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Abstract: Micro-earthquake (MEQ) distribution describes subsurface conditions that can 
contribute to monitoring the dynamics of geothermal reservoirs. Thus, the distribution 
of MEQ hypocenter locations with high accuracy becomes extremely important. 
Experiments were conducted with 3 variations of geometry and number of seismic 
stations, while Geiger and Coupled Velocity-Hypocenter methods were used to 
determine the location of MEQ. Experimental results show that in determining the 
location of the MEQ, the geometry and number of seismic stations played an important 
role. Increasing the number of stations with relatively long distances can result in less 
accurate locations of MEQ, error and bias in determining the location of MEQ will be 
greater when the azimuth gap value is greater. This is shown by the distribution of MEQ 
that are more spread out in variations 4A and 4B (4 seismic stations) compared to the 
distribution of MEQ hypocenters using data from 8 seismic stations. The azimuth gap 
variations of stations 4A and 4B are 283° and 267°, and 8 stations have a value of 222°. 
The large value of the azimuth gap is due to the distribution of stations only on one side 
so that there are horizontal angles that are not covered by seismic stations. 
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Introduction  
 

Geothermal is one of the natural resources formed 
from high-temperature materials from under the surface 
of the earth that is used by humans to provide for their 
daily needs (Aneke & Menkiti, 2016; Bertani, 2016; 
Cheng, 2022; Lund et al., 2011; Rahmaningtyas et al., 
2020). Some geothermal energy uses as power 
generation to heating necessity (Jouhara et al., 2020; 
Moya et al., 2018). Geothermal energy is included in 
environmentally friendly energy (Anderson & Rezaie, 
2019; Østergaard et al., 2020). The utilization of 
geothermal energy is included in the Sustainable 
Development Goals (SDGs) as stated in point 7 (related 
to clean and affordable energy), point 9 (related to 
industry, innovation, and infrastructure), point 11 
(related to sustainable cities and communities), point 13 

(related to climate action), and point 17 (related to 
partnerships for goals). 

The existence of geothermal energy is generally 
found in the volcanic zone, which is a weak zone in 
geology (Cheng, 2022; Farhan et al., 2019; Geoffroy et al., 
2022; Mahwa et al., 2022). In this zone, there are many 
faults formed due to geological activity (Geoffroy et al., 
2022; Riziq Maulana et al., 2019; Zaini et al., 2022). The 
faults that are formed open a fluid migration path 
(generally groundwater) to approach the heat source 
and or migrate to the geothermal reservoir zone 
(Anderson & Rezaie, 2019; Chen & Huang, 2018; Cheng, 
2022; Geoffroy et al., 2022). Fault planes will generally 
increase porosity and permeability due to fractures 
formed between one fault plane and another (Chen & 
Huang, 2018; Geoffroy et al., 2022; Riziq Maulana et al., 
2019; Yang et al., 2021). The presence of faults that cause 

https://doi.org/10.29303/jppipa.v9i10.3742
mailto:widya@geofisika.its.ac.id
https://doi.org/10.29303/jppipa.v9i10.3742


Jurnal Penelitian Pendidikan IPA (JPPIPA) October 2023, Volume 9 Issue 10, 8114-8123 

  

8115 

this fracturing can be identified based on the release of 
seismic waves generated when the fault is formed 
(Barbosa et al., 2020; Farhan et al., 2019; Firdaus Al 
Hakim et al., 2019; Küperkoch et al., 2018; Riziq Maulana 
et al., 2019).  

The Micro-Earthquake (MEQ) method can be used 
to identify the presence of faults, where the distribution 
of MEQ hypocenters with a relatively low magnitude 
scale, i.e. with a strength of less than 3 Richter Scale (SR) 
can indicate the presence of faults (Kato et al., 2021; 
Toledo et al., 2020; Utama et al., 2021; Wildan Perdana et 
al., 2020). MEQ is used to identify subsurface dynamics 
related to the presence of faults and weak zones in 
geothermal field reservoirs, MEQ hypocenter 
determination is carried out based on seismic data 
recorded by seismic stations which are then processed 
by the inversion method and then analyzed to describe 
the subsurface conditions of the geothermal field 
(Pennington et al., 2022; Utama, Ardhya, et al., 2022). 
Generally, after the identification of the hypocenter is 
carried out, analysis and validation of the suitability 
with geological data of the geothermal field area or 
research area are carried out (Halim et al., 2020; Intani et 
al., 2020; Sicking & Malin, 2019; Utama & Garini, 2022).  

Based on the results of previous studies, the quality 
of reliable MEQ location with a high level of precision 
and accuracy depends on several factors, including the 
availability of good quality (low noise) data recorded by 
the cluster network, the measurement error of the 
observed arrival time (quality of seismic phase 
determination, number and distribution of seismic 
stations, subsurface seismic velocity structure in the 
cluster region), the quality of seismic phase 
determination, the number and distribution of seismic 
stations, and the accuracy of MEQ subsurface seismic 
velocity in the unknown cluster region (Karasözen and 
Karasözen 2020; Kianimehr et al. 2018; Midzi et al. 2020; 
Sevilla et al. 2020; Zhang et al., 2019;  Utama, Garini, and 
Lansa 2022). 

Research on the effect of the number of seismic 
stations on the estimation of the earthquake Centroid 
Moment Tensor (CMT) has been widely conducted, 
where the number of seismic stations affects the 
estimation of the earthquake CMT (Fahntalia & 
Madlazim, 2017). The influence of the number and 
distribution of seismic stations on the identification of 
MEQ hypocenter locations in geothermal fields is 
something that has been studied (Bidang, 2020; Cheng, 
2022; Fahntalia & Madlazim, 2017; Pennington et al., 
2022). There are indications that the number and 
geometry of seismic stations influence the distribution of 
MEQs, thus affecting the analysis results obtained. 
Therefore, some MEQ data processing software applies 
a minimum number of stations used for processing, in 

order to obtain a more representative MEQ hypocenter 
model (Kissling, 1998; Kissling et al., 1995; Nishi, 2005). 
When the number of stations used does not reach the 
minimum limit, it will produce a relatively large error 
value, resulting in less accurate identification of the 
hypocenter (Bondár et al., 2004; Huang et al., 2018; 
Küperkoch et al., 2018; Siddiq et al., 2020).  

This research applies the Geiger Method with 
Adaptive Damping (GAD) and Coupled Velocity 
Hypocenter (CVH) to identify MEQ hypocenters in 
geothermal fields, related to the influence of the number 
of seismic stations and their location distribution. 
Variations in the number of seismic stations used in this 
study are 4 and 8 seismic stations. The subsurface rock 
model in this study is considered a homogeneous model, 
so that the variation of rock physical properties as a 
medium for MEQ seismic wave propagation is 
considered isotropic. This research aims to support the 
7th point of SDGs in realizing clean and affordable 
energy, through geothermal energy applications that 
require detailed fault conditions and locations, which 
can be identified from the studied MEQ hypocenter. 
 

Method  
 

The number of stations used in the analysis of the 
influence of the number of seismic stations and 
distribution on the identification of MEQ hypocenter 
locations are 4 and 8 seismic stations, namely ULI, ZPN, 
ZUI, BRB, BUT, BRK, ZTO, and BUA seismic stations. In 
analyzing the influence of hypocenter distribution, 3 
types of variations are used, namely 4A, 4B and 8 to get 
an overview of the differences between the two 
approaches. The first variation 4A consists of 4 stations 
which are ULI, ZPN, ZTO, and BUT. The 4B variation 
consists of stations ZUI, BRK, BRB, and BUA, and the 
third variation consists of all stations namely ULI, ZPN, 
ZTO, BUT, ZUI, BRK, BRB, and BUA. There are several 
input data needed to identify the location of MEQ using 
the inversion method including the arrival time of 
Primary (P) and Secondary (S) waves, seismic station 
coordinates, magnitude, origin time, and 1D velocity 
model. The inversion methods used are Geiger method 
to identify the initial MEQ location and the Coupled 
Velocity-Hypocenter (CVH) method to relocate the 
MEQ and determine the 1D velocity model of the cluster 
region, the framework can be seen in Figure 1. 
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Figure 1. Research flowchart (purple box represents the step 
of identifying the initial MEQ and and the green box 

represents the step of relocation of the MEQ hypocenter) 
 

Geiger Method  
Geiger Method is one of the inversion methods for 

determining the initial MEQ hypocenter (Madrinovella, 
2012; Midzi et al., 2020; Nishi, 2005). The Geiger method 
is applied in determining a single hypocenter by using 
residual time data, where this data is the difference 
between the observation time and the calculation time 
(Chen & Huang, 2018; Riziq Maulana et al., 2019; Utama 
et al., 2021). The GAD method control is the 
seismotectonic state suitability of the research as 
indicated by the RMSE value. Smaller RMSE value (close 
to zero), generally indicates the better or more accurate 
MEQ hypocenter determination. The RMSE value in this 

method is obtained from the residual observation time 
and the earthquake occurrence time. 

 
Coupled Velocity-Hypocenter Method 

Coupled Velocity Hypocenter (CVH) Inversion 
Method is an earthquake hypocenter testing method 
with simultaneous station correction using the Geiger 
method (Kianimehr et al., 2018; Kissling, 1995, 1998; 
Sevilla et al., 2020; Utama, Garini, & Indrianii, 2022). The 
CVH method is a travel time inversion method, where 
the intended travel time is the difference between the 
seismic wave arrival time and the earthquake event 
time. The CVH inversion results are the earthquake 
hypocenter locations in the form of coordinates, depth, 
RMSE value, and azimuth gap. 
 

Result and Discussion 
 

The data has been processed with variations in the 
different station distributions using the CVH and GAD 
inversion methods, showing the MEQ hypocenters 
distribution results from 8 seismic stations. It is known 
that many MEQ hypocenter locations distribution is 
identified in zones that are relatively close to the 
presence of seismic stations. This is shown in Figure 2, 

where the MEQ hypocenters determined by the 8 
seismic stations are clustered in the zone around the 8 
stations, and the distance between hypocenters are 
increasingly stretched as the hypocenter are further 
away from the stations. This is supported by the 
hypocenter distribution pattern, when viewed from the 
top as shown in Figure 3. The hypocenter cluster has a 
high concentration in the zone relatively close to the 
seismic station and is increasingly tenuous when the 
hypocenter position is relatively far from the station.

 

 
Figure 2. CVH inversion data plot results for 8 stations in 3D model 
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Figure 3. CVH inversion data plot results for 8 stations in bird view 

 

Hypocenter distribution pattern from the cross-
section is also interesting to discuss. In the latitude 
coordinate section as shown in Figure 4, it is known that 
the hypocenter point density has a high concentration 
just below the station located at a depth of 1.5 to 2 
kilometers below the seismic station. The relatively 
dense hypocenter point has no effect spatially vertically, 
but is affected spatially horizontally. This is also shown 
in Figure 5, which displays latitude coordinate incisions, 
where the MEQ hypocenters distribution pattern forms 
a "triangle-shape", showing the depth effect does not 
significant on the hypocenter location identification, but 
the hypocenter distribution in horizontal axis gave more 
significant effect on the hypocenter point identification. 
In other words, if the MEQ hypocenter is closer to the 
seismic station, there are more hypocenters will be 
detected by the seismic station. 

After knowing the relationship between MEQ 
hypocenters distribution and the seismic station 
location, to determine the seismic stations number effect 
on the MEQ hypocenters distribution, seismic stations 
will be divided, which originally consisted of 8 stations 
into 2 groups of stations, each group consist of 4 stations. 
The data below station position, with horizontally 
spaced intervals, that are relatively close to the station 
zone, tends to lower RMSE value. This support by 
analysis results in the previous section, where the 
hypocenter point will be “more identified” in the 
relatively close to the station zone horizontally. It is 
known that the depth factor does not have a significant 
influence on the MEQ hypocenters distribution 
identified by seismic stations. 

Average RMSE values obtained from stations 4A 
and 4B were 0.159 and 0.105, respectively. This result is 
lower than the result from 8 stations simultaneously, 
which has an average RMSE value of 0.26. It is known 
that the less number of seismic stations in MEQ 
hypocenter measurement impacts the lower RMSE 
value. This is inseparable from the station's location 
influence and the amount of hypocenter data used, 
where is farther hypocenter from the seismic station and 
the more hypocenter data calculated will potentially 
produce a larger RMSE value. 

The MEQ hypocenter results plot based on the 
grouping of 4 stations produce a relatively wide 
distribution of hypocenter points compared to the 
inversion results at 8 stations. Figure 6 shows the data 
distribution from the CVH inversion results from station 
groups 4A and 4B. The hypocenter points relatively high 
concentration emergence in the zone that relatively close 
to the station location. This is supported by the top view 
plot results shown in Figure 7, where the fewer number 
of stations (4 seismic stations) results in a relatively more 
spread-out hypocenter points distribution, although the 
denser zones of hypocenter points are still in a zone that 
is relatively close to the station locations. 

The MEQ hypocenter points distribution in the 4 
station grouping is more spread-out as an small number 
effect of seismic stations, it turns out that it does not only 
occur horizontally, but also vertically. This is shown in 
Figure 8 and Figure 9, where the latitude and longitude 
plots results will identify the MEQ hypocenter points 
distribution which are increasingly spread out as there 
are fewer number of seismic stations. Even though there 
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is also a distribution of hypocenter points that spread 
more vertically, it is still possible to identify dense zones 
from the MEQ hypocenter point, where the location of 
the dense zone is relatively right below the seismic 
station. This is related to the azimuth gap where the 
average value of stations 4A and 4B is 283 and 267, 
whereas when using 8 stations the azimuth gap average 
value is 222. High azimuth gap value in the data analysis 
results is caused by the stations distribution which are 
only on one side, not scattered around the earthquake 
epicenter. The MEQ hypocenter plot results from the 

CVH inversion results with the grouping of 4 stations 
show a tendency towards a certain direction. The 
direction orientation formed from the MEQ hypocenter 
plot is influenced by the location of the seismic station. 
Station 4A which is relatively in the western part, 
records more hypocenters in the western cross-sectional 
area, while station 4B which is relatively in the eastern 
part records more hypocenters in the eastern cross-
sectional area. This shows MEQ hypocenter distribution 
pattern indication from data which tends to follow the 
location of the seismic measurement station.

 

 
Figure 4. CVH inversion data plot results for 8 stations in longitude coordinate section 

 

 
Figure 5. CVH inversion data plot results for 8 stations in latitude coordinate section 
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Figure 6. CVH inversion data plot results for 4 stations grouping in 3D model 

 

 
Figure 7. CVH inversion data plot results for 4 stations grouping in bird view  
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Figure 8. CVH inversion data plot results for 4 stations grouping in longitude coordinate system 

 

 
Figure 9. CVH inversion data plot results for 4 stations grouping in latitude coordinate system 
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The approach that can be taken as an effort to 
minimize the MEQ location bias is to increase the 
number of seismic stations 360° around the earthquake 
event in the study area, so the azimuth gap can be below 
120° (Bidang, 2020; Bondár et al., 2004; Fahntalia & 
Madlazim, 2017). Even though each method is given a 
minimum limit for the use of seismic stations, it would 
be nice to increase the number of seismic stations beyond 
the minimum standard. If this is not possible, then with 
the number of existing stations, an initial study is carried 
out regarding the history of the existing reservoirs so 
that the placement of seismic stations can be efficient 
and can produce a good picture of the subsurface of the 
reservoir. 
 

Conclusion  

 
MEQ hypocenter data processing using the CVH 

and GAD methods results show a different micro-
earthquake hypocenter locations distribution for each 
type of station distribution. MEQ hypocenter 
distribution was mostly identified in zones relatively 
close to seismic stations, with the intervals between 
hypocenters stretching further as the hypocenters move 
away from the station. Experimental results show that in 
determining the location of the MEQ, the geometry and 
number of seismic stations played an important role. 
Increasing the number of stations with relatively long 
distances can result in less accurate locations of MEQ, 
error and bias in determining the location of MEQ will 
be greater when the azimuth gap value is greater. This is 
shown by the distribution of MEQ that are more spread 
out in variations 4A and 4B (4 seismic stations) 
compared to the distribution of MEQ hypocenters using 
data from 8 seismic stations. The azimuth gap variations 
of stations 4A and 4B are 283° and 267°, and 8 stations 
have a value of 222°. The large value of the azimuth gap 
is due to the distribution of stations only on one side so 
that there are horizontal angles that are not covered by 
seismic stations. An approach that can be taken to 
minimize MEQ location bias is to increase the number of 
360° seismic stations around earthquake events in the 
study area, so that the azimuth gap can be below 120°. 
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