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Abstract

In this paper we study changes of beliefs in a ranking-theoretic setting
using non-extremal implausibility thresholds for belief. We represent
implausibilities as ranks and introduce natural rank changes subject
to a minimal change criterion. We show that many of the traditional
AGM postulates for revision and contraction are preserved, except
for the postulate of Preservation which is invalid. The diagnosis for
belief contraction is similar, but not exactly the same. We demonstrate
that the one-shot versions of both revision and contraction can be
represented as revisions based on semiorders, but in two subtly different
ways. We provide sets of postulates that are sound and complete in
the sense that they allow us to prove representation theorems. We
show that, and explain why, the classical duality between revision and
contraction, as exhibited by the Levi and Harper identities, is partly
broken by threshold-based belief changes. We also study the logic
of iterated threshold-based revision and contraction. The traditional
Darwiche-Pearl postulates for iterated revision continue to hold, as well
as two additional postulates that characterize ranking-based revision
as a restricted ‘improvement’ operator. We investigate the dual notion
of iterated threshold-based belief contraction and provide a new set of
postulates for it, characterizing contraction as a restricted ‘degrading’
operator.

Keywords: belief revision, belief contraction, thresholds for belief,
ranking theory, semiorders, plausibility

1 Introduction

In this paper we study a model for belief revision and contraction which
arises naturally in the context of ranking theory. The goal of a revision
by A is to make A a belief. The goal of a contraction by A is to make
A a non-belief. Two minimal-change ideas underlying many approaches to
belief change are these: (a) If it is not necessary to make any changes,
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then don’t change anything. (b) If it is necessary to make changes, make
the smallest changes possible to achieve your goal. The idea behind the
ranking-theoretic approach to belief change is this: (c) If you have to make
changes regarding A, then don’t change the plausibility distances within the
A-worlds and don’t change the plausibility distances between the A-worlds.1

In this paper, we will heed maxims (a) and (c). It can be argued that (c) is a
means of heeding maxim (b), but we will allow non-minimal forms of belief
change that violate (b) in other respects. Our aim is to identify the logic of
threshold-based belief change in a ranking-theoretic setting. In order to do
this, we also study belief change based on semiorders.

Our model brings together two ideas. On the one hand, we define a
family of minimal change mechanisms to revise and contract sets of be-
liefs, using resources of the ranking theory developed by Spohn (2012). On
the other hand, we use an operator which maps a ranking function to an
associated belief set. This operator is parametrized by a threshold. We
call the resulting model threshold-based belief change. Although the idea
of threshold-based belief was mentioned by Spohn (2012; 2014), its conse-
quences for belief change have not been studied yet.

An essential difference to classical AGM belief revision (Alchourrón,
Gärdenfors and Makinson, 1985) is that the postulate of Preservation fails
if the threshold is set to values greater than 0. Thus the stronger postu-
late of Rational Monotonicity fails as well. Instead two weakenings hold—
Disjunctive Rationality and a new postulate that we call Semitransitivity
(and then Cautious Monotonicity follows). Correspondingly, the essential
difference to classical AGM belief contraction is that the postulate of Con-
junctive Inclusion fails (if the ranking contraction is not minimal). Instead
two weaker postulates hold here, too.

We will introduce a new distinction between two ways of generating a
belief revision and contraction from orders—the canonical and the normal
way. We then prove two representation theorems for revision in this pa-
per: (1) A belief revision satisfying our new postulates is representable by
a (canonical) semiorder belief revision, as studied by Peppas and Williams
(2014) (but for the normal case). (2) Semiorder belief revision is essen-
tially equivalent to threshold-based ranking belief revision and does not
satisfy Preservation. Threshold-based revisions in the ranking-theoretic set-
ting thus elegantly represent semiorder belief revisions, and in addition they
provide the means for iterated revisions.

For contraction we prove two similar representation theorems: (3) Belief
contractions satisfying our new contraction postulates are representable as
semiorder belief contractions, as studied by Rott (2001; 2014), when the rep-

1Besides revision and contraction with respect to A, we might also consider the opera-
tions of improving and degrading A which are characterized by increasing and decreasing
the difference κ(A)− κ(A), respectively. See Konieczny, Medina Grespan and Pino Pérez
(2010).
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resentation is ‘normal’ (instead of being ‘canonical’). (4) Normal semiorder
belief contraction is essentially equivalent to threshold-based ranking belief
contractions. Again, threshold-based contractions in the ranking-theoretic
setting elegantly represent normal semiorder belief contractions, and in ad-
dition they provide the means for iterated contractions.

We also show that (5) the Levi and Harper identities fail in our model,
and we explain why. Essentially this is due to the fact that the minimal
change criterion forces us to adopt canonical revision which fails to satisfy
Preservation, but at the same time it forces us to adopt normal contraction
which satisfies Vacuity. Furthermore, (6) we prove a representation theorem
for iterated revision and (7) one for iterated contraction, thereby providing
the first study of iterated revision and contraction in the weaker semiorder
setting. We relate these results to iterated threshold-based revision and
contraction.

Threshold-based belief change is motivated by the idea that different
contexts may fix different levels of plausibility demarcating the attitude of
belief, and that we may acknowledge differences between the plausibilities of
possible worlds within an agent’s belief core (her strongest believed proposi-
tion) just as we acknowledge such differences outside this core (Rott 2009).
On the other hand, semiorders were introduced by Luce (1956) as a nat-
ural and realistic structure representing the perceptual differences between
different objects, with the characteristic property that the relation of indis-
tinguishibility is not transitive (when properties can only be ‘imperfectly
discriminated’). We will exhibit a connection between these ideas by show-
ing that threshold-based belief change in a ranking-theoretic setting can be
represented by belief change based on semiorders.

The plan of the paper is as follows. Section 2 introduces our model
for threshold-based belief change, presenting both threshold-based belief re-
vision and contraction. Section 3 provides the basics of semiorders that
we will use in our analysis. Section 4 proves the representation results for
semiorder belief revision. Section 5 proves analogous representation results
for semiorder belief contraction. Section 6 discusses the Levi and Harper
identities. In Section 7, we discuss three new iterated revision postulates,
prove representation results for iterated revision and show that our rank-
ing revisions are restricted improvement operators. In Section 8, we discuss
seven new iterated contraction postulates, prove representation results for
iterated contraction and show that our ranking revisions are restricted de-
grading operators. The appendix collects proofs of the observations and
theorems.

Australasian Journal of Logic (20:3) 2023, Article no. 4



432

2 Rankings and thresholds

In this section, we introduce the ranking revisions and contractions on which
we base our model for threshold-based belief change. We use the long-arrow
notation f : X −→Y to indicate that f is a total function from X to Y .

Let W be a non-empty set of worlds. We assume W to be finite.2

Propositions are subsets of W , i.e., elements of the powerset algebra ℘(W )
over W . We denote by A = W \A the complement of A with respect to W .

Definition 1. A belief-state change model is a quadruple ⟨D,W, ◦,Bel ⟩,
where D and W are non-empty sets, and ◦ and Bel are functions ◦ : D ×
℘(W )−→D, and Bel : D−→℘(W ).

D is a set of doxastic states, W a set of possible worlds, ◦ is a state change
operator over doxastic states, and Bel is a belief core operator. When ◦ is a
revision operator, we write ∗ and talk of belief state revision, and when ◦ is
a contraction operator, we write ´ and talk of belief state contraction. We
write Ψ for arbitrary doxastic states and Ψ ◦ A for ◦(Ψ, A). Bel(Ψ) is the
belief core associated to Ψ, i.e., A is believed in state Ψ iff Bel(Ψ) ⊆ A. We
call a belief state Ψ consistent iff its associated belief core Bel(Ψ) is non-
empty. Within this framework for the changes of belief states, the question
of iterated changes of belief cores is trivial: once we have a state change
operator and a belief operator, we have a belief change operator:

(Bel(Ψ), A) 7→ Bel(Ψ ◦A) (1)

Thus iterated belief core revision just comes down to applying Bel several
times, on top of the iterated belief state changes. We will often briefly write
⟨ ◦,Bel ⟩ for ⟨D,W, ◦,Bel ⟩ and use the abbreviations Bel ◦ A := Bel(Ψ ◦ A)
and Bel := Bel(Ψ). It should, however, always be remembered that Bel ◦A
arises from the change of the underlying doxastic state Ψ.3

We focus on particular states, particular belief operators, and particular
state changes. Our states are ranking functions. k is a world ranking iff
k : W −→N such that k−1[0] ̸= ∅.4 k induces a function κ over ℘(W ),
defined by κ(A) = minw∈A k(w) for non-empty A and κ(∅) = ∞. This κ is
a ranking, i.e., a function κ : ℘(W )−→N ∪ {∞} which satisfies the ranking
axioms: κ(W ) = 0, κ(∅) = ∞ and κ(

⋃
S) = minA∈S κ(A) for all S ⊆ ℘(W ),

and additionally κ(A) = ∞ only for A = ∅.5 Conversely, given a ranking,

2The theory can be generalized to infinite W . But, for belief revisions based on orders,
we would then also need to assume that these orders are well founded, i.e., there are no
infinite descending chains. We confine ourselves to the simpler finite case.

3We can have Bel(Ψ) = Bel(Ψ′) without Bel(Ψ ◦A) = Bel(Ψ′ ◦A). Thus (1) does not
specify a function of Bel(Ψ) and A.

4This is a regular point ranking function in the sense of Spohn (2012, Definitions 5.5
and 5.27).

5This is a regular completely minimitive natural negative ranking function in the sense
of Spohn (2012, Definitions 5.5, 5.9.k and 5.27).
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there is a unique world ranking k which induces it—namely k defined by
k(w) = κ({w}). Henceforth, we will identify world ranking and ranking and
write κ(w) for κ({w}).

Next we define a parametrized notion of belief: A is believed to degree
z iff κ(A) > z. One can easily prove that the set of believed propositions,
BELz(κ) = {A ∈ ℘(W ) : κ(A) > z}, is a principal proper filter. Thus
the agent’s beliefs can be characterized by a single non-empty proposition
that we denote by Belz(κ) :=

⋂
BELz(κ). We call Belz(κ) the agent’s z-

belief core. It is the strongest believed proposition given the state κ and the
threshold z. By construction, A is believed to degree z in κ iff Belz(κ) ⊆ A.
Since BELz(κ) is proper, we also have that Belz(κ) ̸= ∅. Finally, it is easily
shown that the belief core can be represented by:

Belz(κ) = {w ∈ W : κ(w) ≤ z}. (2)

This is our threshold-based belief core operator.
To represent inconsistent belief, we introduce the improper ranking κ⊥,

defined by κ⊥(A) = ∞ for all A ∈ ℘(W ). It is induced by the improper
world ranking k⊥(w) = ∞ for all w ∈ W . Note that BELz(κ⊥) = ℘(W )
and Belz(κ⊥) = ∅. Under the improper ranking everything is believed,
whatever the (finite) threshold 0 ≤ z. When we speak of rankings in the
following, we mean the above proper rankings.

Our state-changes are constructed from a well known partial operation
over rankings (Spohn 2012, pp. 78, 83):

Definition 2. Let κ be a ranking over ℘(W ) and A ̸= ∅, W . The n-
conditionalization of κ by A is induced by

κA→n(w) :=

{
κ(w)− κ(A) if w ∈ A,

κ(w)− κ(A) + n otherwise.
(3)

Our ranking revisions and contractions are then defined as follows:

Definition 3. Let κ be a ranking over ℘(W ), and z ≥ 0 fixed.

1. For any A ⊆ W :

κnA :=


κA→n if Belz(κ) ⊈ A,A ̸= ∅,
κ if Belz(κ) ⊆ A,A ̸= ∅,
κ⊥ if A = ∅.

(4)

κnA is the n-revision of κ by A for threshold z iff n > z.

2. For any A ⊆ W :

κnA =


κA→n if Belz(κ) ⊆ A,A ̸= W,

κ if Belz(κ) ⊈ A,A ̸= W,

κ if A = W.

(5)

Australasian Journal of Logic (20:3) 2023, Article no. 4



434

κnA is the n-contraction of κ with respect to A for threshold z iff n ≤ z.

Disregarding the empty set, the n-revision κnA recommends n-conditionali-
zation if A is not already believed and else does nothing. Similarly, disre-
garding the full set, the n-contraction κnA recommends n-conditionalization
if A is believed and else does nothing. The n-revision by the empty set
yields the improper ranking, whereas the n-contraction by the full set does
not change anything. We adopt these two special cases, to be in line with
the classical AGM assumptions, but other options are possible.6

Whereas the effect of an n-revision is to make A believed, the effect
of an n-contraction is to remove A from the beliefs (except when A = W ).
Both operations (except for revisions by ∅) preserve rank-differences within
the A-worlds and rank-differences within the A-worlds. For z ≥ 0 fixed,
there are countably many n-revisions, whereas there are only finitely many
n-contractions. Strictly speaking, our notation κnA is incomplete; what we
define is a function of z which would better be written as κn,zA —indeed we

generally have κn,zA ̸= κn,z
′

A when z ̸= z′. However, we adopt the simplified
notation to minimize the use of indices, but we remind the reader that κnA
is to be understood in the context of a fixed threshold z (similarly for κnA).

From our belief operator Belz(·) and our n-revisions and n-contractions
(for a given threshold z), we obtain belief core revisions and contractions:

(Belz(κ), A) 7→ Belz(κ
n
A), (6)

(Belz(κ), A) 7→ Belz(κ
n
A). (7)

Our requirement n > z for revision ensures revision success: Belz(κ
n
A) ⊆

A. Our requirement n ≤ z for contraction ensures contraction-success:
Belz(κ

n
A) ⊈ A (for A ̸= W ). We assume that thresholds remain invariant

under normal processes of belief revision and contraction.
We introduce paradigmatic revisions and contractions: In the context

z ≥ 0, we call κz+1
A the minimal revision, κzA the minimal contraction and

κ0A the maximal contraction.
We will use the abbreviation minmκ A for {w ∈ A : κ(w) ≤ κ(A) +m}.

Note that the belief core of a ranking revision can be captured in terms of
the prior ranking function κ, i.e., for n > z:

Belz(κ
n
A) = minzκA, (8)

and that thus for n > z, we have Belz(κ
n
A) = Belz(κ

z+1
A ). So the minimal

revision can be seen as the paradigmatic revision. No similar identity is
valid for contractions.7 However, the belief core of a ranking contraction,

6For example, one may posit that revising by the empty set should do nothing, but
then AGM’s postulate of success (see AGM2 below) gets violated.

7There are ranking functions such that Belz(κ
n
A) ̸= Belz(κ

m
A ) for n,m ≤ z with n ̸= m.
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too, can be captured in terms of the prior ranking function κ, i.e., for n ≤ z
and Bel ⊆ A:

Belz(κ
n
A) = Bel ∪minz−n

κ A. (9)

We will later see that any belief contraction resulting from a ranking contrac-
tion is representable by a maximal contraction. This is the reason why we
take maximal contraction rather than minimal contraction as the paradig-
matic case. To designate an arbitrary belief revision in the context z ≥ 0, we
write Bel(κ ∗A), meaning Belz(κ

n
A) for some arbitrary n > z. To designate

an arbitrary contraction in the context z ≥ 0, we write Bel(κ´A), meaning
Belz(κ

n
A) for some arbitrary n ≤ z.

We adopt the following notions of ranking representability:

Definition 4. A belief state revision ⟨D,W, ∗,Bel ⟩ is ranking representable
iff for every consistent Ψ ∈ D there are a ranking κ and integers n and z
with n > z ≥ 0 such that

Bel(Ψ) = Belz(κ), (10)

∀A ⊆ W, Bel(Ψ ∗A) = Belz(κ
n
A). (11)

Definition 5. A belief state contraction ⟨D,W,´,Bel ⟩ is ranking repre-
sentable iff for every consistent Ψ ∈ D, there are a ranking κ over ℘(W ) and
integers z and n with z ≥ n ≥ 0 such that

Bel(Ψ) = Belz(κ), (12)

∀A ⊆ W, Bel(Ψ´A) = Belz(κ
n
A). (13)

The representability criterion of Definition 4 does not impose a definite
threshold nor a definite revision parameter. But note that if the threshold
is given, then we could always use κz+1

A instead of κnA as the paradigmatic
ranking revision, by (8), as long as we are only interested in the laws of
belief-core revision.

Our model is motivated by an initial proposal of Spohn, but departs
from it in some respects. Spohn (2012, p. 89) uses κA→n as ranking revi-

sion, with n > 0. Later on Spohn (2014, p. 103) uses κ
(n)
A = κA→n provided

κ(A) > 0. In both cases, he restricts his attention to the standard threshold
z = 0. Spohn’s Bel0(κA→n) for n > 0 agrees with our Bel0(κ

1
A), Spohn’s new

proposal Bel0(κ
(n)
A ) agrees with our Bel0(κ

n
A) only on its domain of definition,

but is undefined when A has rank 0. Our account disagrees for non-standard
thresholds, since when z > 0, Belz(κA→n) agrees with Belz(κ

n
A), only when

n > z. Hence, our n-revisions generalize Spohn’s proposal to non-standard
thresholds with two essential modifications which are motivated as follows.
Spohn’s κA→n is not minimal: A-worlds are always moved by some amount.
Contrary to this, our n-revisions only improve A when success requires it,
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i.e., when A is not already believed. Additionally, Spohn’s proposal moves
A-worlds downwards when A is n-believed (κ(A) > n). And thus it some-
times degrades A. Our n-revisions never do this—they are partial improve-
ment operators, which only improve A when required by success. Spohn’s

new proposal κ
(n)
A looks almost like ours when the standard threshold z = 0

is applied. However, it remains undefined when κ(A) = 0. This means that
when κ(A) = 0 = κ(A), Spohn’s revision cannot bring about a belief in A.
Contrary to this, our n-revisions always satisfy revision success.8

Spohn (2012, Def. 5.41) uses our maximal contraction κ0A for the stan-
dard threshold z = 0, which he calls ‘central contraction’. The contraction
studied by Spohn (2012, p. 96, 5.55; 2014, Def. 11) is thus identical with
our Bel0(κ

0
A). While he focuses on the threshold z = 0, he hints at the

generalization but recommends keeping central (i.e., maximal) contraction.
The n-contractions generalize maximal contraction and are motivated as fol-
lows. Spohn’s central contraction is minimal only for the standard threshold
z = 0, since for z = 0 there is only one contraction! When z > 0, it ceases
to be minimal and is in fact the maximal contraction. We make room for
the option that sometimes more incisive changes are desirable, represented
by the remaining spectrum. Contractions with 0 < n < z are less inci-
sive than maximal contractions, since they don’t improve A to the level of
A. At the same time, they are more incisive than minimal contractions,
since they improve A more than necessary. When z > 0, any of the non-
maximal contractions is less risk seeking than maximal contraction, with
minimal contraction being the least risk seeking. Thus, Spohn’s neutrality
requirement—both A and A end up at rank 0—goes hand in hand with the
maximal risk of loosing beliefs. Whereas minimal contraction behaves al-
ways like the full standard AGM contraction, we will show that non-minimal
contractions deviate from it in important respects.

Though we think that the view from ranking theory clearly commits us
to the revision and contraction methods we have introduced in Definitions
4 and 5, other options are conceivable. An alternative way of revising belief
sets is to go for the intersection of Bel and A when they are consistent, and
an alternative way of contracting them is to go for the union of Bel with all
the “close” A-worlds even when A is not believed.

Definition 6. A belief state revision ⟨D,W, ∗,Bel ⟩ is non-standardly rank-
ing representable iff for every consistent Ψ ∈ D there are a ranking κ and
an integer z ≥ 0 such that (10) and

∀A ⊆ W, Bel(Ψ ∗A) =

{
minzκA if Bel ∩A = ∅,
Bel ∩A if Bel ∩A ̸= ∅.

(14)

8For this reason we think that Spohn really had in mind our κn
A. In the context z = 0,

we would thus need to replace his condition τ(A) < 0 by τ(A) ≤ 0, and say that else
κn
A = κ.
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Definition 7. A belief state contraction ⟨D,W,´,Bel ⟩ is non-standardly
ranking representable iff for every consistent Ψ ∈ D, there are a ranking κ
over ℘(W ) and integers z and n with z ≥ n ≥ 0 such that (12) and

∀A ⊆ W, Bel(Ψ´A) = Bel ∪minz−n
κ A. (15)

We call the operations defined by (14) and (15) non-standard ranking revi-
sion and non-standard ranking contraction, respectively, which is short for
‘non-standard belief revision induced by a ranking revision/contraction’.

3 Semiorders

We will relate threshold-based belief change in a ranking-theoretic setting
to a purely qualitative approach to belief change. Here a list of purely
structural properties that apply to relations of any kind.

Definition 8.

(a) A strict preorder is an irreflexive and transitive (and, thus, asymmet-
ric) relation ≺.

(b) An interval order is a strict preorder that satisfies the

(Interval condition) If x ≺ y and u ≺ v, then x ≺ v or u ≺ y.

(c) A semiorder is an interval order that satisfies

(Semitransitivity) If x ≺ y and y ≺ v, then x ≺ u or u ≺ v.

(d) A strict preorder is modular9 iff it satisfies

(Modularity) If x ≺ y, then x ≺ u or u ≺ y.

For asymmetric relations, Modularity implies both the Interval condition
and Semitransitivity, and for irreflexive relations, each of the Interval condi-
tion and Semitransitivity in turn implies transitivity. The Interval condition
and Semitransitivity, however, are logically independent. Let us define x ∼ y
iff x ⊀ y and y ⊀ x. The relation ∼ signifies indistinguishibility and is not
in general transitive. A strict preorder that is modular can also be called
total. For a strict total preorder, ∼ is an equivalence relation. In the work
of AGM and many other authors, ≺ is indeed assumed to be a strict total
preorder. We will generalize AGM’s canonical representation by employing
semiorders.

For the bridge between semiorder revision and threshold-based ranking
revision, we will use a result by Scott and Suppes (1958), which links a
semiorder to a non-negative rational-valued point function which we can
then transform into a world ranking.

9Alternatives terms to ‘modular’ are ‘almost connected’, ‘virtually connected’ and ‘neg-
atively transitive’.
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Theorem 9 (Scott-Suppes). Let W be a finite set and ≺ a semiorder over
W . Then there is a function f : W −→Q+ such that for all v, w ∈ W ,
v ≺ w iff f(v) + 1 < f(w), and in addition f−1[0] ̸= ∅.

To keep this paper reasonably self-contained, we reproduce the proof of
Scott and Suppes (1958) in the appendix, making use of the presentation of
Suppes and Zinnes (1963, pp. 29–34).

Because the function f mentioned in Theorem 9 starts at zero and takes
its values in the non-negative rational numbers, we can ‘normalise’ it by a
multiplier z to obtain a world ranking relative to which belief is expressed
by the threshold z. We call a semiorder bottom if it satisfies the following
condition: If v ∈ min≺W and w /∈ min≺W , implies v ≺ w.

Corollary 10. Let ≺ be a semiorder over a finite set W .

(a) There is a world ranking κ : W −→N and z ∈ N such that for all
v, w ∈ W , v ≺ w iff κ(v) + z < κ(w).

(b) If ≺ is bottom, then κ can be chosen so that it is z-gappy in the
following sense: for all v, w ∈ W , κ(v) ≤ z and z < κ(w) implies that
κ(v) + z < κ(w).

4 Representing revisions

In this section we start with the well-known AGM postulates for belief re-
visions (Alchourrón, Gärdenfors, and Makinson, 1985). AGM showed that
revisions conforming to them are representable as total preorder belief re-
visions. The canonical way to generate a one-shot AGM belief revision is
to use a total preorder ≺ over possible worlds and define the belief cores
Bel = min≺W and Bel ∗ A = min≺A, where min≺X := {w ∈ X : ¬∃v ∈
X, v ≺ w}.10 AGM revisions are different from our threshold-based belief
revisions which we will show to be representable as semiorder belief revisions.

Definition 11. A belief state revision ⟨D,W, ∗,Bel ⟩ is canonically semi-
order representable iff for all consistent Ψ ∈ D there is a semiorder ≺Ψ over
W such that

Bel(Ψ) = min≺Ψ W, (16)

∀A ∈ ℘(W ), Bel(Ψ ∗A) = min≺Ψ A. (17)

We call ⟨D,W, ∗,Bel ⟩ a canonical semiorder revision.

There is another way to generalize the strict total preorder representation:

10If W is infinite, one needs to assume that there are no infinite descending chains.
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Definition 12. A belief state revision ⟨D,W, ∗,Bel ⟩ is normally semiorder
representable iff for all consistent Ψ ∈ D there is a semiorder ≺Ψ over W
that satisfies equation (16) and

∀A ∈ ℘(W ), Bel(Ψ ∗A) =

{
Bel(Ψ) ∩A if Bel ⊈ A

min≺Ψ A else.
(18)

We call ⟨D,W, ∗,Bel ⟩ a normal semiorder revision.

In the total preorder case, the two definitions are equivalent, since if Bel ⊈ A,
then min≺A = Bel ∩ A. In the semiorder case, the two are not equivalent.
The normal representation is tantamount to accepting the (in)famous pos-
tulate

(AGM4) If Bel ∩A ̸= ∅ then Bel ∗A ⊆ Bel. (Preservation)

The canonical representation allows violations of Preservation. Thus the
choice will depend on one’s inclinations for or against Preservation. Guided
by intuitions about ranking revision, we think that the canonical repre-
sentation is the more adequate generalization. And thus, when we speak
of representability in the revision case, we mean canonical representability.
The goal of a revision is to make A believed by minimally altering the belief
state. Regarding the belief cores, the intersection of the belief core with
A seems to be the minimal move—hence the normal representation. But
regarding the rankings, the minimal move is the minimal downwards move.
When z > 0, this move may violate Preservation—hence the canonical rep-
resentation. Canonical and normal representability are equivalent only when
the semiorder is bottom. This means that minimal elements have neither
ties nor incomparabilities with non-minimal elements—they are always more
plausible than the latter. A semiorder that is bottom ensures Preservation
and the possibility of a normal representation.

Representability by a total preorder is equivalent to the existence a
faithful assignment in the sense of Katsuno and Mendelzon. Their result
(Katsuno and Mendelzon 1991, Theorem 3.3) reads as follows in our termi-
nology:

Theorem 13. A belief state revision ⟨D,W, ∗,Bel ⟩ is total preorder rep-
resentable iff it satisfies the following postulates for all Ψ ∈ D and all
A,B ⊆ W :

(AGM0) Bel ∗W = Bel. (Weak Vacuity)

(AGM2) Bel ∗A ⊆ A. (Success)

(AGM3) Bel ∩A ⊆ Bel ∗A. (Inclusion)

(AGM4) If Bel ∩A ̸= ∅, then Bel ∗A ⊆ Bel. (Preservation)

(AGM5) If A ̸= ∅, then Bel ∗A ̸= ∅. (Consistency)
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(AGM7) (Bel ∗A) ∩B ⊆ Bel ∗ (A ∩B). (Conditionalization)

(AGM8) If (Bel ∗A) ∩B ̸= ∅, then (Bel ∗ (A ∩B)) ⊆ Bel ∗A.
(Rational Monotonicity)

We call a belief state revision fully AGM iff it satisfies the revision postu-
lates mentioned in Theorem 13.11 Note that AGM0 and AGM5 imply that
Bel ̸= ∅ for all belief cores Bel, which is a strengthening of AGM5. The ad-
dition of AGM0 strengthens the traditional account of AGM and Katsuno
and Mendelzon slightly, but this will turn out to be well justified for our pur-
poses.12 AGM7 together with AGM0 implies AGM3, and AGM8 together
with AGM0 implies AGM4. So the above axiomatization is not without
redundancies, but we keep it because we will have to give up AGM4 and
AGM8 later and we want to maintain a parallelism with our treatment of
contractions below.

We are interested in weaker revision operators. For (canonical and
normal) semiorder revisions, it is known that AGM8 is invalid. In fact even
Preservation fails:

Observation 14. AGM4 is invalid for canonical semiorder revision.

AGM8 is invalid because AGM4 is invalid and AGM0 holds. We now replace
AGM8 by two new postulates:

(AGM8d) Bel ∗A ⊆ Bel ∗ (A ∪B) or Bel ∗B ⊆ Bel ∗ (A ∪B).
(Disjunctive rationality)

(AGM8s) If (Bel ∗ (A ∪B)) ∩B = ∅ and (Bel ∗ (B ∪ C)) ∩ C = ∅,
then (Bel ∗ (A ∪D)) ∩D = ∅ or (Bel ∗ (D ∪ C)) ∩ C = ∅.

(Semitransitivity)

AGM8d and AGM8s are independent of each other, and jointly weaker than
AGM8.13 We call a belief state revision a semi-AGM revision iff it satisfies
the basic AGM revision postulates AGM0, AGM2, AGM3,14 AGM5, AGM7,
and instead of AGM8 it satisfies our new postulates AGM8d and AGM8s.
It is called a normal semi-AGM revision iff it in addition satisfies AGM4.
Semi-AGM revisions also satisfy

(AGM8c) If Bel ∗A ⊆ B, then Bel ∗ (A ∩B) ⊆ Bel ∗A.
(Cautious montonicity)

11Using propositions rather than sentences and belief cores rather than belief sets, our
semantic framework makes the traditional postulates AGM1 and AGM6 trivially true. In
a way, they don’t apply at all, since ‘Cn’ and ‘⊢’ don’t operate on the level of sets.

12There is a problem here because belief-state change models allow iterated revisions.
AGM2 implies that Bel ∗ ∅ = ∅. By AGM0, then (Bel ∗ ∅) ∗W = Bel ∗ ∅ = ∅, contradicting
AGM5. The least incisive way to avoid this problem seems to be to adapt Definition 1
slightly and rule out the empty input A.

13This corresponds to the fact noted above that the Interval condition and Semitransi-
tivity are independent of each other and jointly weaker than Modularity.

14Since AGM3 is redundant here, we will hardly mention it from now on.
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Observation 15. AGM8c follows from AGM2, AGM5, AGM8d.

Whereas AGM8c and AGM8d are known from interval-order belief revision,
AGM8s is new and corresponds to Semitransitivity. AGM8d is Rott’s (2014)
II+ and provides a much nicer characterization of interval-order belief revi-
sions than Axiom 3 of Jamison and Lau (1973) and Fishburn (1975). Rott
hinted at semiorder revision, but only studied semiorder contraction, assum-
ing that the former can be obtained from the latter by the Levi identity—an
assumption that we do not make here (see section 6 below). He assumed
contractions to satisfy AGM´4 which yields AGM4 for his semiorder revi-
sions; hence he really considers the normal representation, not the canonical
one. Peppas and Williams (2014) also proposed an axiomatization of semi-
order revision, based on Axioms 3 and 5 of Jamison and Lau (1973) and
Fishburn (1975) which are counterparts to the Interval condition and Semi-
transitivity. Peppas and Williams’s encoding of the Interval condition (A8)
and Semitransitivity (A9, A10) is much more complicated than ours (com-
pare the discussion in Rott 2014, pp. 377–379). Besides they also presuppose
Preservation AGM4, which gives their results a more restricted applicabil-
ity. Neither Peppas and Williams’s nor Rott’s work is general enough for
the analysis of threshold-based belief revision in a ranking-theoretic setting.

We obtain our first main theorem about threshold-based belief change:

Theorem 16. Let W be finite, and let ⟨D,W, ∗,Bel ⟩ be a belief state revi-
sion model. The following claims are equivalent:
(a) ⟨D,W, ∗,Bel ⟩ is a semi-AGM revision;

(b) it is canonically semiorder representable;

(c) it is ranking representable;

(d) it is representable by a minimal ranking revision.

The following result is obtained by conjoining two steps in the proof of
Theorem 16:

Corollary 17. For a ranking κ and a fixed threshold z, we generate a binary
relation ≺ over W from ⟨κ, z ⟩ as follows:

v ≺ w iff κ(v) + z < κ(w) (19)

For the relation ≺ thus induced we get: (1) ≺ is a semiorder and (2)
Belz(κ) = min≺W and Belz(κ

n
A) = min≺A for n > z.

The following result on non-standard ranking revision can also be seen as a
corollary to Theorem 16:

Corollary 18. Let W be finite, and let ⟨D,W, ∗,Bel ⟩ be a belief state revi-
sion model. The following claims are equivalent:
(a) ⟨D,W, ∗,Bel ⟩ is a normal semi-AGM revision;
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(b) it is normally semiorder representable;

(c) it is non-standardly ranking representable;

(d) it is non-standardly representable by a minimal ranking revision.

Our representation results show that the distinction between standard and
non-standard ranking representability corresponds to that between canonical
and normal semiorder representability.

Our threshold-based revisions are of a format that is different from that
of semiorder revisions. The former are belief state revisions, the latter are
not. Indeed, a semiorder revision in the sense of Definition 11 or 12 is based
on the prior doxastic state (represented by a semiorder ≺), but it produces
only a revised belief core and the prior state itself (the semiorder) is not
subject to any revision. So without further provisions, no iterated changes
can be performed. (We will encounter lists of such provisions in Sections
7 and 8.) In contrast, threshold-based revisions as specified by Definition
3 and equation (6) are based on ranking revisions and the belief operator.
The doxastic states are the ranking functions, the state revision is ranking
revision, and the belief operator induces a belief core revision resulting from
the revised ranking. This is much more straightforward: belief revision is
derived from a principled method of ranking revision. In this sense, our
revision ⟨ ∗,Bel ⟩ applied to rankings (augmented by κ⊥) is a belief state
revision which allows iterated revisions.

To conclude, we have seen that semiorder revisions and threshold-based
ranking revision are equivalent for one-shot revisions of belief cores.15 They
satisfy the basic AGM axioms AGM0, AGM2, AGM5, AGM7, but instead
of AGM8, they satisfy the weaker postulates AGM8d and AGM8s. AGM4 is
violated under the canonical order representation and the standard ranking
representation, but validated under the normal order representation and
the non-standard ranking representation. AGM8 can only be validated if
the threshold is set to 0. Thus the difference between semi-AGM revision
and full AGM revision is just a matter of thresholds.

5 Representing contractions

In this section we discuss the well-known AGM postulates for belief con-
traction (Alchourrón, Gärdenfors, and Makinson 1985). It is known that
contractions conforming to them are representable as total preorder belief
contractions. They differ from our threshold-based belief contractions which
we will show to be normally representable as semiorder belief contractions.

The canonical representation of a contraction based on a strict total
preorder ≺ is Bel = min≺W and Bel´A = Bel ∪min≺A. Again there are

15This is a restricted equivalence, since, as we will see, ranking revisions contain more
information when it comes to iterated revisions.
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two ways of generalizing this—the canonical and the normal representation:

Definition 19. A belief state contraction ⟨D,W,´,Bel ⟩ is canonically semi-
order representable iff for all consistent Ψ ∈ D there is a semiorder ≺Ψ over
W such that

Bel(Ψ) = min≺ΨW, (20)

∀A ∈ ℘(W ), Bel(Ψ´A) = Bel(Ψ) ∪ min≺ΨA. (21)

We call ⟨D,W,´,Bel ⟩ a canonical semiorder contraction.

Definition 20. A belief state contraction ⟨D,W,´,Bel ⟩ is normally semi-
order representable iff for all consistent Ψ ∈ D there is a semiorder ≺Ψ over
W that satisfies equation (20) and

∀A ∈ ℘(W ), Bel(Ψ´A) =

{
Bel(Ψ) if Bel(Ψ) ⊈ A,

Bel(Ψ) ∪ min≺ΨA else.
(22)

We call ⟨D,W,´,Bel ⟩ a normal semiorder contraction.

In the total preorder case (i.e., when ≺Ψ is modular), normal and canonical
representation are equivalent. This is not so in the semiorder case. A normal
semiorder contraction satisfies

(AGM´4) If Bel ⊈ A, then Bel´A ⊆ Bel. (´Vacuity)

by construction. A canonical semiorder contraction in general invalidates
this postulate. Again, the two notions agree when the semiorder is bottom.
And again, the choice between the two representation will depend on one’s
inclinations for or against ´Vacuity. Guided by intuitions about ranking
contraction, we think that this time it is the normal representation which
is the more adequate generalization. The goal of a contraction is to make a
minimal change needed to ensure that A is not believed. But when A is not
believed to begin with, there is nothing to do—hence ´Vacuity, and hence
the normal representation.

On the level of representation, it is important to note the following:

Observation 21.

(a) Every normal semiorder contraction is canonically representable (namely
by a bottom semiorder, and only by a bottom semiorder).

(b) Every canonical bottom semiorder contraction is normally representable
(namely by the same semiorder).

It follows that normal semiorder representability and canonical bottom-
semiorder representability are equivalent. Semiorder representability, whether
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canonical or normal, has as a consequence that Bel´W = Bel and Bel´ ∅ =
Bel.16

Again, canonical and normal representability by a strict total preorder
are equivalent to the existence a faithful assignment for a contraction. The
representation result for contractions (see Konieczny and Pino Pérez 2017,
Theorem 3) reads as follows in our terminology:

Theorem 22. A belief state contraction ⟨D,W,´,Bel ⟩ is total preorder rep-
resentable iff it satisfies the following contraction postulates for all consistent
Ψ and all A,B ⊆ W :

(AGM´0) Bel´ ∅ = Bel. (´Weak Vacuity)

(AGM´2) If A ̸= W , then Bel´A ⊈ A. (´Success)

(AGM´3) Bel ⊆ Bel´A. (´ Inclusion)

(AGM´4) If Bel ⊈ A, then Bel´A ⊆ Bel. (´Vacuity)

(AGM´5) (Bel´A) ∩A ⊆ Bel. (Recovery)

(AGM´7) Bel´(A∩B) ⊆ (Bel´A) ∪ (Bel´B). (Conjunctive overlap)

(AGM´8) If Bel´(A ∩B) ⊈ A, then Bel´A ⊆ Bel´(A ∩B).
(Conjunctive inclusion)

We say that a belief state contraction ⟨´,Bel ⟩ is fully AGM iff it satisfies
the postulates mentioned in Theorem 22.17 Note that AGM´0 and AGM´2
imply that Bel ̸= ∅ for all belief cores Bel, and the same comments apply
as in the case of revisions (except that Definition 1 does not have to be
adapted, we just have Bel´W = Bel).

Here we are interested in weaker contraction operators. For semiorder
contractions it is known that AGM´8 is invalid (Rott 2014). It is to be
replaced by the following new postulates:

(AGM´8d) Bel´A ⊆ Bel´(A ∩B) or Bel´B ⊆ Bel´(A ∩B).
(´Disjunctive rationality)

(AGM´8s) If Bel´(A ∩B) ⊆ B and Bel´(B ∩ C) ⊆ C, then
Bel´(A ∩D) ⊆ D or Bel´(D ∩ C) ⊆ C. (´Semitransitivity)

AGM8´d and AGM8´s are logically independent and jointly weaker than
AGM´8. We say that a belief state contraction is a semi-AGM contrac-
tion iff it satisfies the contraction postulates AGM´0, AGM´2, AGM´3,

16Bel´W = Bel ∪min ∅ = Bel on both representations. For consistent states, we have
Bel´ ∅ = Bel ∪ minW = Bel on the canonical representation, and Bel´ ∅ = Bel on
the normal one. For inconsistent states, we have Bel´ ∅ = Bel ∪ minW = Bel on both
representations.

17Again, the traditional contraction postulates AGM´1 and AGM´6 are trivially true
in our semantic framework. Cf. footnote 11.
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AGM´5, AGM´7 and instead of AGM´8, it satisfies our new postulates
AGM´8d and AGM´8s.18 It is a normal semi-AGM contraction iff it also
satisfies AGM´4. A semi-AGM contraction also satisfies

(AGM´8c) If Bel´(A ∩B) ⊆ B then Bel´A ⊆ Bel´(A ∩B).
(´Cautious monotonicity)

Observation 23. AGM´8c follows from AGM´2 and AGM8´d.

Whereas AGM´8c and AGM8´d are known from interval-order belief con-
traction (Rott 2014), AGM´8s is a new postulate which we prove to cor-
respond to Semitransitivity. Semiorder belief contraction has not been ax-
iomatized. What has been axiomatized is normal semiorder belief contrac-
tion. But even there, there are differences. Rott’s axiomatization of normal
semiorder belief revision is slightly different. It also contains a redundancy
(AGM8´c) and has other axioms for the Interval condition and Semitransi-
tivity.19 Peppas and Williams’s (2014) axiomatization of normal semiorder
contraction proceeds from their normal semiorder revision using the Harper
and Levi identities, and it is also more complicated.

Again, we obtain two distinct representation results, one for canonical
representability and one for normal representability:

Theorem 24. Let W be finite, and let ⟨D,W,´,Bel ⟩ be a belief state con-
traction model. The following claims are equivalent:
(a) ⟨D,W,´,Bel ⟩ is a normal semi-AGM contraction;

(b) it is normally semiorder representable;

(c) it is ranking representable;

(d) it is representable by a maximal ranking contraction.

Theorem 24 provides our main argument for the suggestion that maximal
ranking contractions should be taken to be the paradigmatic ranking con-
tractions. Minimal ranking contractions (n = z), on the other hand, are
fully AGM.20

The following result is obtained by conjoining two steps in the proof of
Theorem 24. It is slightly more complex than the corresponding result for
revisions (Corollary 17), but the derived semiorder is bottom and can thus
be used with identical results for canonical and normal representation.

18In contrast to the case of revisions, postulate AGM´3, or more precisely the weakened
version Bel ∩A ⊆ Bel´A, is not redundant here.

19One can show that Rott’s K´d follows from our AGM8´d and is in fact equivalent
given the remaining axioms. Rott (2014, Observation 7) shows that his K´s corresponds
to the semiorder condition, but for entrenchments over sentences, not over worlds. It
remains an open question which axioms are needed to prove equivalence between his K´s
and our AGM´8s.

20Because we can always represent such contractions by a contraction with threshold
0—see the proof of Theorem 24.
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Corollary 25. For a ranking κ, a fixed threshold z and a contraction pa-
rameter n with 0 ≤ n ≤ z, we generate a binary relation ≺ over W from
⟨κ, z ⟩, as follows:

v ≺ w iff κ(v) ≤ z < κ(w) or z < κ(v) < κ(w)−(z−n) (23)

For the relation ≺ thus induced we get: (1) ≺ is a bottom semiorder and
(2) Belz(κ) = min≺W and Belz(κ

n
A) = Bel ∪min≺A for n ≤ z.

Equation (23) is obtained from concatenating Equation (28) from the proof
of Theorem 24 with Definition 3.

The following result on non-standard ranking contraction is similar to
and complements Theorem 24.

Corollary 26. Let W be finite, and let ⟨D,W,´,Bel ⟩ be a belief state
contraction model. The following claims are equivalent:

(a) ⟨D,W,´,Bel ⟩ is a semi-AGM contraction;

(b) it is canonically semiorder representable;

(c) it is non-standardly ranking representable;

(d) it is non-standardly representable by a maximal ranking revision.

Whereas our threshold-based contractions are belief state contractions and
allow iterations, this is not true for semiorder contractions.

To conclude, we have seen that normal semiorder contractions are es-
sentially equivalent and in fact representable by threshold-based belief con-
tractions, in particular by a maximal ranking contraction. These satisfy
the normal semi-AGM postulates AGM´0, AGM´2, AGM´3, AGM´4,
AGM ´5, AGM´7, but instead of AGM´8, they satisfy the weaker axioms
AGM´8d and AGM´8s. Canonical semiorder contractions on the other
hand are equivalent to, and representable by, non-standard threshold-based
belief contractions, and they satisfy the semi-AGM postulates (i.e., AGM´4
becomes invalid). AGM´8 can only be validated if the threshold is set to
0 or, more generally, if we adopt minimal contraction n = z. Thus the dif-
ference between (normal) semi-AGM revision and full AGM revision can be
viewed as a matter of thresholds or, more generally, of the difference z − n
between the threshold and the contraction parameter.

6 The Levi and Harper identities

We are now going to explore the relation between threshold-based revisions
and contractions. It is known that full AGM belief revision and contraction
satisfy the well-known Levi and Harper identities:

(LI) Bel ∗A = (Bel´A) ∩A. (Levi identity)

(HI) Bel´A = Bel ∪ (Bel ∗A). (Harper identity)
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This is due to the canonical representation and, for LI, to the fact that
(min≺W ) ∩ A ⊆ min≺A for a total preorder ≺.21 Since the latter in fact
holds for arbitrary relations, we obtain similar results in the semiorder case:

Observation 27.

(a) Canonical semiorder revision and contraction satisfy LI and HI.

(b) Normal semiorder revision and contraction satisfy LI and HI.

Thus LI and HI hold within each representation scheme. This harmony is
lost when we make a cross comparison. The paradigmatic case of interest to
us is the one where we compare a canonical revision with a normal contrac-
tion. Each of the Levi identity and the Harper identity implies the weaker
condition

(RCI) Bel ∗A ⊆ Bel´A. (Revision-contraction inclusion)

The latter is violated in our framework, and thus we only get restricted
versions of the Levi and Harper identities.

Observation 28. Let ≺ be a semiorder, ∗ be the canonical revision and ´

the normal contraction based on ≺. Then they satisfy

(RLI) Bel ∗A =

{
minA if Bel ⊈ A,

(Bel´A) ∩A otherwise.

(RHI) Bel´A =

{
Bel if Bel ⊈ A,

Bel ∪ (Bel ∗A) otherwise.

But RCI and thus LI and HI are generally violated.

Now we provide a similar result for threshold-based belief changes in the
ranking-theoretic framework.

Theorem 29. Let m > z ≥ n ≥ 0, A /∈ {∅,W} and consider Bel(Ψ ∗ A) =
Belz(κ

m
A ) and Bel(Ψ´A) = Belz(κ

n
A). Then

(a) ∗ and ´ violate RCI and thus also LI and HI;

(b) RCI, LI and HI are satisfied if z = 0.

The reason for the general failure of LI and HI is that threshold-based belief
change corresponds to the canonical representation for revision and to the
normal representation for contractions (Theorems 16 and 24). This combi-
nation gets strong motivation from the idea of minimal change as applied
to rankings. In the revision case when A is compatible with the beliefs, a
minimal-change ranking revision is a downwards move of A paired with an
upwards move of the complement—which often results in a proper superset

21HI requires no such additional order property.
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of the intersection of the belief core with A. Hence the violation of Preserva-
tion and hence the canonical representation. In the contraction case when
A is not already believed, a minimal-change contraction by A has to do
nothing at all. Hence the satisfaction of AGM´4, and hence the normal
representation.

For maximal contraction (n = 0), we recover something very much like
the so-called Harper identity (to which we will turn in a moment), restricted
to the case Bel ⊆ A:

Belz(κ
0
A) = Bel ∪minzκA = Bel ∪ Belz(κ

m
A
) (for m > z). (24)

We may of course also ask which ranking-change on the side of contraction
would yield the Levi identity for our ranking revision. It is the operation
κA→0, for which we get for all A ̸= ∅,W :

(LIn) For n > z, Belz(κ
n
A) = Belz(κA→0) ∩A.

The operation κA→0 is close to the maximal contraction of κ by A. As a
replacement for the Harper identity, we have z+1 restricted Harper identities
(compare RHI). For all A ̸= W :

(RHIn) For n ≤ z, Belz(κ
n
A) =

{
Belz if Belz ⊈ A,

Belz ∪ Belz−n(κ ∗A) otherwise.

For maximal contraction (n = 0), the variation in the threshold on the
right-hand side disappears, since z − n gets replaced by z. The same is of
course true for z = 0, but then we are back at full AGM where we obtain
the unrestricted Harper identity.

The above discussion shows that ranking revision and contraction are
not related according to the Levi and Harper identities. They are rather two
partial operations which are similar but differ first in the conditions when an
action is taken, and second in the amount and direction of change. This has
been clear since the beginning, by our way of defining both κmA partially from
κA→m when κ(A) ≤ z, and κnA partially from κA→n in the complementary
case when κ(A) > z. This is the similarity. But the difference is that
m > z and n ≤ z. This implies a difference in the degree and direction of
change. An m-revision by A moves A-worlds up (and A-worlds down) in
the implausibility ordering—if it moves anything. An n-contraction by A
moves A-worlds down in the implausibility ordering—if it moves anything.
This duality is expressed by the fact that κmA = κ iff κnA ̸= κ.

Generally speaking, there is an important difference between revision
and contraction in the threshold-based ranking-theoretic model. Adopting
a new belief A requires a lot more cognitive effort than withdrawing the
belief A. For the latter operation, one just needs to make A sufficiently
plausible, but for the former, one needs to make A maximally plausible
(and A sufficiently implausible, but this is less important here). This is the
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more fundamental reason why revision and contraction in our model do not
validate the Levi and Harper identities. This asymmetry between revision
and contraction is intuitively very natural, but it gets lost both with the
simpler AGM belief change model and with Spohn’s fixation of the belief
threshold at z = 0.

7 Iterated revision

Consider the following iterated revision postulates: for A ̸= ∅,22

(IR0) If Bel(Ψ) ⊆ A, then Bel((Ψ ∗A) ∗B) = Bel(Ψ ∗B).

(IR1) If B ⊆ A, then Bel((Ψ ∗A) ∗B) = Bel(Ψ ∗B).

(IR2) If B ⊆ A, then Bel((Ψ ∗A) ∗B) = Bel(Ψ ∗B).

(IR3) If Bel(Ψ ∗B) ⊆ A, then Bel((Ψ ∗A) ∗B) ⊆ A.

(IR4) If Bel(Ψ ∗B) ⊈ A, then Bel((Ψ ∗A) ∗B) ⊈ A.

(IR5) If Bel(Ψ) ⊆ A and Bel(Ψ ∗B) ⊈ A, then Bel((Ψ ∗A) ∗B) ⊆ A.

(IR6) If Bel(Ψ) ⊈ A and Bel(Ψ ∗B) ⊈ A, then Bel((Ψ ∗A) ∗B) ⊆ A.

(IR7) If Bel(Ψ ∗B) ⊈ A, then Bel((Ψ ∗A) ∗B) ⊆ A.

IR1–IR4 correspond to the well known Darwiche-Pearl postulates C1–C4
(Darwiche and Pearl 1997, p. 11). IR7 is condition P of Booth and Meyer
(2006, p. 134) and the Independence condition ‘Ind’ of Jin and Thielscher
(2007, p. 8). IR0, IR5 and IR6 are new. IR0 says that if A is initially
believed, then an interpolated revision by A will not change the beliefs
resulting from a revision by any other proposition B. IR0 partially implies
IR3 and IR4, namely for A initially believed. IR6 provides the other partial
implication, so given AGM2 and AGM5, IR0 and IR6 together imply IR3
and IR4.23 Finally, IR5 and IR6 are just weaker versions of IR7: the latter
implies IR6 which in turn implies IR5 given AGM0.

As Darwiche and Pearl linked IR1–IR4 to order conditions in the con-
text of full AGM revision, we link IR0–IR7 to order conditions in the weaker
context of semi-AGM revision. We only assume ≺ to be a semiorder. We
consider the following postulates, where ≺ is the semiorder representing (the
revisions of) Ψ and ≺A is the semiorder representing (the revisions of) Ψ∗A:

(IR0≺) If Bel ⊆ A, then: v ≺ w iff v ≺A w.

22The restriction to A ̸= ∅ is only important for IR2. When A = ∅, IR2 may fail for
semiorder as for ranking-based revisions, since Ψ ∗ ∅ may be different from Ψ.

23The case Bel ⊆ A is covered by IR0. So suppose Bel ⊈ A. IR3: Assume Bel ∗B ⊆ A.
Thus, by AGM5, Bel ∗B ⊈ A unless B = ∅, a case for which IR3 and IR4 are trivial due
to AGM2. IR6 yields Bel ∗ A ∗ B ⊆ A. IR4: Assume Bel ∗ B ⊈ A. Thus A ̸= ∅. By IR6,
we get (Bel ∗A) ∗B ⊆ A. Thus (Bel ∗A) ∗B ⊈ A by AGM2 and AGM5.
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(IR1≺) If v, w ∈ A, then: v ≺ w iff v ≺A w.

(IR2≺) If v, w ∈ A, then: v ≺ w iff v ≺A w.

(IR3≺) If v ∈ A and w ∈ A, then v ≺ w implies v ≺A w.

(IR4≺) If v ∈ A and w ∈ A, then v ≺A w implies v ≺ w.

(IR5≺) If Bel ⊆ A, w ∈ A and v ∈ A, then v ̸≺ w implies w ≺A v.

(IR6≺) If Bel ⊈ A, w ∈ A and v ∈ A, then v ̸≺ w implies w ≺A v.

(IR7≺) If w ∈ A and v ∈ A, then v ̸≺ w implies w ≺A v.

Our core postulates IR1≺ – IR4≺ are the famous postulates CR1–CR4 in-
vestigated in the total preorder context by Darwiche and Pearl. The only
difference is that we take strict relations as primitive and consider the weaker
semiorder context, and hence IR1≺ and IR2≺ are formulated with ≺ and
≺A.

24 Spohn (2012, p. 95) argued for a condition similar to IR6≺. The re-
maining postulates are new. IR0 says that no change should occur when A is
already believed. And IR5≺ – IR7≺ are conditions of effective improvement,
which recommend that A gets effectively improved relative to A. As before,
IR7≺ implies IR6≺ which implies IR5≺. And taken together, IR0≺ and
IR6≺, IR3≺ and IR4≺. IR7≺ imposes unrestricted improvement, whereas
IR5≺ and IR6≺ impose a restricted improvement.

Darwiche and Pearl (1997, Theorem 14) showed that the unrestricted
improvement operator κA→κ(A)+1 satisfies IR1≺ – IR4≺ for the threshold
z = 0. The generalized improvement operator κA→κ(A)+z+1 satisfies IR7≺
(and the core postulates) for all thresholds z ≥ 0 and violates IR0≺. Violat-
ing IR0≺may actually be regarded as the point of unrestricted improvement.
Thus it is possible to satisfy the core postulates without satisfying IR0≺. It
is also possible to satisfy the core postulates without satisfying some effec-
tive improvement postulate (IR5, IR6 or IR7), for example by moving only
the minimal A-worlds to the bottom of the new order and keeping every-
thing else fixed—which gives us something very close to Boutilier’s (1996)
‘natural revision’. We will later identify more compatibilities.

In our terminology, Darwiche and Pearl (1997, Theorem 13) proved the
following in the total preorder context:

Theorem 30 (Darwiche and Pearl). Suppose that a belief state revision
⟨D,W, ∗,Bel ⟩ is fully AGM. For i ∈ {1, . . . , 4}, the revision operator satis-
fies IRi iff the operator and its corresponding total preorder (as in Theorem
13) satisfy IRi≺.

We obtain a similar correspondence, but in our much more general context
of semiorder revisions:

24However, this makes no difference since Darwiche and Pearl’s ≺ is a strict total pre-
order.

Australasian Journal of Logic (20:3) 2023, Article no. 4



451

Theorem 31. Suppose that a belief state revision ⟨D,W, ∗,Bel ⟩ is semi-
AGM. For i ∈ {0, . . . , 7}, the revision operator satisfies IRi iff the operator
and its canonically corresponding semiorder (as in Theorem 16, see (26)
below) satisfies IRi≺.

This shows that the Darwiche-Pearl correspondence still holds in the more
general semiorder context.

From the above, we also get that the unrestricted improvement κA→κ(A)+z+1

satisfies IR1–IR7 and violates IR0. We will now show that our ranking re-
visions are restricted improvements—they satisfy IR0–IR5 and violate IR6
and IR7. For this we need

Observation 32. Let the threshold z ≥ 0 be fixed. The map ⟨κ,A ⟩ 7→ κ∗A =
κnA for some n > z satisfies the following properties:

(κ∗0) If Bel(κ) ⊆ A, then for all w, κ∗A(w) = κ(w).

(κ∗1) If v, w ∈ A, then κ∗A(v)− κ∗A(w) = κ(v)− κ(w).

(κ∗2) If A ̸= ∅ and v, w ∈ A, then κ∗A(v)− κ∗A(w) = κ(v)− κ(w).

(κ∗5) If Bel(κ) ⊆ A and w ∈ A, v ∈ A, then κ∗A(w) + z < κ(w) and
κ(v) + z < κ∗A(v).

(κ∗6) If Bel(κ) ⊈ A and w ∈ A, v ∈ A, then κ∗A(w) ≤ κ(w) and
κ∗A(v) > κ(v).

(κ∗0) says that a revision by A triggers no change, when A is already
believed—a vacuity condition. By (κ∗1), a revision by A preserves distances
within A, and by (κ∗2), it also preserves distances within A. In fact, these
postulates, together with the success postulate, already determine that the
revision must be (equivalent to) an n-revision for A ̸= ∅. (κ∗5) entails that
when A is believed, a revision by A improves A relative to A by more than
2z ranks, since A is improved by more than z ranks and A is degraded by
more than z ranks. (κ∗6) says that when A is not believed then A gets
degraded, whereas A does not get degraded. This last postulate does not
tell us much if the threshold z is greater than 0, but it tells us something if
z = 0, since one rank makes a difference in that context.

Theorem 33. Let the threshold z ≥ 0 be fixed and n,m > z. Let the
semiorders ≺ and ≺A be associated with the ranking revisions of κ and
κ ∗A = κnA, with revision parameters n and m respectively.
(a) The semiorders ≺ and ≺A satisfy IR0≺–IR5≺ for all A ̸= ∅. IR6≺ is

satisfied for z = 0, but in general fails for z > 0.

(b) The iterated revision satisfies IR0–IR5 for all A ̸= ∅ and B.

The most important consequences of our results are the following: (1) n-
revisions satisfy IR0–IR5, but generally violate IR6 and IR7. IR6 is only

Australasian Journal of Logic (20:3) 2023, Article no. 4



452

satisfied if the threshold z equals 0, IR7 not even then. Thus n-revisions are
restricted improvement operators. (2) All claims in (1) remain true if we
alter the threshold in the second step and consider non-minimal revisions
more generally (see the replacements in Theorem 33). (3) One can satisfy
IR0–IR5 without satisfying IR6 or IR7. (4) IR0–IR2 and IR6 imply IR0–
IR6. (5) IR0–IR2 and IR6 imply that ≺ is modular and thus a strict total
preorder. (6) IR0–IR5 neither guarantee threshold stability nor revision
parameter stability nor minimal revision.

In view of (5), we arrive at full AGM revision by assuming semi-AGM
augmented by IR0–IR2 and IR6. In view of (6), one might ask whether
there are further postulates which guarantee threshold stability or parameter
stability or characterize minimal revision. We leave this as an open question.

8 Iterated contraction

We finally study iterated contraction. Consider the following postulates for
iterated contraction:

(IC0) If Bel(Ψ) ⊈ A, then Bel(Ψ´B) = Bel((Ψ´A)´B).

(IC1) If A ⊆ B, then Bel(Ψ´B) ∩B = Bel((Ψ´A)´B) ∩B.

(IC2) If A ⊆ B, then Bel(Ψ´B) ∩B = Bel((Ψ´A)´B) ∩B.

(IC3) If Bel(Ψ´B) ⊆ A ∪B, then Bel((Ψ´A)´B) ⊆ A ∪B.

(IC4) If Bel((Ψ´A)´B) ⊆ A ∪B, then Bel(Ψ´B) ⊆ A ∪B.

Whereas the relation of iterated revision to order revision has been studied
since the seminal paper of Darwiche and Pearl (1997), the case of contraction
has only recently been investigated by Konieczny and Pino Pérez (2017) and
Sauerwald, Kern-Isberner and Beierle (2020), and only in the total preorder
setting (see Table 1). Here we consider the more general semiorder setting.
Except for IC2, our postulates are new. The postulates most similar to ours
are the postulates C8–C11 of Sauerwald, Kern-Isberner and Beierle (2020),
which we rename SKB1–SKB4. SKB2 is our IC2. SKB1 is our IC1 with an
intersection by A instead of an intersection by B. Thus SKB1 and SKB2
don’t have identical consequents, as we have in IC1 and IC2. However, SKB1
is equivalent to our IC1, due to the antecedent condition we have B ⊆ A,
so that larger intersection by A is irrelevant after contracting by B. SKB3
is a version of our IC3, but requires application to all supersets of A rather
than just to A ∪ B. And SKB4 is a similar version of our IC4. It follows
that SKB1–SKB4 imply IC1–IC4 one by one. But the reverse is not true
for IC3 and IC4, at least not in a one-by-one fashion. We have added IC0
as a no-change postulate. Postulates KP1–4 of Konieczny and Pino Pérez
(2017) are much more complicated than our postulates.
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(KP1) If A ⊆ B, then Bel(Ψ´(A ∪ C)) ⊆ Bel(Ψ´A)

iff Bel(Ψ´B ´(A ∪ C)) ⊆ Bel(Ψ´B ´A).

(KP2) If B ⊆ A, then Bel(Ψ´(A ∪ C)) ⊆ Bel(Ψ´A)

iff Bel(Ψ´B ´(A ∪ C)) ⊆ Bel(Ψ´B ´A).

(KP3) If C ⊆ B, then Bel(Ψ´B ´(A ∪ C)) ⊆ Bel(Ψ´B ´A)

implies Bel(Ψ´(A ∪ C)) ⊆ Bel(Ψ´A).

(KP4) If B ⊆ C, then Bel(Ψ´B ´(A ∪ C)) ⊆ Bel(Ψ´B ´A)

implies Bel(Ψ´(A ∪ C)) ⊆ Bel(Ψ´A).

(SKB1) If A ⊆ B, then Bel(Ψ´B) ∩A = Bel((Ψ´A)´B) ∩A.

(SKB2) If A ⊆ B, then Bel(Ψ´B) ∩B = Bel((Ψ´A)´B) ∩B.

(SKB3) If A ⊆ C, then Bel(Ψ´B) ⊆ C implies Bel((Ψ´A)´B) ⊆ C.

(SKB4) If A ⊆ C, then Bel((Ψ´A)´B) ⊆ C, then Bel(Ψ´B) ⊆ C.

Table 1: Iterated contraction postulates. KP1–KP4 are the postulates C8–
C11 of Konieczny and Pino Pérez (2017). SKB1–SKB4 are the postulates
C8–C11 of Sauerwald, Kern-Isberner and Beierle (2020). Our alternative
postulates IC1–IC4 are in the main text.

Consider the following “semiorder contraction” postulates, in which Bel
is short for Bel(Ψ), ≺ is short for ≺Ψ and ≺−

A is short for ≺Ψ´A:

(IC0≺) If Bel ⊈ A, then: v ≺ w iff v ≺−
A w.

(IC1≺) If v, w ∈ A, then: v ≺ w iff v ≺−
A w.

(IC2≺) If v, w ∈ A, then: v ≺ w iff v ≺−
A w.

(IC3≺) If v ∈ A and w ∈ A, then v ≺ w implies v ≺−
A w.

(IC4≺) If v ∈ A and w ∈ A, then v ≺−
A w implies v ≺ w.

IC1≺ – IC4≺ were used by Konieczny and Pino Pérez (2017) and by Sauer-
wald, Kern-Isberner and Beierle (2020) in the total preorder context, and
IC1≺ and IC2≺ were formulated with non-strict rather than strict relations.
IC0≺ already implies one half of IC1≺ – IC4≺, namely for the case when A
is not believed.25

In our terminology, Konieczny and Pino Pérez (2017) proved the fol-

25Spohn (2012, p. 96) gives a postulate resembling IC0≺. We refrain from discussing
in detail additional postulates that are similar to those of the revision case: (IC7≺) If
v ∈ A and w ∈ A, then v ̸≺ w implies w ≺−

A v, as well as its weaker variants (IC5≺) and
(IC6≺) which are restrictions of (IC7≺) to the cases Bel ⊆ A and Bel ⊈ A, respectively.
Only (IC5≺) restricted to the standard case z = 0 is valid for ranking contractions.
(Counterexample against (IC5≺) for z > 0: Let z = 1, n = 0 and W = {w0, w2, w3, w4}
with the ranks of the worlds given by their indices, and A = {w0, w3}. Then we have
Bel1(κ) = {w0} ⊆ A and κ(w4) − κ(w3) = 4 − 3 = 1 ≤ z − n, so w3 ∼ w4. But
κ0
A(w3)− κ0

A(w4) = 3− 2 = 1 ≤ z − n, so still w3 ∼−
A w4.)
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lowing one-by-one correspondence in the total preorder context:

Theorem 34 (Konieczny and Pino Pérez). Suppose that a belief state con-
traction ⟨D,W,´,Bel ⟩ is fully AGM. For i ∈ {1, . . . , 4}, the operator satis-
fies KPi iff the operator and its corresponding total preorder satisfy ICi≺.

In that same context, Sauerwald, Kern-Isberner and Beierle (2020) proved
restricted one-by-one correspondences:

Theorem 35 (Sauerwald, Kern-Isberner and Beierle). Suppose that a belief
state contraction ⟨D,W,´,Bel ⟩ is fully AGM. For i ∈ {1, 2}, the operator
satisfies SKBi iff the operator and its corresponding total preorder satisfy
ICi≺; and given SKB1–2, the same holds for SKBj and ICj≺ for j ∈ {3, 4}.

We obtain one-by-one correspondences in the more general context of semi-
order revisions:

Theorem 36. Suppose that a belief state contraction ⟨D,W,´,Bel ⟩ is semi-
AGM. For i ∈ {0, . . . , 4}, the operator satisfies ICi iff the operator and its
canonically corresponding semiorder (as in Corollary 26, see (28) below)
satisfies ICi≺.

It is interesting that the one-one correspondence still holds in the more gen-
eral semiorder context. Our result also improves on the axiomatizations of
Konieczny and Pino Pérez (2017) and Sauerwald, Kern-Isberner and Beierle
(2020).

The following result is remarkable:

Observation 37. Suppose that a contraction operator ´ is semi-AGM and
satisfies AGM´4 in the second step. Then IC2 implies that ´ satisfies
AGM´8 in the first step.

This observation shows that IC2 is not a harmless principle. For this rea-
son, we think that one should add the principle IC0, and restrict all other
postulates by the assumption Bel´A ⊆ B. For example, our substitute for
IC2 is

(IC2′) If Bel´A ⊆ B and A ⊆ B, then Bel(Ψ´B) ∩B =
Bel((Ψ´A)´B) ∩B.

Denote the other substitutes similarly by IC1′, IC3′, IC4′. Since IC0 takes
care of the case when A is not initially believed, IC0 already implies the other
three postulates for this case. Thus, in the context of IC0 (or AGM´ 4) we
may always consider IC1′–IC4′ as being additionally restricted to Bel ⊆ A.
The reason why only IC2 needs to be restricted by the above additional
assumption is that the other principles don’t create a conflict with AGM´4.
In fact, the stronger principles can be obtained from the weaker ones (except
for IC2), provided we have AGM´4.
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From Theorem 24 and Observation 37, we can infer that our ranking
contractions violate IC2 (remember that normal semi-AGM contractions do
not in general satisfy AGM´8). On the other hand, it is obvious from
Definition 3 that ranking contractions satisfy IC2≺ if the bridge principle
(19) is used. This seems to violate our representation Theorem 36. However
it does not. The semiorders obtained by (19) are the most straightforward
ones, and as we have seen, they work for revisions. However, they are
not suitable for contractions; here (23) is the right rule, as we showed in
Corollary 25. And the semiorders thus obtained do not satisfy IC2≺.26

This raises the question whether there is a similar result for the normal
case. For reasons of space, we only answer one part of that question, and
take it that it is natural to assume IC0, IC0≺ for AGM´4 contractions:

Theorem 38. Suppose that a belief state contraction ⟨D,W,´,Bel ⟩ is nor-
mal semi-AGM.
(a) If the contraction operator and its corresponding normal semiorder (as

in Theorem24, see (28) below) satisfy IC0≺, then the operator satisfies
IC0.

(b) If, furthermore, the operator and its corresponding normal semiorder
also satisfy ICi≺, then the operator satisfies ICi ′, for i ∈ {1, . . . , 4}.

(c) IC1, IC3, IC4 then follow from IC1′, IC3′, IC4′.

We will need the following properties to investigate iterated ranking con-
tractions. They are counterparts to the revision properties highlighted in
Observation 32.

Observation 39. Let the threshold z ≥ 0 be fixed. The map ⟨κ,A ⟩ 7→
κ−A := κnA for some n ≤ z satisfies the following properties:

(κ´ 0) If Bel ⊈ A, then κ(w) = κ−A(w).

(κ´ 1) If v ∈ A, then κ(v) = κ−A(v).

(κ´ 2) If v, w ∈ A, then κ(v)− κ(w) = κ−A(v)− κ−A(w).

(κ´ 5) If Bel ⊆ A and v ∈ A, then κ−A(v) + (z − n) < κ(v).

(κ´ 0) is a normal minimal change property for contraction: there is no
change if A is initially not believed. By (κ´ 1), A-worlds are not moved
at all in contractions by A. By (κ´ 2), the distances between A-worlds are
conserved. (κ´ 5) says that A-worlds are moved downwards if A is initially
believed. And the extent of the downwards move depends on how much the
parameter n differs from threshold z. For maximal contraction, the down-
wards move is κ(A) > z, for minimal contraction it is κ(A)−z > 0. Overall,

26For a concrete counterexample against IC2 and IC2≺, see the proof of Theorem 40
below.
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A-worlds are uniformly degraded relative to A-worlds, but only when A is
initially believed. For this reason, we call our ranking contraction a restricted
degrading operator. These properties characterize the ranking contractions
completely. The only difference between different ranking contractions lies
in how much they degrade A, i.e., how much they improve A.

With the help of Observation 39, we obtain:

Theorem 40. Let the threshold z ≥ 0 be fixed and n,m ≤ z. Let the
semiorders ≺ and ≺A be associated with the ranking contractions of κ and
κ´A = κnA, with contraction parameters n and m respectively.
(a) The semiorders ≺ and ≺A satisfy IC0≺, IC1≺, IC2′ ≺, IC3≺, IC4≺

for all A.

(b) The iterated contraction satisfies IC0, IC1, IC2′, IC3, IC4 for all A
and B.

(c) IC2 is satisfied for n = z, but in general fails for n < z.

Whereas minimal ranking contraction satisfies all postulates IC0–IC4, non-
minimal contraction only satisfies IC0, IC1, IC2′, IC3 and IC4 and violates
IC2.

9 Conclusion

In this paper we have studied changes of beliefs in a ranking-theoretic set-
ting using non-extremal implausibility thresholds for the fixation of beliefs.
We have represented implausibilities as ranks and introduced natural rank
changes subject to a minimal change criterion. We showed that many of
the traditional AGM postulates for revision and contraction are preserved,
but notably the postulate of Preservation is not valid any more. The diag-
nosis for belief contraction is similar, but not exactly the same. We have
demonstrated that the one-shot versions of both revision and contraction can
be represented as revisions based on semiorders, but in two subtly different
ways. We have provided sets of postulates for contractions and revisions that
are sound and complete in the sense that they allow us to prove represen-
tation theorems. We showed that, and explained why, the classical duality
between revision and contraction, as exhibited by the Levi and Harper iden-
tities, is partly broken by threshold-based belief changes. We also studied
the logic of iterated threshold-based revision and contraction. The tradi-
tional Darwiche-Pearl postulates for iterated revision continue to hold, as
well as two additional postulates that characterize ranking-based revision
as a restricted ‘improvement’ operator. We investigated the dual notion of
iterated threshold-based belief contraction and provided a new set of postu-
lates for it, characterizing contraction as a restricted ‘degrading’ operator.
For a more detailed overview of the results of this paper, see Figure 1.
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The attentive reader may be left with a nagging worry. On the one
hand ranking revision violates Preservation, and on the other hand, rank-
ing contraction satisfies Vacuity so that the revision induced by the Levi
identity does satisfy Preservation. However, we have very consciously re-
frained from using the Levi identity, and instead argued that the Levi and
Harper identities are rightly violated if the ideas of minimal change appro-
priate for the ranking-theoretic framework are heeded. The reason is this:
there are two ways of generalizing the standard representation of revision
and contraction from the total preorder case. Concerning revisions, for ex-
ample, the standard representation is Bel = minW and Bel ∗ A = minA.
For semiorders, we can also use this representation (we have called it the
canonical representation), or we can introduce a case distinction and put
Bel ∗A = Bel ∩A if A is consistent with Bel, and else Bel ∗A = minA (we
have called this the normal representation, which we argue is not the stan-
dard for revisions based on ranking functions). For total preorders, canonical
and normal representation are equivalent. For semiorders, however, they are
not. The normal representation satisfies Preservation, the canonical repre-
sentation does not. Similarly for contractions, except that what is standard
and what is non-standard is reversed from the ranking-theoretic perspective.
The (standard) normal representation satisfies Vacuity, the (non-standard)
canonical one invalidates it. If we relate revision and contraction within
each of the two schemes, then the Levi and Harper identities hold. But in
the ranking framework the minimal-change criterion for revisions leads to
minimally moving down A-worlds when A is compatible with the agent’s
beliefs (instead of simply intersecting beliefs with A)—hence the canonical
representation, and hence the violation of Preservation. And the minimal-
change criterion for contractions leads to not doing anything when A is a
nonbelief from the start—hence the normal representation, and hence the
satisfaction of Vacuity. Thus it is the minimal change idea in the setting
of ranking theory which really creates what from the semiorder perspective
might seem to be a double standard. But this difference only surfaces when
we leave the total preorder case that has been studied in almost all of the
literature. The lesson is that when it comes to rankings, contraction and
revision are better understood as two cognitive actions sui generis rather
than “two sides of the same coin” that are interdefinable by the Levi and
Harper identities.

One last question that might be raised is whether belief changes should
not be modelled by interval orders rather than the more special semiorders.
While semiorders represent the situation in which the “just noticeable dif-
ference” between the plausibilities of worlds is constant across the board,
interval orders allow that just noticeable differences generally depend on the
particular worlds under consideration. More precisely, just noticeable dif-
ferences might depend on the (ranks of the minimal worlds satisfying the)
input A. Just noticeable differences are effective as threshold values for be-
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lief. We can, however, offer a nice interpretation that motivates our opting
for semiorders: Threshold values don’t change under normal processes of
belief revision, and in particular, they are not dependent on what the input
happens to be. Opting for interval orders would amount to giving up this
assumption.
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Figure 1: Overview of the results of this paper. The left half is about revisions, the right half about contractions. The upper three rows concern
one-shot belief changes, the last row concerns iterated changes. Remarks: Thm. 16 mentions representability by a minimal ranking revision with
n = z + 1. Thm. 24 mentions representability by a maximal ranking contraction with n = 0. For iterations, semiorder revisions and contractions
need extra constraints, while ranking revisions and contractions are always iterable.



460

Appendix: Proofs

Proof of Theorem 9 (Scott-Suppes): Let W be finite. We define v ∼ w
iff v ⊀ w and w ⊀ v. ∼ is reflexive and symmetric. Also define v ≡ w iff
∀u(v ∼ u ↔ w ∼ u). The equivalence classes in W≡ can be linearly ordered
by the relation ≤ defined by [v] ≤ [w] iff for all u ∈ W , if u ≺ v then u ≺ w,
and if w ≺ u then v ≺ u. ≤ is well-defined. Let the number of equivalence
classes in W≡ be n + 1. We label the representatives wi of them in such a
way that [w0] < · · · < [wn]. We then define a function f on the equivalence
classes as follows:

f([wi]) =

{
i

i+1 if w0∼wi,
1

i+1 ·f([wj−1]) +
i

i+1 ·f([wj ]) + 1 if 0<j,wj−1≺wi, wj∼wi.

(25)

This construction yields rational numbers f([wi]) for all i = 0, . . . , n. Notice
that f([w0]) = 0. Furthermore, f is injective, since f([wi]) < f([wi+1]) for
all i, and wi ≺ wj if and only if f([wi]) + 1 < f([wj ]) for all i = 0, . . . , n.
Intuitively, 1 is the constant value of a ‘just noticeable difference’. Now we
extend the domain of f to W by defining f(w) = f([wi]) for all w ∈ [wi].
We then have v ≺ w iff f(v) + 1 < f(w). (For more details of the proof, see
Suppes and Zinnes 1963, pp. 29–34.) □

Proof of Corollary 10: (a) Take the numerical representation f(w) of the
semiorder ≺ from Theorem 9. Any value f(wi) is a rational number ki/mi

(where ki,mi ∈ N). Multiply all these values uniformly with the least com-
mon multiple z = lcm(m1, . . . ,mn) of the denominators. Then we obtain
natural numbers κ(wi) = z · f(wi), for all i = 0, . . . , n. By construction, we
have κ(v) + z < κ(w) iff f(v) + 1 < f(w). And κ is a world ranking.

(b) Suppose that κ(v) ≤ z and z < κ(w), i.e., f(v) ≤ 1 and 1 < f(w). By
the construction of the function f , this means that v ∼ w0 and w0 ≺ w. But
this is equivalent to v ∈ min≺W and w /∈ min≺W . So, since ≺ is bottom,
v ≺ w. By the construction of f , this implies f(v) + 1 < f(w), and this is
equivalent to κ(v) + z < κ(w). □

Proof of Observation 14: Consider W = {x, y, z} and the semiorder
x ≺ z where no other relations hold. This is a semiorder. Consider the
represented revision ∗. Let A = {y, z}. Note that Bel = {x, y}. Thus the
premiss Bel ∩ A ̸= ∅ of AGM4 is satisfied. Also note that Bel ∗ A = {y, z}.
But then Bel ∗A ⊈ Bel—a violation of AGM4. □

Proof of Observation 15: Suppose Bel ∗ A ⊆ B. Either (i) Bel ∗ (A ∩
B) ⊆ Bel ∗ A or (ii) not. If (i), we get Bel ∗ (A ∩ B) ⊆ B, and thus
Bel∗ (A∩B) = ∅, by AGM2. Hence A∩B = ∅, by AGM5. Thus A = A∩B.
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Therefore Bel ∗ (A ∩B) ⊆ Bel ∗ A. If (ii), AGM8d delivers Bel ∗ (A ∩B) ⊆
Bel ∗ ((A ∩B) ∪ (A ∩B)) = Bel ∗A. □

Proof of Theorem 16: We show that (a) implies (b), (b) implies (d), (d)
implies (c), and (c) implies (a).

(a) implies (b). Semi-AGM implies canonical semiorder representability.
Assume that ⟨ ∗,Bel ⟩ satisfies AGM0, AGM2, AGM5, AGM7, AGM8d and
AGM8s for all Ψ such that ∅ ≠ Bel(Ψ) ⊆ W . For every such Ψ, we define

v ≺ w iff v ∈ Bel ∗ {v, w} and w /∈ Bel ∗ {v, w} (26)

Part 1: We show that ≺ defined by equation (26) is a semiorder.

Irreflexivity. That w ̸≺ w is immediate by (26).

Interval condition. Suppose that u ≺ v and x ≺ y. By (26) this means that
u ∈, v /∈ Bel ∗ {u, v} and x ∈, y /∈ Bel ∗ {x, y}. We need to show that u ≺ y
or x ≺ v, i.e., that u ∈, y /∈ Bel ∗ {u, y} or x ∈, v /∈ Bel ∗ {x, v}. Consider
the proposition A = {u, v, x, y}. By AGM7, we get (Bel ∗ A) ∩ {u, v} ⊆
Bel∗(A∩{u, v}) = Bel∗{u, v}. Since v /∈ Bel∗{u, v}, we obtain v /∈ Bel∗A. In
the same way, we obtain y /∈ Bel∗A. Now AGM8d implies that Bel∗{u, y} ⊆
Bel∗A or Bel∗{v, x} ⊆ Bel∗A. If Bel∗{u, y} ⊆ Bel∗A, then y /∈ Bel∗{u, y}.
By AGM2 and AGM5, ∅ ≠ Bel∗{u, y} ⊆ {u, y}. So u ∈ Bel∗{u, y}. Together
this means u ≺ y, as desired. If Bel∗{v, x} ⊆ Bel∗A, an analogous argument
establishes x ≺ v.

Semitransitivity. Suppose that u ≺ v and v ≺ w. By (26) this means that
u ∈, v /∈ Bel ∗ {u, v} and v ∈, w /∈ Bel ∗ {v, w}. So (Bel ∗ {u, v}) ∩ {v} = ∅
and (Bel ∗ {v, w}) ∩ {w} = ∅. Thus by AGM8s, (Bel ∗ {u, x}) ∩ {x} = ∅ or
(Bel ∗ {x,w}) ∩ {w} = ∅. Then, by AGM2 and AGM5, u ∈, x /∈ Bel ∗ {u, x}
or x ∈, w /∈ Bel ∗ {x,w}. But this just means that u ≺ x or x ≺ w, as
desired.

Part 2: We show that ≺ represents ⟨ ∗,Bel ⟩. Suppose that the revision ⋆ is
obtained from ≺ by Definition 11. We show Bel ∗A = Bel ⋆ A. Note that if
A = ∅, then Bel ∗ A = ∅ by success, and similarly Bel ⋆ A = ∅ by (17). We
have

w ∈ Bel ⋆ A iff w ∈ min≺A
iff w ∈ A and ¬∃v ∈ A(v ≺ w)
iff w ∈ A and ¬∃v ∈ A(v ∈ Bel∗{v, w} and w /∈ Bel∗{v, w})

Using the expression in the last line, we prove the following identity claim:
for every proposition A ̸= ∅ and every world w, w ∈ Bel ∗A iff w ∈ Bel ⋆ A.

w ∈ Bel ∗ A implies the last line: Let w ∈ Bel ∗ A. By AGM2, w ∈ A. Let
v ∈ A. By AGM7, we get (Bel∗A)∩{v, w} ⊆ Bel∗(A∩{v, w}) = Bel∗{v, w}.
So w ∈ Bel ∗ {v, w}.
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The last line implies w ∈ Bel ∗ A: Assume the last line, i.e., w ∈ A and
there is no v ∈ A such that v ∈ Bel ∗ {v, w} and w /∈ Bel ∗ {v, w}. By
AGM2, AGM5, and A ̸= ∅, we have ∅ ≠ Bel ∗ {v, w} ⊆ {v, w}. Thus
w ∈ Bel ∗ {v, w}. This holds for all v ∈ A. Since A ⊆ W is finite and
A =

⋃
v∈A{v, w}, we can apply AGM8d repeatedly and get that there is a

v ∈ A such that Bel ∗ {v, w} ⊆ Bel ∗ A. Since w ∈ Bel ∗ {v, w}, we obtain
w ∈ Bel ∗A as desired.

It remains to prove condition (16). From our identity claim, we know that
Bel∗W = Bel⋆W = min≺W , and from AGM0, we also have Bel = Bel∗W .
So Bel = min≺W , as desired.

(b) implies (d). Semiorder representability implies ranking representability
by a minimal ranking revision. Suppose that ≺ can be used for the canonical
representation of ∗, i.e., that (16) Bel = min≺W and (17) Bel∗A = min≺A.
From the semiorder ≺, we construct a ranking κ and a threshold z ≥ 0, using
Corollary 10, such that κ(v) + z < κ(w) iff v ≺ w. But then min≺W =
minzκW and min≺A = minzκA, and so we get for arbitrary n > z:

Belz(κ
n
A) = minzκA = {w ∈ A : κ(w) ≤ κ(A) + z}

= {w ∈ A : ¬∃v ∈ A, κ(v) + z < κ(w)}

= {w ∈ A : ¬∃v ∈ A, v ≺ w)} = min≺A

= Bel ∗A.

Hence ⟨ ∗,Bel ⟩ is ranking representable by a minimal revision: notice that
here the revision parameter n = z + 1 is as suitable as any other n > z.

(d) implies (c). Ranking representability by a minimal revision implies
ranking representability. This is trivial.

(c) implies (a). Ranking representability implies semi-AGM. Let ∗ be
defined from κ and z by Bel = Belz(κ) = minzκW and Bel ∗A = Belz(κ

n
A) =

minzκA for some n > z, by Definition 4 and equation (8). Since κ−1(0) ̸= ∅
(for κ ̸= κ⊥), we have Bel ̸= ∅.
AGM0. Bel ∗W = minzκW = Bel is immediate.

AGM2. Bel ∗A = minzκA ⊆ A is also immediate.

AGM5. Assume A ̸= ∅. Since A ⊆ W is finite, Bel ∗ A = minzκA is non-
empty.

AGM7. Suppose that w ∈ (Bel ∗ A) ∩ B = (minzκA) ∩ B. Then w ∈ A ∩ B
and κ(w) ≤ κ(A) + z. But since A ∩ B ⊆ A, κ(A) ≤ κ(A ∩ B). So
κ(w) ≤ κ(A ∩B) + z, and we get w ∈ minzκ(A ∩B) = Bel ∗ (A ∩B).

AGM8d. Since A and B are subsets of A ∪ B, it is clear that Bel ∗ A =
minzκA ⊆ minzκ(A ∪ B) = Bel ∗ (A ∪ B) if κ(A) ≤ κ(B), and Bel ∗ B =
minzκB ⊆ minzκ(A ∪B) = Bel ∗ (A ∪B) if κ(B) ≤ κ(A).
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AGM8s. Let Bel∗(A∪B)∩B = ∅ and Bel∗(B∪C)∩C = ∅. Thus minzκ(A∪
B) ⊆ B and minzκ(B ∪C) ⊆ C, i.e., κ(A) + z < κ(B) and κ(B) + z < κ(C).
So κ(A) + 2z < κ(C). It follows that for arbitrary D, κ(A) + z < κ(D) or
κ(D)+z < κ(C). But this means that minzκ(A∪D) ⊆ D or minzκ(D∪C) ⊆ C,
i.e., Bel ∗ (A ∪D) ∩D = ∅ or Bel ∗ (D ∪ C) ∩ C = ∅. □

Proof of Corollary 18: We show that (a) implies (b), (b) implies (d),
(d) implies (c), and (c) implies (a).

(a) implies (b). We take the semiorder constructed in the proof of The-
orem 16. AGM4 forces this semiorder to be bottom: If w ∈ minW and
v /∈ minW , then w ≺ v. (This means that minimal elements have no ties
or incomparabilities with non-minimal elements.) For bottom semiorders,
canonical and normal representations coincide. To see this, one has to check
that if Bel ⊈ A, then min≺A = minW ∩A. For min≺A ⊆ minW ∩A, let
that v ∈ min≺A and suppose for reductio that v /∈ min≺W . Since Bel ⊈ A,
there is a w ∈ minA ≺ W ∩ A. Since ≺ is bottom, w ≺ v, contradicting
the minimality of v in A. It follows from Theorem 16 that ∗ is normally
representable by ≺.

(b) implies (d). If Bel ⊆ A, we take the ranking constructed in the proof
of Theorem 16, with the minimal revision parameter n = z + 1. If Bel ⊈ A,
normal representation puts Bel ∗ A = Bel ∩ A, and non-standard ranking
representation does the same.

(d) implies (c). This is trivial.

(c) implies (a). It is easy to see that a non-standardly ranking repre-
sentable revision can be standardly represented by its z-gappy transform κ′,
defined by κ′(w) = κ(w) if κ(w) ≤ z, and κ′(w) = κ(w) + z if κ(w) > z.
So by Theorem 16, the non-standard application of κ for ∗ satisfies the pos-
tulates for semi-AGM revisions. It remains to show that ∗ also satisfies
AGM4. But it follows immediately from Definition 6 that if Bel ∩ A ̸= ∅,
then Bel ∗A = Bel ∩A ⊆ Bel. □

Proof of Observation 21: (a) Suppose that ⟨´,Bel ⟩ is normally repre-
sented by the semiorder ≺. We show that it is also canonically represented
by the bottom semiorder ≺′ defined as follows:

w ≺′ v iff (i) w ≺ v or (ii) w ∈ min≺W and v /∈ min≺W. (27)

First we show min≺W = min≺′ W : Let v /∈ min≺W . Thus there is w
such that w ≺ v. But then w ≺′ v, hence v /∈ min≺′ W . Conversely, let
v /∈ min≺′ W . Thus there is w such that w ≺′ v. Either (i) or (ii). When (i),
we have w ≺ v and hence v /∈ min≺W . When (ii), we also have v /∈ min≺W .
Thus min≺W = min≺′ W , which we denote Bel.
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Second, we show that ≺′ is a bottom semiorder.

Irreflexivity: w ⊀′ w: If we had w ≺′ w, we would have (i) or (ii) for v = w.
(i) is excluded by reflexivity, (ii) is excluded since v = w.

Interval condition: if x ≺′ y, w ≺′ v, then x ≺′ v or w ≺′ y. Suppose
x ≺ y and w ≺ v, then x ≺ v or w ≺ y by the Interval condition. Suppose
x ≺ y and w ∈ Bel, v /∈ Bel. Thus y /∈ Bel and therefore w ≺′ y. Suppose
x ∈ Bel, y /∈ Bel and w ≺ v. Then v /∈ Bel hence x ≺′ v. Suppose
x ∈ Bel, y /∈ Bel, and w ∈ Bel, v /∈ Bel. Then x ≺′ v.

Semitransitivity: If x ≺′ y, y ≺′ z, then x ≺′ w or w ≺′ u. There are
four cases. Suppose first that x ≺ y and y ≺ z: then x ≺ w or w ≺ z by
Semitransitivity. Hence x ≺′ w or w ≺′ z. The second case, x ≺ y and
y ∈ Bel, z /∈ Bel, is impossible. Suppose third that x ∈ Bel, y /∈ Bel and
y ≺ z. Either w ∈ Bel, then w ≺′ y. But y ≺′ z, hence w ≺′ z, by transitivity
(wich follows from irreflexivity and the Interval condition). Or w /∈ Bel.
Then x ≺′ w. The fourth case, x ∈ Bel, y /∈ Bel, and y ∈ Bel, z /∈ Bel, is
impossible.

Bottom: Let v ∈ min≺′ W , w /∈ min≺′ W . Since min≺′ W = min≺W , v ≺′ w
by (ii).

For the identity of the two ways of obtaining Bel(Ψ´A), it remains to show
that (1) min≺′ A ⊆ min≺W when Bel ⊈ A and (2) min≺′ A = min≺A
otherwise.

(1) Let Bel ⊈ A. Then there is a w ∈ Bel, such that w ∈ A. We already
showed that Bel = min≺W = min≺′ W . Suppose for reductio that v ∈
min≺′ A, but v /∈ min≺W = min≺′ W . Since w ∈ Bel = min≺′ W and ≺′ is
bottom, we get w ≺′ v, contradicting v ∈ min≺′ A.

(2) Let Bel ⊆ A. Suppose v /∈ min≺A, thus either v ∈ A and then v /∈
min≺′ A, or v ∈ A and there is w ∈ A such that w ≺ v. But then w ≺′ v.
Hence v /∈ min≺′ A. Conversely, suppose v /∈ min≺′ A. Thus either v ∈ A
and then v /∈ min≺A, or v ∈ A and there is w ∈ A such that w ≺′ v. But
then w ≺ v or w ∈ Bel and v /∈ Bel. The second case is excluded, since then
w ∈ A. In the first case v /∈ min≺A.

(b) Suppose that ⟨´,Bel ⟩ is canonically represented by the bottom semi-
order ≺. We want to show that it is also normally represented by ≺. For
this we have to verify that if Bel ⊈ A, i.e, if there is w ∈ Bel such that
w ∈ A, then min≺A ⊆ Bel. But if this were not the case, there would be
a v ∈ min≺A such that v /∈ Bel. But then, since Bel = min≺W , w ≺ v by
bottom, contradicting the minimality of v in A. □

Proof of Observation 23: Suppose Bel´(A ∩ B) ⊆ B. And Bel´A ⊈
Bel´(A ∩ B). Then by AGM´8d, we obtain Bel´B ⊆ Bel´(A ∩ B).
Therefore Bel´B ⊆ B. But if B ̸= W , this violates AGM´2. And if
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B = W , the consequent of AGM´8c is trivially true. □

Proof of Theorem 24: We show that (a) implies (b), (b) implies (d), (d)
implies (c), and (c) implies (a).

(a) implies (b). (⇒). Assume that ⟨´,Bel ⟩ is a normal semi-AGM con-
traction. We construct ≺ by

v ≺ w iff v ∈ Bel´ {v, w} and w /∈ Bel´ {v, w} (28)

We now show (Part 1) that ≺ is a bottom semiorder and (Part 2) that the
belief contraction Bel´A can be represented by it as in Equations (20) and
(21).

Part 1: ≺ is a bottom semiorder.

Irreflexivity: w ≺ w is impossible, by (28).

Interval condition. Suppose that u ≺ v and x ≺ y. By (28) this means
that u ∈, v /∈ Bel´ {u, v} and x ∈, y /∈ Bel´ {x, y}. We need to show that
u ≺ y or x ≺ v, i.e., that u ∈, y /∈ Bel´ {u, y} or x ∈, v /∈ Bel´ {x, v}.
Consider the proposition A = {u, v, x, y}. By AGM´7, we get Bel´A =
Bel´((A ∪ {u, v}) ∩ (A ∪ {u, v})) ⊆ Bel´(A ∪ {u, v}) ∪ Bel´(A ∪ {u, v}).
Thus, by set-theoretic reasoning, (Bel´A) ∩ {u, v} ⊆ (Bel´(A ∪ {u, v}) ∩
(A ∪ {u, v})) ∪ Bel´ {u, v} ⊆ (by AGM´5) Bel ∪ Bel´ {u, v} = (by
AGM´3) Bel´ {u, v}. Since v /∈ Bel´ {u, y}, we get v /∈ Bel´A. In the
same way, we obtain y /∈ Bel´A. Now AGM8´d implies that Bel´ {u, y} ⊆
Bel´A or Bel´ {v, x} ⊆ Bel´A. If Bel´ {u, y} ⊆ Bel´A, then y /∈
Bel´ {u, y}. By {u, y} ≠ W and AGM´2, Bel´ {u, y} ⊈ {u, y}. So u ∈
Bel´ {u, y}. Together this means u ≺ y, as desired. If Bel´ {v, x} ⊆
Bel´A, an analogous argument establishes x ≺ v.

Semitransitivity. Suppose that u ≺ v and v ≺ w. By (28) this means
that u ∈, v /∈ Bel´ {u, v} and v ∈, w /∈ Bel´ {v, w}. So Bel´ {u, v} ⊆
{v} and Bel´ {v, w} ⊆ {w}. Thus by AGM´8s, Bel´ {u, x} ⊆ {x} or
Bel´ {x,w} ⊆ {w}. If Bel´ {u, x} ⊆ {x}, then x /∈ Bel´ {u, x}. By
{u, x} ̸= W and AGM´2, Bel´ {u, x} ⊈ {u, x}. So u ∈ Bel´ {u, x}. To-

gether this means u ≺ x, as desired. If Bel´ {x,w} ⊆ w, an analogous
argument establishes x ≺ w.

Bottom. We first show that min≺W = Bel. Suppose that v ∈ min≺W .
Then there is no u ∈ W such that u ∈, v /∈ Bel´ {u, v}, or equivelently,
for all u ∈ W such that u ∈ Bel´ {u, v}, we have v ∈ Bel´ {u, v}, too.
But also, by {u, v} ≠ W and AGM´2, we have Bel´ {u, v} ⊈ {u, v}, so
for all u ∈ W such that u /∈ Bel´ {u, v}, we have v ∈ Bel´ {u, v}. Taken
together, this implies that for all u ∈ W , v ∈ Bel´ {u, v}. So by AGM´8d,
v ∈ Bel´

⋂
u∈W {u, v} = Bel´ ∅ = Bel, by AGM´0. For the converse
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suppose that v ∈ Bel. Then by AGM´3, v ∈ Bel´ {u, v} and hence u ̸≺ v.
for all u ∈ W . This means that v ∈ min≺W .

So in order to show that ≺ is bottom we have to show that if v ∈, w /∈ Bel,
we get that v ≺ w, i.e., v ∈, w /∈ Bel´ {v, w}. But by AGM´3, Bel ⊆
Bel´ {v, w}, and since v ∈ Bel ⊈ {v, w}, we get Bel´ {v, w} ⊆ Bel from
AGM´4.

Part 2: We show that ≺ canonically and thus normally, by Observation 21
(a) (since ≺ is bottom), represents ⟨´,Bel ⟩.
Equation (21): Bel´A = Bel ∪minA.

Suppose that the contraction ..− is obtained from ≺ by Definition 20. Note
that if A = W or Bel ⊈ A, then Bel´A = Bel, by AGM´3 to AGM´5,
and similarly Bel ..− A = Bel by equation (22). If Bel ⊆ A ̸= W , then we
have, by equations (22) and (28)

w ∈ Bel ..−A iff w ∈ Bel ∪min≺A

iff w ∈ Bel or (w ∈ A and ¬∃v ∈ A(v ≺ w))

iff w ∈ Bel or (w ∈ A and ¬∃v ∈ A(v ∈ Bel´{v, w} and
w /∈ Bel´{v, w}))

Using the expression in the last line, we prove the following identity claim:
for every proposition A such that Bel ⊆ A ̸= W and every world w, w ∈
Bel´A iff w ∈ Bel ..−A.

w ∈ Bel´A implies the last line: Let w ∈ Bel´A, and suppose that
w /∈ Bel. Then w ∈ A, by AGM´5. Suppose for reductio that there is a
v ∈ A such that v ∈, w /∈ Bel´{v, w}. From w ∈ Bel´A, AGM´7 gives us
that either w ∈ Bel´(A ∪ {v, w}) or w ∈ Bel´(A ∪ {v, w}) = Bel´ {v, w}.
But the latter is false by supposition. So w ∈ Bel´(A ∪ {v, w}). But also
w ∈ A∪{v, w}. Thus, by AGM´5, w ∈ Bel, which gives us a contradiction.

The last line implies w ∈ Bel´A: Assume the last line, i.e., w ∈ Bel, or w ∈
A and there is no v ∈ A such that v ∈, w /∈ Bel´ {v, w}. If w ∈ Bel, then
w ∈ Bel´A by AGM´3. So assume that w ∈ A and for every v ∈ A such
that v ∈ Bel´ {v, w}, it also holds that w ∈ Bel´ {v, w}. Since {v, w} ≠ W ,
AGM´2 gives us (Bel´ {v, w}) ∩ {v, w} ≠ ∅. Hence w ∈ Bel´ {v, w} for
every v ∈ A. Since A ⊆ W is finite and A =

⋂
v∈A {v, w}, we can apply

AGM8d repeatedly and get by AGM´8d that w ∈ Bel´(
⋂

v∈A {v, w}) =
Bel´A, as desired.

It remains to prove condition (20). From our identity claim, we know
that Bel´ ∅ = Bel ..− ∅ = Bel ∪ min≺W , and from AGM´0, we also have
Bel´ ∅ = Bel. So min≺W ⊆ Bel, We prove the converse, Bel ⊆ min≺W , by
contraposition. Let w /∈ min≺W . Then there is a v ∈ W such that v ≺ w,
i.e., v ∈, w /∈ Bel´ {v, w}. By AGM´3, it follows from w /∈ Bel´ {v, w}
that w /∈ Bel, as desired.
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(b) implies (d). Normal semi-representability implies ranking represent-
ability by a maximal contraction. Let ⟨´,Bel ⟩ be given. Suppose that ≺
can be used for the normal representation with (20) Bel = min≺W and (22)
Bel´A = Bel if Bel ⊈ A, and Bel´A = Bel ∪min≺A otherwise. From the
semiorder ≺, we construct a ranking κ and a threshold z ≥ 0, using Corol-
lary 10, such that κ(v) + z < κ(w) iff v ≺ w. But then min≺W = minzκW
and min≺A = minzκA, and so we get

Bel(κ´A) = Belz(κ
0
A)

=

{
minzκW if Bel ⊈ A,

minzκW ∪minzκA if Bel ⊆ A

=

{
min≺(W ) if Bel ⊈ A,

min≺(W ) ∪min≺A if Bel ⊆ A

= Bel´A.

Hence ⟨´,Bel ⟩ is ranking representable by a maximal contraction: notice
that here we have chosen the contraction parameter n = 0.

Note: In contrast to the revision case, the contraction parameter n = 0
is forced here. If the semiorder ≺ is bottom, the recipes for normal and
canonical representation coincide. If ≺ is bottom, the constructed ranking
κ is z-gappy in the sense of Corollary 10.

(d) implies (c). Ranking representability by a maximal contraction implies
ranking representability. This is trivial.

(c) implies (a). Ranking representability implies normal semi-AGM. Let ´

be defined from κ and z by Bel = Belz(κ) = minzκW and Bel´A = Belz(κ
n
A)

for some n ≤ z. The latter is equal to Bel if Bel ⊈ A, and to Bel∪minz−n
κ A

if Bel ⊆ A, by Definition 5 and equation (9). Since κ−1(0) ̸= ∅ (for κ ̸= κ⊥),
we have Bel ̸= ∅.
AGM´0. Bel´ ∅ = Bel by definition, since Bel ⊈ ∅.
AGM´2. Let A ̸= W . If Bel ⊈ A, then Bel´A = Bel ⊈ A. If Bel ⊆ A,
then minz−n

κ A ⊆ Bel´A and ∅ ≠ minz−n
κ A ⊆ A ⊈ A.

AGM´3. Bel ⊆ Bel´A is immediate from the definition.

AGM´4. Let Bel ⊈ A. Then Bel´A ⊆ Bel is also immediate from the
definition. (Note that AGM´4 is the postulate that makes a semi-AGM
contraction normal.)

AGM´5. (Bel´A) ∩A ⊆ (Bel ∪minz−n
κ A) ∩A ⊆ Bel.

AGM´7. If Bel ⊈ A, then Bel´(A ∩ B) = Bel = Bel´A, and the claim
is immediate. Similarly if Bel ⊈ B. So let Bel ⊆ A ∩ B. Then Bel´(A ∩
B) ⊆ (Bel´A) ∪ (Bel´B) follows from the fact that minz−n

κ (A ∩B) ⊆
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minz−n
κ A ∪minz−n

κ B.

AGM´8d. The cases Bel ⊈ A and Bel ⊈ B are the same as for AGM´7. So
let Bel ⊆ A ∩B. Then Bel´A ⊆ Bel´(A ∩B) or Bel´B ⊆ Bel´(A ∩B)
follows from the facts that minz−n

κ A ⊆ minz−n
κ (A ∩B) if κ(A) ≤ κ(B), and

minz−n
κ B ⊆ minz−n

κ (A ∩B) if κ(B) ≤ κ(A).

AGM´8s. Let Bel´(A ∩ B) ⊆ B and Bel´(B ∩ C) ⊆ C. Note that this
implies that Bel ⊆ B and Bel ⊆ C, and thus Bel´(B ∩ C) ⊆ C implies
that minz−n

κ (B ∩ C) ⊆ C, i.e., κ(B) + (z − n) < κ(C). Bel´(A ∩ B) ⊆
B implies that either Bel ⊈ A or κ(A) + (z − n) < κ(B). Suppose first
that Bel ⊈ A. Then if Bel´(A ∩ D) ⊈ D, this means that Bel ⊈ D
and thus Bel´(D ∩ C) = Bel ⊆ C. Suppose second that Bel ⊆ A and
κ(A) + (z − n) < κ(B). It follows that κ(A) + 2(z − n) < κ(C). But then
either κ(A) + (z − n) < κ(D) or κ(D) + (z − n) < κ(C), and thus either
Bel´(A ∩D) ⊆ D or Bel´(D ∩ C) ⊆ C. □

Proof of Corollary 26: We show that (a) implies (b), (b) implies (c) and
(c) implies (a).

(a) implies (b). Suppose that ⟨´,Bel ⟩ is semi-AGM. We can use the
construction (28) of the proof of Theorem 24, and know that the relation ≺
thus defined is a semiorder (AGM´4 was only used for the bottom condi-
tion). We have also shown in this proof (without the help of AGM´4) that
≺ canonically represents ´.

(b) implies (d). Canonical semi-representability implies non-standard
ranking representability by a maximal contraction. Let ⟨´,Bel ⟩ be given.
Suppose that ≺ can be used for the canonical representation with (20)
Bel = min≺W and (21) Bel´A = Bel ∪ min≺A. From the semiorder
≺, we construct a ranking κ and a threshold z ≥ 0, using Corollary 10,
such that κ(v) + z < κ(w) iff v ≺ w. But then min≺W = minzκW and
min≺A = minzκA. If we choose the non-standard ranking contraction with
the contraction parameter n = 0, we get

Bel(κ´A) = BelzκW ∪minz−0
κ A

= min≺(W ) ∪min≺A

= Bel´A.

Hence ⟨´,Bel ⟩ is non-standardly ranking representable by a maximal con-
traction: notice that the contraction parameter is n = 0 here.

(d) implies (c). Non-standard ranking representability by a maximal con-
traction implies non-standard ranking representability. This is trivial.

(c) implies (a). Non-standard ranking representability implies semi-AGM.
Let ´ be non-standardly defined from κ and z, i.e., Bel = Belz(κ) = minzκW
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and Bel´A = Bel∪minz−n
κ A for some n ≤ z (Definition 7, equation (15)).

Since κ−1(0) ̸= ∅ (for κ ̸= κ⊥), we have Bel ̸= ∅.
AGM´0. Bel´ ∅ = Bel since minz−n

κ ∅ ⊆ Bel.

AGM´2. Let A ̸= W . Then ∅ ≠ minz−n
κ A ⊆ A ⊈ A and, since minz−n

κ A ⊆
Bel´A, Bel´A ⊈ A.

AGM´3. Bel ⊆ Bel´A is trivial.

AGM´5. (Bel´A) ∩A ⊆ (Bel ∪minz−n
κ A) ∩A ⊆ Bel.

AGM´7. Bel´(A ∩ B) ⊆ (Bel´A) ∪ (Bel´B) follows from the fact that
minz−n

κ (A ∩B) ⊆ minz−n
κ A ∪minz−n

κ B.

AGM´8d. Bel´A ⊆ Bel´(A∩B) or Bel´B ⊆ Bel´(A∩B) follows from
the facts that minz−n

κ A ⊆ minz−n
κ (A ∩B) if κ(A) ≤ κ(B), and minz−n

κ B ⊆
minz−n

κ (A ∩B) if κ(B) ≤ κ(A).

AGM´8s. Let Bel´(A ∩ B) ⊆ B and Bel´(B ∩ C) ⊆ C. This implies
that Bel ⊆ B and Bel ⊆ C, i.e., κ(B) > z and κ(C) > z. It also s that
minz−n

κ (A ∩B) ⊆ B and minz−n
κ (B ∩ C) ⊆ C, i.e., that κ(A) + (z − n) <

κ(B) and κ(B) + (z − n) < κ(C). It follows that κ(A) + 2(z − n) < κ(C).
But then either κ(A) + (z − n) < κ(D) or κ(D) + (z − n) < κ(C), and
thus either minz−n

κ (A ∩D) ⊆ D or minz−n
κ (D ∩ C) ⊆ C. If the latter, we

have Bel´(D ∩ C) ⊆ C. If not the latter, we have κ(D) + (z − n) ≥
κ(C) > κ(B) + (z − n) > 2z − n, so κ(D) > z. Thus Bel ⊆ D, and we get
Bel´(A ∩D) ⊆ D. □

Proof of Observation 27: Let ≺ be a semiorder.

(a) Let Bel ∗ A and Bel´A be canonically defined from ≺ (Definitions 11
and 19).

LI. We have
Bel ∩A = (minW ) ∩A ⊆ minA. (+)

Thus we obtain Bel ∗A Def. 11
= minA

(+)
= (Bel ∩A) ∪minA = (Bel ∪minA) ∩

A
Def. 19
= (Bel´A) ∩A.

HI. Bel´A
Def. 19
= Bel ∪minA

Def. 12
= Bel ∪ (Bel ∗A).

(b) Now let Bel ∗A and Bel´A be normally defined from ≺ (Definitions 12
and 20).

LI. We obtain the following equations, where the upper line applies when
Bel ⊈ A, the lower line when Bel ⊆ A:

Bel ∗A Def. 12
=

{
Bel ∩A

minA
(+)
= (Bel ∪minA) ∩A

}
Def. 20
= (Bel´A) ∩A

HI. We obtain the following equations, where the upper line applies when
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Bel ⊈ A, the lower line when Bel ⊆ A:

Bel´A
Def. 20
=

{
Bel = Bel ∪ (Bel ∩A)

Bel ∪minA

}
Def. 12
= Bel ∪ (Bel ∗A)

□

Proof of Observation 28: RLI. We get

Bel ∗A =

{
minA if Bel ⊈ A,

minA
(+)
= (Bel ∪minA) ∩A = (Bel´A) ∩A otherwise.

RHI. We get

Bel´A =

{
Bel if Bel ⊈ A,

Bel ∪minA = Bel ∪ (Bel ∗A) otherwise.

Counterexample against RCI: Let W = {w0, w1, w2} and suppose that only
w0 and w2 are related by ≺: w0 ≺ w2. The relation ≺ is a semiorder over W .
Let A = {w1, w2}. Then Bel(κ ∗A) = {w1, w2} (canonical representation),
but Bel(κ´A) = Bel(κ) = {w0, w1}, since Bel(κ) ⊈ A (normal representa-
tion). Hence Bel(κ ∗A) ⊈ Bel(κ´A), and RCI fails. Since each of LI and
HI implies RCI, they must fail as well. □

Proof of Theorem 29: (a) Counterexample against RCI with z > 0: Let
z = 1 and W = {w0, w1, w2}, and suppose that the κ-ranks of the worlds
are given by their indices. Let A = {w1, w2}. Writing κ ∗A for κnA with
n > 1 and κ´A for κm

A
with m ≤ 1, we get Bel(κ ∗A) = {w1, w2}, but

Bel(κ´A) = Bel(κ) = {w0, w1}, since Bel(κ) ⊈ A. Hence Bel(κ ∗A) ⊈
Bel(κ´A), and RCI fails. Since each of LI and HI implies RCI, they must
fail as well.

(b) If z = 0, ranking revision and contraction are fully AGM, and hence the
normal and canonical representation are equivalent. □

Proof of Theorem 31: It is easily seen that IR0 is equivalent to IR0≺.
IR1–IR4 are analogous to the cases proven by Darwiche and Pearl (1997,
pp. 24–25) for the total preorder case.

IR5 is equivalent to IR5≺.

(⇐) Suppose IR5≺ holds. Assume Bel(Ψ) ⊆ A and Bel(Ψ∗B) ⊈ A. Suppose
for reductio that Bel((Ψ ∗ A) ∗ B) ⊈ A. Thus min≺A B ⊈ A. Hence there
is an A-world v ∈ min≺A B, i.e., such that for no b ∈ B, b ≺A v. But since
Bel(Ψ) ⊆ A and Bel(Ψ ∗ B) ⊈ A, we have min≺B ⊈ A and thus there is
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an A-world w ∈ min≺B, i.e., such that for no b ∈ B, b ≺ w. Thus we must
have v ⊀ w. Since Bel(Ψ) ⊆ A, w ∈ A and v ∈ A, v ⊀ w implies w ≺A v by
IR5≺. This contradicts v ∈ min≺A B.

(⇒) Suppose IR5 holds. Assume Bel(Ψ) ⊆ A, w ∈ A and v ∈ A. Now
suppose that w ⊀A v. Consider B = {w, v}. Then, using AGM2 and
AGM5, v ∈ min≺A B, since w ⊀A v. Thus Bel((Ψ ∗ A) ∗ B) ⊈ A. Hence
Bel(Ψ ∗ B) ⊆ A by IR5. Thus min≺B ⊆ A, and by AMG5 and AGM2,
min≺B = {v}. Since w ̸= v, there is b ∈ B such that b ≺ w. By construction
b = v, so v ≺ w. Thus w ⊀ v, by the asymmetry of ≺.

The reasoning is similar for IR6 and IR7. □

Proof of Observation 32: Let κ be a ranking, n > z ≥ 0 and A ̸= ∅.
Consider κ∗A = κnA. (κ∗0)–(κ∗2) hold by Definition 3.

(κ∗5): Let Bel(κ) ⊆ A. Thus κ(A) = 0 and κ(A) > z. Therefore κ∗A = κA→n

(Definition 3). Hence for w ∈ A, κ∗A(w)+ z = κ(w)−κ(A)+ z < κ(w). And
for v ∈ A, κ∗A(v) = κ(v)− κ(A) + n = κ(v) + n > κ(v) + z (since z < n).

(κ∗6). Let Bel(κ) ⊈ A. Thus κ(A) ≤ z. Therefore κ∗A = κA→n (by Def-
inition 3). For w ∈ A, κ∗A(w) = κ(w) − κ(A) ≤ κ(w). And for v ∈ A,
κ∗A(v) = κ(v)− κ(A) + n ≥ κ(v)− z + n > κ(v) (since κ(A) ≤ z < n). □

Proof of Theorem 33: (a) Let n,m > z ≥ 0 and A ̸= ∅. Define the
semiorder ≺ by w ≺ v iff κ(w) + z < κ(v), and the semiorder ≺A by
κnA(w) + z < κnA(v).

IR0≺–IR4≺ follow respectively from (κ ∗0)–(κ ∗4).
IR5≺. Assume Bel(κ) ⊆ A, w ∈ A, v ∈ A, and also v ̸≺ w. But the latter
implies that κ(w) ≤ κ(v) + z. Thus κnA(w) + z < κ(w) ≤ κ(v) + z < κnA(v),
by (κ ∗5) applied twice.

IR6≺. Suppose z = 0. Assume Bel(κ) ⊈ A, w ∈ A, v ∈ A and v ̸≺ w. We
have κnA(w) ≤ κ(w) ≤ κ(v)+0 < κnA(v) by (κ ∗6) applied twice. Since z = 0,
this suffices to prove w ≺A v.

Counterexample against IR6≺ with z > 0: Let z = 1, n = 2 and W =
{w0, w1, w2, w3}, and suppose the κ-ranks of the worlds are given by their
indices. Let A = {w0, w3}. We have Belz(κ) = {w0, w1} ⊈ A, w3 ∈ A and
w2 ∈ A. Since κ(w2) + z ≥ κ(w3), we have w2 ̸≺ w3. So the assumptions of
IR6≺ are satisfied. But κnA(w2) = κnA(w3) = 3, so that w3 ⊀A w2, contrary
to the conclusion of IR6≺.

Counterexample against IR7≺ with z = 0: Let z = 0, n = 1 and W =
{w0, w1, v1}, and suppose the κ-ranks of the worlds are given by their indices.
Let A = {w0, w1}. We have w1 ∈ A and v1 ∈ A and κ(w1) = κ(v1), so
v1 ̸≺ w1. So the assumptions of IR7≺ are satisfied. But κnA = κ, so that
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w1 ⊀A v1, contrary to the conclusion of IR7≺.

(b) By Theorem 31, it follows from (a) that the induced canonical revision
satisfies IR0–IR5 (for all A ̸= ∅). It also satisfies IR6 for z = 0, but it does
not in general satisfy IR6 for z > 0, and it does not in general satisfy IR7.
See the above counterexamples against IR6≺ and IR7≺. □

Proof of Theorem 36: Abbreviations: We write ≺ for ≺Ψ, min for min≺,
≺−

A for ≺Ψ´A and minA for min≺−
A
, etc. Assume that ´ is semi-AGM. Thus,

by Corollary 26, there is a semiorder representing it canonically, i.e., such
that Bel(Ψ) = minW and Bel´A = Bel ∪minA. In particular

Bel´B = Bel ∪minB and (Bel´A)´B = Bel ∪minA ∪minAB. (29)

(⇐) IC0≺ implies IC0: Suppose Bel ⊈ A. By IC0, ≺−
A =≺. So minAW =

minW and minAB = minB, which by (29) suffices to prove Bel´B ⊆
(Bel´A)´B. For the converse, we use the fact that Bel´A = minAW .

IC1≺ implies IC1: Suppose A ⊆ B. Thus B ⊆ A. By (29), we have
(Bel´B) ∩ B = (Bel ∩ B) ∪ minB and (Bel´A´B) ∩ B = (Bel ∩ B) ∪
((minA) ∩ B) ∪ minAB = (Bel ∩ B) ∪ minAB. It thus suffices to prove
minB = minAB. This follows by IC1≺, since B ⊆ A.

IC2≺ implies IC2: Suppose A ⊆ B. Thus B ⊆ A. Then, by (29), (Bel´B)∩
B = (Bel∩B)∪minB and (Bel´A´B)∩B = (Bel∩B)∪ ((minA)∩B)∪
minAB. Thus it suffices to prove minB = ((minA) ∩ B) ∪ minAB. First
suppose that w ∈ minB. Thus w ∈ A, since B ⊆ A. Thus, by IC2≺,
w ∈ minAB. For the converse, we note that (minA) ∩ B ⊆ minB, and
apply the same reasoning.

IC3≺ implies IC3: Suppose Bel´B ⊆ A ∪ B. Thus Bel ∪minB ⊆ A ∪ B.
Therefore Bel ⊆ A∪B, and since minA ⊆ A, it remains to prove minAB ⊆
A. Suppose for reductio that minAB ⊈ A. Thus there is w ∈ minAB
such that w ∈ A. Hence w /∈ minB, because minB ⊆ A. Hence there is
v ∈ B, such that v ≺ w, and we can chose v ∈ minB (finiteness of W and
transitivity of ≺). But since v ∈ A, w ∈ A, IC3≺, yields v ≺−

A w. Yet
v ∈ B, contradicting w ∈ minAB.

IC4≺ implies IC4: Suppose (Bel´A)´B ⊆ A ∪ B. Thus, by (29), Bel ⊆
A ∪ B, minA ⊆ B and minAB ⊆ A. We prove minB ⊆ A. Suppose for
reductio that minB ⊈ A. Thus there is v ∈ minB such that v ∈ A. But
then v /∈ minAB, since minAB ⊆ A. Hence there is w ∈ B such that
w ≺−

A v, and we can choose w such that w ∈ minAB (finiteness). Thus
w ∈ A, v ∈ A and w ≺−

A v. Hence by IC4≺, w ≺ v. But w ∈ B contradicts
minimality of v in B.

(⇒) We use the same construction of the order ≺=≺Ψ as in Theorem 24,
viz., v ≺ w iff v ∈ Bel´ {v, w} and w /∈ Bel´ {v, w} (equation (28)).
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All claims ICi ≺ are trivial when v = w. So we assume v ̸= w, and always
form the set B = {v, w}.
IC0 implies IC0≺: Let Bel ⊈ A. Suppose that v ≺ w. By (28), v ∈
Bel(Ψ´B) but not w. Thus, by IC0, v ∈ Bel((Ψ´A)´B) but not w. By
(28), v ≺−

A w. Similarly in the other direction.

IC1 implies IC1≺: Let v, w ∈ A. So A ⊆ B. Suppose that v ≺ w. By (28),
v ∈ Bel(Ψ´B) but not w. This is true, for v, w ∈ B ⊆ A and by IC1, just
in case v ∈ Bel((Ψ´A)´B), but not w. Thus, by (28), v ≺−

A w. Similarly
in the other direction.

IC2 implies IC2≺: Let v, w ∈ A. So A ⊆ B. Suppose that v ≺ w. By (28),
v ∈ Bel(Ψ´B), but not w. This is true, by v, w ∈ B ⊆ A and IC2, just in
case v ∈ Bel((Ψ´A)´B), but not w. Thus, by (28) v ≺−

A w. Similarly in
the other direction.

IC3 implies IC3≺: Let v ∈ A, w ∈ A. Note that A ∩B = {v} and A ∪B =
W \ {w}. Suppose that v ≺ w. This means, by (28), v ∈ Bel(Ψ´B) and
w /∈ Bel(Ψ´B). Hence Bel(Ψ´B) ⊆ W \ {w} = A ∪ B. Thus, by IC3,
Bel((Ψ´A)´B) ⊆ A∪B = W \ {w}. But then w /∈ Bel((Ψ´A)´B). By
AGM´2, v ∈ Bel((Ψ´A)´B). This means, by (28), that v ≺−

A w.

IC4 implies IC4≺: Let v ∈ A, w ∈ A. Note A∪B = W \ {v}. Suppose that
w ≺−

A v. This implies that v /∈ Bel((Ψ´A)´B) ⊆ A ∪ B = W \ {v}. So
by (IC4), Bel(Ψ´B) ⊆ A ∪ B. So v /∈ Bel(Ψ´B). But then, by AGM´2,
w ∈ Bel(Ψ´B). But this means that v ≺ w. □

Proof of Observation 37: Assume that ´ is semi-AGM. By Corollary 26,
it has a canonical representation. Suppose Bel´(A∩B) ⊈ B. For AGM´8,
we show Bel´B ⊆ Bel´(A ∩B). Since A ∩B ⊆ B, IC2 yields (Bel´B) ∩
B = ((Bel´(A ∩ B))´B) ∩ B. From our assumption Bel´(A ∩ B) ⊈ B,
AGM´4 on the second step implies (Bel´(A ∩ B))´B ⊆ Bel´(A ∩ B).
Thus (Bel´B) ∩ B ⊆ ((Bel´(A ∩ B)) ∩ B. By canonicity, this implies
(Bel ∩ B) ∪minB ⊆ (Bel ∩ B) ∪ (B ∩min(A ∪ B)). Hence Bel ∪minB ⊆
Bel ∪min(A ∪B). By canonicity, Bel´B ⊆ Bel´(A ∩B). □

Proof of Theorem 38: Assume that ´ is normal semi-AGM. Thus it
satisfies AGM´4 and is normally representable by ≺ (Theorem 24).

(a) IC0≺ implies IC0: Suppose Bel ⊈ A. Thus Bel´A = Bel by AGM´4.
Hence Bel ⊈ B iff Bel´A ⊈ B. Thus when Bel ⊈ B, IC0 is trivial by
AGM´4. When Bel ⊆ B, it suffices to prove minB = minAB. This holds
by IC0≺.

From now on, we assume IC0.

(b) IC2≺ implies IC2′: Suppose Bel´A ⊆ B, and A ⊆ B. From the first,
we obtain Bel ⊆ B by AGM´3. Bel ⊆ A is treated as in the canonical case,
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and Bel ⊈ A is covered by IC0.

(c) We now prove directly IC1, IC3, IC4. The reasoning is as in the canonical
case, when Bel ⊆ A and Bel´A ⊆ B (Case 0 ). When Bel ⊈ A (Case 1 ),
IC0 guarantees all other postulates. Thus, assuming IC0, we concentrate on
Bel ⊆ A and Bel´A ⊈ B. It suffices to check (Case 2 ) Bel ⊆ B, and (Case
3 ) Bel ⊈ B. On the normal representation, this means:

Case 2 : Bel´B = Bel ∪minB and Bel´A´B = Bel ∪minA.

Case 3 : Bel´B = Bel and Bel´A´B = Bel ∪minA.

IC1≺ implies IC1: Suppose A ⊆ B. Case 2 is impossible: Bel´A ⊈ B
implies Bel∪minA ⊈ B, contradicting our assumptions Bel ⊆ B and A ⊆ B.
Case 3: Bel ∩B = (Bel ∪minA) ∩B, due to A ⊆ B.

IC3≺ implies IC3: Cases 2 and 3: When Bel´A ⊈ B, then Bel´B ⊆ A∪B
implies Bel´A´B = Bel´A ⊆ A ∪B by AGM´4.

IC4≺ implies IC4: Case 2: Assume ((Bel´A)´B) ⊆ A ∪B. By AGM´4,
Bel∪minA ⊆ A∪B, since Bel´A ⊈ B. Thus minA ⊆ B. This contradicts
the case assumptions Bel´A ⊈ B and Bel ⊆ B. Case 3: Bel´B = Bel ⊆
A ∪B is trivially satisfied, due to Bel ⊆ B. □

Proof of Observation 39: Let κ−A = κnA where n ≤ z. (κ´ 0) and (κ´ 1)
by Definition 3. (κ´ 2) follows from distance conservation of κA→n and
Definition 3.

(κ´ 5): Let Bel ⊆ A. Therefore κ−A = κA→n by Definition 3. By the
ranking axioms κ(A) = 0. Thus κ−A(v) = κ(v) − κ(A) + n for v ∈ A. But
since κ(A) > z, we have κ(A)−n > z−n. Therefore κ−A(v)+(z−n) < κ(v).
□

Proof of Theorem 40: (a) Let ≺−
A be derived by (19) from the ranking

contraction κ−A = κnA for some n ≤ z. By Definition 3, IC0≺–IC4≺ are
trivially true for A = W , so we assume A ̸= W in the following.

Then v ≺−
A w

iff κnA(w)− κnA(v) > z

iff

{
κ(w)− κ(v) > z if Bel ⊈ A

κA→n(w)− κA→n(v) > z if Bel ⊆ A

iff


κ(w)− κ(v) > z if Bel ⊈ A

κ(w)− κ(v) > z if Bel ⊆ A and (w, v ∈ A or w, v /∈ A)

κ(w)− κ(A) + n− (κ(v)− κ(A)) > z if Bel ⊆ A and v ∈ A,w /∈ A

κ(w)− κ(A)− (κ(v)− κ(A) + n) > z if Bel ⊆ A and v /∈ A,w ∈ A
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by Definitions 3 and 2. We call the last four rows “the case distinction”.

Now IC0≺ follows immediately from the first row of the case distinction,
and both IC1≺ and IC2≺ follow immediately from the second row of the
case distinction.

For IC3≺, suppose that v /∈ A, w ∈ A and v ≺ w, i.e., κ(w) − κ(v) > z. If
Bel ⊈ A, the claim is immediate. If Bel ⊆ A, then the fourth row of the
case distinction applies, and we need to show that κ(w) − κ(A) − (κ(v) −
κ(A) + n) > z. But this follows from κ(w)− κ(v) > z, κ(A) = 0, κ(A) > z
(since Bel ⊆ A) and n ≤ z.

For IC4≺, suppose that v ∈ A, w /∈ A and v ≺−
A w. If Bel ⊈ A, the claim

is immediate. If Bel ⊆ A, then the third row of the case distinction applies,
and v ≺−

A w means that κ(w)−κ(A)+n−(κ(v)−κ(A)) > z. Since κ(A) = 0,
κ(A) > z and n ≤ z, we get κ(w)−κ(v) > κ(w)−κ(A)+n−κ(v)+κ(A) > z,
which means v ≺ w, as desired.

(b) By Theorem 38, it follows from (a) that the induced normal contraction
satisfies IC0, IC1, IC2′, IC3, IC4. However, it does not in general satisfy
IC2.

Counterexample against IC2 with n < z: Let z = 1, n = 0 and W =
{w0, w2, w3, w4}, and suppose the κ-ranks of the worlds are indicated by
their indices. Let A = {w0} and B = {w0, w2}. Clearly Bel = A ⊆ B.
Writing κ−A for κ0A, we have

κ−A(w0) = 0, κ−A(w2) = 0, κ−A(w3) = 1, κ−A(w4) = 2.

Since Bel(κ−A) = {w0, w2, w3}, we have Bel(κ−A) ⊈ B. Thus (κ−A)
−
B = κ−A and

Bel((κ−A)
−
B) = {w0, w2, w3}. We also have

κ−B(w0) = 0, κ−B(w2) = 2, κ−B(w3) = 0, κ−B(w4) = 1.

So Bel(κ−B) = {w0, w3, w4}. Thus w4 ∈ Bel(κ−B) ∩B and w4 /∈ Bel((κ−A)
−
B) ∩

B, violating IC2.

(Note that IC2≺ is also violated: Consider w3, w4 ∈ A. In the semiorder ≺
derived from the original κ by (23), we have w3 ̸≺ w4, since z < κ(w3) =
3 ̸< 4− 1 = κ(w4)− (z−n). But this changes to w3 ≺−

A w4 in the semiorder
≺−

A derived from κ´A = κ0A by (23), since κ0A(w3) = 1 ≤ z < 2 = κ0A(w4).
The fact that the κ-conditionalization is distance preserving within A does
not help here.) □
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Australasian Journal of Logic (20:3) 2023, Article no. 4



477

in artificial intelligence. Proceedings of the 14th European conference

(JELIA 2014) (pp. 368–382). Cham: Springer.

Sauerwald, K., Kern-Isberner, G., & Beierle, C. (2020). A conditional

perspective for iterated belief contraction. In G. De Giacomo et al.

(eds.), ECAI 2020 – 24nd European conference on artificial intelligence

(pp. 889–896). Amsterdam: IOS Press.

Scott, D., & Suppes, P. (1958). Foundational aspects of theories of mea-

surement. Journal of Symbolic Logic, 23 (2), 113–128.

Spohn, W. (2012). The laws of belief. Oxford: Oxford University Press.

Spohn, W. (2014). AGM, ranking theory, and the many ways to cope with

examples. In S. Hansson (ed.), David Makinson on classical methods

for non-classical problems (Vol. 3, pp. 95–118). Dordrecht: Springer.

Suppes, P., & Zinnes, J. L. (1963). Basic measurement theory. In R. D. Luce,

R. R. Bush, & E. Galanter (eds.), Handbook of mathematical psychol-

ogy (Vol. 1, pp. 1–76). New York: Wiley.

Australasian Journal of Logic (20:3) 2023, Article no. 4


	Introduction
	Rankings and thresholds
	Semiorders
	Representing revisions
	Representing contractions
	The Levi and Harper identities
	Iterated revision
	Iterated contraction
	Conclusion
	Acknowledgments
	Appendix: Proofs

