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Abstract

Plant and soil microbiomes are integral to the health and productivity of
plants and ecosystems, yet researchers struggle to identify microbiome char-
acteristics important for providing beneficial outcomes. Network analysis
offers a shift in analytical framework beyond “who is present” to the organi-
zation or patterns of coexistence between microbes within the microbiome.
Because microbial phenotypes are often significantly impacted by coexisting
populations, patterns of coexistence within microbiomes are likely to be es-
pecially important in predicting functional outcomes. Here, we provide an
overview of the how and why of network analysis in microbiome research,
highlighting the ways in which network analyses have provided novel in-
sights into microbiome organization and functional capacities, the diverse
network roles of different microbial populations, and the eco-evolutionary
dynamics of plant and soil microbiomes.
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INTRODUCTION

We live in a world shaped by microbes. Soil, plant, animal, and water microbiomes are integral to
the health, fitness, and functionality of all higher organisms and ecosystems (10, 13, 14, 48, 74, 93,
119, 131). Complex microbiomes colonize the interior and exterior of all higher organisms. The
ubiquity of plant microbiome–host symbioses has forced us to rethink our conceptions of the role
of microbes in plant health and disease in fundamental ways. Although disease-centric approaches
have traditionally emphasized a two-way interaction between a plant and a pathogen,mediated by
the physical environment, this approach obscures the diverse, significant, and often beneficial roles
that microbes play in plant health (129). Moreover, the simple framework of a single microbe’s
influence on a host plant neglects the profoundly interactive nature of plant microbiomes. The
phenotypes of individual microbial strains as well as the functional capacities of the aggregate mi-
crobiome reflect complex and often highly specific intra- and interspecies interactions, including
resource competition, antibiosis, quorum sensing, cellular transduction signaling, biofilm forma-
tion, and others. Collectively, the recognition of the microbiome as a complex unit comprising
interacting organisms that influence plant and crop productivity in diverse ways has led to a foun-
dational restructuring of approaches to studying plants and microbes and their interactions (6, 8,
25, 29, 30, 47).

Rather than focusing predominantly on individual microbes, or on disease or dysbiosis, re-
searchers over the past decade have shifted efforts to identifying features of the collective
microbiome present in associationwith the healthiest and/or highest-yielding plants across crop or
natural habitats (13, 18, 60, 111). At the same time, recent advances in ‘omics technologies (e.g.,
genomics, transcriptomics, proteomics) have generated a flood of data on the composition and
functional activities of plant and soil microbiomes. Focusing on compositional data, microbiomes
are commonly described using lists of microbial taxa and their relative (sequence) abundances,
along with diversity metrics, dimensionality reduction analyses to capture compositional varia-
tion among samples, and multivariate statistical analyses to quantify the significance of variation
among microbiomes or microbiome sample sets. Although they provide a superb overview of the
“who’s who” of plant microbiomes and are excellent for distinguishing compositional or diversity
differences among microbiomes, such analyses are inadequate for capturing essential elements
of microbiome organization, most notably patterns of coexistence among microbial populations
across the microbiome. There is broad recognition that knowledge of the functional roles of plant
and soil microbes in plant health, disease suppression, nutrient cycling, and carbon sequestration
requires understanding the organization of the microbiome over time and space, not just what mi-
crobes are present.This reflects two important concepts: (a) The functional capacities of individual
microbes are influenced profoundly by interactions with other organisms in the microbiome, and
(b) management of microbiomes in agriculture or other habitats requires understanding not only
which microbes are present but also how they are structured across plant or soil habitats.

Network analysis is a common approach for analyzing systems of interrelated components in
diverse disciplines, including medicine, social science, and animal science (19, 39, 40, 71, 76, 79,
95). The essential approaches and mathematical foundations are the same across scientific fields;
however, the use and interpretation of network metrics can vary. There have been many excellent
reviews of network analyses over the past few years, offering rich insights into the applications
of network analyses to different systems, including in plant and soil microbiomes (3, 12, 20, 45,
67, 85, 88). Although both coassociation and interaction networks have been used in the study
of microbiomes (64, 75, 76), we focus here on coassociation networks. A coassociation network
is constructed using data on the relative abundances of microbial taxa from across a collection of
samples representative of a particular microbiome in time or space. Correlations in abundances
among all pairwise taxon combinations across the collection of samples are determined, and these
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Nodes: the building
blocks of the network
that represent the
objects used to
evaluate the
connections. In this
review, nodes
represent individual
microbial taxa (ASVs,
OTUs, or cultured
microbes)

Edges: the
connections between
two nodes within the
network. This can
represent either a
correlation of relative
abundances or a direct
interaction, such as
nutrient competition,
antagonism, or
communication

CONCEIVING THE METAMICROBIOME AND ITS RELEVANCE TO AGRICULTURE

Plant and soil microbiomes exist as a metacommunity, i.e., a collection of communities across a landscape that are
linked by the dispersal of diverse and potentially interacting species within the metamicrobiome. The metamicro-
biome is the collection of microbes existing across a habitat and spanning a vast array of what could be conceived as
individual microbiomes. Metacommunity theory focuses on the idea that species interact in complex ways within a
spatially heterogeneous matrix of suitable and nonsuitable patches across the landscape, is well-established in ecol-
ogy, and offers a rich body of models for studying the factors that structure natural communities. The concept of
the metamicrobiome is especially relevant in agricultural systems because both the spatial scale of management and
the management targets (plant or ecosystem health or productivity) are much larger than the scale of any individual
microbiome. This means that understanding the organization of the metamicrobiome in space and time is key to
devising effective management outcomes.

relationships are used to define the network. Thus, networks visually and quantitatively summa-
rize patterns of coexistence among populations across a collection of microbiome samples, or a
metamicrobiome (see sidebar titled Conceiving the Metamicrobiome and Its Relevance to Agri-
culture). By summarizing patterns of coexistence across individual microbiome samples, network
analyses characterize biological organization that is missed when using traditional, single-sample-
centered microbiome analytics and provide data and insights for addressing a completely distinct
set of questions (Figure 1).Network analyses provide a platform for addressing fundamental ques-
tions about microbiome organization and can shed light on the ways in which the organization
of microbiomes across a habitat may mediate functionality, ecology, and evolutionary dynamics
within plant microbiomes.

In this review, we provide an introductory overview of the how and why of network analysis in
microbiome research and highlight the distinct information types provided by network analyses in
contrast to traditional microbiome metrics. In addition, we summarize recent work that provides
novel insights into the roles of particular microbes, or collections of microbes, in the organization,
functional capacities, and eco-evolutionary dynamics of plant and soil microbiomes.

NETWORK FOUNDATIONS

Network Basics: Foundational Structure and Characteristics

Fundamentally, networks are made up of two components: nodes and edges.Nodes generally rep-
resent the components of the system being studied [e.g., specific microbial taxa, ranging from
amplicon sequence variants (ASVs) to operational taxonomic units (OTUs), genera, or even
broader taxonomic categorizations], whereas edges represent relationships or connections be-
tween nodes. In this review, we focus on networks of microbial coassociation, where edges signify
correlations in relative abundance between pairs of taxa across samples.This is in contrast to inter-
action networks, in which edges represent direct functional interactions between microbes (e.g.,
niche overlap in resource consumption, antibiotic inhibitory or cross-feeding capacities, etc.) (54,
77, 97, 112, 117, 118). Notably, coassociations among microbes do not provide explicit evidence
for species interactions (17, 39, 55, 106; but see 16, 45, 64). To accommodate distinct types of mi-
crobial relationships captured in different kinds of networks, edges can have additional properties
such as strength (the intensity of niche overlap between taxa), sign (a positive correlation in abun-
dances versus a negative one), and/or direction of functional impact (e.g., taxon A has a negative
impact on taxon B, but B has no impact on A).

www.annualreviews.org • Network Structure in the Plant Microbiome 405
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Module: a group of
highly interconnected
nodes with limited
connections to nodes
outside of the group

Complexity: the
average links per node
in the network

Modularity: a metric
to summarize the
number and isolation
of modules within a
network

Network structure Nodes and connections Modules and ecological clusters

How are microbial
taxa organized within

plant-associated
microbiomes? 

How do network
roles of microbes
vary within and

across microbiomes? 

Why are speci�c
microbes or collection

of microbes
coassociated? 

How do coassociations
among microbes in�uence
microbiome functionality,

ecology, or evolution? 

1. Do networks provide evidence for 
ecological or evolutionary processes, 
or do they suggest random 
associations among microbes?

2. Are two (or more) networks 
substantially di�erent from one 
another, and in what ways?

1. How does the total connectivity, or 
the distribution of node 
connectivities, vary among 
microbiomes?

2. How connected is an individual 
taxon to other nodes, and does this 
vary among microbiomes?

3. Are connections between speci�c 
microbial taxa conserved across 
microbiomes?

1. What are the taxonomic or 
functional relationships between 
microbes within a module?

2. How do the numbers, diversity, 
and/or composition of modules vary 
among microbiomes?

3. Are diversity or composition of 
modules, or the abundances of taxa 
within modules, related to habitat, 
plant health, or plant/ecosystem 
productivity?

Module 2
141 OTUs

Module 3
126 OTUs

Module 1
148 OTUs

Module 4
104 OTUs

Figure 1

Biological and analytical questions addressed using microbiome network analyses. Figure adapted with permission from Reference 6.
Abbreviation: OTUs, operational taxonomic units.

Network Analytics: Evaluation and Comparison Among and Between Networks

Conceptualizing a microbiome as a network grants access to a wide range of metrics and anal-
yses for characterizing the patterns of connection within the network, referred to collectively as
a network’s structure or topology. These metrics can be categorized at multiple scales (a) based
on properties of individual nodes (such as the number of significant coassociations or interactions
that one taxon has with other taxa in the network); (b) according to properties of a subset of nodes
[such as a collection of coassociated nodes within a module or the frequency of various three-node
subgraphs across a network (74, 79, 89)]; and (c) based on the structure of the entire network (mea-
sures of global network structure, such as complexity or modularity). Notably, some metrics do
not fit neatly into this schema. For example, centrality metrics (e.g., betweenness centrality and
closeness centrality) often provide a value for each node in the network yet depend on the global
network structure to calculate each node’s value. Because each metric in isolation illuminates only
a facet of the network’s structure, it is advisable to consider several metrics in exploring particular
biological questions of interest.

What do researchers do with these metrics? They must first consider global network struc-
ture. Two key questions are (a) whether an individual network differs substantially from what

406 Dundore-Arias et al.
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Betweenness
centrality: indexes the
degree to which an
individual node
connects to other
nodes; the number of
times a node lies on
the shortest path
between two other
nodes in the network

Closeness centrality:
the mean distance of a
node to other nodes in
the network

Degrees: the number
of edges connected to
a particular node

Connectivity:
a metric or set of
metrics that relates to
how a node interacts
with all other nodes
within the network;
often utilizes one or
more of degree,
betweenness, and/or
closeness metrics

Modular hubs:
nodes that have high
connectivity to other
nodes within the same
module

HIGHER-ORDER INTERACTIONS IN THE MICROBIOME

Higher-order interactions, i.e., cases in which the presence of one microbe affects an interaction between another
two, are of particular interest in microbiomes. For instance, if species A inhibits species B but this inhibition is
suppressed by the presence of species C, then we say that these species are involved in a higher-order interaction.
Put another way, a higher-order interaction is when a node (species C) affects one or more edges between other
nodes (the interaction between A and B). Although higher-order interactions have been well-established within
synthetic microbial communities, their impact on the assembly and function of wild microbiomes remains unclear
(4, 43, 48, 94, 119). Coassociation network construction relies primarily on observing pairwise coassociations (32)
within large, naturally assembled communities, but configuration model randomizations can be used to identify
higher-order interactions through network structures (especially three-node subgraphs, i.e., motifs) that appear
more or less frequently in an empirical (experimental data-based) network than expected under randomizations
that preserve the pairwise structure (77, 78).

might be expected in the absence of ecological and evolutionary forces (i.e., if it were constructed
at random); and (b) whether two networks are different, and, if so, in what ways. Determining
whether a network differs from random can be accomplished using randomizations of empirical
network structure, with two approaches being particularly common. In the first, the number of
microbial nodes and edges is preserved,whereas all other aspects of network structure are random-
ized (36, 46). In the second, degrees are preserved for each node, whereas edges are randomized
(termed configuration models) (11). Network structures that differ from a configuration model
randomization suggest the presence of higher-order interactions or structures (see sidebar titled
Higher-Order Interactions in the Microbiome).

Comparing networks, e.g., between habitats or experimental treatments, is another common
goal of network analysis (5, 41, 57, 68–70, 80, 90, 91, 122, 128). Differences in network structure
or characteristics can be important in identifying factors that mediate microbiome assembly and
how such factors vary among biological settings or in relation to plant health or productivity over
time. It can be difficult to compare empirical networks statistically, as the data requirements to
generate even one network can be immense, ranging from hundreds of thousands tomillions of se-
quences amongmany replicate samples.When sufficient replicate networks are available, standard
hypothesis-based statistics are appropriate on metrics that have been normalized for noninforma-
tive variation (e.g., network size). Absent these data,metrics of network structure can be compared
qualitatively and, when substantially different from one another or from random expectation, dif-
ferences can be seen as indicators of a role for biological processes in microbiome organization
and provide a foundation for more precise hypotheses and further experimentation.

Node Analysis: Characterizing Nodes by Connections

Although global network metrics are useful for comparing the overall structures of microbiomes,
analyses of individual microbial nodes (ASVs or OTUs) within the network structure also play
a significant role in microbiome network analyses. Nodes can be categorized in multiple ways,
reflecting variations in the number, types, and strengths of interconnections among them (45,
64, 85). Hub nodes, or nodes with high connectivity within the overall network, are of particular
interest and are identified using analysis based on one of three metrics (64): node connectivity
(1, 110, 113), node influence (e.g., 63, 120), or link analysis (e.g., 21, 61). Highly interconnected
nodes may be further differentiated as modular hubs or connectors when they link nodes within
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Peripheral nodes:
nodes that have few
edges or low
connectivity

Generalist edges:
connections between
two or more nodes
that are conserved
across distinct
microbiome networks

Specialist edges:
connections between
two or more nodes
that are unique to a
particular microbiome
network

Network
connectivity:
the mean connectivity
among nodes in the
network; the average
number of edges per
node in the network

or between modules, respectively, whereas peripheral nodes are distinguished by low connectivity
with other nodes. These different node types have been suggested to reflect differences in the
biological role of specific ASVs/OTUs within the microbiome (6, 62).

Among the distinct node types, hub nodes have received the most attention, specifically in the
search for potential biological keystone species in the microbiome (1, 7, 16, 72, 73, 75, 82, 83).
Microbial keystone species (or keystone taxa) are defined as taxa that exert considerable influ-
ence on microbiome structure independently of their abundance within the community, although
empirical testing for biological keystoneness remains difficult (7, 16, 27, 66, 86). However, work
with synthetic microbiomes has been useful in providing support for keystone roles for individ-
ual microbial taxa (for additional reading, see 22, 93, 121). However, in the absence of rigorous
and difficult-to-collect data on species interactions, hub nodes within microbiome coassociation
networks are hypothesized to represent candidate keystone taxa for further study (1, 128).

Network Substructures: Modules and Ecological Clusters

Coassociation networks are also frequently used to identify clusters of nodes, i.e., modules, whose
pairwise relative abundances are significantly positively associated among samples (34, 42, 81), of-
ten with limited connectivity to nodes outside the module (34, 64). Negatively coassociated nodes
can also be defined within modules, although these are less commonly considered in microbiome
research. Modules can be identified using several approaches (65, 84, 89, 114) and represent an
important substructure within the microbiome network in that they capture collections of nodes
(microbial taxa) that are consistently coassociated across the microbiome landscape. Microbes
that consistently coexist (positively coassociated nodes) have an increased likelihood of sustained
species interactions and thus reciprocal selection or coevolution, suggesting that modules may
represent foundational ecological units of both (coevolved) functionality and diversification within
the microbiome. Negatively coassociated nodes may represent taxa that have mutually exclusive
habitat preferences or that engage in antagonistic species interactions. The stability of module
composition among distinct microbiome networks (e.g., over time or space and among distinct
cropping systems or agricultural treatments) or the extent to which positive or negative coas-
sociations between individual nodes or taxa are conserved among distinct microbiome networks
(generalist edges versus specialist edges) is of particular interest in studies of microbiome assembly
and dynamics (56, 73, 96, 110, 130, 133).

NETWORK ANALYSIS INSIGHTS INTO PLANT MICROBIOMES

Network analyses are becoming increasingly common in plant microbiome research. Here, we
highlight key recent findings focusing on network connectivity, module composition and struc-
ture, and node analysis in plant and soil microbiomes and what they have shown us about their
dynamics and assembly in relation to plant health and productivity.

Network Structure: Connectivity

Because network connectivity is a relatively simple metric of network structure and has been
used as an index of ecological complexity (along with species richness), we focus first on it. The
link of connectivity to ecological complexity is of importance, as it is used to infer potential
for emergent processes and self-organization (62) within the microbiome. Simply put, greater
network connectivity indicates consistent patterns of coexistence among taxa (or other units of
biological organization, including, e.g., genes or biosynthetic gene clusters) across microbiome
samples,which is suggestive of stable patterns of community self-organization.A high frequency of
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consistent coexistence among taxa (positive coassociations among nodes) across microbiome sam-
ples may also suggest selection for taxon assemblages (modules) exhibiting emergent processes
in which the collective behavior of the assemblage is distinct from that of the individual compo-
nents (62). In contrast, persistent negative coassociations among nodes may suggest antagonistic
interactions between taxa or mutually exclusive habitat preferences. Collectively, such variation in
network connectivity among microbiomes can provide insights into the roles of ecological and
evolutionary forces in mediating microbiome assembly over space or time and provide a rich
landscape for further hypothesis testing.

Shi et al. (99) provided one of the first assessments of network connectivity in plant-associated
microbiomes, reporting on bacterial coassociation networks in the oat plant rhizosphere and
bulk soil over time. They reported that microbiomes in the oat plant rhizosphere had signifi-
cantly higher network connectivity (more links per node) than those in the surrounding bulk soil.
The authors also found that although microbiome diversity decreased in the rhizosphere over
time, network connectivity in rhizosphere (but not bulk) soil increased over the growing sea-
son. They suggest that the increased network connectivity within the rhizosphere reflects greater
complexity within rhizosphere versus bulk soil microbiomes. Increases in network connectivity
in the rhizosphere over time were argued to reflect increasing community organization, which is
suggested to integrate both increasing roles for habitat selection reflective of shared niche pref-
erences and increased importance of bacterial interactions in community assembly. Collectively,
this study highlights how understanding the dynamics of network connectivity in distinct habitats
can provide new insights into microbiome assembly.

Further work on the dynamics of network connectivity in plant-associatedmicrobiomes reveals
substantial variation among cropping and plant systems. For example, in contrast to the work de-
scribed above, Liu et al. (70) found that bacterial networks associated with soybean were more
connected in bulk soil than in the rhizosphere; they suggest that this partly reflects the greater
bacterial diversity found within the bulk versus rhizosphere soil. Work by Almario et al. (2) on
network connectivity in the phyllosphere bacterial microbiome of field-grown Arabidopsis from
November to March confirmed the dynamic nature of network connectivity. However, in con-
trast to the results of Liu et al. (70), Almario et al. (2) found that networks achieved minimum
connectivity and complexity in February, nearing the end of the Arabidopsis life cycle. They sug-
gest that the reductions in network connectivity in the Arabidopsis phyllosphere microbiome over
the winter months reflect a shedding of both nodes (ASVs) and node connections, coincident with
an increase in the fraction of nodes and specific node–node connections retained from one month
to the next.The result overall is lowermicrobiome network connectivity but an increasing fraction
of connections (coassociations among taxa) that were maintained from month to month (gener-
alist connections). This simplification of microbiome structure to a core group of coassociated
ASVs perhaps reflects the strong selective filter of abiotic winter stressors, in which only the most
stress-resilient taxa survive and dominate the phyllosphere habitat. Further work is needed to shed
light on the roles of abiotic versus biotic factors in mediating organization of plant microbiomes
and the consequences for microbiome functional capacities.

Researchers have also reported variation in network connectivity in hopes of identifying gen-
eral trends in microbiome network structure in diseased versus healthy plants. For example,
Wen et al. (125) report lower connectivity of rhizosphere bacterial microbiomes in Ralstonia
solanacearum–infected tomato plants versus noninfected plants, whereas Hu et al. (56) found the
opposite pattern among endophytic bacterial microbiomes inRalstonia-infected tobacco. Similarly,
Zeng et al. (132) also reported more-connected endophytic bacterial microbiomes (and greater
positive:negative network connectivity ratios) in Verticilliumwilt–infected versus noninfected cot-
ton plants.Microbiome network connectivity has also been explored in the rhizosphere of tobacco
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plants grown in bacterial wilt suppressive and conducive fields (134). Considering bacterial and
fungal networks separately, Zheng et al. (134) found that bacterial networks were more complex
in the rhizosphere of tobacco plants grown in a Ralstonia-suppressive soil but that fungal networks
had lower connectivity (reduced complexity) in the rhizosphere of plants grown in the suppressive
versus conducive soil. The authors suggest that the high network connectivity of the disease-
suppressive rhizosphere bacterial microbiome may be key to disease suppression. More complex
and connected networks are hypothesized to be more robust to biotic and abiotic perturbations,
including disease. The Zheng et al. (134) work showed further that the total abundances of highly
connected keystone taxa within the suppressive soil microbiomes were negatively correlated with
pathogen density. Further work is needed to explore the ways in which enhanced network connec-
tivity and the abundances of highly connected nodes are related to pathogen densities and disease
development in different pathosystems.

Crop management practices can also be considered sources of variation in microbiome net-
work connectivity and complexity (26, 32, 52, 53, 100–102, 128, 133). For example, Banerjee et al.
(8) compared fungal network structure between conventional and organic farming systems and
showed that network connectivity and complexity were reduced in response to increased agri-
cultural intensification (defined as high nutrient inputs, low crop diversity). Organic farming
supported significantly greater microbiome network connectivity than either conventional or no-
till farming systems. They suggested that the reduction in network complexity in more-intensive
agricultural production systems may reflect the establishment of a more random microbiome
dominated by fast-growing (r-strategist) microbes at the expense of putative keystone taxa. In
contrast, the higher network connectivity and abundance of well-connected keystone taxa under
organic farming may be indicative of a more complex and potentially interactive microbiome that
exhibits greater resilience to biotic and abiotic perturbation and stress.

Among these and many other studies (1, 6, 38, 44, 60, 77, 97, 123, 128, 129), key take-home
points include (a) the lack of a singular consistent response of microbiome network connectivity to
disease or to disease suppression; (b) the likely critical role that differences in crop, pathogen, mi-
crobial target(s) (bacteria versus fungi versus intra-Kingdom networks), and microbiome habitat
of focus (e.g., endophytic versus rhizosphere versus bulk soil) play in mediating variation in net-
work connectivity; and (c) the temporal dynamism of network structures in the plant microbiome.
Collectively, despite the lack of simple generalizations, these findings suggest that connectivity
analyses, with their emphasis on microbiome organization versus microbial censuses, provide
important new ways of thinking about the dynamics and assembly of plant microbiomes.

Network Structure: Modules

Analysis of modules, or specific collections of coassociated ASVs within a target microbiome,
provides a useful statistical means to focus on specific assemblages that may represent distinct,
coselected, and plausibly functional ecological units. Of particular interest to plant pathologists
is the identification of modules that are positively or negatively associated with pathogen popu-
lations or diseased plants or modules associated with disease-suppressive soils. Identification of
microbial modules associated with specific functionality can be an important step in determining
novel targets for sustainable crop management. For example, network analyses were used to iden-
tify rhizosphere bacterial modules associated with the pathogen-suppressive capacity of the soil
microbiome (96). They characterized pathogen-suppressive activity for every soil sample using
three distinct metrics (the density of pathogen inhibitors, the frequency of pathogen inhibitors,
and the mean inhibitory intensity of pathogen inhibition). Among four distinct bacterial mod-
ules identified in the microbiome network, one stood out as comprising OTUs whose relative
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SYNTHETIC COMMUNITIES

Synthetic communities (SynComs) are simple microbiomes that are artificially created by coculturing collections
of microbes under defined conditions (98, 107). In top-down approaches, a collection of microbes associated with a
particular function are studied under controlled conditions (for example, a module within a microbiome network)
(49, 92).With top-down approaches, researchers can use the SynCom to evaluate, for example, the resilience of col-
lective functionality to incubation conditions, initial population densities, or community diversity and the presence
or absence of different members using subtractive incubations. In contrast, bottom-up approaches rely on knowl-
edge of the functional capacities of individual microbes and compose SynComs based on predictions of the role
of species interactions in mediating the functional capacities of individual microbes (24, 49, 92). Both approaches
can help identify emergent functions of microbial consortia and have become critical tools for understanding the
assembly, dynamics, and especially functionality of microbiomes. One significant limitation in the use of SynComs
to study plant-associated microbiomes is the current nonculturability of a substantial proportion of taxa detected
using amplicon or metagenomic sequencing approaches.

abundances were significantly positively correlated with all three metrics of pathogen suppres-
sion; theseOTUs aremost abundant in soils in which pathogen suppression is greatest. In contrast,
OTUs in the other three modules had relative abundances that were negatively correlated with
one or more of the pathogen-suppression metrics. The authors suggest that the sole suppressive
module represents an excellent potential source of pathogen-suppressive microbes. More impor-
tantly, because pathogen-suppressive phenotypes can be under positive selection due to microbial
interactions in soil (58, 59), deconstructing the suppressive module to identify emergent proper-
ties of the collection of OTUs (or subsets of OTUs) may be important in devising management
strategies to select for suppressiveness. This represents a novel dimension for further hypothe-
sis testing, which may be explored systematically using synthetic community approaches (see the
sidebar titled Synthetic Communities).

Identifying the factors that mediate positive or negative coassociations among populations in
themicrobiome is an important next step in understandingmicrobiome assembly. Specifically,why
do ASVs or OTUs coexist within modules? The simplest explanation may be that modules repre-
sent organisms whose relative abundances are positively associated as a function of shared nutrient
or habitat preferences. Work by Bakker et al. (5) characterized the relationships between relative
abundance and soil nutrients (C, K, N, OM, pH) among OTUs comprising distinct modules in
a rhizosphere microbiome network analysis. They found distinct differences in nutrient prefer-
ences among OTUs associated with each of the modules, including identifying some modules that
were clearly associated with nutrient-rich rhizosphere habitats and others strongly associated with
nutrient-poor rhizosphere habitats. Notably, although this work and related work by de Menezes
et al. (31) suggest an important role for habitat in microbiome structure and modular assembly,
this suggestion does not limit the potential that species interactions within the microbiome are
also important to microbiome assembly and functional outcomes.

Illustrating the potential for habitat and species interactions to collectively mediate module
composition and functional capacities, Bakker et al. (6) explored Streptomyces modules within the
rhizosphere of four perennial prairie plant species growing in a long-term experimental prairie.
They identified Streptomyces OTUs that clustered into five distinct modules in one prairie plant
host (Andropogon gerardii) and tracked those same OTUs in the rhizosphere of three different
prairie plant species. Two key findings were that (a) OTUs that clustered into a single module
in Andropogon were only sporadically clustered with one another when in the rhizosphere of
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different plant hosts, and (b) the same collection of OTUs had different relationships with
pathogen suppression by the soil microbiome when present in the rhizosphere of different plant
hosts. That is, the abundances of the particular collection of OTUs are associated with distinct
functional characteristics when in the rhizosphere of different plant hosts, and those OTUs coas-
sociate with different OTUs in the rhizosphere of different plant hosts. This work highlights the
significant role that biotic organization, as captured by modular assembly, can play in determining
the functional capacities of the microbiome. Rather than a fixed association between a particular
OTU and a function within the microbiome, understanding the compositional context—the
module, or the assemblage of OTUs with which an organism coexists and potentially interacts
over ecological and evolutionary time—may be critical to understanding or predicting the
functional capacity of the microbiome. One important implication of this finding is the potential
significance of microbiome history to functional capacities. That is, microbiome coassociation
structure may impose a critical form of ecological memory on microbiome functional capacities,
in which past states of a community (which taxa, having which functional capacities, have coex-
isted through time and space) influence present or future functional capacities of the community.
In this way, understanding the structure of microbial coassociations over time and space within
microbiomes is key to long-term management for beneficial outcomes.

Modules have also been investigated to determine whether there are disease-specific modules
within the plant microbiome that can define a pathobiome. The pathobiome concept emphasizes
the potential role of microbial assemblages and species interactions in mediating plant disease and
disease symptoms, e.g., in both suppressing and enhancing disease development (9, 116).Network
modules offer a powerful analytical tool for identifying such assemblages, and potential networks
of positive or negative species coassociations, across the agricultural landscape.Qiu et al. (87) pro-
vide an excellent example of this approach. Specifically, they used network analyses to identify
bacteria and fungi that are consistently positively or negatively correlated with pathogen pop-
ulations in Fusarium oxysporum f. sp. vasinfectum (FO)–infected cotton plants in both field and
greenhouse studies. They found 9 bacterial and 24 fungal OTUs whose relative abundances were
significantly correlated (positively or negatively) with FO in the greenhouse, and 23 bacterial and
2 fungal OTUs strongly coassociated with FO in the field.Microbiome networks were more con-
nected in FO-infected versus noninfected plants, and both positive and negative coassociations
with FO abundances were observed among fungal and bacterial OTUs. OTUs whose relative
abundances are positively correlated with pathogen abundances may facilitate infection, or they
may simply be enriched by the presence of a stressed (and presumably leaky) plant. Similarly, the
authors suggest that OTUs that are negatively associated with pathogen abundance or infection
may serve as pathogen antagonists or may be specific to the habitat offered by a healthy plant.
Further work focused on isolation of taxa positively or negatively associated with the pathogen to
determine their impacts on infection and symptom development. By exploring taxa and consortia
associated with healthy plants, or modules that are negatively associated with disease, the Qiu et al.
(87) study highlights the potential for enhanced understanding of the complex interactions within
the microbiome that contribute to suppressing or facilitating plant disease and a pathway to novel
approaches for disease management. These modules may also provide important starting points
for systematic exploration of emergent properties within soil microbiome modules, particularly
in relation to disease development or suppression.

Creative work on network modules has also been performed across large geographic scales
(23, 28, 73, 104, 127). For example, Toju et al. (108–110) compiled fungal microbiome data
across eight distinct forest systems and identified metacommunity hubs, which were collections
of highly positively coassociated arbuscular mycorrhizal fungi (AMF), saprotrophic fungi, and
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Network hubs: nodes
with high connectivity
to the overall network

endophytic fungi that were suggested to collectively play key roles in mediating key ecosystem
functions across diverse climatic regions. Such an approach is especially valuable for identifying
specific microbes or microbial functional groups that may be useful inoculants to enhance
crucial microbial functions across broad ranges of biotic and abiotic conditions. Although work
within individual fields or cropping systems may identify locally coadapted microbial modules,
larger-scale approaches spanning diverse ecosystems or geographic locations may be more useful
for identifying generic associations of microbes that cross large scales of space and time. In this
way, analysis of microbiome modules can provide very different types of insight and address
different questions, depending upon the spatial and temporal scales of analysis.

Modular analyses can also shed important light on the ways in which microbiome diversity
is organized and how this may mediate microbiome function. Recent research by Fan et al. (37)
used network analyses to define modules across a long-term fertilization experiment. They subse-
quently characterized the relationships between phylotype richness of bacteria, fungi, nematodes,
and AMF in each module and (a) the abundance of key soil functional genes or (b) crop produc-
tivity. In one of the four network modules, which they designated a keystone module, phylotype
richness of each of the microbial groups across the individual experimental plots was significantly
positively correlated with crop productivity.Notably, although richness of fungal and AMF phylo-
types was significantly negatively correlated with productivity overall, richness of fungal and AMF
phylotypes within the keystone module was positively associated with crop yields.This work high-
lights the role that network analyses can play in both understanding the organization and biology
of plant microbiomes and generating original hypotheses for further investigation.

Network Hubs

Identification of keystone microbes or network hubs has provided important insights into the
potential roles of individual microbial taxa in microbiome organization and functionality. For
example, Agler et al. (1) investigated the phyllosphere microbiome of Arabidopsis thaliana and
determined that the effects of abiotic factors and plant genotype inmediatingmicrobiome compo-
sition are due to the strong impact that they have on hub microbes. They used network analyses to
identify hubmicrobes that were distinguished by their very high-degree and low-betweenness cen-
trality. Through further experimentation, they found that two hub taxa were especially important
in structuring the phyllosphere microbiome. Specifically,Dioszegia, a basidiomycete yeast fungus,
andAlbugo, an obligate biotrophic oomycete plant pathogen,were responsive to host genotype and
the abiotic environment and transmitted these impacts to other microbes in the inter-Kingdom
(bacterial, fungal, and oomycete) network via their impacts on leaf colonization and population
dynamics. Similarly, Zheng et al. (134) identified keystone bacterial and fungal taxa in network
analyses of Rhizoctonia-suppressive and -conducive soils and diseased and healthy root samples,
defining keystone taxa based on high-degree, high-closeness centrality and low-betweenness cen-
trality. They identified no keystone taxa in conducive soils or infected roots, although 9 and 13
bacterial keystone taxa were found in suppressive soil and healthy roots and 3 and 10 fungal key-
stone taxa were found in suppressive soil and healthy roots, respectively. Among these highly
interconnected keystone taxa, Pseudomonas and Streptomyces were the most abundant in the sup-
pressive soil and healthy roots, and the total abundance of all bacterial keystone taxa was negatively
correlated with Ralstonia in the soil. This suggests the potentially significant role of these well-
connected keystone taxa in microbiome function, in this case disease suppression. More broadly,
these studies highlight further ways in which network analyses can play an important role in or-
ganizing the complexity of plant and soil microbiomes to highlight individual taxa or collections
of taxa that are especially important to functional outcomes.
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Keystone nodes:
highly connected
nodes that represent
microbial taxa
hypothesized to have a
disproportionate
impact on the
microbial community

NETWORK INSIGHTS

Beyond insights already revealed, network analyses have the potential for exploring and elucidat-
ing additional dimensions of the biology and organization of plant and soil microbiomes.Advances
in understanding are facilitated by community-wide adoption of standardized data and metadata
standards (15, 35, 115, 124) as well as timely provision of raw and processed data in open-access
data platforms (103, 126) to enable integration of data across experimental systems and studies.
With this in mind, we focus briefly on further questions that are suggested by network analyses
andmetrics, especially across experimental systems, and how they can (a) enhance our understand-
ing of the assembly and biology of microbiomes and the microbes of which they are composed
and (b) provide a platform for development of novel management strategies for suppressing plant
diseases in agriculture.

Node Connectivity

Although many studies have sought to identify highly connected hub or keystone nodes (individ-
ual microbial taxa), understanding the consistency of connectivity for specific taxa among diverse
microbiome sample sets may provide important additional insights into the biology and ecology
of microbial taxa and their role in plant health. For example, are specific taxa consistently highly
connected within diverse microbiome settings, or is the connectivity of the taxon idiosyncratic
to the setting? That is, is the connectivity of specific microbial taxa related to microbiome set-
ting, plant health or yield, or the disease-suppressive or -conducive nature of the microbiome?
What does variation in connectivity for individual taxa in different microbiomes tell us about the
biology or ecology of those taxa and how connectivity of individual taxa relates to agricultural out-
comes? For example, nodes with little connectivity to others may suggest taxa that are inactive,
incidental immigrants, or even relic DNA that is captured in the microbiome sample but not part
of the functional microbiome. Alternatively, poorly connected taxa may be those whose activities
are largely independent of other microbes. This question deserves further study, particularly for
taxa whose connectivity may vary significantly among microbiomes. More broadly, recognizing
the significance of coassociations among microbes to microbiome functional capacities, careful
consideration of the patterns of connectivity of individual taxa across diverse microbiome settings
may provide novel insights into the ecology and life history strategies of microbes within complex
plant and soil microbiomes.

Node Distribution

Beyond the focus on individual nodes, considering the ways in which the distribution of node
frequencies (the frequency of nodes observed at each node connectivity value) within a network
might vary with treatment, plant health, habitat (rhizosphere, endosphere, bulk soil), and mi-
crobial target (bacteria, fungi, archaea, oomycetes) is also likely to provide new ways of thinking
about microbiome organization. Figure 2 highlights bacterial and fungal microbiome networks
from the rhizosphere of prairie plants, including the networks (Figure 2a,b), the distribution of
node connectivities (Figure 2c,d; frequencies of nodes observed at each degree) for bacterial and
fungal microbiomes, and a summary of metrics for the bacterial and fungal networks (Figure 2e).
Comparing the fungal and bacterial networks, although average connectivity (Figure 2e) is quite
similar (0.048 and 0.045 for the bacteria and fungi, respectively), the distribution of connectivities
among nodes is quite different. That is, a very high proportion of nodes for the bacteria have very
low connectivities compared to the fungal network (proportion of nodes having 0–5 degrees =
74% and 50% for bacteria and fungi, respectively). In contrast, 44% of fungal taxa are connected
with 6–10 other fungal taxa, whereas only 23% of bacterial taxa are connected to 6–10 other
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Figure 2

An example microbiome network analysis comparing bacterial and fungal coassociation networks sampled from the same rhizosphere
communities. (a,b) Coassociation networks, (c,d) frequencies of nodes with varying degrees, and (e) network metrics of rhizosphere
bacterial and fungal communities from experimental fields. Networks were constructed using amplicon sequence data grouped at the
genus level; microbial abundance data were analyzed with SPIEC-EASI (sparse inverse covariance estimation for ecological association
inference) (53). Networks illustrated here incorporate only positive coassociations between (a) bacterial and (b) fungal genera. Genera
were clustered into modules using the Louvain algorithm and are represented by nodes of similar color; unconnected nodes are not
represented in the network images. Modules of bacterial and fungal communities were identified independently so that node colors in
panels a and b are not related. Node degrees within (c) bacterial and (d) fungal networks are represented as the proportion of total nodes
with a given degree.

bacterial taxa. The frequency distributions illustrate the ways in which the frequencies of low
and moderately connected taxa differ between the bacteria and the fungi. Although theoretical
work has shown that diverse systems become more stable and resilient to perturbation as the
fraction of nodes that are connected to others increases (33), the question of how the distribution
of connectivity among nodes may impact resilience has received little empirical study for plant
microbiomes. That is, does having the same total number or frequency of connections within a
community evenly distributed among nodes versus having a microbiome possessing a handful
of highly connected nodes (perhaps keystone taxa?), leaving most nodes unconnected or with
a very small number of connections, matter to plant health, microbiome function, or broader
concepts in community biology (e.g., invasibility, resistance to perturbation, etc.)? Understanding
whether or how the distribution of node connectivities varies with management, plant health or
productivity, or habitat type may provide a novel path for exploring microbiome organization
and understanding the factors that mediate functional outcomes in agriculture.

Modules as Fundamental Units of Ecology, Diversity, and Evolution

The extraordinary diversity and complexity of plant and especially soil microbiomes have posed a
challenge to researchers seeking to understand microbiome dynamics and functionality. Although
many studies have considered associations of taxon abundances within modules in relation to ben-
eficial outcomes (e.g., disease suppression, crop yields, soil carbon sequestration), work by Fan
et al. (37, 38) and others (3, 109) illustrates an intriguing role for microbiome network structure
in organizing the complex diversity of the microbiome. Further systematic study of the ways in
which module diversity metrics, ranging from simple consideration of numbers of modules within
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microbiomes and how numbers vary among microbiomes to more complex assessments of phy-
logenetic or functional diversity within or across modules (e.g., 37), may shed light on novel and
important predictors of beneficial outcomes for plants or soil health. Moreover, because network
modules define the potential for persistent species interactions and reciprocal coevolutionary dy-
namics among microbial populations across the landscape, it is worth exploring whether modules
represent basic ecological or evolutionary/coevolutionary units within soil or plant microbiomes
and, by extension, essential building blocks of microbiome diversity (6, 37, 38). Although coevo-
lutionary theory is well-developed for metapopulations across the landscape (50, 51, 105), the
application of metapopulation theory to network-defined modules offers a novel framework for
hypotheses exploring species interactions and coevolutionary dynamics.

CONCLUSION

The significance of microbiomes to plant and ecosystem fitness is well-recognized, yet researchers
struggle to identify themost important microbiome characteristics for predicting ormanaging soil
or plant microbiomes for beneficial outcomes. This is likely a consequence of both the extraor-
dinary complexity of microbiomes and the approaches that have been used most commonly in
microbiome analysis. Network analysis offers an important tool for revealing elements of micro-
biome organization that are missed by traditional microbiome analyses that focus on diversity
and composition, most notably in characterizing the patterns of coexistence among organisms
across the microbiome landscape. Because the functional capacities of microbes are often sig-
nificantly impacted by coexisting populations, understanding the dynamics of coexistence within
the metamicrobiome is likely to be especially important in predicting functional outcomes. The
systematic incorporation of network analyses into the vast troves of microbiome data being gen-
erated in agricultural and natural habitats will advance our capacities to manage and engineer
microbiomes for beneficial outcomes and provide conceptual and mechanistic insights into the
ecology and evolutionary biology of plant and soil microbiomes.

SUMMARY POINTS

1. Plant and soil microbiomes exist as a metacommunity, i.e., a collection of communi-
ties linked by the dispersal and movement of diverse and potentially interacting species
within a habitat. Because interactions among coexisting microbes are critical to diverse
microbial functions, understanding patterns of coexistence across the metamicrobiome
is key to predicting functional outcomes.

2. Traditional analyses of microbiome composition and diversity fail to capture the or-
ganization and structure of microbiomes and, in particular, patterns of coexistence of
microbial taxa across the microbiome.

3. Network analysis of microbiomes provides quantitative information on the organization
of the microbiome as well as insights into the potential roles of individual populations
and collections of microbes (modules) in microbiome functional outcomes.

4. Network analyses provide a significant foundation for hypothesis testing to advance basic
understanding of the factors that mediate microbiome organization and the influences
of microbiome organization on plant and ecosystem health and productivity.

5. Systematic applications of network analyses across environmental microbiome research
systems are needed to provide broad understanding of the variations in microbiome
organization and microbial network roles across habitats, space, and time.
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6. Managing microbiomes in agriculture and the environment means managing the
metamicrobiome; successful management requires enhanced understanding of the
organization of microbial populations within microbiomes over time and space.

FUTURE ISSUES

1. Rapid advances in the applications of deep learning, machine learning, and artificial in-
telligence methods to microbiome data will significantly enhance capacities to detect
microbiome organizational patterns associated with beneficial outcomes (more produc-
tive plants, enhanced carbon sequestration) and predictive modeling of microbiome
dynamics in complex field settings.

2. Diverse data types, including multi-omics data sets capturing functional gene abun-
dances as well as transcriptomic, proteomic, metabolomic, and other data, will expand
our understanding of the functional organization of microbiomes.

3. Better integration of field and synthetic microbiome findings will propel successes in
microbiome management using inoculation or other manipulation strategies.

4. Development of conceptual models to advance hypothesis testing on the ecol-
ogy, evolutionary biology, and dynamics of plant and soil microbiomes, including
through applications of metapopulationmodels, will enhance predictive andmechanistic
understanding of environmental microbiomes.
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