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A B S T R A C T

Dual-energy X-ray absorptiometry (DXA) is widely used for clinical assessment of bone mineral density (BMD).
Recent evidence shows that DXA images may also contain microstructural information of trabecular bones.
However, no current image processing techniques could aptly extract the information. Inspired by the success of
deep learning techniques in medical image analyses, we hypothesized in this study that DXA image-based deep
learning models could predict the major microstructural features of trabecular bone with a reasonable accuracy.
To test the hypothesis, 1249 trabecular cubes (6 mm×6mm×6mm) were digitally dissected out from the
reconstruction of seven human cadaveric proximal femurs using microCT scans. From each cube, simulated DXA
images in designated projections were generated, and the histomorphometric parameters (i.e., BV/TV, BS, Tb.Th,
DA, Conn. D, and SMI) of the cube were determined using Image J. Convolutional neural network (CNN) models
were trained using the simulated DXA images to predict the histomorphometric parameters of trabecular bone
cubes. The results exhibited that the CNN models achieved high fidelity in predicting these histomorphometric
parameters (from R=0.80 to R=0.985), showing that the DL models exhibited the capability of predicting the
microstructural features using DXA images. This study also showed that the number and resolution of input
simulated DXA images had considerable impacts on the prediction accuracy of the DL models. These findings
support the hypothesis of this study and indicate a high potential of using DXA images in prediction of osteo-
porotic bone fracture risk.

1. Introduction

Approximately 53.6 million US adults had osteoporosis or osteo-
penia in 2010, representing 54% of the US adult population aged
50 years or older (Wright et al., 2014). Osteoporosis can cause bone
fragility fractures, thus significantly increasing the risk of morbidity
and even mortality to the patients (Campion and Maricic, 2003). The
direct cost of treating the skeletal disease has tripled from $28.1 billion
between 1998 and 2000 to $73.6 billion between 2012 and 2014 in US
alone (Wright et al., 2019). Hence, early prognosis of osteoporotic bone
fractures not only helps prevent such fractures but also helps ease the
financial burden to the patients and society.

Osteoporotic bone fractures are commonly associated with both
bone mass loss and bone quality deterioration (Am J Med, 1991). Cur-
rently, bone mineral density (BMD) is usually used to predict the risk of
osteoporotic bone fractures. Since BMD is only a measure of bone mass

loss, use of BMD alone could only describe 50–60% of osteoporotic
bone fractures (Siris et al., 2004), thus intensifying the necessity to take
into account bone quality in prediction of bone fracture risks. It is well
documented that bone quality is mainly dependent on the micro-
structural and material properties of the tissue (Seeman and Delmas,
2006). However, the advanced methodologies for assessing micro-
structural and material properties of bone in vivo are yet to emerge for
clinical applications.

Clinically, several biomedical imaging modalities (e.g. QCT, hr-
pQCT, MRI, and DXA) have been employed to assess bone fracture risks.
Among them, dual-energy X-ray absorptiometry (DXA) is the most af-
fordable and convenient biomedical imaging modality for the purpose.
DXA not only gives rise to an accurate assessment of areal BMD (Dong
and Wang, 2013), but also exhibits a potential in revealing bone mi-
crostructural features. DXA image texture analyses (Le Corroller et al.,
2012), including trabecular bone score (TBS) (Pothuaud et al., 2007),
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fractal analysis (Chappard et al., 2005), and correlation length analysis
(Dong et al., 2015; Dong et al., 2013), have shown strong correlations
between the DXA image texture and microstructural features of trabe-
cular bone. Although it is presumable that DXA images contain the
information of microstructural features, the efficacy of the current DXA
image-based techniques in extracting the microstructural properties is
still debatable. Hence, it necessitates the use of advanced image pro-
cessing techniques to extract the microstructural information from DXA
images.

In recent years, deep learning (DL) has achieved tremendous success
in the field of biomedical image processing, such as image classifica-
tion, object or lesion detection, organ and substructure segmentation,
and registration (Litjens et al., 2017). Moreover, researchers have
successfully employed DL techniques in image-based diagnosis/prog-
nosis of different diseases, such as skin cancer, Alzheimer disease, and
glaucoma (Esteva et al., 2017; Ding et al., 2019; Chen et al., 2015).
These successes have motivated us to investigate the possibility of ap-
plying DL techniques to extract the microstructural information of
trabecular bone from DXA images.

In this study, we hypothesized that DL models could be trained
using DXA images to predict major microstructural features of trabe-
cular bone. To test this hypothesis, we trained DL (convolutional neural
network) models using simulated DXA images of actual bone samples
and verified its efficacy in predicting the histomorphometric properties
of trabecular bone. We also investigated the effect of the resolution and
number of input simulated DXA images on the prediction accuracy of
the DL models.

2. Materials and methods

2.1. Preparation of trabecular bone specimens and microCT image-based
reconstruction

Seven human cadaver proximal femurs were acquired from a di-
verse pool of donors with different age, gender, and microstructural
features (Table 1). Among the femurs, six were scanned using a SkyScan
1173 microCT system with a resolution of 35 μm, and the remaining
one was scanned using a Scanco ViVaCT 40 microCT system with a
resolution of 21 μm. One thousand two hundred and forty nine
(N=1249) trabecular bone cubes (6 mm×6mm×6mm) were digi-
tally dissected out from femoral head, femoral neck, and greater tro-
chanter regions of the reconstructed proximal femurs from microCT
scans (Fig. 1).

2.2. Measurement of histomorphometric parameters

To capture the microstructural features of trabecular bone, six his-
tomorphometric parameters were measured from the trabecular bone
cubes using ImageJ (1.52 h) and BoneJ. These parameters include the
degree of anisotropy (DA), connectivity density (Conn.D), bone surface
(BS), structure model index (SMI), bone volume fraction (BV/TV), and
trabecular thickness (Tb.Th) (Table 2). Among the parameters, BV/TV
reflects the bone mass per volume, Tb.Th defines the size of trabeculae,

BS is an indicator of both trabecular size and number, Conn.D is an
indicator of the trabecular number, SMI defines whether the trabecular
structure of the bone sample is either plate-like or rod-like, and DA
measures the trabecular orientation. The Pearson correlation coeffi-
cients between these histomorphometric parameters measured from the
trabecular bone cubes were calculated to illustrate the interdependence
of the parameters (Table 3). Tb.Th, BS, and SMI were strongly corre-
lated with BV/TV, whereas DA and Conn.D exhibited much weaker
correlation with BV/TV.

2.3. Simulated DXA images

In this study, DXA images were not obtained from experimental
measurements, but from in silico simulations. Simulated DXA images
were digitally generated for each trabecular bone cube by projecting
the voxel-based model of trabecular cubes onto a plane perpendicular
to a designated projection axis using custom MATLAB (MathWorks,
Natick, MA) scripts (Patil and Ravi, 2005) (Fig. 1). Briefly, the voxel-
based model was converted into a stack of plane layers with a thickness
of one voxel. Then, the simulated DXA image was generated by sum-
ming the binarized values of voxels in each layer that fall onto each bin
(pixel) in the projection plane (Fig. 1). The greyscale value (Z) of each
pixel at the location (xi, yi) in the simulated DXA image (projection
plane) was determined by the following equation (Dong et al., 2013):

∑=
=
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where, Z(xi, yi) represents the greyscale value of the ith bin at the lo-
cation (xi, yi) in the projection plane; V(xi, yi, zk) is the summation of
binarized voxels in the bin at the location (xi, yi, zk); N is the number of
stacks of layers in the projection direction (z). The resolution of DXA
images could be readily adjusted by altering the pixel (bin) size in the
projection plane.

To investigate the effect of the resolution of simulated DXA images
on the prediction accuracy of the DL models, five different resolutions
of simulated DXA images were generated from coarse to fine by chan-
ging the bin size. The resolutions were 3.0 mm (2×2 pixels), 2.0 mm
(3×3 pixels), 1.2 mm (5× 5 pixels), 0.3 mm (20× 20 pixels), and
0.075mm (80×80 pixels), respectively.

This study also intended to investigate the effect of the number of
simulated DXA images on the prediction accuracy of the DL models.
Nine projection directions, including x, y, z, x ± 45°, y ± 45°, and
z ± 45°, were used to generate the simulated DXA images. Specifically,
as the input of the DL models, simulated DXA images were obtained
from a single projection (along either x, or y, or z-axis), triple-projec-
tions (along x, y, and z-axis), sextuple-projections (along x, y, z,
x+ 45°, y+ 45°, and z+ 45°), and nonuple-projections (along x, y, z,
x ± 45°, y ± 45°, and z ± 45°), respectively (Fig. 1).

2.4. Training of the deep learning model

A popular DL model called convolutional neural network (CNN)
(Kandi et al., 2017) was implemented in this study because CNN is the

Table 1
General information of trabecular bone samples from human cadaveric proximal femurs (N=1249).

Age (years) Sex MicroCT resolution (μm) No. of cubes DA Conn.D (mm−3) BS (mm2) SMI BV/TV Tb.Th (mm)

22 F 35 141 0.47 ± 0.11 3.31 ± 1.38 600 ± 217 2.29 ± 2.22 0.32 ± 0.21 0.32 ± 0.14
41 F 35 137 0.60 ± 0.16 2.14 ± 1.42 447 ± 299 3.76 ± 2.24 0.21 ± 0.17 0.25 ± 0.08
82 F 35 79 0.60 ± 0.12 2.94 ± 1.21 523 ± 186 3.44 ± 1.22 0.20 ± 0.10 0.25 ± 0.05
42 F 21 234 0.67 ± 0.15 2.12 ± 1.36 346 ± 177 5.72 ± 2.75 0.08 ± 0.05 0.16 ± 0.03
24 M 35 239 0.51 ± 0.14 3.72 ± 1.35 641 ± 166 2.51 ± 1.64 0.29 ± 0.15 0.28 ± 0.13
43 M 35 174 0.49 ± 0.13 3.37 ± 1.21 589 ± 212 2.71 ± 1.55 0.27 ± 0.15 0.27 ± 0.07
79 M 35 245 0.59 ± 0.15 2.63 ± 1.76 499 ± 287. 2.70 ± 2.44 0.26 ± 0.22 0.29 ± 0.12

Note: The parameters are presented as mean ± S.D.
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most widely used DL model in image related predictions. The archi-
tecture of the proposed CNN model is illustrated in Fig. 2. It comprised
of three convolutional layers, three max-pooling layers, one fully con-
nected neural network layer with 64 neurons, followed by the output
layer (Table 4). In the CNN model, we used unpadded 3× 3 convolu-
tions and 2× 2 max-pooling with stride 1 to decrease the dimension of
the feature maps, while maintaining the most important features.
During the training process, the simulated DXA images were used as the
input and each of the six histomorphometric parameters (i.e., BV/TV,
BS, Tb.Th, DA, Conn.D, and SMI) measured from the trabecular bone
cubes were used as the output (ground true). Thus, six CNN models
were trained for these six parameters separately. The mean square error
(MSE) was employed as loss function, which is defined as

∑= −
=

MSE y y1
2

( )
i i

n
i i

2
(2)

where, yi is the measured histomorphometric parameter and yi is the
predicted parameter, and n is the total number of samples (or sample
size). The stochastic gradient algorithm with the ADAM optimizer was
used to train the CNN models. Moreover, hyperparameter optimization
was performed to tune the architecture of the CNN model for the op-
timal performance. The evaluated parameters of CNN architecture in-
cluded the number of convolutional layers, the number of fully

Fig. 1. Schematic representation of dissecting out trabecular bone cubes (6mm×6mm×6mm) from the femoral head, neck and greater trochanter regions and
acquisition of simulated DXA images from the cubes. The projection directions were designated in x, y, z, x ± 45°, y ± 45°, and z ± 45°. The pixel size of the
simulated DXA images varied from 0.075 to 3.0mm by changing the bin size for the projections.

Table 2
Trabecular microstructural properties and parameters.

Microstructural features Histomorphometric parameters

Bone mass BV/TV (bone volume fraction)
Trabecular size Tb.Th (trabecular thickness) BS (bone surface)
Trabecular number Conn.D (connectivity density)
Trabecular type SMI (structure model index)
Trabecular orientation DA (degree of anisotropy)

Table 3
Pearson's correlation matrix for the six-histomorphometric parameters
(N=1000).

Histomorphometric
parameters

DA Conn.D BS SMI BV/TV Tb.Th

DA 1 −0.426 −0.420 0.366 −0.430 −0.321
Conn.D – 1 0.824 −0.497 0.575 0.281
BS – – 1 −0.775 0.876 0.595
SMI – – – 1 −0.862 −0.737
BV/TV – – – – 1 0.823
Tb.Th – – – – – 1

Note: Correlation is significant at the 0.01 level (2-tailed).

Fig. 2. The schematic architecture of CNN model for prediction of microstructural parameters of the trabecular bone cubes. Simulated DXA images were used as input
and the histomorphometric parameters as the ground truth. The convolution layers were used to extract input features and the hidden layers were used to train the DL
models with ground truth-values.
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connected layers, the number of filters and kernel size, the optimizer
functions, the learning rates, the number of epochs, and the value of
dropout (Table 4). In the end, the best parameters for the architecture
of CNN model were finalized.

The six histomorphometric parameters were normalized by using
rescaling (min-max normalization) before training the CNN models.
Rescaling is an efficient method for normalizing the data and scales the
range of trained features in [0, 1]. In addition, the rescaling keeps the
relationship among original data, which works well for the prediction
model. The rescaling was calculated by the following formula:

′ =
−

−
x x x

x x
min( )

max( ) min( ) (3)

where x is an original value, x′ is the normalized value.
The performance of CNN model was verified by using the cross-

validation approach during the training process. 80% of the simulated
DXA images and the associated histomorphometric parameters were
randomly selected from the entire dataset (N=1249) as the training
data to determine the parameters of the CNN model. Of the training
data, 80% were randomly selected to train the CNN model, whereas the
remaining 20% were used as the validation set to learn the model hy-
perparameters. Finally, the remaining 20% of data were used as the
testing data to determine the performance of the CNN models in pre-
dicting the microstructural features of trabecular bone cubes (Table 5).

All CNN models were programmed in Python using Keras library
with a TensorFlow backend and were trained on a Dell desktop com-
puter (XPS 8930, Intel Core i9-9900k 8-Core Processor, 64GB Memory,
NVIDIA® GeForce(R) GTX 1080 with 8GB GDDR5X Graphic Memory).

2.5. Data analysis

Statistical analyses were performed using JMP PRO 15 (SAS soft-
ware, United States). Linear regression analyses were implemented
between the DL model-predicted and measured histomorphometric
parameters. The prediction accuracy of the DL models was assessed
using Pearson correlation coefficient (R) of the regressions. The statis-
tical significance was considered only if p < 0.05.

3. Results

3.1. Comparison between the predicted and measured microstructural
features

The linear regression analyses indicated that strong correlations
existed between the histomorphometric parameters predicted by the DL
models using simulated DXA images and those measured directly from
the trabecular bone cubes (Fig. 3). The Pearson correlation coefficient

(R) was 0.998, 0.971, 0.976, 0.873, 0.833, and 0.802 for BV/TV, BS,
Tb.Th, SMI, Conn.D and DA, respectively, with all the p-values being
smaller than 0.0001. Using R-values as the measure of prediction ac-
curacy of the DL models, the results suggested that the DL models had
very high accuracy in predicting BV/TV, BS, and Tb.Th, whereas its
prediction accuracy was relatively lower for SMI, Conn.D and DA. In
addition, BV/TV, BS, Tb.Th, Conn.D, and DA values predicted by the DL
models appeared to have strong linear relationships with those mea-
sured directly from the trabecular bone cubes (Fig. 3). Only SMI de-
monstrated a nonlinear relationship between the model-predicted and
measured values. Nonetheless, a linear portion could be observed on
the regression curve when the SMI values ranged between 0 and 4,
suggesting that the DL models could predict SMI only within this range.

3.2. The effect of the resolution of images

Simulated DXA images with five resolutions, i.e., 3 mm/pixel,
2 mm/pixel, 1.2 mm/pixel, 0.3 mm/pixel, and 0.075mm/pixel, were
used to train the DL models. The results indicated that the prediction
accuracy of the DL models increased with increasing resolutions for all
histomorphometric parameters (BV/TV, BS, Tb.Th, Conn.D, SMI and
DA) (Fig. 4). In addition, the prediction accuracy of the DL models
converged as the simulated DXA image resolution increased, and
eventually leveled off after the resolution approached 0.3 mm/pixel (for
all parameters except for Conn.D) or even 1.0mm/pixel (for BV/TV and
DA). This observation suggests that image resolution would have a
limited effect on the prediction accuracy after it reaches to a certain
level (Fig. 4). In contrary, the prediction accuracy of the DL model for
Conn.D increased almost linearly with the image resolution.

3.3. The effect of the number of simulated DXA images on the prediction
accuracy

The prediction accuracy of the DL models increased as the input
number of simulated DXA images increased (Fig. 4). In addition, its
effect was dependent on the resolution of the simulated DXA images,
showing that increasing the number of input simulated DXA images had
very limited effects on the prediction accuracy of the DL models when
the simulated DXA image resolution was at or smaller than 1.2 mm/
pixel. Moreover, the resolution of simulated DXA images appeared to
have very limited effects on the prediction accuracy of the DL model in
predicting SMI if more than six DXA images were used as input.

4. Discussion

This study investigated the possibility of using DL models to predict

Table 4
CNN architecture features for predicting different histomorphometric parameters.

Model Kernel size Pool size Convolutional layers No of hidden layers Learning rates No. of epochs No. of filters Dropout Output

1 3×3 2×2 (8,16,32) 1 0.0001 250 64 0.2 BV/TV
Tb.Th
BS
SMI

2 5×5 2×2 (16,16,16) 1 0.0001 150 64 0.4 Conn.D
3 3×3 2×2 (8,8,8) 1 0.0001 200 64 0.5 DA

Table 5
Datasets used for training and testing the CNN model.

Training phase Inputs Outs

Training 80% randomly selected DXA images Corresponding histomorphometric parameters
80% for training 20% for verifying 80% for training 20% for verifying

Testing The remaining 20% DXA images Predicted histomorphometric parameters
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the microstructural features (i.e., BV/TV, Tb.Th, BS, Conn.D, SMI, and
DA) of trabecular bone using simulated DXA images. CNN models
trained using the simulated DXA images of 1249 trabecular bone cubes
from seven human cadaveric femurs exhibited high fidelities
(R=0.8–0.998) in predicting the microstructural features, thus sup-
porting the hypothesis that DXA images could be used to train DL
models for predicting the microstructural features of trabecular bone.

Our hypothesis was based on a large number of evidence reported in
the literature (Chappard et al., 2005; Pothuaud et al., 2000; Benhamou
et al., 2001). Pothuaud et al. (2000) reported strong correlations be-
tween the fractal dimension of two-dimensional projections from the
3D MRI image and the microstructural features of a trabecular bone.
These projections are similar to the simulated DXA images used in this
study. However, their study was limited only to predicting porosity and
connectivity, without taking into account other microstructural

parameters (e.g. DA, SMI, Tb.Th, and BS). Chappard et al. (2005) car-
ried out texture analyses of X-ray radiographs and found significant
correlations between the texture parameters and BV/TV, Tb.N (trabe-
cular number), and Tb.Sp. Apostol et al. also performed texture analysis
of 2D projection images and used multiple regression analyses to pre-
dict 3D micro-architecture from the 2D texture patterns (Apostol et al.,
2006). They found strong correlations between the estimated and
measured microstructural parameters of trabecular bone. Other pre-
vious results also showed that trabecular bone score (TBS) (Pothuaud
et al., 2007; Muschitz et al., 2015; Hans et al., 2011; Winzenrieth et al.,
2013) and variogram based stochastic analyses (Dong et al., 2015; Dong
et al., 2013) of DXA images could also provide assessments of micro-
structural parameters of trabecular bone. This study provides the first
evidence to show that DL models could be trained using DXA images to
assess microstructural properties of trabecular bone. More importantly,

Fig. 3. The regression plots of histomorphometric parameters between the DL model-predicted and measured values. High prediction accuracy was obtained for BV/
TV, Tb.Th, and BS (R=0.971–0.998), whereas the prediction accuracy was relatively lower for SMI, Conn.D and DA (R=0.802–0.873). The total number of samples
was N=1,249, with 80% as training and 20% as testing data. The resolution of DXA images was 0.3 mm. Nine simulated DXA images were used for BV/TV, Tb.Th,
BS, SMI, and Conn.D, whereas two simulated DXA images were used for DA.

P. Xiao, et al. Bone Reports 13 (2020) 100295

5



the DL models are DXA image based, thus making it more suitable for
clinical applications.

The results of this study demonstrate that the low-resolution DXA
image-based DL techniques could predict major histomorphometric
parameters of trabecular bone with much better accuracy than those
estimated using the BV/TV based regression models (Table 6). Thus, it
is presumable that the microstructural features of trabecular bone can
be extracted not only from the inherent correlations of these parameters

with BV/TV, but also from DXA image textures. Among the histomor-
phometric parameters investigated in this study, BV/TV, BS, and Tb.Th
are predicted very accurately by the DL models (R=0.976–0.998). For
BV/TV, it is not surprising because the simulated DXA images them-
selves could directly provide an accurate assessment of BV/TV. For BS
and Tb.Th, since they are strongly correlated to BV/TV (Parkinson and
Fazzalari, 2003; Boutroy et al., 2005; Greenwood et al., 2015) it is
anticipated that the prediction accuracy of the DL models for these
parameters is augmented by taking into account the inherent correla-
tion of the parameters with BV/TV.

In contrast, the prediction accuracy of the DL models for Conn.D,
DA, and SMI is relatively lower (R=0.802–0.873). Among the para-
meters, Conn.D is estimated based on the Euler characteristics of the
trabecular structure and is significantly correlated with the number of
trabeculae in the structure (Odgaard and Gundersen, 1993). The large
scattering of data around the regression curve (Fig. 3) and hampered
prediction accuracy (around 0.83) suggest that DXA images may not
provide sufficient information for the DL model to fully capture the
topological characteristics of Conn.D in the trabecular bone samples.

Next, DA is an overall measure of trabecular orientation in bone,
which is estimated using Mean Intercept Length (MIL) method
(Odgaard, 1997; Harrigan and Mann, 1984). This study shows that the
prediction accuracy of the DL model for DA is reasonably good but

Fig. 4. Effect of the number and resolution of DXA images on the prediction accuracy of the DL models. The total number of samples was N=1249 for developing
the DL models for all the parameters, with 80% as training and 20% as testing data.

Table 6
Comparison of prediction accuracy (R) between BV/TV based regression models
and DXA image based DL models.

Trabecular
microstructural
features

Regression models with BV/TV as independent
variable

DXA
image
based DL
modelsGreenwood

et al. (2015)
Kim and
Henkin
(2015)

Kabel
et al.
(1999)

This study

Tb.Th 0.760 0.18 – 0.823 0.976
SMI 0.648 0.74 – 0.876 0.873
Conn.D – 0.76 0.200 0.575 0.832
DA 0.265 – – 0.430 0.802
BS – – 0.842 0.876 0.971
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limited to around 0.8, suggesting that the DL model can predict, to
some but not full extent, DA in the trabecular bone samples (Fig. 3). A
possible reason is that since trabecular bone usually has an orthogon-
ally anisotropic structure, it necessitates the alignment of the primary
axes of the samples with a common coordinate system in order to make
DXA projections consistent with the primary directions for all samples.
If mismatch of the primary axes of trabecular cubes with the cube co-
ordinates exists, increases of sample size would tend to intensify the
uncertainties and blunt the sensitivity of the DL model to predict DA.

In addition, the nonlinear relationship between the DL model pre-
dicted and the measured SMI values suggests that the prediction by the
DL model would be inaccurate when SMI values are outside the range of
0 to 4 (Fig. 3). SMI is a structural index showing the plate- or rod-like
structures, which varies from 0 (plate-like), to 3 (rod like), and to 4
(sphere like) based on the assumption that trabecular surfaces are
convex (Salmon et al., 2015). Due to this assumption, SMI becomes
negative when the surfaces are concave, thus making it difficult to
define the trabecular components with concave surfaces. Therefore,
SMI values outside the range of 0 to 4 actually do not have physical
meaning in defining trabecular structures. These intrinsic limitations of
SMI could be a major reason for loss of prediction accuracy by the DL
models. However, a strong linear relationship between the DL model
predicted and measured values does exist when SMI is within the range
from 0 to 4, thus suggesting that the DL model still can be used to
predict SMI if the outliers outside the range are ignored. Moreover, it is
noteworthy that the prediction accuracy of the DL model for SMI was
similar to that obtained from the BV/TV based regression model
(Table 6). This observation suggests that the prediction of SMI by the
DL model is most likely depending solely on the inherent correlation of
SMI with BV/TV.

This study shows that the resolution of simulated DXA images is
directly related to the prediction accuracy of the DL models for as-
sessment of all six histomorphometric parameters, exhibiting increased
improvements in the prediction accuracy as the resolution of simulated
DXA images is increased. However, no significant improvements would
be expected after the image resolution is better than 0.3 mm/pixel and
high prediction accuracies are still retained as long as the image re-
solution is less than 1.0 mm/pixel. This observation suggests that the
sensitivity of DXA image based DL model may saturate after the image
resolution exceeds a certain level. Since the resolution of clinical DXA
images is usually around 1.0mm/pixel and could be up to 0.3mm/pixel
(Boudousq et al., 2005), the results of this study suggest that the clinical
DXA images may have the required image resolution for the DL models
to capture the major microstructural features of trabecular bones. This
finding is important because it ratifies, for the first time, the use of
clinical DXA images in predicting the microstructural features of tra-
becular bones. Since clinical DXA can also provide accurate assessment
of BMD, such understanding would facilitate development of advanced
DL technologies for accurate prediction of osteoporotic bone fractures
using DXA, the most affordable and convenient imaging modality for
the purpose.

Moreover, this study also shows that the number of input simulated
DXA images has a remarkable effect on DL model prediction of mi-
crostructural features of trabecular bone, especially when the simulated
DXA image resolution is low (Fig. 4). From the computer graphics
perspective, more images in different projections would provide more
information on the spatial characteristics of trabecular structures, thus
making it easier for the DL models to capture the features. However, its
effect appears to diminish when the simulated DXA image resolution
improves. This observation implies that the higher the simulated DXA
image resolution, the more details of trabecular microstructure would
be exposed, which would cancel out the information that could be
provided to the DL models by increasing the number of input simulated
DXA images.

There are several limitations of this study. Firstly, the sample po-
pulation was limited in this study. We collected proximal femurs only

from seven donors. Although different ages and genders are included,
this small donor population is not necessarily representative of the
entire human population. Nonetheless, the results of this study are still
valid to prove the hypothesis that DXA image based DL models can
assess the major histomorphometric properties of trabecular bone with
high accuracies. Secondly, only six histomorphometric parameters (i.e.,
BV/TV, Tb.Th, BS, Conn.D, SMI, and DA) were examined in this pre-
liminary study, which are not inclusive of all histomorphometric
parameters, such as Tb.Sp, Tb.N, and fractal dimensions. However, we
believe that the selected parameters are representative of major mi-
crostructural features of trabecular bone, thus sufficient for testing the
hypothesis of this study. Thirdly, the input data (simulated DXA
images) used in this study for the DL models were not acquired from
actual DXA measurements, but via computational simulations. In ad-
dition, only trabecular bone cubes were examined in this study, without
taking into account the effect of cortical bone on DXA measurements.
Thus, the simulated DXA images may not be fully representative of
clinical cases.

5. Conclusion

This study is the first attempt ever to use DL techniques to predict
the microstructural features of trabecular bone using simulated DXA
images. The DL models demonstrated a high fidelity in predicting mi-
crostructural features of trabecular bone, thus verifying the hypothesis
of this study. In addition, the results of this study indicate: (1) Even
with the simulated DXA images of a resolution of 1.0 mm/pixel the DL
models could predict the major microstructural features of trabecular
bone with reasonable accuracies. (2) The number of input simulated
DXA images has very limited effects on the prediction accuracy of the
DL models if the resolution of the DXA images is better than 0.3 mm/
pixel. These findings would help develop DXA image based DL tech-
niques to assess both bone quantity and microstructural features, thus
ensuring more accurate prognosis of bone fracture risks.
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