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Abstract

Population responses to repeated environmental or anthropogenic disturbances

depend on complicated interactions between the disturbance regime, population

structure, and differential stage susceptibility. Using a matrix modeling approach,

we develop a methodological framework to explore how the interplay of these fac-

tors impacts critical population thresholds. To illustrate the wide applicability of

this approach, we present two case studies pertaining to agroecosystems and con-

servation science. We apply sensitivity analysis to the two case studies to examine

how population and disturbance properties affect these thresholds. Contrasting

outcomes between these two applications, including differences in how factors

such as disturbance intensity and pre-disturbance population distributions impact

population responses, highlight the importance of accounting for demographic

features when performing ecological risk assessments.

KEYWORD S
agroecosystem models, conservation science, critical population thresholds, integrated pest
management, matrix population models, periodic disturbances, sustainable harvesting

INTRODUCTION

A central theme of ecology is understanding how
populations react to disturbance (Battisti et al., 2016;
Moloney & Levin, 1996; Winfree et al., 2009). Key to this
understanding is elucidating the details of species’ popula-
tion dynamics; experiments and models exploring popula-
tion drivers have revealed important nuances influencing
both birth and death processes in myriad ecological settings
(Holmes et al., 1994; Molofsky, 1994; Neverova et al., 2016;
Rogers & Munch, 2020). Efforts focused on issues
ranging from the conservation of biological diversity and
vulnerable species (Battisti et al., 2016) to pest control in
agroecosystems (Valpine & Rosenheim, 2008) and a combi-
nation of both (Tooker et al., 2020) have explored how dis-
turbance affects species persistence with an eye toward

underlying mechanisms. While there have been recent calls
to consider the effects of larger scale, “chronic” anthropo-
genic disturbance on entire ecosystems (Albuquerque et al.,
2018), little is known about the effects of continuous, peri-
odic disturbances on species-specific population dynamics
(see Liao et al., 2015; Meng & Zhang, 2016). Theoretical
and empirical work in this area has important implications
for both conservation science and pest management.

The influence of stage structure and stage distribution
on population outcomes is another area that has
been well developed in the recent decades in ecology
(Ackleh et al., 2019; Caswell, 2000; Forbes et al., 2008,
2016; Stark et al., 2004; Stark & Banken, 1999). The inter-
section of stage-structured population perspectives with
biotic or abiotic disturbance is especially important in
understanding population regulation (Ackleh et al., 2019;
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Banks et al., 2014, 2016; Banks, Dick, et al., 2008;
Stark & Banken, 1999). For instance, arthropod life stages
often vary in their susceptibility to pesticides, so general
assumptions about populations being in stable age
distributions may yield overestimates/underestimates of
population persistence and extinction (Hilton et al., 1998;
Stark et al., 2020; Stark & Banken, 1999). This is a criti-
cally important consideration when prescribing optimal
control strategies in applied settings; insect populations
in annual cropping systems, for instance—with their
short growing seasons—often fail to attain stable age dis-
tributions during the crucial management period. This
has consequences for calculating population thresholds
that inform management decisions; critical thresholds in
both pest management and conservation of biological
diversity may vary with stage structure, level/intensity of
disturbance, and predator–prey behavior (Boulanger
et al., 2019; Miksanek & Heimpel, 2019).

Matrix models offer a powerful but simple means of
describing population dynamics; infused with parameters
from laboratory or field studies, these models can provide
population projections that are useful as a comparative mea-
sure for management decisions (Ackleh et al., 2017, 2019;
Banks, Bommarco, et al., 2008; Banks, Dick, et al., 2008;
Crouse et al., 1987; Morris & Doak, 2002). Matrix model for-
mulations describing repeated disturbances typically assume
periodically or stochastically occurring disturbances that
reduce either vital rates or species abundance (Beissinger,
1995; Canales et al., 1994; Giho & Seno, 1997; Hoffmann,
1999; Lirman, 2003; Seno & Nakajima, 1999; Silva et al.,
1991; Sletvold & Rydgren, 2007). However, previous studies
have primarily focused on long-term persistence metrics
that may not always be realized within the relevant time
frame of a given application (except see Lirman, 2003).
Here, we develop a methodological framework for exploring
the interplay of population stage structure and periodic dis-
turbance on transient population dynamics. Using a model
parasitoid–host agroecosystem model, we parameterize a
simple matrix model with lab-derived data and explore the
effects of varying stage structure and periodic disturbance
on critical population thresholds. Furthermore, we extend
our model formulation to salmonid conservation to illus-
trate the wide applicability of this approach.

METHODS

Model formulation for a population under
periodic disturbances

We model a population using a discrete-time,
stage-structured matrix model that allows for the differ-
entiation of developmental stages. We divide a

population into m stages, letting the column vector
n tð Þ≔ n1 tð Þ,n2 tð Þ,…,nm tð Þ½ � > , where > denotes the
transpose of a vector, give the densities of the different
stages. Then, in the absence of a disturbance, changes in
the population from time t to time t+1 are determined
by the projection matrix A according to

n t+1ð Þ¼An tð Þ, ð1Þ

where the matrix A contains life history information,
such as survival and transition probabilities and fecun-
dity. Here, we consider a linear model, which means that
A is constant and does not depend on density-dependent
factors. Iterating Equation (1) from an initial population
n 0ð Þ, we obtain n tð Þ¼Atn 0ð Þ. To simplify the presenta-
tion, we assume that the life cycle graph derived from the
projection matrix is strongly connected and the dominant
eigenvalue λ1 of A is both strictly dominant and greater
than one. These assumptions ensure that the population
is able to survive in the absence of a disturbance, and for
sufficiently large t, the population grows according to
N tð Þ� cvλt1. Here, v is the strictly positive normalized
eigenvector corresponding to λ1 which is called the stable
stage distribution as it gives the long-term proportion of
individuals in each stage. See Caswell (2000) for more
details.

Disturbances are assumed to occur periodically with
magnitude of effect ϵ and frequency k≥ 1. When a distur-
bance occurs, it results in immediate mortality with addi-
tional mortality lasting for up to n− 1≥ 0 time units so
that, in total, the impact of disturbance lasts for n time
units. Here, we make the assumption that the effects of
the disturbance are greatest when first applied and then
decrease over time. For simplicity, we also assume that
n< k, which means that the effects of a disturbance dis-
appear before the subsequent disturbance occurs.
Altogether, this means that population projections every
tk time units may be described by the equation:

n tkð Þ¼
Yk− 1

j¼0

ASj ϵð Þ
 !

n t k− 1ð Þð Þ, ð2Þ

where Sj ϵð Þ is a diagonal matrix containing the propor-
tional reductions (i.e., death) in stage i, 0≤mji <1, fol-
lowing a disturbance event j time units ago. Specifically,
Sj is defined as

Sj ϵð Þ¼ diag 1−mji ϵð Þ� �
if 0≤ j< n,

I if j≥n,

(
ð3Þ

where if no disturbance effects are present, then Sj is the
identity matrix I, meaning that no additional mortality
occurs. Notice that, under periodic disturbances as
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described in Equation (2), population survival or extinc-
tion is determined by the dominant eigenvalue of the
matrix

Qk− 1
j¼0 ASj ϵð Þ.

Model formulations (2) and (3) are similar to those
used in Giho and Seno (1997) and Seno and Nakajima
(1999), which considered the impact of periodic distur-
bances on monocarpic plant populations described by
two- and three-dimensional projection matrices, respec-
tively. Here, we differ from this formulation in that
Equations (2) and (3) assume vital rates are constant
but allow for the disturbance to impact a population
over multiple time units, whereas in previous studies
(Giho & Seno, 1997; Seno & Nakajima, 1999), it is
assumed that a disturbance impacts the population for
one time unit while restoring vital rates that are decreas-
ing due to environmental degradation.

It is also possible to consider the case where the
effects of a previous disturbance event are still present
when the next disturbance occurs; that is, n≥ k.
However, in such a case, it is necessary to make an
assumption about how the effects of these different
disturbances interact (e.g., additively, synergistically, or
antagonistically); we do not consider this
complication here.

Matrix formulation for case studies

Model equations (1)–(3) are general enough to be applied
to a wide range of species and disturbance regimes. Here,
we explore two such scenarios: one related to the control
of agricultural pests and another to conservation biology
and sustainable harvesting. Each of these scenarios has
its own specific projection matrix A, describing popula-
tion dynamics, and disturbance regime, as described by k
and Sj ϵð Þ. In what follows, we define these terms for each
application.

Application to the biological control agent
Diaeretiella rapae

In the first application, we consider the parasitoid
Diaeretiella rapae M’Intosh (Hymenoptera: Braconidae),
a common parasitoid of the economically important
cabbage aphid, Brevicoryne brassicae (L.), and an impor-
tant biological control agent for many other aphid spe-
cies. Because biological control is often coupled with
pesticide use in integrated pest management (IPM)
schemes, understanding how pesticide spraying may
affect biological control agents is critical to IPM success
(Hill et al., 2017; Roubos et al., 2014; Stark et al.,
2007, 2020).

We model the population dynamics of D. rapae using
four developmental stages: eggs n1, larvae n2, pupae n3,
and adults n4. Population model (1) is given by

n1 t+1ð Þ
n2 t+1ð Þ
n3 t+1ð Þ
n4 t+1ð Þ

0BBB@
1CCCA¼

s1 1− γ1ð Þ 0 0 f 4
s1γ1 s2 1− γ2ð Þ 0 0

0 s2γ2 s3 1− γ3ð Þ 0

0 0 s3γ3 s4

0BBB@
1CCCA

×

n1 tð Þ
n2 tð Þ
n3 tð Þ
n4 tð Þ

0BBB@
1CCCA,

ð4Þ

where si denotes the (per unit time) survival probability
of stage i, γi denotes the probability of a stage i individual
maturing to the next developmental stage, and f 4 denotes
adult fecundity. Here, we take the unit of time to be
one day.

To estimate the life history parameters contained in
matrix A, we apply laboratory data collected from
Acheampong and Stark (2004). Based on these data, we
estimate the average stage length as 3 days for eggs,
5 days for larvae, 4 days for pupae, and 10 days for adults.
We convert the vital rate estimates collected from
Acheampong and Stark (2004) to daily survival probabili-
ties and fecundity. Following Caswell (2000), we estimate
the probability of leaving stage ni by γi ¼ 1=Ti, where Ti

is the average time spent in stage ni. Meanwhile, the per
unit time survival probabilities may be determined from
the following stage-to-stage survival probabilities found
in Acheampong and Stark (2004):

es1 ¼ 1, es2 ¼ 1, es3 ¼ 1, es4 ¼ 0:1:

Specifically, if stage ni lasts on average Ti time units,
then the probability of surviving Ti time units must equalesi, sTi

i ¼esi. Thus, we have si ¼ esið Þ1=Ti . To estimate daily
fecundity, we divide the total reproductive output by the
number of adults to get the average reproductive output
per adult and then divide this by the average length of
time spent in the adult stage. Parameter estimates used
in model (4) to describe D. rapae are provided in Table 1.
We note that the data collected from Acheampong and
Stark (2004) were obtained under ideal laboratory condi-
tions and we would not, in general, expect 100% survival
of the immature stages in field conditions.

In this application, we assume that life history param-
eters are constant in time. The eggs of D. rapae are laid
within hosts; in particular, this means that hosts (i.e.,
aphids) must already be established in the field. As a
result, the assumption that constant fecundity is

ECOSPHERE 3 of 15
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appropriate for short-term (transient) dynamics is consid-
ered here.

To describe the effect of toxicant spraying on
D. rapae, we apply the data obtained from Stark et al.
(2020), which assessed the toxicity of imidacloprid to
the pupa and adult stages of D. rapae for field spray

concentrations ϵ¼ 0,1=8,1=4,1=2,1f g; see Figure 1a. In
Stark et al. (2020), spray concentration was defined as
the proportion of aphids that the toxicant would kill.
For example, a field spray concentration of ϵ¼ 1=2 is
assumed to result in the death of 1=2 of the aphids. Since
the egg and larva stages occur within live hosts, we

TAB L E 1 Daily life history parameter estimates for D. rapae.

Unit of time s1 s2 s3 s4 γ1 γ2 γ3 f 4

Day 1 1 1 0.7943 1/3 1/5 1/4 2.545

F I GURE 1 (a) Pupa and adult mortality as a function of the spray concentration ϵ (Stark et al., 2020). (b) Total population size of

D. rapae over time assuming an initial population of 1000 pupae, a spray frequency of k¼ 14 days, and a spray concentration of ϵ¼ 0:25

and ϵ¼ 0:7. (c, d) Total population size of salmonids over time assuming an initial population size of 2000, yearly harvesting, and a 20%

harvesting strategy. We consider four different initial distributions: (c) the stable stage distribution (solid blue line) and all neonates

(dashed red line); (d) all young reproductives (solid blue line) and all mature reproductives (dashed red line). For graphing purposes,

we omit the case where the initial distribution is all juveniles, which results in a threshold time of 32 years. In graphs (b–d), the population
threshold is indicated by a yellow dotted line and the time to reach the threshold is indicated by a red star.

4 of 15 ACKLEH ET AL.
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assume that spray concentration also gives the proportion
of eggs and larvae of D. rapae that are killed by the toxi-
cant. Meanwhile, in order to define mortality effects for
any spray concentration, 0< ϵ<1, for the pupa and adult
stages, the data from Stark et al. (2020) were fit to a linear
function for the pupa stage and an exponential function
for the adult stage, as shown in Figure 1a.

The data provided in Stark et al. (2020) describe
immediate mortality effects, but no long-term effects on
the vital rates. In the model formulation described above,
this corresponds to the case where n¼ 1. Thus, Equation
(2) simplifies to

n tkð Þ¼AkS ϵð Þn t k− 1ð Þð Þ, ð5Þ

where S ϵð Þ¼ diag 1−mi ϵð Þð Þ. In Figure 1b, we provide an
illustration of how periodic spraying of imidacloprid
would affect the population dynamics of D. rapae when
the frequency is two weeks k¼ 14ð Þ and the spray con-
centration is either ϵ¼ 0:25 or ϵ¼ 0:7. Notice that in the
long term (i.e., as t approaches infinity), the total popula-
tion size of D. rapae, as shown in Figure 1b, would grow
unbounded. However, here we are interested in a single
growing season, such as the summer growing season in
the northern hemisphere, which lasts approximately
105 days (Stark et al., 2020).

Application to harvested salmonids

Our second application concerns conservation science
and sustainable harvesting. Specifically, we consider
the Chinook and Coho salmon (O. tshawytscha and
O. kisutch) using the life history parameter estimates pro-
vided in Banks et al. (2010). The matrix equation for
these salmonids is given by

n1 t+1ð Þ
n2 t+1ð Þ
n3 t+1ð Þ
n4 t+1ð Þ

0BBB@
1CCCA¼

0 0 f 3 f 4
s1 0 0 0

0 s2 0 0

0 0 s3 s4

0BBB@
1CCCA

n1 tð Þ
n2 tð Þ
n3 tð Þ
n4 tð Þ

0BBB@
1CCCA, ð6Þ

where the stages represent neonates n1, juveniles n2,
young reproductives n3, and mature reproductives n4,
and the unit of time is taken to be one year. Parameters si
and f i represent survival and fecundity of stage ni, respec-
tively, and are provided in Table 2.

For this application, we consider the impact of
harvesting on species growth. In what follows, we assume
that harvesting occurs annually (k = 1), all stages but the
neonate stage are harvested, and harvest amounts for
each stage are proportional to abundance of that given

stage. Thus, population dynamics under harvesting are
described by Equation (5) with k¼ 1. Figure 1c,d demon-
strates the impact of harvesting on the salmonid popula-
tion for four different initial distributions.

Assessment of periodic disturbances:
Thresholds and sensitivity

The long-term impact of periodic disturbances, specifi-
cally species persistence or extinction, may be assessed
through asymptotic analysis, as determined by the domi-
nant eigenvalue λ1. However, since this analysis applies
only after a long period of time, the results may not be
realized in a relevant time scale, such as a growing sea-
son. An alternative approach, which we take here, is to
consider the short-term, or transient, effects of
disturbances.

To evaluate the transient effects of disturbances, we
make use of the concept of a population threshold.
Specifically, we assume that the population under consid-
eration has some threshold density N for which we either
want to maintain the population above or below. We also
assume that we do not have continuous population data.
That is, rather than knowing the population size at
every time point, we assume that the population is
periodically censused either just before or just after a
disturbance is imposed. Since population size over time
will be oscillatory due to the periodicity of disturbances,
as shown in Figure 1b, we define the time it takes to
reach the population threshold to be the first time either
the local maximum (obtained just before a disturbance)
or local minimum (obtained immediately after a distur-
bance) population size is above or below the desired
threshold. This conservative perspective ensures that the
population will remain above or below the threshold
value for all subsequent time. Note that these thresholds
do not account for cases in which there is a hormetic
effect of pesticide disturbance on predators or prey
(Cutler et al., 2022).

If the population under consideration starts below the
threshold N , then to determine how long it takes the pop-
ulation to be above this value (and then remain above),
we need to solve for the first time the local minimum is
above the threshold. That is, we need to find the smallest
integer t such that

TABL E 2 Yearly life history parameter estimates for salmonids,

Banks et al. (2010).

Unit of time s1 s2 s3 s4 f 3 f 4

Years 0.05 0.05 0.5 0 0.3 920

ECOSPHERE 5 of 15
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1>
m AS0 ϵð Þ

Yk− 1

j¼0

ASj ϵð Þ
" #t

n 0ð Þ≥N , ð7Þ

where 1m denotes an m×1 column vector of ones. The
solution tcrit tells us that the threshold is achieved at time
T¼ tcritk+1. In what follows, we apply this criterion to
study D. rapae, as may be appropriate if the parasitoid
wasp is introduced into an agricultural field and a certain
density is desired to ensure control of a pest species. In
the example provided in Figure 1b, the time at which the
threshold is reached is indicated by a red star. Notice
here that both spray concentrations result in the same
threshold time.

Alternatively, if the population under consideration
starts above the threshold N , then to determine how long
it takes for the population to be below this value (and
then remain below), we need to solve for the first time
the local maximum is below the threshold. That is, we
need to find smallest integer t such that

1>
m

Yk− 1

j¼0

ASj ϵð Þ
" #t

n 0ð Þ≤N , ð8Þ

where the solution tcrit tells us that the threshold is
achieved at time T¼ ktcrit. We use this second equation
in the fisheries application. In this case, we wish to know
how long a certain harvesting strategy can be maintained
before the population gets below the threshold value (see
Figure 1c,d).

For a given application, the threshold time is impacted
by both the initial population distribution and the
nondominant eigenvalues of the projection matrix. In par-
ticular, though a population eventually approaches its stable
stage distribution, it may initially exhibit oscillatory dynam-
ics. Therefore, the above inequalities are formulated under
the assumption that oscillations due to transient dynamics
are negligible compared with the oscillations created by the
periodic disturbance. If this assumption is not satisfied in a
particular application, then the formulas derived may still
be applied after first shifting the initial condition to be
beyond the period of significant transient oscillations. Here,
we observe that the threshold time may vary significantly
depending on the initial distribution and that initial trajec-
tories may exhibit significant oscillations due to stage struc-
ture (Figure 1c,d).

The maximum possible duration of transient oscilla-
tions is determined by the damping ratio defined as
ρ¼ λ1= j λ2 j, where λ2 is the subdominant eigenvalue.
Specifically, a solution converges to the stable stage distri-
bution exponentially with a rate at least as fast as logρ.
In Figure 2, we provide damping ratios for each applica-
tion under a range of disturbance regimes. It is noticeable

that in the application to D. rapae the damping ratio is
significantly larger, particularly when disturbance events
are not frequent. Intuitively, we should expect that, for
less frequent disturbances (large k), the solution to (2)
stabilizes faster (i.e., the damping ratio is larger). For
example, suppose that Sj ϵð Þ¼ sj ϵð ÞI; that is, each stage in
the population is impacted by the same amount. In this
case, the eigenvalues of the matrix

Qk− 1
j¼0 ASj ϵð Þ are given

by λki
Qk− 1

j¼0 sj ϵð Þ where λi is an eigenvalue of A. Since the
ratio λ1= j λ2 j >1, the damping ratio increases as k
increases.

In addition to obtaining the solution triplet ϵ,k,Tð Þ,
we also calculate how sensitive this solution is to model
parameters. The sensitivity of an output variable y with
respect to additive changes in an input variable x is
defined as the derivative dy

dx. A related measurement, elas-
ticity, describes the effect of proportional changes and is
defined as x

y
dy
dx. Elasticity is often preferred over sensitivity

F I GURE 2 Damping ratios for the matrix AkS ϵð Þ for each
application. (a) The damping ratio when applied to D. rapae for a

spray concentration fixed at ϵ¼ 0:5 and (b) to salmon when the

harvest frequency is annual; that is, k¼ 1.
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as it allows for the comparison of variables that may be on
different scales (Caswell, 2000; Morris & Doak, 2002).
Therefore, we mainly focus on this second metric.

Here, we take the approach of considering the sensi-
tivity of threshold time T to properties of the population
or disturbance regime. There are two options for calculat-
ing these sensitivities from the implicit inequalities
(Equations 7 and 8). The first is to numerically calculate
the derivative of T using a numerical scheme such as
a forward difference equation. Alternatively, under cer-
tain technical assumptions on the projection matrix, we
may derive explicit expressions for this derivative by
implicitly differentiating the threshold inequalities. See
Appendix S1 for more details. Similar approaches,
which combine implicit differentiation with properties of
matrix calculus, have previously been applied to study
the sensitivity of other metrics for transient dynamics
(Ackleh et al., 2019; Caswell, 2007, 2013, 2019).

RESULTS

We apply the developed methodology to the two case
studies: the parasitoid wasp and the salmonid species.
Though the threshold time is technically integer-valued,
in all graphs we instead report the real-valued solutions
since, even though two different scenarios may produce
the same integer-valued time to threshold, there may still
be significant variation in the population size over time
which may result in significantly different economic or
environmental impacts (Figure 1b). Therefore, differ-
ences in the real solution for the threshold time indicate
differences in the population’s responses to the tested
scenarios.

Application to D. rapae

For simulation purposes, we take an initial population
size of N0 ¼ 1000 and a threshold size of N ¼ 5000. For
this application, all figures were generated numerically
using the standard forward difference approximation.
However, the sensitivity formulas provided in
Appendix S1 may also be applied here. We also note, as
shown in Appendix S1, that the threshold times and their
sensitivities are dependent on the ratio N=N0 but not on
the specific values of N and N0.

Effects of initial stage distribution

We found that the initial stage distribution has a
marked influence on the threshold time. To explore this

interplay, we compared the extreme cases in which all
individuals are in exactly one developmental stage
with the case in which individuals are distributed
according to the stable stage distribution given by
n 0ð Þ¼N0 0:4199,0:3418,0:1488,0:0896ð Þ> (Figure 3a). We
found that the threshold was reached soonest (28.83 days)
if all individuals began as pupae, while it took almost
four times longer (110.90 days) if all individuals began as
adults. In practice, the former scenario may often be the
case since D. rapae are typically introduced into the field
as mummies (pupae). However, if the parasitoid is
already established in the field before spraying begins,

F I GURE 3 (a) The threshold time given an initial

distribution in which all individuals are in exactly one

developmental stage or the stable stage distribution (SSD).

(b) The left axis is the time to reach the population threshold

given the number of days between the introduction of parasitoid

mummies and the next pesticide spay. Here, the solid blue line

gives the real solution to the threshold inequality while the

dotted blue line gives the integer solution. The right axis

indicates how the proportion of the population that are pupae

changes following introduction (in the absence of spraying). For

both simulations, the spray concentration is ϵ¼ 0:9 and the

frequency is k¼ 14 days.
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then it may be at its stable stage distribution in which
case the threshold is reached in 52.28 days. If parasitoids
are introduced as pupae, in the absence of spraying, the
stable stage distribution is reached in approximately two
weeks, which corresponds to when the proportion of
pupae becomes constant (Figure 3b). Furthermore, a
delay between the introduction of parasitoid pupae and
the first spray event in which parasitoids are present
greatly modifies threshold times. In particular, spraying
one to six days after the pupae are introduced results in a
longer threshold time than if pupae introduction and
spraying occur concurrently (Figure 3b). This is because
the threshold is exceeded before any spraying occurs, and
spraying cannot lower the population back below the
threshold. Meanwhile, the shortest threshold time is
achieved if spraying occurs 15 days after the introduction
of pupae. We also note that the threshold time becomes
constant after 16 days.

Threshold elasticities with respect to stage
distribution

Next, we consider the elasticity of the threshold time with
respect to the initial population distribution. In order to
calculate threshold elasticities, we assume that the para-
sitoid population is at its stable stage distribution, which
means that spraying occurs after the parasitoid popula-
tion is established in the field. Because a population dis-
tribution vector must add up to one, an increase in one
stage must be compensated by a decrease in at least
one of the other stages. We compared two different com-
pensation strategies, which we refer to as “proportional”
and “one-for-one” (Figure 5). In the proportional com-
pensation scheme, we assume that an increase in one
stage results in decreases in the other three stages with
this decrease being proportional to the relative abun-
dance of each of the three stages. For example, if the ini-
tial distribution is given by x1,x2,x3,x4ð Þ> , and stage one
is increased by δ, then stage i, i¼ 2,3,4, is decreased by
δxi= x2 + x3 + x4ð Þ (Figure 4a). Because the elasticity of
the threshold time with respect to the proportion
of pupae is negative, this indicates that the population
reaches the threshold sooner if the proportion of pupae is
increased, as is to be expected based on Figure 3a.
Meanwhile, an increase in the proportion of individuals
in any of the other stages results in an increase in the
time to the threshold. For example, a small proportional
increase in the number of pupae reduces the threshold
time by 19.51% while an equal proportional increase in
the number of eggs increases the threshold time by
17.95%. In addition, we may conclude that, when the
population is at its stable stage distribution, proportional

perturbations in the pupae stage have the greatest overall
effect on the threshold time.

The second compensation scheme, “one-for-one,”
simply describes a strategy in which a perturbation in
one stage is compensated by an equal but opposite per-
turbation in another stage. This results in a pattern simi-
lar to the first compensation strategy in which changes in
the proportion of pupae, particularly decreases in this
proportion, have a greater effect overall (Figure 4b).

We compared these perturbation results (Figure 4c)
with the effects on threshold hold time stemming from
perturbations from a uniform distribution; that is,
n 0ð Þ¼N0 1=4,1=4,1=4,1=4ð Þ> . In this case, both the sen-
sitivity and the elasticity of the threshold time with
respect to the adult stage are larger compared with the
first two immature stages (Figure 4c). Thus, increasing
the adult proportion will have a greater effect on increas-
ing the threshold time than increasing either of the first
two stages.

Threshold elasticities with respect to spray
regime

Sensitivity analysis revealed a complex interaction
between spray regimes and threshold times. For the rela-
tionship between threshold time and both elasticity with
respect to spray concentration (Figure 5a) and sensitivity
with respect to decreases in spray frequency (Figure 5b),
we see that moving from left to right corresponds to a
more intense spray regime. In both cases (Figure 5a,b),
we see that the harsher the spray regime, the more pro-
nounced effect changes in the regime have on the thresh-
old time (i.e., for more frequent spraying or higher
pesticide concentrations). In contrast, as the time
between sprays increases, the sensitivity of the threshold
approaches zero. Hence, when spraying is infrequent, the
effect of small changes in the frequency becomes negligible.
For example, if the spray frequency is every two weeks and
the concentration is 50%, then the time to the threshold is
18.91 days. Making the spray regime stronger by decreasing
k or increasing ϵ by 50% increases the threshold time by
17.16 and 11.85 days, respectively. Alternatively, increas-
ing k or decreasing ϵ by 50% decreases the threshold time
by 2.45 and 5.62 days, respectively.

Threshold elasticities with respect to vital rates

Finally, we calculated the threshold time and its elasticity
with respect to decreases in the survival and transition
probabilities for D. rapae (Figure 5c,d). This analysis con-
siders decreases rather than increases in survivorship since
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F I GURE 4 (a, b) Elasticity of the threshold time with respect to two compensating strategies when the initial distribution is given by

the stable stage distribution and spraying occurs every 14 days with spray concentration ε¼ 0:9. For this scenario, the threshold time is

52.27 days. (a) An increase in one stage is compensated by a proportional decrease in the other three stages. Here the left blue bars represent

elasticity and the right red bars represent sensitivity. (b) An increase in one stage is compensated by an equal decrease in another stage.

Graph (c) is the same as (a) except with a uniform initial distribution.
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our parameter estimates have 100% survival for the imma-
ture stages. As is expected, decreasing survival or matura-
tion probabilities increases the time to reaching the
threshold. For the survival probabilities, changes in the
pupa and larva stages have the greatest effect. Meanwhile,
for the maturation probabilities, changes in the larva stage
have the greatest effect while changes in the pupa stage
have almost a constant effect for all ϵ values.

Application to salmonids

For simulation purposes, we take an initial population size of
N0 ¼ 2000 with individuals initially distributed according
to the stable stage distribution of A. Specifically, we take
n 0ð Þ¼N0 0:9508,0:02459,0:0022,0:0011ð Þ> . We assume a
population threshold of N ¼ 500 and consider annual
harvesting; that is, k¼ 1. We also assume that all stages

but the neonates are harvested with an equal harvest pro-
portion ϵ which we vary. Since the sensitivity formulas
provided in Appendix S1 are not applicable to this appli-
cation, here the sensitivities used to generate all graphs
were calculated numerically using the standard forward
difference approximation.

Threshold elasticities with respect to stage
distribution

We compared the effect of a proportional compensation
scheme when the initial distribution is either the stable
stage distribution (Figure 6a) or a uniform distribution
(Figure 6b). When the initial population is given by the
stable stage distribution, an increase in the number of
individuals in one of the two reproductive stages
increases the threshold time, meaning that the more

F I GURE 5 (a) Threshold time (in days) and elasticity with respect to the spray concentration ε when the spray frequency is 14 days.

For graphing purposes, sensitivity has been scaled by dividing by 50. (b) Threshold time (in days) and sensitivity with respect to decreases in

the spray frequency k when the spray concentration is ϵ¼ 0:5. (c, d) Threshold time (in days) and elasticity with respect to decreases in

(c) the survival probabilities and (d) the maturation probabilities when the spray frequency is 14 days.
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reproductive individuals in a population, the slower the
population will reach the threshold time (Figure 6a). In
contrast, only increases in the mature reproductive stage
increase the threshold time when the initial distribution
is uniform (Figure 6b). As in the previous application,
when the initial distribution is given by the stable stage
distribution, elasticity and sensitivity calculations pro-
duce different results with elasticity being most sensitive
to proportional changes in the neonate stage, while sensi-
tivity is most sensitive to additive changes in the young
reproductive stage (Figure 6a). However, when the num-
ber of individuals is the same for all stages, changes in
the two reproductive stages have the greatest effect on
the threshold time (Figure 6b).

Threshold elasticities with respect to harvest
regime

Increases in the harvest proportion when that proportion
is small cause a greater decrease in the threshold time

than equal increases at larger harvest proportions
(Figure 7). Due to the small dampening ratio, the thresh-
old time as a function of ϵ is not a smooth curve
(Figure 7a). This results in oscillations in both elasticity
and sensitivity.

Threshold elasticities with respect to vital rates

The threshold time is most sensitive to changes in the vital
rates of the first two immature stages, while it is signifi-
cantly less sensitive to changes in the survival of the mature
reproductives (Figure 7b). Moreover, though the elasticities
exhibit a general downward trend as the harvesting rate
increases, they do so in an oscillatory manner.

DISCUSSION

The threshold inequalities provided in (7) and (8) and the
corresponding elasticities of the threshold time provide a

F I GURE 6 The elasticity (left blue bars) and sensitivity (right red bars) of the threshold time with respect to a proportional

compensation strategy when the harvest proportion is 20%, harvesting occurs annually, and the initial distribution is given by (a) the stable

stage distribution or (b) a uniform distribution. With this harvesting strategy, the threshold time is 10 years for (a) and 50 years for (b).
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method for assessing the impact of reoccurring periodic
disturbances, as are common when a population is
impacted by anthropogenic disturbance. The two applica-
tions presented here highlight the importance of account-
ing for demographic properties of the population, such as
initial stage structure and differential susceptibility, as
these properties can heavily impact predictions.

When D. rapae are exposed to a pesticide, changes
under harsher pesticide regimes have a greater effect on
the threshold time. Specifically, increases in the pesticide
concentration at high concentrations increase the thresh-
old time more than equal increases at low concentrations
(Figure 5a). Similarly, changes in the spray frequency at
higher frequencies have a greater impact on the thresh-
old time than equal changes at lower frequencies
(Figure 5b). This suggests that managers need to be more
cautious when making changes to a control strategy with
heavy pesticide use. In contrast, when a salmonid popu-
lation is harvested, changes in small harvesting

proportions have a greater impact on the recovery time
than changes in larger harvest proportions (Figure 7a).

Since the threshold time is a transient property of the
population dynamics, it is impacted by the initial popula-
tion distribution. In general, we should expect a
population with a larger proportion of mature reproduc-
tives to grow faster since these individuals are able to more
quickly contribute to the creation of new individuals. This
occurs for salmonids where increasing the number of indi-
viduals in the mature reproductive stage increases the
threshold time, allowing for a given harvesting strategy to
be sustainable for a longer period of time (Figure 6).
However, when we account for life stage differential sus-
ceptibility to a disturbance, this may no longer be the case.
Since imidacloprid results in high mortality in adult para-
sitoids but relatively low mortality in pupae (Figure 1a),
the threshold time is reached sooner if we increase the
number of individuals in the pupa stage. Moreover, the
threshold time is reached sooner when there are more

F I GURE 7 (a) Threshold time (in years) and elasticity with respect to the harvest proportion ϵ when harvesting occurs annually.

(b) Elasticity of the threshold time with respect to survival probabilities when harvesting occurs annually. Vertical asymptotes in elasticities

occur at ϵ¼ 0:24 and ϵ¼ 0:398 in (a) and at ϵ¼ 0:401 in (b) as a result of the derivative of the threshold time being undefined at these points.

Graphs (c, d) are the same as (a, b) except with the initial distribution given by the stable stage distribution of AS ϵð Þ rather than A.

12 of 15 ACKLEH ET AL.

 21508925, 2023, 9, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4650 by C

su M
onterey B

ay, W
iley O

nline L
ibrary on [04/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



immature individuals (eggs or larvae) than when there are
more adults (Figure 4c). Thus, this application emphasizes
the importance of quantifying disturbance effects at the
developmental stage, not just at the population level.

The initial population distribution also influences
how elasticity and sensitivity calculations are interpreted.
For example, suppose a manager wants to know whether
the threshold time will be reached sooner if the number
of parasitoid eggs is increased or the number of adults is
increased. When the parasitoid population is at its stable
stage distribution, for equal proportional increases
(elasticity), it is better to increase the number of adults,
but for equal additive increases (sensitivity), it is better to
increase the number of eggs (Figure 4a). This seemingly
contradictory result, which is even more noticeable in the
salmonid application (Figure 6a), is due to the fact that,
in the stable stage distribution, the proportions of individ-
uals in each of these two stages differ in magnitude.
Specifically, though these proportions are on the same
scale (i.e., between zero and one), the proportion of
adults is an order of magnitude smaller than the propor-
tion of the first two immature stages. Therefore, an equal
additive increase results in a more significant increase in
the adult stage, while an equal proportional increase has
the opposite effect. As a result, this question can better be
addressed by examining perturbations from the uniform
distribution (Figures 4c and 6b).

In addition to the initial population distribution, under-
lying properties of the population structure can also affect
the threshold time and its sensitivities. Since the damping
ratio for D. rapae is much larger than that for salmonids
(Figure 2), the transient dynamics for D. rapae are short rel-
ative to the threshold time. This resulted in the threshold
time and its elasticities being smooth, monotonic curves
(Figure 5) that produce straightforward predictions. In con-
trast, the elasticity of the threshold time with respect to the
harvest proportion and survival probabilities for salmonids
changes in an oscillatory manner as the harvest proportion
is increased (Figure 7a,b). That these oscillations are a result
of the transient dynamics of this system may be verified by
starting the initial distribution to be the stable stage distri-
bution of the projection matrix AS ϵð Þ of the disturbed pop-
ulation rather than the projection matrix A of the
undisturbed population (Figure 7c,d).

Though the oscillations observed in the salmonid appli-
cation are an interesting mathematical phenomenon, from
a management perspective, they may be disregarded.
Specifically, since the amplitude of the oscillations is of the
same order of magnitude as the elasticities, these oscilla-
tions result in only minor concavity changes in the thresh-
old time curve that do not change its overall decreasing
pattern as the harvest proportion increases. However, it
remains an open question as to whether more extreme

oscillations may occur in other applications such that these
result in oscillations in the threshold time itself.

Stage-structured models have been effectively used in
the management of myriad taxa, especially in agricultural
systems where predictions of pest and natural enemy
population dynamics outcomes can critically inform
management strategy decisions (Banks, Bommarco, et al.,
2008; Bommarco, 2001; Westerberg & Wennergren,
2003). Applications to conservation also abound,
ranging from plants (Menges, 2000) to bighorn sheep
(Conner et al., 2018) to seabirds (Koehn et al., 2021) to
Monarch butterflies (Grant et al., 2020) to sea turtles
(Crouse et al., 1987). The latter example famously
resulted in legislation being enacted aimed at bolstering
conservation of an endangered species as a result of model
predictions (Crowder et al., 1994). Although translating
science into policy is a complex undertaking (Murray &
Sandercock, 2020), stage-structured matrix models provide
a powerful means of evaluating resource management
strategies and informing action and policies.

We present here a general framework for a threshold
model, based on stage-structured matrix models, that
may be applied to a wide range of applications amenable
to being modeled with stage-structured matrix models.
This approach is tailored to posing management what-if
scenarios, enabling resource managers to define accept-
able outbreaks of/declines in population levels and then
to explore different management strategies and their
resulting population consequences. We suggest that this
framework may be easily combined with more specific/
complex models to tackle specific management decisions.
For instance, the framework could be used in conjunc-
tion with recent advances to better estimate the ratio of
natural enemy to pests for optimal augmentative biologi-
cal control releases (Gontijo & Carvalho, 2020). We antic-
ipate that this approach may be further expanded and
modified to fit a wide range of applications.
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