ∈ ¬K(E).
Hence, ¬K(E) ⊆ K¬K(E).

Next, suppose that Z ̸= Ω and E = Ω. Then, from the definition of
the generalized knowledge operator, K(Ω) = ∅; that is, ¬K(Ω) = Ω.
Therefore, ¬K(Ω) = Ω ̸⊆ ∅ = K¬K(Ω).

Ewerhart (2001) shows Truth, Positive Introspection, and K(E) ∩K(F ) ⊆
K(E ∩ F ).

These properties have received the following standard interpretations in the
previous studies. Necessitation means that in all states, the agent knows that
some state in Ω occurs. Monotonicity means that given any event and its super-
set, if the agent knows the event, then they must know the superset. Conjunc-
tion means that given several events, the agent knows each event if and only if
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they know the conjunction of such events. Truth means that if the agent knows
some event, then the knowledge is true. Positive Introspection means that if
the agent knows some event, then they know that they know the event. Finally,
Negative Introspection means that if the agent does not know an event, then
they know that they do not know the event.

The above properties are well known in previous works. However, the stan-
dard knowledge operator satisfies Necessitation, Monotonicity, and Conjunction,
whereas this study’s knowledge operator does not satisfy them if the agent’s
subjective state space is a proper subset of the objective state space. Moreover,
Negative Introspection needs P3 in standard discussions, while the generalized
knowledge operator requires not only P3 but also Z = Ω to satisfy Negative
Introspection.

In the subjective state space, those properties hold as follows.

Remark 16.

K1’ K(Z) = Z.

Moreover, for any E,F ⊆ Z,

K2’ If E ⊆ F , then K(E) ⊆ K(F ); and

K3’ K(E ∩ F ) = K(E) ∩K(F ).

Proof. K1’ K(Z) ⊆ Z is obvious. Given any ω ∈ Z, then since P (ω) ⊆ Z,
ω ∈ K(Z); that is, Z ⊆ K(Z). Hence, K(Z) = Z.

Given any E,F ⊆ Z.

K3’ : First, if ω ∈ K(E ∩ F ), P (ω) ⊆ E ∩ F ⊆ E ⊆ Z and P (ω) ⊆ E ∩ F ⊆
F ⊆ Z hold. That is, ω ∈ K(E) and ω ∈ K(F ). Therefore, K(E ∩ F ) ⊆
K(E) ∩K(F ).

Next, if ω ∈ K(E)∩K(F ), then, since P (ω) ⊆ E ⊆ Z and P (ω) ⊆ F ⊆ Z,
P (ω) ⊆ E ∩ F ⊆ Z. That is, ω ∈ K(E ∩ F ). Hence, K(E ∩ F ) ⊇
K(E) ∩K(F ). Therefore, K(E ∩ F ) = K(E) ∩K(F ).

K2’ : This is straightforward from K3’.

5.4 A Generalization of the Unawareness Oper-
ator

This section provides the generalized unawareness operator U : 2Ω → 2Ω based
on the generalized knowledge operator. The generalized unawareness operator
is defined as

U(E) = ¬K(E) ∩ ¬K¬K(E),

as in Modica and Rustichini (1994). Moreover, the generalized awareness oper-
ator A : 2Ω → 2Ω is defined as A(E) = ¬U(E). Then, a condition of trivial or
non-trivial unawareness is shown below.
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Lemma 5.4.1. Given the information structure ⟨Ω, P ⟩, suppose that P is par-
tially partitional. Then, U satisfies the following: for any E ⊆ Ω,

• Triviality: Z = Ω if and only if A(E) = Ω; and

• Non-Triviality: Z ̸= Ω if and only if A(E) = K(E). Moreover, E ̸⊆ Z if
and only if A(E) = ∅.

Proof. Let us suppose that the information function is partially partitional.
First, we prove Triviality. Suppose Z = Ω. From P3, Negative Introspection
holds. That is, U(E) = ∅ for any E ⊆ Ω. Hence, A(E) = Ω. In the case
that Z ̸= Ω, since Negative Introspection does not hold, there exists some event
E ⊆ Ω such that A(E) ̸= Ω.

We next turn to Non-Triviality. Here, first, given E = ∅, A(∅) = K(∅) = ∅.
Second, given any non-empty set E ⊆ Z such that there exists ω ∈ Ω with
P (ω) ⊆ E, from Truth, K(E) ⊆ E ⊆ Z and K(E) ̸= ∅. Then, since ¬K(E) ̸⊆
Z, K¬K(E) = ∅. Hence, A(E) = K(E) ∪ K¬K(E) = K(E) ∪ ∅ = K(E).
Finally, given E ̸⊆ Z, from the definition of the generalized knowledge operator,
K(E) = ∅; that is, ¬K(E) = Ω. Then, since K¬K(E) = ∅, A(E) = ∅.

Triviality is obviously equivalent to Negative Introspection.
Given the generalized unawareness operator, Ewerhart (2001) weakens Mono-

tonicity as follows.

Remark 17 (Ewerhart 2001). If E ⊆ F , then K(E) ∩A(F ) ⊆ K(F ).

Proof. For any E,F ⊆ Ω, suppose E ⊆ F given ω ∈ K(E) ∩ A(F ). Then,
ω ∈ K(E) and ω ∈ A(F ). First, suppose F ⊆ Ω. Then, from Non-Triviality,
A(F ) = K(F ). From K2’, because K(E) ⊆ K(F ), K(E) ∩ A(F ) = K(E) ∩
K(F ) ⊆ K(F ). Next, suppose F ̸⊆ Z. Then, from Non-Triviality, A(F ) = ∅.
Hence, K(E) ∩A(F ) = ∅ ⊆ K(F ).

The generalized awareness/unawareness operator has the following proper-
ties.

Proposition 5.4.1. Given the information structure ⟨Ω, P ⟩, suppose that P is
partially partitional. Then, the generalized unawareness operator satisfies the
following properties.

U1 KU Introspection:

KU(E) = ∅.

U2 AU Introspection:

U(E) ⊆ UU(E).

U3 Weak Necessitation:

Z = Ω if and only if for any E ⊆ Ω, A(E) = K(Z).
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U4 Strong Plausibility:

U(E) =
∩∞

n=1(¬K)n(E).

U5 Weak Negative Introspection:

¬K(E) ∩A¬K(E) = K¬K(E).

U6 Symmetry:

Z = Ω if and only if for any E ⊆ Ω, U(E) = U(¬E).

U7 A-Conjunction:

Z = Ω if and only if A(∩λEλ) = ∩λA(Eλ).

U8 AK-Self-Reflection:

AK(E) = A(E).

U9 AA-Self-Reflection:

AA(E) = A(E).

U10 A-Introspection:

KA(E) = A(E).

Proof. When Z = Ω, it is obvious that all the properties hold. Suppose Z ̸= Ω;
then, from Lemma 5.4.1, A(E) = K(E); that is, U(E) = ¬K(E).

U1 KU(E) = K¬K(E). When E ⊆ Z, from Truth, since K(E) ⊆ Z,
¬K(E) ̸⊆ Z; that is, K¬K(E) = ∅. When E ̸⊆ Z, since A(E) = K(E) =
∅, U(E) = Ω; that is, K(Ω) = ∅. Hence, KU(E) = ∅ for any E.

U2 UU(E) = ¬KU(E) ∩ ¬K¬KU(E). From U1, ¬KU(E) ∩ ¬K¬KU(E) =
Ω ∩ ¬K(Ω) = Ω; that is, UU(E) = Ω. Hence, U(E) ⊆ UU(E).

U3 When Z ̸= Ω, from Non-Triviality, K1’, K2’, and Truth, given any E ⫋ Z,
A(E) = K(E) ⊆ E ⫋ Z = K(Z).

U4 First, for any E ⊆ Ω, ¬K¬K(E) = Ω. Next, ¬K¬K¬K(E) = Ω. By
repeating this process,

∩∞
n=2(¬K)n(E) = Ω. Hence, U(E) = ¬K(E) =

¬K(E)
∩∞

n=2(¬K)n(E) =
∩∞

n=1(¬K)n(E).

U5 From U1, K¬K(E) = KU(E) = ∅ and A¬K(E) = K¬K(E) = ∅. Hence,
¬K(E) ∩A¬K(E) = K¬K(E).

U6 Given any non-empty subset E ⊆ Z, since Z ̸= Ω, from Non-Triviality,
A(E) = K(E) ̸= ∅, whereas A(¬E) = ∅; that is, U(E) ̸= U(¬E).

U7 From Z ̸= Ω and Non-Triviality, A(E) = K(E). Let us assume E =
E1∪E2. Then, from K3, there might exist ∅ ̸= E1 ⊆ Z and E2 ̸⊆ Z. Then,
A(E) = K(E) = K(E1 ∩ K2) ̸= ∅ = K(E1) ∩ K(E2) = A(E1) ∩ A(E2);
that is, there exist indexes such that A(∩λEλ) ̸= ∩λA(Eλ).
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U8–10 Since P is partially partitional, K satisfies Truth and Positive Introspec-
tion. Hence, A(E) = K(E) = KK(E) = KA(E) = AA(E) = AK(E).

Proposition 5.4.2. Given the information structure ⟨Ω, P ⟩, suppose that P is
partially partitional. Then, the generalized unawareness operator satisfies the
following property.

U2’ Reverse AU Introspection:

If Z = Ω or E ̸⊆ Z, then UU(E) ⊆ U(E).

Moreover, if Z ̸= Ω holds, then the following properties hold.

U6’ Reverse Symmetry:

1. If E ⊆ Z, then U(E) ⊆ U(¬E).

2. If E ̸⊆ Z, then U(E) ⊇ U(¬E).

3. If E ̸⊆ Z and ¬E ̸⊆ Z, then U(E) = U(¬E).

U7’ Partial A-Conjunction:

For any λ, Eλ ⊆ Z, A(∩λEλ) = ∩λA(Eλ).

Proof. Given any non-empty subset E ⊆ Ω.

U2’ First, suppose Z = Ω; then, from Triviality, UU(E) = ∅ ⊆ U(E). Next,
suppose E ̸⊆ Z. Then, from Non-Triviality, since U(E) = Ω, UU(E) = U(Ω) =
Ω = U(Ω); that is, UU(E) ⊆ U(E).

U6’ Suppose Z ̸= Ω.

1. If E ⊆ Z, then ¬E ̸⊆ Z. Hence, U(¬E) = Ω from Non-Triviality. Then,
U(E) = K(E) ⊆ Ω = U(¬E).

2. If E ̸⊆ Z, from Non-Triviality, U(E) = Ω. Hence, U(¬E) ⊆ Ω = U(E).
Here, suppose ¬E ̸⊆ Z; then, U(¬E) = Ω = U(E).

U7’ From Non-Triviality, since A(E) = K(E), A(∩λEλ) = K(∩λEλ) and ∩λA(Eλ) =
∩λA(Eλ). Since for any λ, Eλ ⊆ Z, from K3’, A(∩λEλ) = K(∩λEλ) =
∩λK(Eλ) = ∩λA(Eλ).

KU Introspection, AU Introspection, Weak Necessitation, and Strong Plau-
sibility are proposed by Dekel, Lipman, and Rustichini (1998); Symmetry, A-
Conjunction, AK-Self-Reflection, and AA-Self-Reflection by Modica and Rus-
tichini (1994, 1999); Weak Negative Introspection, Symmetry, A-Conjunction,
AK-Self-Reflection, and AA-Self-Reflection by Halpern (2001); A-Introspection
by Heifetz, Meier, and Schipper (2006); and Reverse AU Introspection by Fukuda
(2021).
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When the agent’s subjective state space is equivalent to the objective state
space, all the properties hold. However, if they are not equivalent, then KU In-
trospection, Strong Plausibility, Weak Negative Introspection, AK-Self-Reflection,
AA-Self-Reflection, and A-Introspection hold, while Weak Necessitation and A-
Conjunction do not hold. In particular, Symmetry does not hold. Let us call
this property that Symmetry does not hold Reverse Symmetry. This property
is the result in contrast to Modica and Rustichini (1994). They show that if
the (standard) knowledge operator satisfies Necessitation, Monotonicity, Truth,
and Positive Introspection, then Symmetry is equivalent to Negative Introspec-
tion. By contrast, in our model, Necessitation, Monotonicity, Symmetry, and
Negative introspection are equivalent.

This chapter assumes that when the subjective state space is a proper subset
of the objective state space, the agent is aware of the subjective state space but
not its complement. This can be formulated as follows. If Z ̸= Ω, then A(Z) ̸=
A(Ω\Z). That is, Reverse Symmetry is merely a formulation of the assumption.1

Previous work proves Symmetry or assumes it, including Modica and Rustichini
(1994, 1999), Halpern (2001), Heifetz, Meier, and Schipper (2006, 2008, 2013a),
Li (2009), and Sadzik (2021). However, except for Modica and Rustichini (1994,
1999) and Chen, Ely, and Luo (2012), no other studies discuss Symmetry. Hence,
characterizing Symmetry in the standard information structure needs to be
reconsidered.2

5.5 Generalized Triviality Theorems

Previous work proves trivial unawareness in standard information structures,
including Modica and Rustichini (1994), Dekel, Lipman, and Rustichini (1998),
and Chen, Ely, and Luo (2012). This section shows the generalizations of their
proposed Triviality Theorems.

Theorem 5.5.1 (Modica and Rustichini 1994). Given ⟨Ω, P ⟩, suppose P is
partially partitional. Then, Negative Introspection is equivalent to Symmetry.

Proof. This is straightforward from Propositions 5.3.1 and 5.4.1.

This theorem holds regardless of whether a subjective state space is equal to
the objective state space. If a subjective state space is equal to the objective
state space, then both Negative Introspection and Symmetry hold; whereas if
a subjective state space is a proper subset of the objective state space, then
neither Negative Introspection nor Symmetry does not hold.

Theorem 5.5.2 (Dekel, Lipman, and Rustichini 1998). Given ⟨Ω, P ⟩, suppose
P is partially partitional. Then, the following properties are equivalent.

1. Z = Ω.

1See Theorem 5.5.1.
2Chapter 6 reconsiders and characterizes Symmetry.
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2. Triviality:

U(E) = ∅.

3. Unawareness Leads to Ignorance:

For any E,F ⊆ Z, U(E) ⊆ ¬K(F ).

Proof. Assume that P is partially partitional. First, suppose property 1. Then,
from Lemma 5.4.1, Triviality holds.

Next, suppose property 2. It is obvious that property 3 holds.
Finally, suppose property 3. Here, let us assume Z ̸= Ω. Then, from Non-

Triviality, U(E) = ¬K(E). Let E = Ω and ∅ ̸= F ⊆ Z. Then, U(Ω) = Ω,
whereas from a partially partitional information function, a definition of the
knowledge operator, and Truth, since ∅ ̸= K(F ) ⊆ F ⊆ Z, ¬K(F ) ̸⊆ Z and
¬K(F ) ̸= Ω. That is, there exists F such that U(Ω) ̸⊆ K(F ). This is a
contradiction. Hence, Z = Ω; that is, property 1 holds.

Theorem 5.5.3 (Chen, Ely, and Luo 2012). Given ⟨Ω, P ⟩, suppose P is par-
tially partitional. Then, X = Ω if and only if Symmetry, AU Introspection, and
KU Introspection are equivalent.

Proof. First, suppose X = Ω; then, from Proposition 5.4.1, Symmetry, AU
Introspection, and KU Introspection hold.

Next, suppose X ̸= Ω; then, Proposition 5.4.1, AU Introspection, and KU
Introspection hold, but Symmetry does not hold.

In contrast to Modica and Rustichini (1994), Triviality Theorems of Dekel,
Lipman, and Rustichini (1998) and Chen, Ely, and Luo (2012) depend on the
subjective state space. If the subjective state space is equivalent to the objective
state space, their Triviality Theorems hold and they do not hold otherwise.

5.6 Conclusion

This chapter redefines the knowledge operator and unawareness operator in
standard information structures and characterizes those two operators. The
knowledge operator in this study is defined in relation to an agent’s subjective
state space. Given any event not included in the subjective state space, we
suppose that the agent cannot know that event. Then, we can show that the
agent is unaware of the event, that is, non-trivial unawareness.

This chapter first characterizes the unawareness operator. Several properties
are the same as in previous work. However, Weak Necessitation, Symmetry, and
A-Conjunction do not hold under non-trivial unawareness. In particular, it is
interesting that Symmetry does not hold. Modica and Rustichini (1994) show
that if Necessitation, Monotonicity, Truth, and Positive Introspection hold, then
Symmetry and Negative Introspection are equivalent. By contrast, even if the
model can exclude Necessitation and Monotonicity under non-trivial unaware-
ness, Symmetry is equivalent to Negative Introspection.
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Few studies have characterized Symmetry, with its relationship with Nega-
tive Introspection primarily studied by such research as Modica and Rustichini
(1994, 1999) and Chen, Ely, and Luo (2012). Thus, a series of Symmetry stud-
ies are needed. We reconsider the characterization of Symmetry in the next
chapter.
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Chapter 6

Relationships between AU
Introspection and
Symmetry

6.1 Introduction

Focusing on standard state-space models using a set-theoretical approach, this
chapter discusses the relationship between AU Introspection and Symmetry for
non-trivial unawareness (i.e., there is an event an agent is unaware of). As
pointed out by previous studies, in standard state-space models, several as-
sumptions lead to Triviality (i.e., an agent is aware of everything). Modica
and Rustichini (1994) show the equivalence between Negative Introspection and
Symmetry (Theorem 6.3.1). Dekel, Lipman, and Rustichini (1998) show that,
if state-space models satisfy Necessitation, Plausibility, KU Introspection, and
AU Introspection, then there is no event that some agent is unaware of. Chen,
Ely, and Luo (2012) investigate the relationship between Negative Introspection
and AU Introspection. They show that Negative Introspection is equivalent to
AU Introspection when assuming Necessitation (Theorem 6.3.3). From their
results, it is evident that AU Introspection is equivalent to Symmetry. In fact,
Chen, Ely, and Luo (2012) show a generalization of Dekel, Lipman, and Rusti-
chini (1998) and the aforementioned equivalence (Theorem 6.3.4) (below, such
results are called Triviality Theorems.)

To avoid such an issue, Heifetz, Meier, and Schipper (2006) propose un-
awareness structure models. Their models assume that different agents perceive
different disjoint subjective state spaces by defining the (generalized) state space
that is a union set of disjoint state spaces as a lattice structure. Then, if some
agent’s subjective state space is “less expressive” than other state space, then
we can say that the agent (denoted as “she” for convenience) is unaware of
such state space. In other words, we can represent non-trivial unawareness.
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Since Heifetz, Meier, and Schipper (2006), mainstream research has focused on
unawareness structure models.

However, the abovementioned research results do not mean that we can-
not discuss non-trivial unawareness in standard state-space models. Ewerhart
(2001) proposes models of non-trivial unawareness by assuming that an agent is
aware of her subjective state spaces to be a proper subset of the objective state
space, and that the unaware agent does not know all states in the complemen-
tary set. Fukuda (2021) suggests that we can discuss non-trivial unawareness
with Necessitation by excluding AU Introspection. We believe non-trivial un-
awareness should be reconsidered in the standard state-space models. Common
to all Triviality Theorems is the assumption of Necessitation. In other words,
Necessitation may lead to trivial unawareness. In fact, as pointed out by Dekel,
Lipman, and Rustichini (1998), if we do not assume Necessitation, then we can
discuss non-trivial unawareness.

This chapter attempts to exclude the assumption of Necessitation. Necessi-
tation holds if and only if the agent knows the whole state space, no matter what
state is given. In other words, Necessitation does not hold if and only if given
some state, the agent does not know the whole state space even if she might
know it given other states. This may seem an irrational perception. However,
even if one knows the whole state space in advance, one may forget that knowl-
edge when the time comes. For example, we know that a person may be infected
with COVID-19 and not show any symptoms. However, in everyday life, the
agent might not be aware of whether or not she is infected with COVID-19,
or if infected, whether or not she has symptoms. Therefore, an asymptomatic
infected person, even if infected, will go about her daily life in the same way
without being aware of COVID-19, as long as she has no fever. In other words,
the infected person forgets the knowledge of COVID-19 in a state in which she
is asymptomatically infected. Our assumption excluding Necessitation is the
basis for addressing the abovementioned cases.

Let us use Modica and Rustichini’s definition of unawareness. Then, unlike
Modica and Rustichini (1994), Symmetry might not be equivalent to Negative
Introspection, and unlike Chen, Ely, and Luo (2012), AU Introspection might
not be equivalent to Negative Introspection. However, since there are no stud-
ies on equivalence between AU Introspection and Symmetry yet, it remains to
be seen whether equivalence holds even if the assumption of Necessitation is
removed. This chapter aims to analyze whether the equivalence of AU Intro-
spection and Symmetry holds when the assumption of Necessitation is relaxed.
Our main result shows that if the knowledge operator satisfies Monotonicity,
Truth, and Positive Introspection, then Modica and Rustichini’s definition of
unawareness leads to the equivalence of AU Introspection and Symmetry (The-
orem 6.4.1).

We cannot directly prove the equivalence between AU Introspection and
Symmetry. To do so, several properties are required, for example, KU Intro-
spection and AA-Self Reflection of the unawareness operator. Therefore, these
properties (Lemmas 6.4.1, 6.4.2, 6.4.3, and 6.4.4) must be proved before prov-
ing Theorem 6.4.1. In the proofs of these lemmas, we find that Necessitation is
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not required, that is, the equivalence of AU Introspection and Symmetry holds
without Necessitation. Therefore, when excluding Necessitation, Negative In-
trospection is equivalent to neither AU Introspection nor Symmetry; however,
AU Introspection and Symmetry are equivalent (Corollary 6.4.1). Our result
implies that the non-triviality of unawareness consists of both AU Introspec-
tion and Symmetry, because Triviality is equivalent to Negative Introspection.
However, note that Corollary 6.4.1 is a generalization of Theorem 6.3.4, but
not Theorems 6.3.2 and 6.3.3. We use Modica and Rustichini’s definition of
unawareness and Positive Introspection, whereas Theorems 6.3.2 and 6.3.3 are
based on plausible unawareness relaxing Modica and Rustichini’s definition, and
do not suppose Positive Introspection. Hence, our main corollary does not gen-
eralize all Triviality Theorems.

The rest of this chapter is organized as follows. The next subsection high-
lights related works in the literature. Section 6.2 introduces standard state-
space models following the studies of Dekel, Lipman, and Rustichini (1998) and
Chen, Ely, and Luo (2012) and properties of the knowledge/unawareness oper-
ator. Section 6.3 overviews the Triviality Theorems of Modica and Rustichini
(1994), Dekel, Lipman, and Rustichini (1998), and Chen, Ely, and Luo (2012).
Section 6.4 provides and proves our main theorem that AU Introspection is
equivalent to Symmetry and generalizes a proof of Theorem 6.3.4. The last
section concludes.

6.2 Preliminaries

Let us consider a standard state-space model, such as that of Dekel, Lipman,
and Rustichini (1998) or Chen, Ely, and Luo (2012), ⟨Ω,K, U⟩, where

• Ω is a state space. Any E ⊆ Ω is an event, and ¬E = Ω \ E.

• K : 2Ω → 2Ω is the knowledge operator. Given any event E ⊆ Ω, a set
K(E) is interpreted as the agent possessing K knows that event E occurs.

• U : 2Ω → 2Ω is the unawareness operator. Given any event E, a set
U(E) is interpreted as the agent possessing U is unaware whether event
E occurs.

In a partitional state-space model, it is well known that the knowledge op-
erator K satisfies the following properties:

K1 Necessitation: K(Ω) = Ω;

K2 Monotonicity: if E ⊆ F , then K(E) ⊆ K(F );

K3 Truth: K(E) ⊆ E;

K4 Positive Introspection: K(E) ⊆ KK(E); and

K5 Negative Introspection: ¬K(E) ⊆ K¬K(E).
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Here, by K5, ¬K¬K(E) = ∅ in a partitional state-space model. This means
that it is impossible for an agent not to know an event, or that the agent does
not know that she does not know the event. In other words, any higher-order
lack of knowledge does not hold.

Previous studies on unawareness attempt to relax Negative Introspection
and provide the following axioms of the unawareness operator:

U0 Modica and Rustichini’s definition: U(E) = ¬K(E) ∩ ¬K¬K(E);

U1 Plausibility: U(E) ⊆ ¬K(E) ∩ ¬K¬K(E);

U2 KU Introspection: KU(E) = ∅;

U3 AU Introspection: U(E) ⊆ UU(E); and

U4 Symmetry: U(E) = U(¬E).

U0 and U4 are proposed by Modica and Rustichini (1994) and U1–3 are
provided by Dekel, Lipman, and Rustichini (1998).

Following Chen, Ely, and Luo (2012), we name and define trivial and non-
trivial unawareness as follows:

U5 Triviality: ∀E ⊆ Ω, U(E) = ∅; and

U6 Non-Triviality: ∃E ⊆ Ω subject to U(E) ̸= ∅.

Remark 18. Under U0, K5 if and only if U5.

Finally, we define the awareness operator as A(E) = ¬U(E).

6.3 Triviality Theorems

Modica and Rustichini (1994), Dekel, Lipman, and Rustichini (1998), and Chen,
Ely, and Luo (2012) present the following theorems about trivial unawareness:

Theorem 6.3.1 (Modica and Rustichini 1994). If ⟨Ω,K, U⟩ satisfies K1–4 and
U0, then K5 and U4 are equivalent.

Theorem 6.3.2 (Dekel, Lipman, and Rustichini 1998). If ⟨Ω,K, U⟩ satisfies
K1 and U1–3, then U5 is satisfied.

Theorem 6.3.3 (Chen, Ely, and Luo 2012). If ⟨Ω,K, U⟩ satisfies K1―3 and
U1, K5 if and only if U3

Theorem 6.3.4 (Chen, Ely, and Luo 2012). If ⟨Ω,K, U⟩ satisfies K1–4 and U0,
K5 if and only if U3 if and only if U4.

Note that Theorems 6.3.1 and 6.3.4 use Modica and Rustichini’s definition, U0,
whereas, Theorems 6.3.2 and 6.3.3 use plausible unawareness, U1. Moreover,
Theorems 6.3.2 and 6.3.3 do not need Positive Introspection, K4.

The following sketch provides an outline of a proof of Theorem 6.3.4 provided
by Chen, Ely, and Luo (2012):
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The outline of the proof of Theorem 6.3.4.

1. By Theorem 6.3.1, K5 and U4 are equivalent.

2. By Theorem 6.3.3, K5 and U3 are equivalent.

3. By 1 and 2, U3 and U4 are equivalent.

Hence, K5, U3, and U4 are equivalent.

Theorem 6.3.4 is a generalization of Theorems 6.3.1 and 6.3.2, and we use
Theorems 6.3.1 and 6.3.3 to prove Theorem 6.3.4. Theorem 6.3.1 suggests equiv-
alence between Negative Introspection and Symmetry; Theorem 6.3.3 suggests
equivalence between Negative Introspection and AU Introspection; and Theo-
rem 6.3.4 suggests equivalence between AU Introspection and Symmetry. In
proof of Theorem 6.3.4, AU Introspection and Symmetry are not directly equiv-
alent. This proof is related to Necessitation. However, is Negative Introspection
necessary to prove the equivalence between AU Introspection and Symmetry?
Can we directly prove this equivalence without Negative Introspection? We
explore this issue in the next section.

6.4 Main Theorem

In this section, we explore the proof of equivalence between AU Introspection
and Symmetry without Negative Introspection. We show the following theorem.

Theorem 6.4.1. If ⟨Ω,K, U⟩ satisfies K2–4 and U0, then U3 is equivalent to
U4.

This theorem does not use Necessitation. In other words, Necessitation is
not necessary for this theorem. Theorem 6.4.1 implies that AU Introspection is
equivalent to Symmetry. Put differently, Negative Introspection is not necessary
for this equivalence. In other words, an equivalent pair of AU Introspection and
Symmetry is not equivalent to Negative Introspection even when Necessitation
is not used.

Before proving this theorem, we show the following lemmas.

Lemma 6.4.1. If ⟨Ω,K, U⟩ satisfies K2, then

K2* K(E ∩ F ) ⊆ (K(E) ∩K(F )).

Proof. Suppose that ⟨Ω,K, U⟩ satisfies K2. It is evident that (E ∩ F ) ⊆ E and
(E ∩ F ) ⊆ F . By K2, K(E ∩ F ) ⊆ K(E) and K(E ∩ F ) ⊆ K(F ). Hence,
K(E ∩ F ) ⊆ (K(E) ∩K(F )).

This property K2* is the relaxing Conjunction (K(E ∩F ) = K(E)∩K(F )),
which is one of the standard properties of the knowledge operator. Theorem
6.4.1 needs K2*, not Conjunction. See proofs of Lemma 6.4.2 and 6.4.4.

As the following proof of Lemma 6.4.2 shows, K4 is not necessary.
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Lemma 6.4.2. If ⟨Ω,K, U⟩ satisfies K2–3 and U1, then U2 is satisfied.

Proof. Suppose that ⟨Ω,K, U⟩ satisfies K2–3 and U1. Then,

KU(E)
K2,U1

⊆ K(¬K(E) ∩ ¬K¬K(E))

K2∗

⊆ K¬K(E) ∩K¬K¬K(E)

K3
⊆ K¬K(E) ∩ ¬K¬K(E) = ∅.

Lemma 6.4.2 suggests that if a standard state-space model satisfies Monotonic-
ity, Truth, and Plausibility, then KU Introspection is satisfied.

Lemma 6.4.3. If ⟨Ω,K, U⟩ satisfies K2–3 and U0, then

U3* Reverse AU Introspection: UU(E) ⊆ U(E).

Proof. Suppose that ⟨Ω,K, U⟩ satisfies K2–3 and U0. By Lemma 6.4.2, U2

holds. Then, UU(E)
U0
= ¬KU(E)∩¬K¬KU(E)

U2
= Ω∩¬K(Ω) = ¬K(Ω). Here,

by K2, if E ⊆ Ω, then K(E) ⊆ K(Ω), and if ¬K(E) ⊆ Ω, then K¬K(E) ⊆
K(Ω). Then, ¬K(Ω) ⊆ ¬K(E) and ¬K(Ω) ⊆ ¬K¬K(E), that is, UU(E) =
¬K(Ω) ⊆ ¬K(E) ∩ ¬K¬K(E) = U(E).

U3* is proposed by Fukuda (2021). By Lemma 6.4.3, the following property
holds.

Remark 19. Suppose that Lemma 6.4.3. If U3 holds, then

U3** U(E) = UU(E).

The following properties are shown by Modica and Rustichini (1994).1

Lemma 6.4.4 (Modica and Rustichini 1994). If ⟨Ω,K, U⟩ satisfies K2–4 and
U0, then it also satisfies the following:

A1 AK-Self Reflection: AK(E) = A(E);

A2 AA-Self Reflection: AA(E) = A(E); and

A3 A-Introspection: KA(E) = A(E).

Proof. Suppose that ⟨Ω,K, U⟩ satisfies K2–4 and A1.

Proof of A1. AK(E) = KK(E)∪K¬KK(E)
K4
= K(E)∪K¬K(E) = A(E).

Proof of A3. First, given K(E), by K2 and K4, because K(E) ⊆ A(E),
K(E) = KK(E) ⊆ KA(E) (∗). Next, given K¬K(E), K¬K(E) ⊆ A(E)

1Those properties are proposed in other literature. A1 and A2 are proved by Modica and
Rustichini (1999) and Halpern (2001), respectively, and A3 is proved by Heifetz, Meier, and
Schipper (2006).

86



and K¬K(E) ⊆ ¬K(E) by K3, that is, K¬K(E) ⊆ (¬K(E) ∩ A(E)). Then,

K¬K(E)
K4
= KK¬K(E)

K2
⊆ K(¬K(E)∩A(E)). K(¬K(E)∩A(E))

K6
⊆ K¬K(E)∩

KA(E). That is, K¬K(E) ⊆ KA(E). Then, A(E) = K(E) ∪ K¬K(E) ⊆
K(E) ∪KA(E). Because K(E) ⊆ KA(E) (∗), K(E) ∪KA(E) = KA(E), that
is, A(E) ⊆ KA(E). By K3, because KA(E) ⊆ A(E), KA(E) = A(E).

Proof of A2. AA(E) = KA(E) ∪K¬KA(E)
A3
= A(E) ∪K¬A(E) = A(E) ∪

KU(E)
U2
= A(E) ∪ ∅ = A(E).

Those properties can be proved in set-theoretical approaches as follows: In
contrast to the proofs of Lemmas 6.4.1 and 6.4.2, The proof of Lemma 6.4.4
needs Positive Introspection, K4.

By the above lemmas, we can prove our main theorem.

Proof of Theorem 6.4.1. Suppose that ⟨Ω,K, U⟩ satisfies K2–4 and U0.
First, assume U3; then, by Remark 19, U(E) = UU(E). Next, by the

definition of the awareness operator, for any E ⊆ Ω, A(E)
U3∗∗
= AU(E)

U0
=

KU(E)∪K¬KU(E)
U2
= ∅∪K(¬∅) = ∅∪K(Ω) = K(Ω). Because E is arbitrary,

A(E) = A(¬E) = K(Ω). Therefore, U(E) = ¬A(E) = ¬A(¬E) = U(¬E).2

Next, assume U4, that is, U(E) = U(¬E). By Lemma 6.4.4, because A2,
that is, AA(E) = A(E), is satisfied, UA(E) = U(E). By U4, U(E) = UA(E) =
UU(E). Hence, U(E) ⊆ UU(E).

By Theorem 6.4.1, we can generalize Theorem 6.3.4.

Proof of Theorem 6.3.4. Suppose that ⟨Ω,K, U⟩ satisfies K1–4 and U0.
First, assume U4. By Theorem 6.4.1, U3 holds.
Next, assume U3. By Lemma 6.4.3 and Remark 19, U(E) = UU(E) holds.

Then, U(E)
U3∗∗
= UU(E)

U0
= ¬KU(E) ∩ ¬K¬KU(E)

U2
= ¬∅ ∩ ¬K(¬∅) = Ω ∩

¬K(Ω) = ¬K(Ω)
K1
= ¬Ω = ∅. By Remark 18, K5 holds.

Finally, assume K5. By Remark 18, U5 holds, that is, U(E) = ∅ for any
E ⊆ Ω. Because E is arbitrary, U(E) = U(¬E) = ∅. That is, U4 holds.

Theorems 6.3.1, 6.3.2, and 6.3.3 are evident from Theorem 6.3.4.
Note that Theorem 6.4.1 generalizes Theorems 6.3.1 and 6.3.4, but not The-

orems 6.3.2 and 6.3.3. Theorems 6.3.1 and 6.3.4 require K4, whereas Theorems
6.3.2 and 6.3.3 do not require K4.

The relationship between Theorems 6.3.4 and 6.4.1 implies the following
corollary.

Corollary 6.4.1. In ⟨Ω,K, U⟩, if K2–4 and U0 hold, but K1 does not hold,
then K5 equivalent to neither U3 nor U4, but U3 and U4 are equivalent.

2If we use U1 and not U0, AU(E) ⊇ KU(E) ∪ K¬KU(E). Then, Symmetry might not
hold, because A(E) = K(Ω) might not hold. See Example 6.
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E K(E) ¬K(E) K¬K(E) ¬K¬K(E) U(E) UU(E) U(¬E)
a a b, c b a, c c c c
b b a, c a b, c c c c
c ∅ a, b, c a, b c c c c
a, b a, b c ∅ a, b, c c c c
a, c a b, c b a, c c c c
b, c b a, c a b, c c c c
a, b, c a, b c ∅ a, b, c c c c
∅ ∅ a, b, c a, b c c c c

Table 6.1: Example 6

Example 6. Let us consider a state space Ω = {a, b, c}. Suppose that the
knowledge operator K satisfies the following: K(Ω) = {a, b}, K({a}) = {a},
K({b}) = {b}, K({c}) = ∅, K({a, b}) = {a, b}, K({a, c}) = {a}, K({b, c}) =
{b}, andK(∅) = ∅. In this example, the knowledge operator satisfies Monotonic-
ity (K2), Truth (K3), and Positive Introspection (K4), but only Necessitation
(K1) does not hold. Based on this formulation, ¬K(E), K¬K(E), ¬K¬K(E),
and the unawareness operator U based on Modica and Rustichini’s definition
can be described as in Table 6.1. It is clear that Negative Introspection (K5) (or
Triviality, U5) does not hold, but AU Introspection (U3) and Symmetry (U4)
hold.

Here, let us use plausible unawareness U∗ : 2Ω → 2Ω, that is, U∗ satisfies U1
but not U0, and suppose U∗({a}) = ∅, U∗({b, c}) = {c}, U∗U∗({a}) = {c}, and
U∗U∗({b, c}) = {c}. Then, U4 holds, but U3 does not hold. In other words,
plausible unawareness might not lead equivalence between AU Introspection and
Symmetry. □

6.5 Concluding Remarks

This chapter (i) shows that AU Introspection and Symmetry for unawareness are
equivalent when relaxing Necessitation; and (ii) generalizes a proof of Theorem
6.3.4 proposed by Chen, Ely, and Luo (2012).

This study excludes Necessitation. Given ⟨Ω,K, U⟩, let ω ∈ Ω be a state.
Then, Necessitation is redefined as follows: for any state ω ∈ Ω, ω ∈ K(Ω).
This means that in any state, the agent always knows the whole state space.
When we relax Necessitation, there exists some state ω such that ω ̸∈ K(Ω);
that is, in some state, the agent does not know the whole state space even if
in other state ω′ ∈ Ω, ω′ ∈ K(Ω). In other words, by excluding Necessitation,
depending on the given state, the agent might or might not know it. This may
seem contradictory. However, depending on the specific situation, it can be said
that there is no contradiction. Let us consider the example of COVID-19 as
follows. Let Ω = {ω1, ω2, ω3, ω4}. ω1 is interpreted as “The agent is infected
with COVID-19 and gets a fever,” ω2 is interpreted as “The agent gets a fever,
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but is not infected with COVID-19,” ω3 is interpreted as “The agent is infected
with COVID-19 but does not get a fever,” and ω4 is interpreted as “The agent
is not infected with COVID-19.” Here, let ω1 ∈ K(Ω), ω2 ∈ K(Ω), ω3 ̸∈ K(Ω),
and ω4 ̸∈ K(Ω). In other words, at ω1 and ω2, the agent knows the whole state
space about her COVID-19 status, whereas she does not know it about it at
ω3 and ω4. This formulation can be interpreted as follows. When an agent
infected with COVID-19 develops a fever, she suspects that she is infected with
COVID-19. However, if an agent is infected with COVID-19 but does not have
a fever, she does not realize that she is infected with COVID-19 because it is
the same condition as not being infected with COVID-19. Moreover, she might
have forgotten what she even knew about COVID-19. This can be rephrased
as follows. The agent is not usually “aware” of COVID-19 and forgets about
its existence when she does not have a fever, but when the agent does have a
fever, she recalls her knowledge of COVID-19 and considers the possibility of
infection. In other words, by relaxing Necessitation, a more realistic situation
can be modeled.

The content of this chapter is directly related to the content of Chapter
5. Chapter 5 showed that the unawareness operator based on the generalized
knowledge operator does not lead to Symmetry if the subjective state space is
not equivalent to the objective state space. In light of the result presented in
Chapter 5, we must reconsider the characterization of Symmetry in the standard
information structure. This chapter is one perspective of such a reconsideration.

This study has one limitation. We exclude only Necessitation, because our
focus is on axioms of the knowledge operator. However, as well known, in
standard information structures that may be non-partitional, the knowledge
operator based on the standard information function or the standard possibility
correspondence cannot exclude only Necessitation. In other words, equivalence
of AU Introspection and Symmetry must be equivalent to “trivial” unawareness
in standard information structures. Future work could aim to define a novel
knowledge operator that excludes only Necessitation in standard information
structures. Chapter 7 defines such a knowledge operator.

Recent studies on the present one include that by Fukuda (2021). Fukuda
(2021) proposes generalized state-space models that nest both unawareness
structures and non-partitional state-space models. He posits that AU Intro-
spection is not consistent with Necessitation, relaxes AU Introspection, and
replaces AU Introspection with Reverse AU Introspection.
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Chapter 7

Unaware Non-Decision
Makers

7.1 Introduction

In economics, decision theory or game theory is used to analyze an agent’s deci-
sion making (i.e., economics focuses on decision makers). However, some of the
economic problems that must be addressed include entities excluded from deci-
sion making such as externalities. There are also people who do not realize they
are in the decision-making arena such as the informationally vulnerable. Since
such agents are not considered to be decision-makers, their information struc-
ture has lacked suitable discussion. To bridge this gap, this chapter discusses
the information structures of non-decision makers.

First, this thesis focuses on empty information sets. Standard discussions
about information structures assume that all information sets are non-empty.
This means that if any state occurs, then the agent must obtain some informa-
tion set. By contrast, non-decision makers find it impossible to recognize any
relevant information. For example, some people are infected with COVID-19,
but might be asymptomatic. Then, they cannot recognize that they are infected
with COVID-19. Moreover, they cannot actually distinguish whether they are
infected with COVID-19.

We can examine such cases by relaxing some of the assumptions of the
knowledge operator in standard information structures. Specifically, for some
state, the information set is empty. However, the standard knowledge operator
leads us to know the whole state space —even if information set is empty. This
seems to be unrealistic. For example, asymptomatic infected people may not be
aware of the whole state space, until some external factor forces them to think
about it. Hence, the standard knowledge operator does not apply to their state
of knowledge in such cases.

To address this issue, this chapter redefines the knowledge operator. In par-
ticular, it makes possible the interpretation that if an information set is empty,
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then the agent cannot know anything. This study’s knowledge operator can
therefore represent the case of COVID-19 or the information structures of gen-
eral non-decision makers. Moreover, these knowledge operators have interesting
features that distinguish them from those of previous studies. As is well known,
the standard knowledge operator must lead to Necessitation and Monotonicity;
that is, both properties are equivalent. By contrast, these two properties might
not be equivalent in this chapter’s knowledge operator. If an information set is
empty, then Monotonicity holds, but Necessitation does not.1

Moreover, the knowledge operator and the unawareness operator in this
study have two implications. The first relates to the relationships with Triviality.
Dekel, Lipman, and Rustichini (1998) show that if the unawareness operator
satisfies Plausibility, KU Introspection, and AU Introspection, then the following
properties hold.

1. Triviality:

If the knowledge operator satisfies Necessitation, then the agent must be
aware of any event.

2. Unawareness Leads to Ignorance:

Suppose that the knowledge operator satisfies Monotonicity. If there is
some event of which the agent is unaware, then the agent does not know
any event.

As described above, since the standard knowledge operator must satisfy Neces-
sitation and Monotonicity, the above two properties must hold. By contrast, our
knowledge operator satisfies Monotonicity and Unawareness Leads to Ignorance
holds; while Triviality might not hold because Necessitation might not hold.

The other implication concerns the relationship with the equivalence of Sym-
metry and AU Introspection. Chen, Ely, and Luo (2012) refer to Modica and
Rustichini (1994, 1999), showing that if Necessitation, Monotonicity, Truth, and
Positive Introspection hold and the unawareness operator is defined by second-
order ignorance, then Symmetry, AU Introspection, and Negative Introspection
are equivalent. By contrast, Chapter 6 in this thesis shows the equivalence
between Symmetry and AU Introspection even if Necessitation does not hold.
Hence, Chapter 6 is based on this chapter’s model in that the information func-
tions assumed in this chapter lead to knowledge operator having such properties.

The remainder of this chapter is organized as follows. Section 7.2 provides
the preliminaries and Section 7.3 redefines the non-decision maker’s knowledge
operator. Section 7.4 characterizes the unawareness operator. The final section
concludes.

1Note that this chapter’s knowledge operator is different to it in Chapter 5. When we use
the knowledge operator in Chapter 5, an agent cannot know the complement set of her or his
subjective state space. By contrast, when we use it in this chapter, she or he can know the
whole state space if she or he obtains a nonempty information set.
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7.2 Preliminaries

7.2.1 Information Structure

First, the information structure ⟨Ω, P ⟩ is defined. Let Ω be the objective state
space, let a state be ω ∈ Ω, and let P : Ω → 2Ω be the information function.
Here, the agent’s subjective state space Z ⊆ Ω is defined as

Z =
∪
ω∈Ω

P (ω).

The standard information structure usually makes the following assumptions.

P0 For any ω ∈ Ω, P (ω) ̸= ∅.

P1 For any ω ∈ Z, ω ∈ P (ω).

P2 For any ω, ω′ ∈ Ω, if ω′ ∈ P (ω), then P (ω′) ⊆ P (ω).

P3 For any ω, ω′ ∈ Ω, if ω′ ∈ P (ω), then P (ω′) ⊇ P (ω).

Remark 20. Suppose that the information function P satisfies P1. Then, P0
and Z = Ω if and only if

P1* For any ω ∈ Ω, ω ∈ P (ω).

P is partitional if and only if P satisfies P1*, P2, and P3.

7.2.2 Standard Knowledge Operator

Next, the standard knowledge operator K∗ : 2Ω → 2Ω is defined. Let E ⊆ Ω
be an event. For any ω ∈ Ω and E ⊆ Ω, we define the standard knowledge
operator K∗ as follows:{

ω ∈ K∗(E) if P (ω) ⊆ E; and

ω ̸∈ K∗(E) otherwise.

As is well known, the standard knowledge operator has the following prop-
erties.

Remark 21. Given the information structure ⟨Ω, P ⟩, K∗ satisfies the following.

K1* Necessitation:

K∗(Ω) = Ω.

K2* Monotonicity:

E ⊆ F =⇒ K∗(E) ⊆ K∗(F ).

K3* Conjunction:

K∗(E ∩ F ) = K∗(E) ∩K∗(F ).
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K4* Truth:

If P1* holds, then K∗(E) ⊆ E.

K5* Positive Introspection:

If P2 holds, then K∗(E) ⊆ K∗K∗(E).

K6* Negative Introspection:

If P3 holds, then ¬K∗(E) ⊆ K∗¬K∗(E).

In the information structure, by the definition of the standard knowledge op-
erator, Necessitation holds even if P0 does not hold. However, it seems that the
information set being empty means that the agent cannot obtain any informa-
tion set. This can be interpreted as “the agent does not have any information.”
Nonetheless, it is strange that Necessitation holds because Necessitation means
that given any state, the agent must know the whole state space —even if the
information set is empty.

The next section defines the knowledge operator when if P0 does not hold,
then Necessitation does not hold.

7.3 Knowledge Operator of Non-Decision Mak-
ers

Before defining the knowledge operator without P0, we provide additional as-
sumptions of the information function that are relaxed from P1.

P4 For any ω ∈ Ω, if P (ω) ̸= ∅, then ω ∈ P (ω).

P5 For any ω ∈ Ω, if there exists ω′ ∈ Ω such that ω ∈ P (ω′), then ω ∈ P (ω).

P4 means that given any state, if that state leads to a non-empty information
set, then the information set has the state. P5 means that given any state, if
another state leads to a non-empty information set possessing the given state,
then the given state leads to some information set possessing the given state.

Let us provide the novel knowledge operator K : 2Ω → 2Ω such that if P0
does not hold, then Necessitation does not hold. For any state ω ∈ Ω and any
event E ⊆ Ω, K is defined as follows:{

ω ∈ K(E) if P (ω) ⊆ E and P (ω) ̸= ∅; and

ω ̸∈ K(E) otherwise.

Given any state and event, if the non-empty information set that the state
leads to is a subset of the event, then the agent knows the event. By contrast,
if an event does not provide an information set that is a subset of an event or
the given state leads to the information set being empty, then the agent does
not know the event. Then, this study’s knowledge operator has the following
properties.
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Proposition 7.3.1. Given the information structure ⟨Ω, P ⟩, K satisfies the
following.

K1 Necessitation:

P0 holds if and only if K(Ω) = Ω.

K2 Monotonicity:

E ⊆ F =⇒ K(E) ⊆ K(F ).

K3 Conjunction:

K(E ∩ F ) = K(E) ∩K(F ).

K4 Truth:

If P4 holds, then K(E) ⊆ E.

K5 Positive Introspection:

If P2 and P5 hold, then K(E) ⊆ KK(E).

K6 Negative Introspection:

P0 and P3 hold if and only if ¬K(E) ⊆ K¬K(E).

Proof.

K1 First, assume P0. K(Ω) ⊆ Ω is obvious. Given any ω ∈ Ω. From P0,
P (ω) ̸= ∅. Since P (ω) ⊆ Ω is obvious, ω ∈ K(Ω); that is, K(Ω) = Ω.

Next, assume that P0 does not hold; that is, there exists ω ∈ Ω such that
P (ω) = ∅. Then, ω ̸∈ K(Ω) is obvious; that is, ω ∈ ¬K(Ω). Then, from
the definition of the knowledge operator K, K(Ω) ̸= Ω.

K3 First, if ω ∈ K(E ∩ F ), P (ω) ⊆ E ∩ F and P (ω) ̸= ∅. That is, P (ω) ⊆ E
and P (ω) ⊆ F . Hence, because ω ∈ K(E) and ω ∈ K(F ), ω ∈ K(E) ∩
K(F ) and K(E ∩ F ) ⊆ K(E) ∩K(F ).

Next, given any ω ∈ K(E) ∩ K(F ), since P (ω) ⊆ E, P (ω) ⊆ F , and
P (ω) ̸= ∅, P (ω) ⊆ E ∩ F and P (ω) ̸= ∅; that is, ω ∈ K(E ∩ F ). Hence,
K(E ∩ F ) ⊇ K(E) ∩K(F ). Therefore, K(E ∩ F ) = K(E) ∩K(F ).

K2 Pick any E,F ⊆ Ω with E ⊆ F . Then, from K3, K(E) = K(E ∩ F ) =
K(E) ∩K(F ) ⊆ K(F ).

K4 Suppose that the information function P satisfies P4. Given any ω ∈
K(E), P (ω) ⊆ E and P (ω) ̸= ∅. From P4, since ω ∈ P (ω), ω ∈ E. That
is, K(E) ⊆ E.

K5 Suppose that P satisfies P2 and P5 and ω ∈ K(E). Then, P (ω) ⊆ E and
P (ω) ̸= ∅. Here, given any ω′ ∈ P (ω), from P2, P (ω′) ⊆ P (ω); moreover,
from P5, ω′ ∈ P (ω′). Because P (ω′) ⊆ E, ω′ ∈ E, ω′ ∈ K(E). Therefore,
since P (ω) ⊆ K(E), then ω ∈ KK(E). Hence, K(E) ⊆ KK(E).
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K6 First, suppose P0 and P3. Given any ω ∈ ¬K(E), ω ̸∈ K(E). Then,
P (ω) ̸⊆ E. Here, given any ω′ ∈ P (ω), from P3, since P (ω′) ⊇ P (ω),
P (ω′) ̸⊆ E. From P0, since P (ω′) ̸= ∅, ω′ ̸∈ K(E); that is, ω′ ∈ ¬K(E).
Then, since P (ω) ⊆ ¬K(E), ω ∈ K¬K(E). Hence, ¬K(E) ⊆ K¬K(E).

Next, assume that P0 does not hold. That is, there exists ω ∈ Ω such that
P (ω) = ∅. Then, for any event E ⊆ Ω, ω ̸∈ K(E); that is, ω ∈ ¬K(E).
Here, since ¬K(E) is an event, ω ̸∈ K¬K(E). Hence, ¬K(E) ̸⊆ K¬K(E).

Proposition 7.3.1 differs from Remark 21. The Necessitation and Negative
Introspection of the standard knowledge operator do not need P0, while those
of this study’s novel knowledge operator need P0. Moreover, Truth does not
need P1 but only needs P4. Furthermore, Positive Introspection requires not
only P2 but also P5. In both cases, P1 is not required.

Let us suppose P4 and P5; Then, the following remark holds.

Remark 22. Suppose that P4 and P5 hold. Then, K(Z) = K(Ω) = Z.

Proof. First, from Monotonicity, since Z ⊆ Ω, K(Z) ⊆ K(Ω).
Next, given any ω ∈ K(Ω), P (ω) ⊆ Ω and P (ω) ̸= ∅. From P4 and the

definition of Z, since ω ∈ P (Ω), ω ∈ Z. Therefore, K(Ω) ⊆ Z.
Finally, given any ω ∈ Z, there exists ω′ ∈ Ω such that ω ∈ P (ω′). Then,

from P5, ω ∈ P (ω). From the definition of Z, since P (ω) ⊆ Z, ω ∈ K(Z). That
is, Z ⊆ K(Z).

Hence, K(Z) = K(Ω) = Z.

This remark shows that, under P4 and P5, at any state in the subjective
state space, the agent knows the subjective state space as well as the objective
state space (Z ⊆ K(Z) = K(Ω)). Furthermore, the knowledge is true in the
subjective state space (K(Z) = K(Ω) ⊆ Z). This is interpreted as at any state
outside the subjective state space, the agent cannot know all events.

Example 7. An example of COVID-19 can be formulated as follows. Given
Ω = {ω1, ω2, ω3}, we interpret ω1 as “Alice is infected with COVID-19 and
presents with symptoms,” ω2 as “Alice is infected with COVID-19, but does
not present with symptoms,” and ω3 as “Alice is not infected with COVID-19.”
Let E1 = {ω1} and E2 = {ω2, ω3}. Here, first, PA(ω1) = E1, whereas PA(ω2) =
PA(ω3) = ∅. Next, let K∗

A be her standard knowledge operator, while KA is her
knowledge operator of our version. K∗

A satisfies the followings. ω1 ∈ K∗
A(E1)

and ω1 ∈ K∗
A(Ω), that is, given ω1, she knows that she is infected with COVID-

19 and presents with symptoms; and ω2, ω3 ∈ K∗
A(E1), ω2, ω3 ∈ K∗

A(E2), and
ω2, ω3 ∈ K∗

A(Ω); that is, given ω2 or ω3, she knows any event. By contrast, given
our knowledge operator KA, ω1 ∈ KA(E1); that is, given ω1, she knows that
she is infected with COVID-19, whereas ω2, ω3 ̸∈ KA(E1), ω2, ω3 ̸∈ KA(E2),
and ω2, ω3 ̸∈ KA(Ω), that is, at ω2 and ω3, she is not only ignorant of E1 but
also ignorant of E2 and Ω. Then, KA(E1) = KA(Ω) = E1 and KA(E2) = ∅. □
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7.4 Relationship with the Unawareness Opera-
tor

This section discusses properties of the unawareness operator based on this
study’s knowledge operator. Let U : 2Ω → 2Ω be the unawareness operator,
which is defined as follows:

U(E) = ¬K(E) ∩ ¬K¬K(E),

as in Modica and Rustichini (1994). Then, the awareness operator A : 2Ω → 2Ω

is defined as A(E) = ¬U(E).
Here, let us suppose P2, P4, and P5; then, from Proposition 7.3.1, Mono-

tonicity, Conjunction, Truth, and Positive Introspection hold. Hence, the fol-
lowing properties hold.

Proposition 7.4.1. Given ⟨Ω, P ⟩, if P satisfies P2, P4, and P5, then U satisfies
the following properties. Given any event E ⊆ Ω:

U1 KU Introspection:

KU(E) = ∅.

U2* Reverse AU Introspection:

U(E) ⊇ UU(E).

U8 AK-Self-Reflection:

AK(E) = A(E).

U9 AA-Self-Reflection:

AA(E) = A(E).

U10 A-Introspection:

KA(E) = A(E).

Proof.

U1 From Conjunction, KU(E) = K(¬K(E) ∩ ¬K¬K(E)) = K¬K(E) ∩
K¬K¬K(E). From Truth, since K¬K¬K(E) ⊆ ¬K¬K(E), K¬K(E) ∩
K¬K¬K(E) ⊆ K¬K(E) ∩ ¬K¬K(E) = ∅.

U2* From KU Introspection, UU(E) = ¬KU(E) ∩ ¬K¬KU(E) = ¬K(Ω).
Here, from Monotonicity, for any E ⊆ Ω, K(E) ⊆ K(Ω); that is, ¬K(Ω) ⊆
¬K(E). Moreover, since ¬K(E) ⊆ Ω, from Monotonicity, K¬K(E) ⊆
K(Ω); that is, ¬K(Ω) ⊆ ¬K¬K(E). Hence, UU(E) = ¬K(Ω) ⊆ ¬K(E)∩
¬K¬K(E) = U(E).

U8 From Positive Introspection, AK(E) = KK(E) ∪K¬KK(E) = K(E) ∪
K¬K(E) = A(E).
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U10 SinceK(E) ⊆ A(E), fromMonotonicity and Positive Introspection, K(E) =
KK(E) ⊆ KA(E). Moreover, K¬K(E) ⊆ A(E) and from Truth, K¬K(E) ⊆
¬K(E); that is, K¬K(E) ⊆ A(E) ∩ ¬K(E). Then, from Monotonicity
and Positive Introspection, K¬K(E) = KK¬K(E) ⊆ K(A(E)∩¬K(E)).
From Conjunction, K(A(E) ∩ ¬K(E)) = KA(E) ∩ K¬K(E); that is,
K¬K(E) ⊆ KA(E). Then, A(E) = K(E) ∪K¬K(E) ⊆ K(E) ∪KA(E).
Because K(E) ⊆ KA(E), K(E) ∪ KA(E) = KA(E); that is, A(E) ⊆
KA(E). From Truth, since KA(E) ⊆ A(E), KA(E) = A(E).

U9 From KU Introspection and A-Introspection, AA(E) = KA(E)∪K¬KA(E) =
A(E) ∪K¬A(E) = A(E) ∪KU(E) = A(E).

U1 is provided by Dekel, Lipman, and Rustichini (1998); U2* by Fukuda
(2021); U8 and U9 by Modica and Rustichini (1994, 1999) and Halpern (2001);
and U10 by Heifetz, Meier, and Schipper (2006).

The following equivalence was proven in Chapter 6.

Lemma 7.4.1. Given ⟨Ω, P ⟩, suppose P2, P4, and P5. Then, the following
properties are equivalent.

U2 AU Introspection:

U(E) ⊆ UU(E).

U6 Symmetry:

U(E) = U(¬E).

Proof. See Chapter 6.

Dekel, Lipman, and Rustichini (1998) provide U2 and Modica and Rusti-
chini (1994) provide U6. Chen, Ely, and Luo (2012) were the first to prove the
equivalence between AU Introspection and Symmetry. According to their re-
sults, each property is equivalent to Negative Introspection. In contrast to their
work, Chapter 6 showed their equivalence under non-trivial unawareness. In
other words, neither AU Introspection nor Symmetry is equivalent to Negative
Introspection, although they are equivalent to each other.

Example 7 (Continued). Let UA be Alice’s unawareness operator. Then, by
the definition of the unawareness operator, her knowledge and unawareness can
be depicted in Table 7.1. As shown in the table, her unawareness operator
satisfies both AU Introspection and Symmetry. □

Finally, we suppose AU Introspection (or Symmetry) and show the following
properties of unawareness.2

2No examples have been found where AU Introspection or Symmetry do not hold. Whether
AU Introspection and Symmetry are always valid under P2, P4 and P5 is an interesting
question. We relegate it to future research.
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E K(E) ¬K(E) K¬K(E) ¬K¬K(E) U(E) UU(E) U(¬E)
ω1 (E1) ω1 ω2, ω3 ∅ Ω ω2, ω3 ω2, ω3 ω2, ω3

ω2 ∅ Ω ω1 ω2, ω3 ω2, ω3 ω2, ω3 ω2, ω3

ω3 ∅ Ω ω1 ω2, ω3 ω2, ω3 ω2, ω3 ω2, ω3

ω1, ω2 ω1 ω2, ω3 ∅ Ω ω2, ω3 ω2, ω3 ω2, ω3

ω1, ω3 ω1 ω2, ω3 ∅ Ω ω2, ω3 ω2, ω3 ω2, ω3

ω2, ω3 (E2) ∅ Ω ω1 ω2, ω3 ω2, ω3 ω2, ω3 ω2, ω3

Ω ω1 ω2, ω3 ∅ Ω ω2, ω3 ω2, ω3 ω2, ω3

∅ ∅ Ω ω1 ω2, ω3 ω2, ω3 ω2, ω3 ω2, ω3

Table 7.1: Example 7

Proposition 7.4.2. Given ⟨Ω, P ⟩, suppose P2, P4, and P5. Here, let us assume
AU Introspection. Then, given any event E,F ⊆ Ω, the following properties
hold.

Ua Triviality:

P0 if and only if U(E) = ∅.

Ub Unawareness Leads to Ignorance:

U(E) ⊆ ¬K(F ).

U3 Weak Necessitation:

A(E) = K(Z).

U4 Strong Plausibility:

U(E) =
∩∞

n=1(¬K)n(E).

U5 Weak Negative Introspection:

¬K(E) ∩A¬K(E) = K¬K(E).

U7 A-Conjunction:

∩λA(Eλ) = A(∩λEλ).

Proof. Suppose P2, P4, P5, and AU Introspection.

Ua First, suppose that P0 holds. From Proposition 7.4.1, P0 holds if and only
if Necessitation holds; that is K(Ω) = Ω. Here, from AU introspection
and Proposition 7.4.1, U(E) = UU(E) = ¬KU(E) ∩ ¬K¬KU(E) =
¬∅∩¬K(¬∅) = Ω∩¬K(Ω) = ¬K(Ω). From Necessitation, since ¬K(Ω) =
¬Ω = ∅, U(E) = ∅.
Next, suppose that P0 does not hold; that is, K(Ω) ̸= Ω. Then, U(E) =
¬K(Ω) ̸= ∅.

Ub From Ua, U(E) = ¬K(Ω). For any F ⊆ Ω, from Monotonicity, K(F ) ⊆
K(Ω); that is, ¬K(Ω) ⊆ K(F ). Because ¬K(Ω) = U(E), U(E) ⊆ K(F ).
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U3 From Ua, U(E) = ¬K(Ω); that is, A(E) = K(Ω). From Remark 22, since
K(Ω) = K(Z), A(E) = K(Z).

U4 From Proposition 7.4.1 and AU Introspection, U(E) =
∩∞

n=1(U)n(E) =∩∞
n=1(¬K)2n−1(¬K)2n(E) =

∩∞
n=1(¬K)n(E).

U5 First, from Symmetry and AK-Self-Reflection, A¬K(E) = AK(E) =
A(E). Hence, ¬K(E) ∩ A¬K(E) = ¬K(E) ∩ A(E) = ¬K(E) ∩ (K(E) ∪
K¬K(E)) = (¬K(E)∩K(E))∪(¬K(E)∩K¬K(E)) = ¬K(E)∩K¬K(E) ⊆
K¬K(E); that is, ¬K(E) ∩A¬K(E) ⊆ K¬K(E).

Here, from Monotonicity and Remark 22, since ¬K(E) ⊆ Ω is obvious,
K¬K(E) ⊆ K(Ω) = Z. From Weak Necessitation, since A¬K(E) =
K(Z) = Z, K¬K(E) ⊆ A¬K(E). Moreover, from Truth, K¬K(E) ⊆
¬K(E); that is, K¬K(E) ⊆ ¬K(E) ∩ A¬K(E). Therefore, ¬K(E) ∩
A¬K(E) = K¬K(E).

U7 From Weak Necessitation, A(∩λEλ) = K(Z) = ∩λK(Z) = ∩A(Eλ).

Ua, Ub, U3, and U4 are provided by Dekel, Lipman, and Rustichini (1998);
U5 by Halpern (2001); and U7 by Modica and Rustichini (1999) and Halpern
(2001). Unawareness Leads to Ignorance, Weak Necessitation, Strong Plausibil-
ity, Weak Negative Introspection, and A-Conjunction need only AU Introspec-
tion, whereas Triviality needs not only AU Introspection but also P0. Hence,
without P0, we can discuss non-trivial unawareness using our knowledge oper-
ator.

Let us turn to Unawareness Leads to Ignorance. In our model under the
assumption of AU Introspection, Unawareness Leads to Ignorance always holds.3

Some may think that Unawareness Leads to Ignorance is an awful property,
because unawareness of some event makes any knowledge impossible. However,
such supposition may be due to the all-encompassing “universal” interpretation
of the whole state space Ω.4 When we turn to an example that permits “small
world” interpretation of Ω, Unawareness Leads to Ignorance may have some
realistic meanings.

Example 8. Bob, who is unemployed, is eligible to apply for unemployment
insurance. If he applies, he can receive insurance benefits at any time. However,
he is informationally vulnerable and has no access to information about the
unemployment insurance system. Therefore, he has no knowledge about this
system. In other words, he does not have any information necessary to apply
for unemployment insurance, including whether he is eligible to apply, how
to apply, or any other information about receiving unemployment insurance.
Additionally, because he is unaware of this information, he has no knowledge

3In Example 7, the property holds. See Table 7.1.
4Dekel, Lipman, and Rustichini’s (1998) view of Unawareness Leads to Ignorance might

be because of this. They regard it as “trivial.”
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of the unemployment insurance system. This is an example where Unawareness
Leads to Ignorance is meaningful.

Let us mathematically consider this situation. Let Ω = {ω1, ω2}. We inter-
pret ω1 as “Bob can receive unemployment insurance” and ω2 as “Bob cannot
receive unemployment insurance.” Each event is interpreted as follows.

E1 = {ω1}: Bob can receive unemployment insurance.
E2 = {ω2}: Bob cannot receive unemployment insurance.
Ω = {ω1, ω2}: Bob’s country has an unemployment insurance program.

Here, first, let PB be his information function and PB(ω1) = PB(ω2) = ∅.
Next, we have the knowledge operator of a non-decision makerKB , then ω1, ω2 ̸∈
KB(∅) = KB(E1) = KB(E2) = KB(Ω) = ∅, that is, ω1, ω2 ∈ ¬KB(∅) =
¬KB(E1) = ¬KB(E2) = ¬KB(Ω) = Ω. That is, given any state, he cannot
know any event.

Let us define his unawareness operator UB . Then, his unawareness operator
satisfies ω1, ω2 ∈ UB(∅) = UB(E1) = UB(E2) = UB(Ω) = Ω. That is, for any
event E,F ⊆ Ω, UB(E) ⊆ ¬KB(F ). □

7.5 Concluding Remarks

This chapter provides the non-decision maker’s knowledge operator. It is built
on the interpretation that an agent receiving an empty information set cannot
know any event. Moreover, this chapter characterizes the properties of unaware-
ness based on the knowledge operator. In our models, Triviality holds if and
only if any information set is non-empty, whereas Unawareness Leads to Igno-
rance always holds. Based on the “small world” interpretation of the whole
state space, this thesis provides an interpretation of the property that might
be “non-trivial.” This interpretation may lead to future applied research on
unawareness. However, one issue remains to be addressed. This study’s model
assumes a single agent (i.e., interactive situations are not considered). Hence,
future research could aim to address this issue.
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Part IV

Conclusion Part
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Chapter 8

Concluding Remarks

8.1 Conclusion

This thesis explores two topics. First, PART II discussed the discovery process
in simultaneous-move games with unawareness. As noted in Chapters 1 and 2,
players may revise their subjective games when they observe actions of their
opponents that they were unaware of prior to the game. Schipper (2021) pro-
posed discovery processes as such model updates. He demonstrated that any
rationalizable discovery process converges to some extensive-form game with un-
awareness possessing a rationalizable self-confirming equilibrium. However, he
did not demonstrate that players’ decisions converge to a self-confirming equi-
librium, or that their moves converge on a specific solution concept. Chapter 3
investigated whether it is possible for players’ play to converge to a particular so-
lution concept via a discovery process, focusing on the simultaneous-move case.
Any myopic discovery process converges to a common realizable CURB set,
which is an extension of the CURB concept to simultaneous-move games with
unawareness. Additionally, the game’s common realizable CURB set includes
support for players’ myopic best responses. Chapter 4 examined the discovery
of actions in coordination games involving unawareness. In Schipper (2021) and
Chapter 3, each player adds previously unnoticed opponents’ actions to her or
his revised subjective game through a process of discovery. In situations where
successful coordination is crucial, such as in coordination games with unaware-
ness, it is necessary that players not only discover the opponents’ unnoticed
actions and add them to the opponents’ action sets, but also be able to imi-
tate the opponents’ actions and select the same actions themselves. This study
models an imitative discovered game in which each player adds the opponents’
actions to all players’ action sets. Moreover, it demonstrates the existence of
a successful-coordination equilibrium in which coordination is successful in the
subsequent stage game.

Second, PART III revisits unawareness in the models with standard infor-
mation structure for a single agent. As pointed out by Modica and Rustichini
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(1994, 1999), and Dekel, Lipman, and Rustichini (1998), since unawareness may
be trivial in standard information structures, models of unawareness structures
have become the norm in the study of unawareness. However, as Ewerhart
(2001) and Fukuda (2021) point out, Non-Triviality in standard information
structures can be investigated by modifying the definitions and assumptions of
knowledge and unawareness operators. Chapter 5 models unawareness similarly
to Ewerhart (2001), and characterize the knowledge and unawareness operators.
Chapter 6 reexamines the relationship among Symmetry, AU Introspection, and
Negative Introspection. As Modica and Rustichini (1994), Dekel, Lipman, and
Rustichini (1998), and Chen, Ely, and Luo (2012) point out, Symmetry and
AU Introspection may be equivalent to Negative Introspection in conventional
information structures. Nonetheless, if Necessitation is not true, the equiva-
lence may not hold. This study relaxes Necessitation condition, focuses on the
relationship between Symmetry and AU Introspection, and demonstrates the
conditions under which the two are equivalent in the presence of non-trivial un-
awareness. Chapter 7 reexamines the knowledge operator’s information function
definition. The standard discussion about an information function assumes that
any information set is not empty. However, Necessitation holds even if some
information set is empty. That is, agents know the whole state space regardless
of whether or not they obtain a set of information. This property is counterin-
tuitive. Following is a redefinition of the knowledge operator: If the information
set is empty, the agent has no knowledge. Additionally, this study reevaluates
unawareness in standard information structures. Necessitation does not hold
under non-trivial unawareness, whereas Monotonicity always holds. Chapter
7’s knowledge operator is related to its Chapter 6 counterpart. Other aspects
of unawareness have also been identified.

8.2 Further Research

In each chapter thus for, future technical research topics have been described. In
addition to these, we would like to propose the following agenda: PART II have
only analyzed simultaneous-move games and not their extensive-form counter-
parts. During the plays of extensive-form games with unawareness, a player
may discover the unnoticed actions of their opponents. Then, players can up-
date their subjective game and refine their decision-making strategy. Such a
model must be constructed. PART III analyzes single-agent models of infor-
mation structures, but not interactive situations. The subsequent phase of this
research should consist of an examination of interactive situations. Further-
more, this thesis focuses exclusively on theoretical research. Possible directions
for future research include the following.

Ma and Schipper (2017) conducted an experiment to determine whether risk
preferences are invariant to awareness changes. Their research demonstrated
that it is possible to conduct experiments involving decision-making under un-
awareness. Future studies may create an experimental model of the discovery
process outlined in PART II and test how players’ decision-making changes as
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their awareness shifts. Aoki (2001, 2011) and Takizawa (2017) mention the
relationship between players’ cognitive frameworks (or knowledge), and institu-
tions. Incorporating unawareness into comparative institutional analysis could
also be a direction for future research. The model of the unaware non-decider
described in Chapter 7 may also be applicable to externalities if interpreted as
a model of the knowledge of subjects who are removed from decision-making
under particular circumstances.

These issues are the subject of future research.
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