
Advances in
Geo-Energy Research Vol. 10, No. 1, p. 65-70, 2023

Perspective

Artificial intelligence methods for oil and gas reservoir
development: Current progresses and perspectives

Liang Xue1,2 *, Daolun Li3, Hongen Dou4

1National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, P.R. China
2College of Petroleum Engineering, China University of Petroleum, Beijing 102249, P. R. China
3School of Mathematics, Hefei University of Technology, Hefei 230009, P. R. China
4Research Institute of Petroleum Exploration and Development, Beijing 100083, P. R. China

Keywords:
Artificial intelligence
reservoir development
data-driven
jointly driven

Cited as:
Xue, L., Li, D., Dou, H. Artificial
intelligence methods for oil and gas
reservoir development: Current progresses
and perspectives. Advances in
Geo-Energy Research, 2023, 10(1): 65-70.
https://doi.org/10.46690/ager.2023.10.07

Abstract:
Artificial neural networks have been widely applied in reservoir engineering. As a powerful
tool, it changes the way to find solutions in reservoir simulation profoundly. Deep learning
networks exhibit robust learning capabilities, enabling them not only to detect patterns
in data, but also uncover underlying physical principles, incorporate prior knowledge of
physics, and solve complex partial differential equations. This work presents the latest
research advancements in the field of petroleum reservoir engineering, covering three key
research directions based on artificial neural networks: data-driven methods, physics driven
artificial neural network partial differential equation solver, and data and physics jointly
driven methods. In addition, a wide range of neural network architectures are reviewed,
including fully connected neural networks, convolutional neural networks, recurrent neural
networks, and so on. The basic principles of these methods and their limitations in practical
applications are also outlined. The future trends of artificial intelligence methods for oil
and gas reservoir development are further discussed. The large language models are the
most advanced neural networks so far, it is expected to be applied in reservoir simulation
to predict the development performance.

1. Introduction
Dynamic prediction is the foundation of research in oil

and gas field development, including scheme design, dynamic
analysis, production allocation, and scheme adjustment. Ac-
curate dynamic prediction is an important issue for rational
development of oil and gas reservoirs and a key basis for
decision-making. It requires the construction of quantitative
mathematical models to obtain the quantitative prediction. Es-
sentially, the prediction model represents the mapping relation-
ship between control parameters and system states. There are
usually two basic approaches to model establishment: physics-
driven and data-driven modeling approaches. The physics-
driven modeling approach is based on the quantitative mapping
relationship of the flow control equations. It involves solving
the governing equations using analytical methods or numerical

simulation methods to predict production capability. Analytical
methods provide explicit mathematical expressions and are
typically based on point source function theory (Gringarten
and Ramey, 1973; Cui et al., 2023), elliptical flow theory
(Zhang et al., 2017), and linear flow theory (Brown et
al., 2011). Numerical simulation methods discretize the gov-
erning equations of oil and gas flow to obtain numerical solu-
tions. The physics-driven approach is subject to significant in-
fluences from the flow physics assumptions, geological model
construction, and computational power. In recent years, the
data-driven methods have catalyzed technological advances in
a variety of fields, including computer vision, biomedicine, and
petroleum engineering. The data-driven modeling approaches
use observed or numerically generated data as training sets to
explore the quantitative mapping relationship between inputs
and outputs through artificial intelligence algorithms.
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Fig. 1. Research paradigms in oil and gas reservoir development for artificial intelligence.

In reservoir engineering, these algorithms have been widely
used to address key challenges of complex problems. Deep
learning, the cornerstone of the development of artificial
intelligence, has shown exceptional performance. This has
led to a burgeoning wave of research in the field of oil and
gas development, with artificial intelligence, especially deep
learning. At present, its applications in oil and gas reservoir
development consist primarily of three key directions: the data-
driven methods, the physics driven artificial neural network
partial differential equation solver, and the data and physics
jointly driven methods, as shown in Fig. 1.

2. Data driven method
Data-driven methodologies rely on the observed data or

numerically generated data to train artificial neural network
models, subsequently utilized for predictive tasks. A classical
artificial neural network is shown in Fig. 2. This widely em-
ployed approach has found extensive applications in the realm
of oil and gas development, facilitating diverse functions, such
as production rate forecasting, core image reconstruction, au-
tomated well-test interpretation, and flow dynamics prediction.
The data-driven modeling approach encompasses various mod-
els, such as random forest, fully connected neural networks,
convolutional neural networks, long and short term mem-
ory neural networks, graph convolutional neural networks,
generative adversarial neural networks. Random forest is an
ensemble learning method that combines multiple decision
trees (Breiman, 2001). It can be employed for regression
prediction of dynamic shale gas production data from multi-
stage hydraulic fracturing horizontal wells (Xue et al., 2021)

and the water drive gas reservoir well test data analysis
problems (Xue et al., 2022). Furthermore, the integration
of conventional screening guidelines and the random forest
algorithm can establish a hybrid scoring system for enhanced
oil recovery processes (Zhang et al., 2019). Fully connected
neural networks are basic neural network structures where
each neuron is connected to every neuron in the subsequent
layer and is widely used for regression tasks in petroleum
field. Zhang et al. (2022) identified and predicted the gas-
bearing strata using a Deep Neural Network. Additionally,
they assessed the proposed method in terms of the structure
and fracture characteristics and predict favorable exploration
areas for identifying gas reservoirs. Due to the high water
content and rapid decline characteristics of unconventional
oil and gas reservoir production, conventional methods such
as material balance (Mattar and McNeil, 1998) and decline
curve analysis (Arps, 1945) are difficult to predict future
production changes. Long and short term memory neural
networks (LSTM) can automatically capture and learn long-
term dependencies from data and it can be used to process
and predict production rate time series data of unconven-
tional reservoir. Yang et al. (2022) proposed a LSTM model
combining exponential smoothing method and autoregressive
integrated moving average to provide robust support for the
production behaviors of shale gas. To address the limitations of
the LSTM model, Zha et al. (2022) proposed the CNN-LSTM
model integrating static geological parameters and dynamic
production rate data simultaneously. Furthermore, the use of
graph neural networks (GNN) for production forecasting has
been explored to identify the relationships between injector-
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Fig. 2. The structure of classic artificial neural networks.

producer pairs and producer-producer pairs. This enables a
clearer characterization of connectivity patterns. GNN are par-
ticularly suitable for processing graph-structured data (Du et
al., 2022a, 2022b; Huang et al., 2023). However, the majority
of production forecasting methods currently used are point
forecasting methods developed in the setting of individual well
forecasting. Han and Xue (2023) developed a method utiliz-
ing deep autoregressive recurrent neural networks to enable
global modeling and probabilistic forecasting for numerous
related production time series. Generative adversarial neural
networks (GAN) (Goodfellow et al., 2014) is a method of
unsupervised learning, where two neural networks play against
each other. As important generation models, have cast light on
the reconstruction of digital cores. Traditional high-resolution
reconstruction methods of digital cores are often quite CPU-
intensive and cannot reuse the previously extracted statistical
information (Zhang et al., 2021). Although the simulated
images by generative adversarial neural network are relatively
clear, sometimes it is prone to gradient disappearance and
model collapse, making the training process quite unstable
(Mosser et al., 2017; Feng et al., 2019; Zha et al., 2020).
Furthermore, Zhang et al. (2021) propose a VAE-GAN model
for the reconstruction of digital cores by combining GAN
with VAE together to foster strengths and circumvent weak-
nesses of both GAN and VAE in the reconstruction process.
Finally, convolutional neural networks (CNNs) (LeCun and
Bengio, 1995) is great for extracting features from data and
has been shown to be very effective at finding patterns that are
difficult to detect. Consequently, specifically tailored CNNs
can be employed for automated well-testing analyses as an
alternative to manually selecting and extracting feature from
the pressure and derivative data (Liu et al., 2023).

The classical development of data-driven neural networks
has primarily focused on learning mappings between finite-
dimensional Euclidean spaces. Recently, this has been general-
ized to neural operators that learn mappings between function
spaces. For partial differential equations (PDEs), neural opera-

tors directly learn the mapping from any functional parametric
dependence to the solution. Thus, they learn an entire family
of PDEs, in contrast to the classical methods which solve
one instance of the equation. Li et al. (2021a) utilized a
CNNs-based framework to implement neural operators that
learn mappings between function spaces. The Fourier neural
operator successfully models turbulent flows with zero-shot
super-resolution, and demonstrated in experiments on Burg-
ers’ equation, Darcy flow, and the Navier-Stokes equation.
Furthermore, in reservoir multiphase flow in porous media
field, Yan et al. (2021b) developed a FNO-based deep learning
workflow to predict the pressure evolution as fluid flows in
large-scale 3D heterogeneous geologic CO2 storage reservoir.
Wen et al. (2022) introduced U-FNO, an optimized Fourier
neural operator, for addressing multiphase flow challenges.
The research shows that U-FNO generates notably precise
flow results for intricate CO2-water multiphase flow difficulties
concerning CO2 geological storage.

3. Data and physics jointly driven methods
The conventional data-driven approach has remarkable ad-

vancements, but it inevitably faces several challenges. Firstly,
the data-driven model is perceived as a ”black box,” since it
lacks the incorporation of physical meaning of the dataset,
leading to predictions that may be physically inconsistent or
implausible (Karniadakis et al., 2021). Secondly, the robust-
ness of the data-driven model may be poor, and its long-term
prediction capabilities are weak. To address this change and
reduce the demand of labeled data, Raissi et al. (2019) pro-
posed physics-informed neural network (PINN), and utilized
the nonlinear partial differential equations residuals to guide
the training of networks based on automatic differentiation,
and extended it to solve forward and inverse problems, as
shown in Fig. 3. In reservoir engineering field, Wang and
Lin (2020) proposed a theory-guided convolutional neural
network frame for efficient uncertainty quantification and data
assimilation of reservoir single-flow with uncertain model



68 Xue, L., et al. Advances in Geo-Energy Research, 2023, 10(1): 65-70

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

········

········

……………

Hidden layers

Input layers

Output layers

T

Y

X

Boundary 

conditions

Data

matching

········

PDE

Other

terms

Physics-informed training

Initial

conditions
u

Fig. 3. The structure of physics-informed neural network (Raissi et al., 2019).

parameters. Almajid and Abu-Al-Saud (2022) used the PINNs
to simulate the classical problem of drainage of gas into a
water-filled porous medium. And, several cases are tested that
signify the importance of the coupling between observed data
and physics-informed neural networks for different parameter
space. For multiphase flow problem, Li et al. (2022) proposed
a theory-guided neural network framework as a prediction
model for oil/water phase flow. Yan et al. (2021b) developed a
gradient-based deep neural network constrained by the physics
related to multiphase flow in porous media and applied it
to construct a predictive model for pressure management at
geologic CO2 storage sites. For unconventional resources, Xue
et al. (2023) proposed a deep learning model driven jointly by
the decline curve analysis model and production data for the
production performance prediction of tight gas wells. Park et
al. (2021) developed a hybrid model by combining physics
and data-driven approach for optimum unconventional field
development. The existing methods typically require labeled
data, particularly the precise solution of PDEs. The scarcity
of actual reservoir data for training poses a challenge, often
restricted to production rates and bottomhole flow pressures.
Aiming at this problem, a new network structure called sign-
post neural network is proposed, in which the spatial distri-
bution feature information such as signposts is added in the
hidden layer. Li et al. (2021b) proposed an improved physics-
constrained PDE solution method that incorporates potential
features of the PDE in the loss functions to solve seepage
equations with source and sink terms with only sparse wellbore
pressure label data. Kashefi and Mukerji (2023) predicted
steady-state Stokes flow of fluids within porous media at pore
scales using sparse point observations and a novel class of
physics-informed neural networks, called “physics-informed
PointNet”.

4. Physics driven artificial neural network PDE
solver

Despite of their great potentials to make accuracy predic-
tions, the deep learning-based methods reliant on a limited

amount of labeled data continue to exhibit notable limitations
in comparison to traditional numerical-solving methods. The
dependence on labeled data constrains the practical application
of deep learning techniques in petroleum engineering contexts,
necessitating a concerted effort to resolve this challenge.
Addressing or accelerating the complex task without rely-
ing on labeled data assumes paramount significance (Silva
et al., 2021), holding the potential to revolutionize solution
methodologies within the field (Kochkov et al., 2021). While
some endeavors have been undertaken to leverage deep learn-
ing for solving PDEs in the absence of labeled data, this
remains a formidable undertaking, especially in the case of
non-stationary and highly nonlinear PDE systems. Zhu et
al. (2019) proposed an innovative approach that integrates the
fundamental equations of the physical model into the loss/-
likelihood functions for surrogate modeling and uncertainty
assessment, eliminating the need for labeled data. The study
highlights the success of surrogate models based on convo-
lutional encoder-decoder networks, showcasing their ability
to accurately predict high-dimensional stochastic input fields
in porous media flow problems. Zhang (2022) developed a
physics-informed deep convolutional neural network architec-
ture for simulating and predicting transient Darcy flows in
heterogeneous reservoirs without labeled data. However, the
current exploration of neural network-based solving methods
(without labeled data) has not proven to be effective in solving
the problem of non-stationary states and source-sinks. The
unsupervised solving methods are still in an early development
stage, and there is still a big gap to play the same role as the
mature numerical methods.

5. Future trends
Currently, significant breakthroughs have been achieved in

key aspects of oilfield production and development, leveraging
artificial intelligence technology. Despite of these advance-
ments, the current research primarily centers on refining
existing methodologies, and a comprehensive groundbreaking
framework is yet to be established, with progress remaining
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in its preliminary stages.
It is imperative to address several key issues to propel

the frontier of intelligent oilfield development theories and
methodologies. These include constructing a comprehensive,
deep cross-fusion model that integrates data, artificial intel-
ligence models, and physical laws, aiming to establish an
optimization theory system that accelerates intelligent algo-
rithms through the fusion of dynamic and static data-driven ap-
proaches with pertinent physical information. When it comes
to handling time series and spatio-temporal data, as well as
performing complex simulations, optimizations, and decision-
making, the recent research suggests the necessity of construct-
ing a large language model (Jin et al., 2023). Additionally,
Kumar and Kathuria (2023) leverage the emerging capabilities
of large language models with over 100 billion parameters
to extract actionable insights from raw drilling data. Abijith
et al. (2023) explore the potential of a domain-specific large
language model for oil and gas industries.

Based on the current research findings, the future develop-
ment trends in the large language model are promising, even
though there is a need for further exploration and enhancement
of large language model’s capabilities in handling time series
and spatio-temporal data, as well as complex simulations and
optimizations. The application of large language models is
expected to provide more precise solutions for information
extraction and decision support in the development of the oil
and gas reservoir.
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