
New Zealand Science Review Vol 74 (4) 2018 91

Article

A quick look at prime numbers

David Alexander Lillis*
 443 Muritai Road, Eastbourne, Lower Hutt, 5013  

Figure 1: A table of the 25 prime numbers between 1 and 100.
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Our fascination with the primes
Since the time of the ancient Greeks, and probably long before 
then, we have been fascinated by prime numbers. One possible 
reason for our fascination with prime numbers is that the in-
ter-relationships between them and the patterns that they appear 
to create are so difficult to understand. Another possible reason 
is that the primes appear to exhibit both deterministic behav-
iours (i.e. fully determined on the basis of naturally-occurring 
relationships) and random behaviours (i.e. occurring by chance). 
Nobody has succeeded in creating mathematical models that 
predict the magnitudes of prime numbers exactly or the numbers 
of prime numbers up to a given natural number. Other reasons 
for our fascination with primes may involve unexpected and 
quite exquisite relationships between prime numbers and certain 
mathematical functions and the seemingly disconnected islands 
of prime numbers, each surrounded by a sea of numbers that 
are not prime but which are related mysteriously to one another.

What are prime numbers? 
Primes are positive natural numbers, greater than 1, that have 
two positive divisors (i.e. have no divisors other than themselves 
and 1). Numbers that are not prime (i.e. have divisors other than 
themselves and 1) are known as composite numbers. The so-
called Fundamental Theorem of Arithmetic tells us that every 
whole number greater than 1 is either prime or is a unique 
product of primes, apart from the order of multiplication. For 
example, 30 can be written as the product of three primes: 2 
×3 × 5. Figure 1 gives a table of the 25 prime numbers that lie 
between 1 and 100, in which the primes are shown against a 
shaded background.

Because 1 has only a single positive divisor (itself), it is not a 
prime. In fact, because a composite number has more than one 
divisor, 1 is neither prime nor composite. 

We note that the gaps between these primes (which we define 
as the difference between a given prime and the next prime) vary 

considerably. We see from Figure 1 that, for numbers between 1 
and 100, the gaps vary from 1 (i.e. the gap between 2 and 3) to 
8 (that between 89 and 97). All prime gaps are even, apart from 
the first gap and, in fact, the first prime number (2) is the only 
even prime number.

The first 15 gaps are as follows (compare with Figure 1):  

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4 and 6

However, though all prime gaps, except the first, are even 
natural numbers, many even natural numbers are not known 
prime gaps. Here are the fifteen smallest known gaps in ascend-
ing order:

1, 2, 4, 6, 8, 14, 18, 20, 22, 34, 36, 44, 52, 72 and 86.

We see that the even natural numbers 10, 12, 16 and others 
within the range of this list are not known gap sizes. Thus, the 
known set of prime gaps is a subset of the even natural numbers. 
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Bernhard Riemann (1826 – 1866)How numerous are the primes? 
There are 168 primes between 1 and 1000, 1229 primes between 
1 and 10,000 and 78,498 of them between 1 and one million. 
We have tables of primes for much bigger natural numbers, 
but counting the primes becomes more and more difficult as 
we move along the number line to very large natural numbers. 

Around 300 BC Euclid proved that there are infinitely many 
prime numbers. In more recent times, other famous names have 
been associated with prime number theory, notably Leonard 
Euler (1707–1783), Pafnuty Chebyshev (1821–1894), Bernard 
Riemann (1826–1866), G.H. Hardy (1877–1947), John Little- 
wood (1885–1977) and Srinivasa Ramanujan (1877–1920). To-
day, Yitang Zhang, Ben Green, Terence Tao and James Maynard 
are among the group that is advancing our knowledge in this 
very challenging field. 

Figure 2 gives a graph of the prime-counting function, the 
actual number of primes up to and including a given natural 
number, usually denoted by the Greek symbol π(n). Specifically, 
Figure 2 gives the number of primes up to 60.  

century. One approximation for the magnitude of the n’th prime 
number is the following:

p(n) ~ nlog
e
(n)

. . . where the tilde means ‘approximately equal to. In other 
words, we have a mathematical model of the size of the n’th 
prime, but not an exact model. 

More of interest to researchers at present is the development 
of models of the number of primes up to a given natural number. 
Researchers have produced extensive tables of the numbers of 
primes that are updated almost every year to larger and larger 
natural numbers. One useful approximation (due to Carl Frie-
drich Gauss and Adrien Legendre) for the number of primes up 
to a given natural number n is:

π(n) ~ n / log
e
(n)

. . . where, of course, π(n) represents the actual total number 
of primes up to n.  

This expression is known as the prime number theorem and 
also as the asymptotic law of distribution of prime numbers. 
Though Chebyshev demonstrated that this expression is correct 
to within about ten percent of the true number of primes up to 
n, it appears to underestimate the true number persistently. For 

n = 108, the actual number of primes π(n) =  5,761,455, while 
the prime number theorem estimates π(n) at 5,438,681, which 
is 322,774 (about 5.6%) too few. 

Aware of the limitations of the prime number theorem, 
Riemann provided a better estimate (Riemann 1859), as follows:

Li(n) ~ ∫
0 

N dt / log
e
(t)

. . . where t is a dummy variable. This expression estimates 
the true number of primes up to a natural number n with greater 

precision. Thus, for n = 108, Li(n) =  5,762,209, which is only 754 
(about 0.01%) too many. Thus, Riemann’s expression represents 
a significant improvement. 

For some years it was believed that Li(n) always overestimates 
the true number. However, Littlewood (1914) demonstrated that 
for very large natural numbers the expression underestimates 
the true number and, thereafter at greater and greater scales, 
successively underestimates and overestimates infinitely often 
(known as ‘Littlewood Violations’). In other words, the difference 

π(n) – Li(n) changes sign infinitely often. 

However, violations of the rule that Li(n) overestimates π(n) 
occur at numbers that are very large and it is not surprising that 
it took several decades from the original work of Riemann to 
identify these violations. We now know that Littlewood Viola-

We see that the number of primes increases in steps as we 
move along the natural number line and as we encounter each 

new prime number. Note that π(1) = 0 because 1 is not a prime, 

π(2) = 1, π(3) = 2, π(4) = 2 and π(5) = 3. Notice that there 
appears to be some curvature in this graph. In fact, as we move 
to greater and greater natural numbers, on average the primes 
do become sparser and the gaps between them tend to increase.

Some Mathematical Expressions 

Over the last one hundred and fifty years, much work on 
primes has centered on the development of mathematical 
models that give:

1. Estimates of the number of primes up to a given natural 
number n

2. Estimates of the magnitude of the n’th prime number

3. Estimates of the size (average, minimum and maximum) 
of the gaps between adjacent primes at different scales 
of the natural numbers

4. Indications of the occurrence and recurrence of patterns 
within the set of primes (e.g. the occurrence of arithmetic 
series and even polynomial series). 

We now start our beginner’s review of prime number theory 
by examining some results that have been known for well over a 

Figure 2: The prime-counting function for natural numbers up to 60.
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John Littlewood (1885 – 1977)

tions occur at approximately 1.398 × 10316 (Bays and Hudson, 
2000) where more than 10153 consecutive natural numbers exist 
for which the sign of π(n)  - Li(n) is positive. There are large 
zones of violation at much greater numbers again but Büthe 
(2015) has demonstrated that Littlewood Violations do not occur 
at natural numbers below 1019. 

Prime numbers and the zeta function  
We now consider the zeta function whose relevance to prime 
numbers will be seen in the next section. One simple version of 
the zeta function is as follows:

Z(s)  =  1 + 1/2s + 1/3s + 1/4s +  1/ns + . . .   =    

∑
0

∞ (1 / ns)   =   ∑
0

∞ n-s

. . . where s is a real number. 

In 1737 Leonard Euler demonstrated that the zeta function 
can be re-written as follows:

∑
0

∞ (1 / ns)   =   ∏
primes

 [ 1 / ( 1 - 1/P
s 
) ]

. .  .where P
s 
 are the prime numbers and the symbol ∏

primes 

is an instruction to multiply all terms in brackets involving all 
prime numbers. Thus, we already have a link between an infinite 
series of inverse powers of natural numbers and an infinite 
series of primes.

Figure 3 gives a graph of the zeta function. 

For s > 1 the zeta function always tends asymptotically to 
infinity as s tends towards 1 from above and tends asymptotically 
to 1 as s becomes larger (though the precise curve depends on 
the value of s). For values of s < 1 the graph shows peaks and 
troughs whose amplitudes depend on the value of s. The graph 
is very complicated but we see roots (places where the graph 
crosses the horizontal axis) at every negative even whole number. 
These zeroes at the negative even whole numbers are known as 
the trivial roots of the zeta function. However, other non-trivial 
roots exist which are harder to find and harder to understand. 

For a complete discussion of these roots we must consider 
the zeta function applied on complex numbers. You may re-
member from high school that complex numbers are numbers 
of the form:

a + bi

where i is the square root of –1. Many texts discuss the 
zeta function very clearly, especially that by John Derbyshire 
(Derbyshire 2004). A discussion of the application of the zeta 
function on complex numbers is beyond the scope of this article. 
However, over the last century, a great deal of work has gone 
into understanding the non-trivial solutions to the zeta function 
applied on complex numbers. 

The Riemann Hypothesis
The Riemann Hypothesis, one of the long-standing challenges 
of pure mathematics, has implications for prime number theory. 
The Riemann Hypothesis involves the following conjecture: 

 All non-trivial zeroes of the zeta function have real part equal 
to ½.

Hardy (1914) showed that infinitely many of the non-triv-
ial roots have real part ½ but this result does not prove that 
absolutely all non-trivial roots have that value. If the Riemann 
Hypothesis can be proved, then certain conjectures about primes 
will be confirmed or proved untrue. However, it has not yet been 
proved or disproved and prime number theorists are divided in 
their opinions on whether the conjecture is true or not. If it is 
true, then we can write:

π(n) = Li(n) + O[ n1/2log
e
(n) ]

. . . where the function O indicates an error term that remains 

bounded within the graph of the function n1/2log
e
(n). In other 

words, we can be more precise in our estimates of the numbers 
of primes. Figure 4 gives a graph of this error term up to 10,000 
(which was created using R, an environment for statistical 
analysis and graphics).  

The error term, the difference between the actual number of 
primes and the function Li(n), is suppressed within the bounds 
of our function, enabling increased accuracy in our estimates 

of π(n).

More mathematical expressions 
Now we consider a particular function of the prime-counting 
function – the J function. Due to Riemann (Riemann 1859), it 
is written as follows:

J(n) = π(n)  +  ½ π(n1/2)  +  1/3 π(n1/3)  +  1/4 π(n1/4)   

+ . . .

This function can be inverted to give the prime-counting 
function on the left hand side:

π(n) = J(n)  –  ½ J(n1/2)  –  1/3 J(n1/3)  –  1/5 J(n1/5)  +  

1/6 J(n1/6)  –  1/7 J(n1/7)  + 1/10 J(n1/10)  +   . . .

. . . where certain terms appear to be missing (in fact, terms 
involving 1/4 and 1/9, etc. have disappeared quite legitimately) 
and we now have both plus and minus signs. It can be demon-
strated that: 

log
e
[ Z(s) ]  =  s ∫

0 

∞ J(t).t–s–1 dt

 . . . where t is a dummy variable. A proof of this expression 
is beyond the scope of this article, but it is demonstrated clearly Figure 3: Graph of the zeta function.
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Figure 4: The bounded error term.

Ben Green  

Terry Tao

Yitang Zhang

in John Derbyshire’s book on pages 303–311. The result of inter-
est for us is that, since J(n) is a function of the prime-counting 

function π(n), we have a firm link between the prime-counting 
function and the zeta function. We have another link between 
the zeta function and the Riemann Hypothesis and therefore 
we have a link between the prime numbers and the Riemann 
Hypothesis.

The Green–Tao Theorem and arithmetic 
progressions within the primes
In 2004 Benjamin Green and Terence Tao (Green & Tao 2008) 
published the Green–Tao Theorem. They showed that the prime 
numbers include arithmetic progressions of arbitrary length. 
Thus, there are arithmetic progressions of prime numbers with 
every possible number of terms. Put another way, for every 
natural number n, the primes contain arithmetic progressions 
of length n. 

As an example, consider the arithmetic progression of 
primes: 5, 11, 17,23, 29 in which the gaps are of magnitude 6. 
This progression is of length 5 and terminates at 29 because 35 
is not a prime. The Green–Tao Theorem tells us that arithmetic 
progressions like this example exist within the primes but does 
not predict progression length or gap size, how to identify them 
or where they exist on the number line.

Small gaps between prime numbers
Over the last five years much progress has been made in our 
understanding of the gaps between the prime numbers. The 
lectures given by Professor Tao at the Department of Mathe-
matics of the University of California Los Angeles on the gaps 
between the prime numbers, available on the Internet, provide 
a very helpful introductory synopsis (the URLs are given in the 
references for this article). 

Much progress is being made on both how small and how 
large the gaps between adjacent primes can be at different scales 
of the natural numbers. In fact, gaps can be thought of in terms 
of the number of composite numbers lying between two adjacent 
primes (i.e. we could subtract 1 from the difference between the 

two adjacent primes). However, the gap G[ P(n) ] between two 
primes (the n’th and n+1’st primes) is usually defined as the 
difference between those adjacent primes, and that approach 
has been adopted in this article. Thus: 

G[ P(n) ] = P(n+1)  –  P(n)
We can relate the primes to the prime gaps as follows:

P(n + 1) = 2  +  ∑ 
1

n G[ P(t) ]
Apart from the first gap of size 1 (that between 2 and 3), the 

smallest possible gap is of size 2 (for example, that between the 
primes 11 and 13 and between 71 and 73). So, how can small 
gaps between primes at different scales of the natural numbers 
be characterised?  

In May 2013 Yitang Zhang demonstrated that gaps less than 
or equal to 70,000,000 occur infinitely often. This number is not 
particularly special and simply emerges from the assumptions 
and approximations that Zhang adopted in his proof. 

Within a few months other workers trimmed this number 
down to 4680 (a group within the Polymath Project – a project 
in which mathematicians collaborate in solving mathematical 
problems), then down to 600 (Maynard 2013) and then to 246 
(the Polymath Project in April 2014). 

James Maynard’s work in this area was undertaken as a very 
young mathematician, for the most part independently of other 
workers.  

Under certain assumptions it can be demonstrated that gaps 
less than or equal to 6 occur infinitely often. However, because 
this result depends critically on those assumptions, we are not 
entirely sure that gaps of size 6 do occur infinitely often. Gaps 
less than or equal to 4 (the so-called Cousin Primes) may occur 
infinitely often but we do not yet have a definitive proof. Gaps 
equal to 2 may also occur infinitely often (the Twin Prime Con-
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James Maynard

jecture). At present, completely new approaches are required in 
order to verify the Twin Prime Conjecture, and Professor Tao 
believes that a proof could be more than a decade away. 

Large gaps between the primes
Professor Tao’s lectures provide an introduction to current work 
on large gaps between primes, particularly his lecture Small and 
Large Gaps between the Primes (see the first of the references 
to his lectures for the relevant URL). Professor Tao states that, 
across all of the primes, gaps can be of any size (i.e. arbitrarily 
large). He also states that our best estimate for the upper bound 
on the gap size between a particular pair of adjacent primes is 
as follows:  

P(n+1)  –  P(n)  <  P(n)0.55

Consider the adjacent primes 89 and 97. The gap between 
them has size 8 but the above expression predicts an upper bound 
of 11.8 (which we round up to 12). The expression works in the 
sense that it gives an estimate of the maximum size of a gap for a 
pair of adjacent primes, but it does not give us the actual gap size. 

Thus, the prime gaps are at most just slightly larger than the 
square root of P(n). However, if the Riemann Hypothesis is true, 
then we have a slight improvement:

P(n+1)  –  P(n)  <  P(n)0.5 log
e
[ P(n) ]

For the pair of adjacent primes 89 and 97, the predicted 
maximum gap size is now 42. Let’s also use this expression for 
the adjacent primes 2393 and 2399. The improved expression 
predicts an upper bound on the gap size of 381, considerably 
larger than the actual gap of 6. However, we must remember 
that these expressions are intended to give upper bounds on 
gap sizes at different scales of the natural numbers, rather than 
precise gap sizes. 

Even this expression is not expected to be the final, definitive 
result, and improvements will most probably be found. However, 
if the Riemann Hypothesis is verified, we will have more pre-
cise expressions for the upper bounds on gap sizes for adjacent 
primes at different scales of the natural numbers. 

A voyage down the number line 
On the basis of the Green–Tao theorem it appears that we can 
choose any natural number and there will be at least one arith-
metic progression of this length. However, at any given scale of 
the natural numbers, gap sizes may be constrained to a subset of 
allowable gaps that are greater than or equal to 2 and less than 
or equal to certain maximum gap sizes that possibly are roughly 
consistent with the expressions of the previous section or with 
extensions of those expressions.   

Here are some interesting questions that might be answered 
in the future: 

1. A progression of primes at a certain scale may occur once 
or finitely often, but could it recur infinitely often and, if 
so, under what conditions could such a progression recur 
infinitely often? If progressions do recur, are progressions 
of small length and small gap size more likely to recur 
than longer progressions with large gap sizes? 

2. If such a progression recurs finitely often or infinitely of-
ten then, just as the primes become sparser, on average, at 
greater and greater scales of the natural numbers, would 
repetitions of this progression tend to become sparser, 
on average, as we move to greater and greater scales of 
the natural numbers?  

3. In many or all repetitions of this progression (and other 
similar progressions), all elements may occur purely 
deterministically but, in some repetitions, could certain 
elements appear by chance (i.e. from a purely random 
process) rather than deterministically?  

Perhaps such questions cannot be answered directly through 
the Green–Tao Theorem (which states only that there are 
arithmetic progressions of arbitrary length but does not say 
anything about what those elements should be). It may appear 
counter-intuitive to have infinitely many recurring progressions 
of certain arithmetic progressions of particular lengths and 
gap sizes. However, the primes are infinite in extent and so the 
possibilities for such progressions to emerge may be limitless, 
except for possible inherent constraints on recurrences imposed 
by naturally-occurring relationships between the primes them-
selves. Nature provides different levels of infinity. Thus, even if 
we select only one whole number from every thousand trillion, 
we nevertheless select an infinite number of whole numbers. Ap-
plying this line of thought, perhaps it is possible for the primes to 
contain an infinite number of arithmetic progressions involving 
particular combinations of length and gap size. 

Imagine that we are to travel down the number line at very 
high speed and stop to look at every occurrence of one particular 
progression. Our first stop may take only a few minutes to reach 
and perhaps that is the one and only stop. However, there may 
be others. Those other stops, further down the number line, if 
they exist, may take days, weeks or years to get to. As we get to 
very large scales, our next stops may take thousands of years and 
possibly much more, but our journey may last forever.       

Future work on primes
The primes appear to be characterised by unexpected relation-
ships with certain mathematical functions and those seemingly 
disconnected islands of prime numbers which are mysteriously 
related to one another, though they are surrounded by a sea of 
numbers that are not prime. Like other areas of mathematics, 
resolution of one question about primes seems to result in other 
questions. 

Our understanding of prime numbers is increasing every 
year. Future work on primes may depend on a resolution of the 
Riemann Hypothesis, but could include attempts to prove the 
Cousin Prime Conjecture (that primes separated by 4 occur 
infinitely often) and the Twin Prime Conjecture (that primes 
separated by 2 occur infinitely often). Other valuable work may 
include refinements of our current models of the magnitudes of 
the n’th prime and the numbers of primes up to a given natural 
number.  
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