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Prediction models for hormone receptor status in female breast
cancer do not extend to males: further evidence of sex-based
disparity in breast cancer
Subarnarekha Chatterji 1,2, Jan Moritz Niehues3,4, Marko van Treeck3,4, Chiara Maria Lavinia Loeffler 3,4,5, Oliver Lester Saldanha3,4,
Gregory Patrick Veldhuizen3,4, Didem Cifci3,4, Zunamys Itzell Carrero 3, Rasha Abu-Eid 1,2,6, Valerie Speirs 1,2✉ and
Jakob Nikolas Kather3,4,5,7

Breast cancer prognosis and management for both men and women are reliant upon estrogen receptor alpha (ERα) and
progesterone receptor (PR) expression to inform therapy. Previous studies have shown that there are sex-specific binding
characteristics of ERα and PR in breast cancer and, counterintuitively, ERα expression is more common in male than female breast
cancer. We hypothesized that these differences could have morphological manifestations that are undetectable to human
observers but could be elucidated computationally. To investigate this, we trained attention-based multiple instance learning
prediction models for ERα and PR using H&E-stained images of female breast cancer from the Cancer Genome Atlas (TCGA)
(n= 1085) and deployed them on external female (n= 192) and male breast cancer images (n= 245). Both targets were predicted
in the internal (AUROC for ERα prediction: 0.86 ± 0.02, p < 0.001; AUROC for PR prediction= 0.76 ± 0.03, p < 0.001) and external
female cohorts (AUROC for ERα prediction: 0.78 ± 0.03, p < 0.001; AUROC for PR prediction= 0.80 ± 0.04, p < 0.001) but not the male
cohort (AUROC for ERα prediction: 0.66 ± 0.14, p= 0.43; AUROC for PR prediction= 0.63 ± 0.04, p= 0.05). This suggests that subtle
morphological differences invisible upon visual inspection may exist between the sexes, supporting previous
immunohistochemical, genomic, and transcriptomic analyses.
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INTRODUCTION
Male breast cancer (MBC) is a rare condition that accounts for
approximately 1% of all breast cancer cases worldwide1,2. Its
clinical management generally follows established strategies
evidenced from female breast cancer (FBC). However, this may
not be an optimal approach, as mounting evidence shows sex-
specific differences in the molecular make-up, prognostic factors,
and clinical demographics in BC3–5.
For both sexes, prognostication and treatment decision making

is dependent upon the expression profiles of the nuclear hormone
receptors estrogen receptor alpha (ERα) and progesterone
receptor (PR), currently determined by immunohistochemistry.
High expression of ERα and PR are both predictors of improved
outcome in MBC, associated with improved overall and disease-
free survival, older age of diagnosis, low mitotic index, and lower
pathological stage6–13. The expression of these receptors is
notably different between MBC and FBC. Contrary to females,
BC in males is almost universally ERα positive (95% in MBC vs. 75%
in FBC). PR positivity is observed in 82% of MBC and 65% of FBC
cases1,5,6,14,15.
Chromatin binding characteristics of ERα and PR differ by sex. In

MBC, PR binding sites often lack ERα, while in females, PR can
modulate ERα binding16. Adding to this evidence, a hierarchical
clustering study using immunohistochemical data showed sepa-
rate clusters of ERα and PR independent of each other in MBC.
However, the opposite was observed in FBC, where ERα and PR

profiles clustered together17. Additionally, mathematical model-
ling of immunohistochemical staining has failed to show any
continuous dependence effect of PR on ERα for MBC, in direct
contradiction to FBC18.
Although sex-specific molecular differences in breast cancer

have been demonstrated in multiple studies, there are no obvious
morphological differences between MBC and FBC following visual
inspection of haematoxylin and eosin (H&E) stained BC tissue
sections. Consequently, MBC is classified and reported in the same
way as FBC1,19, despite evidence that the well-known molecular
subtypes in FBC may not be reflected in males. Such a non-specific
approach is discordant with the differences in the distribution of
histological subtypes. This also calls into question the existence of
morphological disparities that manifest due to the sex-specific
regulatory nature of BC which are not obvious to a human
observer but may be elucidated using deep learning (DL)
methods.
H&E-stained tissue sections are the primary diagnostic tool for

cancer patients with solid tumours, and are commonly available
and accessed with relative ease20,21. Recent work has shown that
digitally scanned whole slide images (WSIs) of H&E-stained slides
contain a wealth of previously hidden information which are not
obvious to a human observer, but may be elucidated using
computational models and could be of prognostic value22–24. The
development of such artificial intelligence (AI) based algorithms
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means it is now possible to extract and quantify this
information23–25.
Convolutional neural networks (CNNs) have been able to

predict a range of clinical characteristics in FBC, such as grade,
histological subtype, PAM50 intrinsic subtype, and ERα status26–28

directly from H&E-stained WSIs. Historically, biomarker prediction
in computational pathology has employed the training of DL
networks from pathological tumor annotated regions on the
whole slide images. Only this region-of-interest (ROI) is then tiled,
with each tile retaining the “tumor” annotation. Thus, “healthy”
tissue or background is excluded from the analysis. However, this
method may not be optimal due to two reasons. First, the ROI may
contain regions that are not morphologically important for the
target prediction20,29–31. Second, the tissue architectures sur-
rounding the ROI that get rejected as background tiles may
contain essential information for improved performance of the
prediction model. To address these issues, our study employed a
weakly supervised learning pipeline using slide-level annotations
of biomarker status, which consider all types of tissue architec-
tures in the WSI without any information loss and can be accessed
with relative ease from patient records. For tile-to-slide level
aggregation, we used a multiple instance learning pipeline with an
attention component (attMIL)32.
In view of the evident sex-based differences of BC, we evaluated

the efficacy of attMIL pipelines in predicting ERα and PR status in
both MBC and FBC patients aiming to provide evidence of
possible morphological differences between the sexes. We
hypothesized that sex-based molecular differences may manifest
in the morphological features contained in the tissue architecture
which could be predictive of the hormone receptor status of the
tumor in H&E-stained slides.

RESULTS
attMIL models can predict ERα and PR status from H&E WSIs
in FBC
We investigated whether attMIL-based DL models can predict
hormone receptor status for ERα and PR in FBC WSIs. To do this,
we used patient-level training and 5-fold cross-validation on the
TCGA-BRCA FBC cohort (n= 1085) with and without colour
normalisation. With normalisation, our predictions for ERα and
PR showed mean area under the receiver operating characteristics
(AUROCs) > 0.6 (0.86 ± 0.02, p < 0.001 and 0.76 ± 0.03, p < 0.001),
respectively. Without normalisation, the respective AUROCs
obtained were very similar: 0.86 ± 0.05 (p < 0.001) and 0.78 ± 0.02
(p < 0.001).
Next, we tested the hormone receptor prediction models on

FBC WSIs independently from the training set by deploying them
on a validation cohort of 192 FBCs. Performance of the models
was assessed by the detection ability of both ERα and PR. With
normalisation, the AUROCs were 0.78 ± 0.03 (p < 0.001) for ERα
and 0.80 ± 0.04 (p < 0.001) for PR. Very similar AUROCs were
returned without normalisation, which were 0.78 ± 0.05 (p < 0.001)
and 0.76 ± 0.03 (p < 0.001) for ERα and PR, respectively.
Collectively, these data show that attMIL-based prediction

models for ERα and PR status in FBC can be predicted directly
from H&E-stained WSIs. AUROCs for FBC cohorts are shown in
Fig. 1a, b, d, e, g, h, j, k. Full accuracy metrics are provided in
Supplementary Table 1.

Prediction models trained on FBC images do not generalize to
MBC
To test whether the attMIL-based prediction models are sex-
invariant, we deployed the previously trained DL models on a
combined set of MBC cases from 7 different centres (n= 198). For
both ERα and PR, large performance drops were observed both
with and without colour normalisation. With normalisation,

AUROCs of 0.66 ± 0.14 (p= 0.43) and 0.63 ± 0.04 (p= 0.05) were
returned, respectively. Without normalisation, AUROCs returned
were very similar: 0.69 ± 0.09 (p= 0.08) and 0.62 ± 0.03 (p < 0.05)
for ERα and PR, respectively. This indicated that the discriminatory
power of prediction models for both ERα and PR trained on FBC
images were poor when applied to males. ROCs for the MBC
cohort are shown in Fig. 1c, f, i, l. Accuracy metrics are provided in
Supplementary Table 1.
We qualitatively explored whether there were any constituent

cohorts with especially low performance for either marker driving
the overall underperformance of the prediction models in the
combined MBC cohort. This was done by creating density plots for
each target model for each cohort to see whether the distribution
of the prediction scores was similar between the cohorts. The ERα
prediction scores for the TCGA and PR prediction scores for BCNTB
cases exhibited left-skewed distributions, indicating that the
majority of the cases were accurately classified as ERα
positive (for TCGA) and PR positive (for BCNTB) with high
confidence. The prediction score distributions in the remaining
cohorts were similar, and there was no evident skewing in any of
the cohorts that could explain the overall subpar performance of
the ERα and PR prediction models in the combined MBC cohort.
Distribution of prediction scores in each MBC cohort have been
shown in Supplementary Fig. 1.

Hormone receptor prediction models in FBC are sensitive to
the target they were trained to detect
We evaluated the sensitivity of DL-based prediction models to the
biomarker target they were trained to detect by applying an ERα
prediction model to detect PR status and vice versa on the
external validation dataset of FBC. The AUROC for the ERα model
detecting PR status was 0.56 ± 0.03 (p= 0.45). For the PR
model detecting ERα status, it was 0.60 ± 0.03 (p= 0.06). Neither
model achieved statistical significance nor exceeded the 0.6
baseline AUROC, indicating poor discriminatory power for the
target they were not trained to detect. Figure 2 shows the ROCs
for both experiments.

attMIL model predictions for ERα and PR positivity are
validated by immunohistochemistry in FBC but not in MBC
To better understand how the attMIL-based prediction models
make decisions, we investigated the spatial distribution of
prediction and attention scores. For ERα and PR positive cases,
we also explored whether these distributions aligned with
immunohistochemistry, in both FBC and MBC WSIs. These scores
for ERα and PR were visualized separately on matched immuno-
histochemistry (IHC) WSIs. We also examined the spatial distribu-
tion of prediction and attention scores for ERα and PR negative
FBC and MBC cases as well.
In FBC, the spatial resolution of the prediction score heatmaps

were not focused on any specific region of the WSIs, irrespective
of hormone receptor status. They represented the probability of
each constituent tile being classified as positive or negative,
resulting in a diffuse colour map (red or blue). In MBC, however,
certain regions in the WSIs were predicted to be of the incorrect
class, even if the overall classification matched the ground truth.
These overall observations were true for either positivity or
negativity of both target markers. This was especially evident for
the PR model where large areas of the WSIs were predicted to be
of the incorrect class in both the positive and negative examples.
Representative examples of prediction score maps for ERα/PR
positive cases in FBC are shown in Fig. 3b, e for ERα and PR
prediction, respectively. In MBC, similar examples are shown in
Fig. 3i, l for ERα and PR prediction. Prediction score maps for FBCs
negative for ERα and PR can be found in Supplementary Fig. 2b, d,
respectively. In MBC, similar examples are shown in Supplemen-
tary Fig. 2g, i for ERα and PR prediction, respectively.
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ERα Status – with norm. 
(TCGA-BRCA) 

AUC = 0.86 ± 0.02

ERα Status – with norm. 
(FBC EXT-VAL) 

AUC = 0.78 ± 0.03

ERα Status – with norm. 
(MBC) 

AUC = 0.66 ± 0.14

PR Status – with norm.
(TCGA-BRCA) 

AUC = 0.76 ± 0.03

PR Status – with norm. 
(FBC EXT-VAL) 

AUC = 0.80 ± 0.04

PR Status – with norm.
(MBC) 

AUC = 0.63 ± 0.04

a b c

g h i

ERα Status – without norm. 
(TCGA-BRCA) 

AUC = 0.86 ± 0.05

ERα Status – without norm. 
(FBC EXT-VAL) 

AUC = 0.78 ± 0.05

ERα Status – without norm. 
(MBC) 

AUC = 0.69 ± 0.09d e f

PR Status – without norm. 
(TCGA-BRCA) 

AUC = 0.78 ± 0.02

PR Status – without norm. 
(FBC EXT-VAL) 

AUC = 0.76 ± 0.03

PR Status – without norm.
(MBC) 

AUC = 0.62 ± 0.03j k l

Fig. 1 AUROCs of prediction models for ERα and PR. Biomarker prediction models in Female Breast Cancer (FBC) internal (TCGA-BRCA),
external validation cohorts, and MBC cohort for ERα prediction model (a–c) with and (d–f) without normalisation; PR prediction model (g–i)
with and (j–l) without normalisation. AUROCs indicate a model’s discriminatory power as follows: 0.5= no discrimination; >0.5 to ≤0.7= poor;
>0.7 to ≤0.8= acceptable; >0.8 to ≤0.9= excellent; >0.9= outstanding.
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The heatmaps showing the distribution of attention scores were
more specific to certain regions in each WSI. In ERα and PR
positive FBC, high attention regions were concentrated on tumor
tissue for both markers, although to a lesser extent for PR.
Matched IHC WSIs showed that the attention score maps are
concordant with the staining patterns, especially for ERα. For PR,
the attention score distribution was more diffuse than in the ERα
map, and the corresponding PR IHC staining revealed less
positivity compared to ERα. In hormone receptor positive MBC,
high attention scores for ERα were limited to the tumor tissue,
while the surrounding stromal regions received low attention
scores. Low attention scores were returned for some areas in the
tumor region as well. However, unlike in FBC, a clear concordance
was not seen between high attention scores and receptor
positivity, as some low attention regions also had ERα positivity.
For PR, the entire tumor region had low attention scores. No
concordance was observed between attention score patterns and
IHC staining for PR. In hormone receptor negative FBC, high
attention scores for ERα negative regions were quite diffuse, while
those in areas of PR negativity were sharper. The opposite pattern
was observed in hormone receptor negative MBC. Representative
examples of attention score maps for hormone receptor positive
cases in FBC are shown in Fig. 3c, f for ERα and PR prediction,
respectively. In MBC, similar examples are shown for ERα and PR
prediction (Fig. 3j, m). Attention maps showing FBC ERα and PR
negative cases can be found in Supplementary Fig. 2c, e,
respectively. In MBC, similar examples are shown for ERα and PR
prediction (Supplementary Fig. 2h, j, respectively). The H&E-
stained whole slide images (WSI) used for these predictions are
shown in Fig. 3g, n for hormone receptor positive FBC and MBC,
respectively. Supplementary Fig. 2a, f show the H&E-stained WSI
examples for hormone receptor negative FBC and MBC,
respectively.

Tissue architectures with highest attention scores are
concordant with receptor expression profiles in both sexes
We hypothesized that the histological features associated with ER
and PR expression profiles should be similar and investigated
whether the prediction models recognised this for both targets. To
do this, image tiles with the highest attention scores were
identified and collated for each target’s positive and negative
classes for FBC internal and external validation cohorts, and the
MBC cohort. We observed that the features returning top

attention scores for both targets were not only similar but were
also conserved for both sexes. Both ERα and PR positive tiles
displayed clearly differentiated tumor and stromal regions, while
ERα and PR negative tiles showed poorly differentiated cells, high
levels of immune infiltration, and necrosis. Collated tiles with top
attention scores for both targets in both FBC and MBC cohorts are
shown in Fig. 4.

attMIL-based prediction models are invariant to colour
normalisation and do not exhibit domain shift
AUROC values can sometimes misrepresent the performance of a
prediction model as they do not provide any information
regarding domain shift33. To investigate whether either of our
prediction models contained domain shift, we visualized the
distribution of the model prediction scores for each hormone
receptor target in all patient cohorts. Prediction scores for both
targets were similarly distributed and free of domain shift for each
cohort, regardless of Macenko normalisation. Prediction score
distributions for each target in each cohort both with and without
normalisation are summarized in Supplementary Figs. 3, 4.

DISCUSSION
Applications of DL-based techniques in BC pathology have been
studied since 2010, including diagnostic (e.g., detection of primary
tumor tissue and metastatic deposits, grading, subtyping, assess-
ment of tumor microenvironment etc.), prognostic (e.g., assess-
ment of tumor morphological features with respect to outcome),
and predictive (e.g., assessment of therapy response in relation to
morphological features) targets/biomarkers34. Concerning predic-
tion of hormone receptor status, patch-based28, and tissue
microarray-based27 algorithms have been explored with varying
degrees of success. Multiple instance learning (MIL) without an
attention component on full-face WSIs has been used to
determine ERα status achieving an AUROC of 0.92 – a considerable
improvement over the patch-based approach26. These techniques
could be insightful in understanding the biological behaviour of
BC in males and females. However, these have previously been
unexplored for that purpose.
We aimed to investigate the generalizability of DL-based

techniques in MBC, specifically exploring their applicability across
both sexes. Our hypothesis was rooted in the notion that the
distinct binding characteristics of ERα and PR could manifest as

PR model used to predict ERα status
AUC = 0.56 ± 0.03

ERα model used to predict PR status
AUC = 0.60 ± 0.03a b

Fig. 2 AUROCs of experiments designed to test sensitivity of each prediction model on different nuclear hormone receptors. AUROCs
achieved on deploying (a) PR prediction model to detect ERα and (b) ERα prediction model to detect PR. AUROCs indicate a model’s
discriminatory power as follows: 0.5= no discrimination; >0.5 to ≤0.7= poor; >0.7 to ≤0.8= acceptable; >0.8 to ≤0.9= excellent;
>0.9= outstanding.
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morphological variances. Consequently, we hypothesized that if
there were no substantial variations in morphological features
between FBC and MBC, an attMIL model trained on an FBC dataset
should perform equally well and exhibit similar accuracy in
predicting ERα and PR status in an MBC dataset. Conversely, if

there were discernible sex-specific differences in morphological
features, predictive models trained on FBC images would likely
demonstrate suboptimal performance in an MBC dataset.
We used the attMIL approach with the Retrieval with Clustering-

guided Contrastive Learning (RetCCL) based feature extractor to

H&E ATT IHC

H&E ATT IHC

(a) IHC WSI - ERα (b) Prediction Map - ERα (c) Attention Map - ERα

(d) IHC WSI - PR (e) Prediction Map - PR (f) Attention Map - PR

0 1 0 1
Prediction Score 
for Positivity 

Attention Score 

(h) IHC WSI - ERα (i) Prediction Map - ERα (j) Attention Map - ERα

(k) IHC WSI - PR (l) Prediction Map - PR (m) Attention Map - PR

(g) H&E WSI

(n) H&E WSI

Sex: Female

Sex: Male

H&E ATT IHC

H&E ATT IHC

0 1 0 1
Prediction Score 
for Positivity 

Attention Score 
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predict ERα and PR in both MBC and FBC. Created on a ResNet50
backbone with a self-supervised learning (SSL) approach, RetCCL
uses unlabelled histopathological image data on a large scale to
learn universal features that can then be applied to subsequent
patch-by-patch WSI retrieval tasks without requiring additional
fine tuning. This patch-by-patch retrieval method allows identifi-
cation of regions-of-interest within each WSI that demonstrate
high degrees of similarity with the patches from the query WSI.
Consequently, this can generate spatially resolved prediction
scores within each WSI allowing visual interpretation of the
results35,36.
Prediction models were trained on FBC images from the TCGA-

BRCA dataset, and their performances were investigated on
external FBC and MBC cohorts both with and without Macenko

colour normalisation. When applied to the male cohort, perfor-
mance drops were observed in both models by a large margin
irrespective of normalisation status, indicating that ERα and PR
status in MBC cannot be predicted with confidence using attMIL
models trained on FBC images. In fact, model performances for
both ERα and PR prediction in all three cohorts remained invariant
to colour normalisation. This disparity in model performances
between the sexes supports the growing recognition that male
and female BC differs at many levels, including genetic,
transcriptomic, and epigenetic3,16–18,37, and that these differences
may have subtle histopathological manifestations.
In FBC, we showed that our ERα model achieved an AUROC of

0.86 during internal validation and was generalizable to the
external FBC cohort. Previous research has suggested that

Fig. 3 Heatmaps showing spatial resolution of attention and prediction scores in ERα and PR positive FBC and MBC WSIs, their
concordance with corresponding IHC staining patterns, and the H&E WSIs from which these heatmaps were generated. FBC (top) and
MBC (bottom) prediction models with respective adjacent views of (a, h) ERα IHC WSIs, (b, i) prediction score maps for ERα, (c, j) attention
score maps for ERα, (d, k) PR IHC WSIs, (e, l) prediction score maps for PR, (f, m) attention score maps for PR, and (g, n) the H&E-stained WSIs
from which these score maps were generated, along with magnified views of representative tiles for high and low attention regions with their
corresponding regions in the IHC and H&E-stained WSIs. The attention maps showcase the relevant morphological features with high
attention regions in gold and low attention regions in purple, irrespective of the final prediction. The prediction maps highlight the relevance
of each tile in making a prediction of the target receptor positivity represented in red, and negativity in blue. The statuses of both target
receptors were predicted correctly in the FBC WSI, and the high attention regions were concordant with receptor positivity for both ERα and
PR when matched with the IHC WSI. In the MBC WSI, the overall ERα status was predicted correctly although certain areas within the WSI were
predicted to be positive. Furthermore, high attention regions had no clear concordance with the IHC staining pattern. The same observation
was made in the PR attention score pattern as well, and the overall prediction made was also incorrect. The FBC WSIs shown in this image are
serial sections of the following order: (1) PR IHC, (2) ERα IHC, and (3) H&E-stain. The order of the serial sections of the MBC WSIs is: (1) H&E-
stain, (2) ERα IHC, and (PR) PR IHC.

ER Positive
(FBC)

ER Positive
(MBC)

ER Negative
(MBC)

ER Negative
(FBC)

PR Positive
(FBC)

PR Positive
(MBC)

PR Negative
(MBC)

PR Negative
(FBC)

a b c d

e f g h

Fig. 4 Tiles with top attention scores for ERα and PR prediction in FBC and MBC. Representative examples of tiles with top attention scores
in FBC and MBC respectively for the prediction of (a, b) ERα positivity, (c, d) ERα negativity, (e, f) PR positivity, and (g, h) PR negativity. The area
of each tile shown is 256 × 256 μm2.
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AUROCs approaching 0.9 and exhibiting strong generalizability are
highly discriminative20,38–40. This standard of performance was
achieved by the ERα prediction model in FBC. The prediction
model for PR status did not perform to this standard, although PR
was predictable during both internal and external validation with
statistical significance. This could indicate that either the PR
prediction model failed to learn to specifically focus on tumor
tissue, or that the tissue architecture surrounding tumor regions
could influence making a prediction of PR status. It is worth noting
here that for both targets, our attMIL models were free of domain
shift in all cohorts, and invariant to Macenko colour normalisation.
Because MBC is rare, we could not accrue sufficiently large

numbers of cases from a single centre for this analysis. Hence, we
had to obtain these from 7 different sources. Most were ERα-
positive, while 7 out of the 198 cases we analysed were negative.
This expression pattern is typical in MBC14. Unfortunately, this
limited our ability to perform AUC by source of image as some of
the constituent cohorts were small with <25 cases each and
lacked sufficient ground truth, i.e., ERα negativity. However, we
qualitatively examined whether the distribution of the prediction
scores for both target markers in MBC were similar in each source.
The ERα prediction scores for the TCGA and PR prediction scores
for BCNTB cases had left-skewed distributions showing that most
of the constituent cases were correctly predicted as ERα positive
(for TCGA) and PR positive (for BCNTB) with high confidence. It is
also important to note that both the BCNTB and TCGA cohorts had
small numbers of cases (n= 3 and n= 12, respectively, after
excluding cases with incomplete data). The distribution of
prediction scores for both markers in the rest of the cohorts were
relatively similar, and we did not observe particularly low
performances in any one cohort that could have driven the
overall poor performance of the ERα and PR prediction models in
the MBC cohort. Obtaining accuracy metrics by source of images
when the contributing cohorts are small is challenging, and this
has been recognized previously when quantifying site-specific
signatures in the TGCA WSI database41. Swarm learning may be
one way to overcome this in future studies as recently
demonstrated42, however this has not yet been applied to rare
cancers where numbers are limiting.
To ensure the quality and sensitivity of the models towards their

respective biomarkers, we conducted a quality control exercise by
applying prediction models trained to detect ERα on PR-positive
cases, and vice versa, in the external FBC validation cohort. Our
approach was grounded on the hypothesis that a reliable
biomarker prediction model should exhibit specificity by solely
identifying the intended target and not detecting other biomar-
kers, irrespective of their subcellular localization of expression. In
this regard, our results showed exquisite sensitivity; the ERα
prediction model had poor power of discrimination in detecting
PR status and the reverse was also true. Given that both ERα and
PR are classified as nuclear receptors, it is plausible that a
predictive model developed for one receptor could potentially
identify the other receptor as well. However, our data refuted this,
providing further evidence that DL-based techniques are able to
detect subtle morphological changes which cannot be distin-
guished by a human observer.
In both FBC and MBC, ERα and PR positivity is associated with

favourable outcomes. ERα and PR negativity, on the other hand,
tends to be associated with features of aggressive disease, e.g.,
poor differentiation, high degree of immune infiltration, and
necrosis. We showed that the morphological features that returned
the highest attention scores for positive or negative expression of
ERα and PR were congruent with the existing pathology. This was
true for both sexes. Our algorithm was robust against artefacts
(e.g., folding, tearing, pathologists’ ink) in the WSIs, returning low
attention scores for both ERα and PR prediction. However, we
sporadically observed high attention scores being returned for
morphological features external to the breast tissue, such as the

skin edge. In addition, while ERα expression is typically dichot-
omised as a binary variable, updated guidelines from the American
Society of Clinical Oncology and College of American Pathologists
(ASCO-CAP) propose that breast tumours with low levels of ERα
expression (1–10%) be reported as ER-low-positive43. Indeed,
recent data has demonstrated that these tumours behave like
ERα-negative breast cancer and are a clinically and biologically
distinct subgroup44. This requires consideration in future studies.
We acknowledge that our study was limited by the lack of an

MBC validation cohort. A further limitation of our study was not
evaluating HER2 (human epidermal growth factor receptor 2),
which is part of the clinical management workflow in BC. HER2
expression is quantified primarily by IHC with scores of 0/1+
(negative), 2+ (equivocal) and 3+ (positive). Cases with equivocal
expression need to undergo fluorescent/bright-field in-situ
hybridization assays (ISH) to confirm gene amplification, which
then ultimately classifies these cases as positive or negative45.
While an important biomarker in BC, HER2 poses a challenge for
DL-based predictions directly from H&E-based images. Its expres-
sion is seen in around 15% of women45, and is especially rare in
males (0–9%)1. Furthermore, most FBC clinical datasets with HER2
data include equivocal cases that lack confirmatory ISH testing.
Therefore, they introduce a degree of ambiguity in the ground
truth. This is exacerbated in MBC due to the small number of cases
that express HER2. Taking these challenges into account, testing
the predictability of HER2 status in BC of either sex using DL-based
techniques would require improved curation of datasets, large
multi-centric cohorts, and multimodal approaches which takes
both proteomic and genetic data into account.
To conclude, we showed that attMIL workflows have the

potential to predict ERα status in FBC with accuracy levels that are
clinically relevant, and that spatial resolution of attention scores is
concordant with IHC staining patterns of both ERα and PR.
However, attMIL-based prediction models trained on FBC images
were ineffective when applied to MBC datasets. These results align
with the growing recognition that sex can differentially influence
the behaviour of cancers in general, and breast cancer in
particular46,47. Our findings support previous evidence that male
and female BC are different on many levels, and suggest that
subtleties in BC tissue architecture that are invisible to the human
eye but detectable by DL may also be sex specific.

METHODS
Ethical approval and consent to participate
This study is a retrospective analysis of digital images of
anonymized archival tissue samples. The experiments in this study
were carried out according to the Declaration of Helsinki and the
International Ethical Guidelines for Biomedical Research Involving
Human Subjects by the Council for International Organizations of
Medical Sciences (CIOMS). The Ethics Board at the Medical Faculty
of the Technical University of Dresden approved of the overall
analysis in this study. The patient sample collection in each cohort
was separately approved by the respective institutional ethics
boards as follows: the Leeds (West) Research Ethics Committee (06/
Q125/156), NHS Grampian Tissue Bank Committee (TR000292),
Greater Glasgow Health Board (TR000269), Northern Ireland
Biobank (NIB22-0007), Wales Cancer Biobank (22-005), and Breast
Cancer Now Tissue Bank Access Committee (TR249). All patients
provided written informed consent.
Two cohorts of FBC patients were used: a training set from The

Cancer Genome Atlas – Breast Cancer (TCGA-BRCA) dataset
(n= 1085), followed by a combined validation set of FBC cases
(n= 192) compiled from: Breast Cancer Now Tissue Bank (n= 58)
and the Clinical Proteomic Tumor Analysis Consortium – Breast
Cancer (CPTAC-BRCA) dataset (n= 134). For MBC, 6 cohorts were
used, totalling 245 cases from: the Male Breast Cancer Consortium
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(MBCC; n= 126), NHS Greater Glasgow and Clyde (NHSGGC)
Biorepository (n= 40), NHS Grampian (NHSG) Biorepository
(n= 21), Northern Ireland Biobank (NIB; n= 25)48, Wales Cancer
Biobank (WCB; n= 10)49, Breast Cancer Now Tissue Bank (BCNTB;
n= 11), and TCGA-BRCA dataset (n= 12). The initial combined
cohort of 245 MBC cases were manually screened for ERα and PR
status. Only cases with known ERα and PR status were included
(n= 198). MBC cases were scored using the Allred method50, with
scores ≥3 considered positive. FBC scores came from a range of
sources in the form of binary values that did not have defined cut-
offs for all cases.

Image preprocessing
All H&E-stained WSIs used in our analyses were pre-processed
following the “Aachen protocol for deep learning histopathol-
ogy”51. All WSIs underwent tessellation into tiles with edge lengths
of 256 μm, and pixel area of 224 px * 224 px with an effective
resolution of 1.14 μm/px. Blurry tiles and tiles containing back-
ground were removed automatically using the canny edge
detection technique within the OpenCV package in Python52.
These tiles were then colour-normalised following the Macenko
method to remove any bias arising from differences in staining
between cohorts53. We did not apply any manual annotations and
our analysis was not restricted to the tumor region alone. All
models were trained solely on the basis of slide-level target labels.

Subsequent steps of feature extraction, model training, and
deployment were performed on both colour-normalised and
unnormalised tiles.

Experimental setup
Attention-based multiple instance learning (attMIL)54,55 models
were used to predict ERα and PR binary classification status in
both FBC and MBC patient samples.
Models were trained on FBC H&E-stained WSIs from the TCGA-

BRCA cohort (n= 1085) using biomarker-stratified five-fold cross-
validation. A quarter of the patients in each training fold were
reserved as a validation dataset to monitor overfitting during the
training process. Trained models were externally validated on two
cohorts: the external FBC validation cohort (n= 192) and the MBC
cohort (n= 198).

Feature extraction and implementation of attMIL
Feature vectors for images within the attMIL procedure were
extracted using RetCCL, an SSL-based feature extractor with a
ResNet50 backbone pretrained on a large histopathology dataset
(https://github.com/Xiyue-Wang/RetCCL)35,54. During training, model
parameters were updated using the Adam optimizer56 with 1%
weight decay. Momenta and learning rates were scheduled using
the “fit one cycle” procedure over a total of 32 epochs as made

Fig. 5 Experimental pipeline of attMIL-based prediction models. Schematic of experimental setup employed in this study showing the (a)
architecture of the attention-based multiple instance learning pipeline; (b) cohorts used for training and cross-validation (TCGA-BRCA FBC),
and external validation (FBC and MBC); (c) schematic of 5-fold cross-validation during which the cohort is divided into 5 equal sets. In each
fold, the model is trained on 4/5th of the data and tested on the remaining 1/5th. This is repeated 5 times, such that each set is used as the
test set once. This ensures that the model is tested on multiple and mutually exclusive subsets of the data, providing a representative
evaluation of the dataset. Figure created with BioRender.com. *FBC external validation cohort composed of cases from Breast Cancer Now
Tissue Bank and CPTAC-BRCA dataset. **MBC composed of cases from the Male Breast Cancer Consortium, NHS Greater Glasgow and Clyde
Biorepository, NHS Grampian Biorepository, Northern Ireland Biobank, Wales Cancer Biobank, Breast Cancer Now Tissue Bank, and TCGA-BRCA
dataset.
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available in fastai (https://docs.fast.ai/callback.schedule.html)57,58.
The maximal learning rate was 1e-4. Over the first eight epochs,
the learning rate sinusoidally increased from 1/25 of the maximum
to the maximum and sinusoidally decreased to 1e-6 of the
maximum over the remaining epochs. With the same modulation,
the optimizer’s momentum was increased from 0.85 to 0.95 and
returned to 0.85. The batch size used for updating model weights
incrementally was 64 patients.
To implement attMIL, a fully connected layer followed by a

Rectified Linear Unit (ReLU) were used to embed feature vectors in
a 256-dimensional space. Then, these embedded vectors were
passed through a linear layer to output a further 256-dimensional
feature vector (hk), where k is the index of each tile. The attention
score (ak) for the k-th tile was calculated as:

ak ¼ expfwT tanhðVhkÞg
PK

j¼1 expfwT tanhðVhjÞg (1)

where h ∈ R256, V ∈ R128×256, w ∈ R128, and K is the maximum
number of tiles resampled per epoch per patient. We used K= 512
tiles per patient. Then, MIL pooling operation was applied as follows:

hsum ¼
XK

i¼1
aihi (2)

where hi is the i-th tile’s embedding. The final prediction score for
each patient was obtained by passing each batch of hsum values
through a BatchNorm1D layer first, and then a Dropout layer with
p= 50%. Then, hsum values were passed through a fully connected
layer with 2-dimensional output, followed by a softmax layer to
obtain the final prediction scores.
The full experimental strategy is outlined in Fig. 5.

Explainability and biological validation with
immunohistochemistry
For easy visualization of our prediction models, we generated
spatially resolved heatmaps showing the distribution of attention
and classification scores for each tile within each WSI, for each
target. Feature vectors for 32 × 32-pixel fields were extracted from
the WSI using the RetCCL algorithm35. Attention and classification
scores were calculated for each image region, and normalised within
each patient cohort. Based on the resulting scores, attention and
prediction score heatmaps for each patient were generated. For the
former, a purple (low) to gold (high) colour scale was used to
visualise the spatial distribution of the attention scores in a WSI. For
the latter, a blue to red colour scale was used, with blue indicating
negative classification and red indicating positive classification. Each
heatmap was overlaid on its corresponding H&E WSI, allowing visual
interpretation of underlying morphological features, correlating with
classification types and high attention scores. We also matched
classification heatmaps to immunohistochemically stained sections
for ERα and PR from these cases.

Statistics
The primary statistical endpoint for our analyses was the AUROC
determined at patient-level. Since we only performed binary
classification, AUROCs were identical for both “positive” and
“negative” classes for each target. Therefore, we only reported
AUROCs for “positive” classes within each target. Distribution of
patient level prediction scores for each target was further
visualized using density plots, which were also used to quantify
domain shift between models trained and tested on normalised
vs. unnormalised tiles. All statistical tasks were performed using
Python 3.11 and R 4.3.0.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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