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Abstract. In this paper we look for the domains minimizing the hth eigenvalue of the Dirichlet-
Laplacian λh with a constraint on the diameter. Existence of an optimal domain is easily obtained
and is attained at a constant width body. In the case of a simple eigenvalue, we provide nonstandard
(i.e., nonlocal) optimality conditions. Then we address the question of whether the disk is an optimal
domain in the plane, and we give the precise list of the 17 eigenvalues for which the disk is a local
minimum. We conclude by some numerical simulations showing the 20 first optimal domains in the
plane.
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1. Introduction. Among classical questions in spectral geometry, the problem
of minimizing (or maximizing) the eigenvalues of the Laplace operator with various
boundary conditions and various geometric constraints has attracted much attention
since the first conjecture by Lord Rayleigh. In particular, several important open
problems have been solved these last 20 years. We refer, e.g., to [17] and the recent
book [18] for a good overview on that topic.

Here we consider the eigenvalue problem for the Laplace operator with Dirichlet
boundary conditions: {

−∆u = λu in Ω,
u = 0 on ∂Ω .

(1.1)

In this case, denoting by 0 < λ1(Ω) ≤ λ2(Ω) . . . the sequence of eigenvalues, the
relevant problem is the minimization of λh(Ω).

The first constraint that has been considered is the volume one. The fact that the
ball minimizes λ1(Ω) is known as the (Rayleigh–)Faber–Krahn inequality and dates
back to the 1920s; see [15], [20]. The second eigenvalue is minimized by two identical
balls: this result was proved by Krahn but remained unnoticed, then rediscovered
later several times, notably by Hong and Szego; see, e.g., [17] and the recent [18]
for a short history of the problem. For the other eigenvalues, we had to wait until
2011–2012 to have a proof of existence of minimizers, which has been achieved by two
different approaches in [7] and [24]. The result is the following theorem.

Theorem 1.1 (Bucur; Mazzoleni and Pratelli). The problem

min{λh(Ω),Ω ⊂ RN , |Ω| = c}(1.2)

has a solution. This one is bounded and has finite perimeter.
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5338 B. BOGOSEL, A. HENROT, AND I. LUCARDESI

The precise regularity of the minimizer is still unknown; see [18, chapter 3]
and [10].

For the perimeter constraint, existence and regularity is known; see [14].

Theorem 1.2 (De Philippis and Velichkov). The problem

min{λh(Ω),Ω ⊂ RN , P (Ω) ≤ P0}(1.3)

has a solution. Its boundary is C1,α outside a closed set of Hausdorff dimension N−8
for every α ∈ (0, 1).

Obviously, due to the classical isoperimetric inequality, the ball is still the min-
imizer for λ1. For λ2 in two dimensions, the minimizer is a regular convex domain
whose boundary has zero curvature exactly at two points; see [8]. For higher eigenval-
ues, general regularity results and qualitative properties of the minimizers are provided
in [6].

In this paper, we are interested in the diameter constraint:

min{λh(Ω),Ω ⊂ RN , D(Ω) ≤ D0},(1.4)

where D(Ω) denotes the diameter of the open set Ω. Obviously the constraint
D(Ω) ≤ D0 can be replaced by D(Ω) = D0. Existence of a minimizer for (1.4) is
easily obtained: since taking the convex hull does not change the diameter, we can
consider minimizing sequences of convex domains which ensure enough compactness
and continuity; see Theorem 2.1 below. Moreover, we can prove that the minimizers
are bodies of constant width. We investigate more deeply the plane situation. In par-
ticular, we give a complete list of values of h for which the disk can or cannot be a
minimizer. By contrast with the case of the volume constraint, where the disk can be
the minimizer only for λ1 and λ3 (for this last case, it is still a conjecture), as proved
by Berger in [5], here the list of values of h for which the disk can be the minimizer
is long but finite! More precisely, we prove the following.

Theorem 1.3. The disk is a weak local minimizer of problem (1.4) for the fol-
lowing eigenvalues:

λ1, λ2 = λ3, λ4 = λ5, λ7 = λ8, λ11 = λ12, λ16 = λ17, λ27, λ33 = λ34, λ41 = λ42, λ50.
(1.5)

In all the other cases, the disk is not a minimizer.

A weak local minimizer is simply a critical point for which the second derivative
(of the eigenvalue) is nonnegative; see the precise definition and the proof of this
theorem in section 3.

Let us add a few words about the list of eigenvalues given in (1.5). First of
all, the only simple eigenvalue which appears in this list is λ1, for which the disk is
obviously the global minimizer by the isodiametric inequality. For all the other simple
eigenvalues λh, it is not difficult to find a small deformation of the disk which makes λh
decrease. The case of double eigenvalues is much more intricate and needs some precise
calculations and fine properties of the Bessel functions. It is a little bit surprising to
see that the disk is a local minimizer for a complete system of double eigenvalues as, for
example, λ2, λ3. Indeed, usually in such a case, small perturbations of a domain with
a double eigenvalue make one eigenvalue increase while the other one decreases. With
the diameter constraint it is no longer the case: since the perturbations must preserve
the diameter, we have a more rigid situation. As explained in section 2, the good way
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to imagine the possible perturbations consists in staying in the class of domains of
constant width. To conclude, our conjecture is that the list (1.5) exactly corresponds
to all the cases where the disk is the global minimizer. This conjecture is supported by
the numerical results that we present in section 5. We perform simulations for h ≤ 20
and we display the minimizer in the cases where the optimal shape is not a disk. In
our computations, the minimizer is a body of constant width which seems regular.
The Reuleaux triangle (or other Reuleaux polygons) does not appear here. Actually,
the Reuleaux triangle seems to correspond to a maximizer of the first eigenvalue, as
we will explain in a work in progress.

2. Existence, optimality conditions.

2.1. Existence. We recall that we are interested in open sets of given diameter
which minimize the kth eigenvalue of the Laplace operator with Dirichlet boundary
conditions. First of all we prove existence and first properties of minimizers.

Theorem 2.1. For any integer h ≥ 1, the problem (1.4) has a solution. This one
is convex and is a body of constant width. For h = 1, the solution is the ball.

Proof. Let Ω be any bounded open set and Ω̃ its convex hull. Since Ω and Ω̃
have the same diameter and λh(Ω̃) ≤ λh(Ω), we can restrict ourselves to the class
of convex domains. If Ωn is a sequence of convex domains of diameter less than
D0, we can extract a subsequence which converges for the Hausdorff distance (by
the Blaschke selection theorem) to some convex set Ω whose diameter is less than
D0, because the diameter is lower semicontinuous for the Hausdorff convergence (and
actually continuous in the subclass of convex domains). Moreover, the sequence Ωn
γ-converges to Ω (see, e.g., [17, Theorem 2.3.17]) and therefore λh(Ωn) → λh(Ω).
This proves that Ω is a minimizer.

Let us now assume that Ω is not a body of constant width. It means that there
is a direction ξ for which the width of Ω in this direction is less than D0 − δ for some
δ > 0. By continuity, the width of Ω will be less than D0 − δ/2 for all directions in
a neighborhood of ξ on the unit sphere. Therefore we can slightly enlarge Ω in all
the corresponding directions without changing the diameter, contradicting the mini-
mality of Ω.

At last, let us consider the case h = 1. For any bounded open set Ω of diameter
D0, let us introduce B0 the ball of same diameter and B∗ the ball of same volume. The
isodiametric inequality states that |Ω| = |B∗| ≤ |B0| and therefore λ1(B∗) ≥ λ1(B0),
while the Faber–Krahn inequality implies λ1(B∗) ≤ λ1(Ω), and the result follows.

Remark 2.2. It is possible to give a different proof for the optimality of the ball
when h = 1. In the work of Colesanti [11] it is proved that the first eigenvalue of the
Dirichlet–Laplace operator satisfies the following Brunn–Minkowski type inequality:
given K0,K1 two convex bodies in RN and t ∈ [0, 1] we have

λ1((1− t)K0 + tK1)−1/2 ≥ (1− t)λ1(K0)−1/2 + tλ1(K1)−1/2.(2.1)

Moreover, if equality holds, then K0 and K1 are homothetic.
Now let K be a solution of problem (1.4), which exists due to arguments stated

above. Let B be the ball of diameter D0. It is standard that if K has constant
width D0, then K + (−K) is a ball and moreover 1/2K + 1/2(−K) = B since convex
combinations of bodies of constant width have the same constant width (see, for
example, [22]). Applying inequality (2.1) we get

λ1(B)−1/2 =λ1(1/2K+(1/2)(−K))−1/2≥0.5λ1(K)−1/2+0.5λ1(−K)−1/2 =λ1(K)−1/2,
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5340 B. BOGOSEL, A. HENROT, AND I. LUCARDESI

therefore λ1(B) ≤ λ1(K). Moreover we must have equality in (2.1) so B and K are
homothetic. This gives another proof that the only solution to problem (1.4) is the
ball when h = 1.

Let us now give a result about the limiting shape of the optimal domains. Fol-
lowing exactly the same proof as Bucur and Freitas in [9], we are able to prove the
following.

Theorem 2.3. Let Ω∗h denote an optimal domain for problem (1.4). Then, when
h→ +∞, Ω∗h converges for the Hausdorff metric to the ball of same diameter.

Though the proof is almost the same as the aforementioned paper, we give it here
for completeness, and also because our problem deals with the N -dimensional case.

Proof. Since each Ω∗h is convex and has fixed diameter D0, we can assume that
the whole sequence is contained in a fixed bounded domain. We will denote by B the
ball of diameter D0.

By the classical Li–Yau inequality (see [23]), we have

λh(Ω∗h) ≥ CN
(

h

|Ω∗h|

)2/N

,

where CN is a constant (more precisely CN = 4π2N

(N+2)ω
2/N
N

, where ωN is the volume of

the unit ball). Therefore, by minimality and Weyl’s law,

CN

(
h

|Ω∗h|

)2/N

≤ λh(Ω∗h) ≤ λh(B) =
N + 2

N
CN

(
h

|B|

)2/N

+ o(h2/N ).

These inequalities imply

lim inf
h→+∞

|Ω∗h| ≥
(

N

N + 2

)N/2
|B|,

showing that the sequence Ω∗h does not degenerate to a convex set of lower dimension.
Thus, by the Blaschke selection theorem (see, e.g., [19]), there exists a subsequence
(not relabeled) which converges for the Hausdorff distance to some open convex set
Ω∞. Moreover, the diameter being continuous for the Hausdorff metric in the class
of convex sets, D(Ω∞) = D0. Let us introduce Ωδ∞ = Ω∞ + Bδ, where Bδ is the ball
centered at the origin of radius δ. By definition of the Hausdorff convergence, for any
δ > 0, there exists h0 such that, for h ≥ h0, Ω∗h ⊂ Ωδ∞. Thus, by monotonicity of
eigenvalues and minimality,

λh(Ωδ∞) ≤ λh(Ω∗h) ≤ λh(B).(2.2)

By Weyl’s law, the inequalities (2.2) imply |B| ≤ |Ωδ∞| and this for any δ > 0. Thus
|B| ≤ |Ω∞| and the isodiametric inequality implies that Ω∞ = B. Finally, since the
limit is unique, all the sequence Ω∗h converges to the ball.

2.2. Optimality conditions. In this section we consider optimal domains in
the plane for sake of simplicity, but the result extends without difficulty to higher di-
mension. It is not so easy to write optimality conditions, since the diameter constraint
is very rigid: many deformations of a domain Ω of constant width will increase its
diameter. Our idea is that the good point of view is to make suitable perturbations of
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the support function. Let f denote the support function of the convex set Ω seen as
a (periodic) function of the angle θ ∈ [0, 2π); see [28] for definition and properties of
the support function. Here θ denotes the angle of the unit exterior vector orthogonal
to a support line, and for a strictly convex set, to each θ corresponds a unique point
on the boundary that we will denote M(θ). It is well known that f must satisfy

f ′′ + f ≥ 0 in the sense of distributions ,(2.3)

and, conversely, any nonnegative function satisfying (2.3) is the support function of
a convex body. Moreover, bodies of constant width D0 are characterized by

∀θ, f(θ) + f(θ + π) = D0.(2.4)

We want to perform perturbations of the optimal domain which preserve the diameter.
For that purpose, we consider perturbations of the kind fε = f + εφ with φ satisfying

∀θ, φ(θ) + φ(θ + π) = 0.(2.5)

In full generality, we should also consider perturbations which preserve the convexity
relation (2.3), but for simplicity we will consider here an optimal domain which is C2

regular: this implies in particular that its support function satisfies

∀θ, f ′′(θ) + f(θ) ≥ α0 > 0 ,(2.6)

where α0 is the infimum of the radius of curvature. We will denote by R(θ) =
f ′′(θ) + f(θ) the radius of curvature at the point of parameter θ. For a domain of
constant width, because of relations (2.4) and (2.5), it is always less than D0.

Thanks to (2.6), any perturbation fε is admissible for ε small enough. On the
numerical simulations shown in section 5, we can observe two different properties of
the minimizers:

• the optimal domain seems to be C2 regular (and the radius of curvature is
far from zero),

• the eigenvalue associated to an optimal domain is sometimes simple, some-
times double. More precisely, the pattern is the following: if the index h
corresponds to a simple eigenvalue of the disk, then the eigenvalue of the
optimal domain (which is not the disk, except for h = 1; see section 3) is also
simple. If the index corresponds to a pair of double eigenvalues for the disk
λh = λh+1, then the eigenvalue of the optimal domain is simple for h and
double for h+ 1.

We can now present the optimality condition satisfied by a regular optimal domain
in the case of a simple eigenvalue.

Theorem 2.4. Let Ω be a regular minimizer for problem (1.4) in the plane. Let
us assume that the corresponding eigenvalue λh(Ω) is simple and let us denote by uh
the corresponding (normalized) eigenfunction. Then, it satisfies

∀θ, |∇uh(M(θ))|2R(θ) = |∇uh(M(θ + π))|2R(θ + π).(2.7)

Proof. Let us denote by f the support function of the optimal domain Ω. As
explained above, we consider perturbations of the support function f of the kind
fε = f + εφ with φ satisfying

∀θ, φ(θ) + φ(θ + π) = 0.

In such a way, since hε satisfies

f ′′ε + fε ≥ 0, fε(θ + π) + fε(θ) = D0,
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it is the support function of a convex domain of constant width D0. The perturbation
φ defines a deformation field V whose normal component on the boundary of Ω is
V.n = φ(θ). Since the shape derivative of a simple eigenfunction is given by the
Hadamard formulae (see, e.g., [19]),

λ′h(Ω;V ) = −
∫
∂Ω

|∇uh|2V.n ds,(2.8)

with

ds = (f ′′ + f)(θ)dθ = R(θ)dθ ,(2.9)

the optimality condition reads

∀φ satisfying (2.5) ,

∫ π

−π
|∇uh|2R(θ)φ(θ) dθ ≥ 0.(2.10)

Obviously, if φ satisfies (2.5), and its opposite −φ also, then (2.10) implies

∀φ satisfying (2.5) ,

∫ π

−π
|∇uh|2R(θ)φ(θ) dθ = 0.(2.11)

Condition (2.5) means that φ is odd in the sense that its Fourier expansion only
contains odd indexes c2k+1. Thus, the orthogonality condition (2.11) means that the
function |∇uh|2R(θ) is even: its Fourier expansion only contains even indexes c2k. In
other terms, it satisfies (2.7).

Remark 2.5. This optimality condition (2.7) is not standard since it is not local,
in contrast with problem (1.2), where it would be written |∇uh|2 = constant (if the
corresponding eigenvalue was simple), or problem (1.3), where it is written |∇uh|2 =
constant ∗ curvature (if the corresponding eigenvalue is simple). Here the optimality
condition takes into account two diametric opposite points and relates their curvature
with the gradient of the eigenfunction. Let us observe that for the disk, condition
(2.7) is always satisfied even for an eigenfunction corresponding to a double eigenvalue.
This confirms Propositions 3.2 and 4.1, which claim that the disk is always a critical
point.

3. Simple eigenvalues of the disk. In this section and in the next one, we
want to investigate the local minimality of the disk. Inspired by the method of
“nearly circular domains,” first used by Lord Rayleigh to study the local minimality
of the disk for λ1, and then used by many authors (among them Pólya and Szegö in
their famous book; see [5] for some references), we will consider perturbations of the
support function by Fourier series. Our computations are not only formal since we pay
attention to the convergence of the involved series. We need to consider separately the
case of simple eigenvalues of the disk, for which the analysis is rather simple, and the
case of double eigenvalues which is considered in the next section and is much more
intricate. Since the disk is always a critical point (see Propositions 3.2 and 4.1), we
need to consider a second order expansion (or second derivative). Thus the strategy
is the following:

• if we want to prove that the disk is not a local minimizer for a given λh, it
suffices to find a perturbation which makes the second derivative negative;

• if we want to prove that the disk is a (weak) local minimizer for a given
λh, it is necessary to prove that the second derivative is nonnegative for all
perturbations.
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We start by recalling a few standard definitions and fix some notation.
Given a bounded open set Ω of R2 and a smooth vector field V : R2 → R2, the

first and second order shape derivatives of λh at Ω in direction V are given by the
following limits (if they exist):

λ′h(Ω;V ) := lim
ε→0

λ(Ωε)− λ(Ω)

ε
,(3.1)

λ′′h(Ω;V ) := lim
ε→0

2
λ(Ωε)− λ(Ω)− ελ′(Ω, V )

ε2
,(3.2)

where Ωε is the deformed set Ωε := {x+ εV (x) : x ∈ Ω}.
Here we focus our attention on a particular subclass of sets, that of constant

width sets. Accordingly, given Ω with constant width, we consider only deformation
fields V : R2 → R2 such that, for every ε small enough, the set Ωε has still constant
width. As already pointed out in section 2.2, we can associate to such a V a function
φ defined on [0, 2π), such that the support function fε of Ωε is

fε(θ) = f(θ) + εφ(θ) ,(3.3)

and φ(θ) + φ(θ + π) = 0. In particular, the Fourier series of φ is of the form

φ(θ) =
∑
k≥0

[a2k+1 cos((2k + 1)θ) + b2k+1 sin((2k + 1)θ)] =
∑
k∈Z

c2k+1e
i(2k+1)θ(3.4)

with a`, b` ∈ R, c` = (a` − ib`)/2, and c−` = c` for ` ≥ 0 .

Definition 3.1. Let Ω be a set of constant width. We say that V : R2 → R2

is admissible if, for every ε small enough, the set Ωε := {x + εV (x) : x ∈ Ω}
still has constant width. Moreover, we will disregard translations; thus we will always
take c1 = c−1 = 0. We say that Ω is a critical shape for λh if the first order shape
derivative vanishes for every admissible deformation, and we say that a critical shape
is a weak local minimizer for λh if the second order shape derivative is nonnegative
for every admissible deformation.

Throughout the paper we will use the following representation of the eigenvalues
of the disk: for every h ∈ N, λh = j2

m,p, for some m ≥ 0 and p ≥ 1, jm,p being the pth
zero of the mth Bessel function Jm. For the benefit of the reader, we recall in Tables
1 and 2 the values of these objects for small values of h, m, and p.

In this section we deal with simple eigenvalues, which correspond to λh = j2
0,p, for

p ≥ 1. For brevity, in the following, λh will be denoted by λ and the corresponding
eigenfunction uh simply by u.

We start by recalling some results on shape derivatives (cf. [19, Chapter 5]). Let
l1 : C∞(∂D)→ R and l2 : C∞(∂D)× C∞(∂D)→ R be the following linear form and
bilinear form, respectively:

l1(ϕ) = −
∫
∂D
|∇u|2ϕ ,

l2(ϕ,ψ) =

∫
∂D

[
2wϕ

∂wψ
∂n

+ ϕψ

(
∂u

∂n

)2
]
,(3.5)D
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Table 1
Some numerical computations of jm,p.

m \ p 1 2 3 4 5

0 2.4048 5.5201 8.6537 11.7915 14.9309

1 3.8317 7.0156 10.1735 13.3237 16.4706

2 5.1356 8.4172 11.6198 14.7960 21.1170

3 6.3802 9.7610 13.0152 16.2235 19.4094

4 7.5883 11.0647 14.3725 17.6160 20.8269

5 8.7715 12.3386 15.7002 18.9801 22.2178

6 9.9361 13.5893 17.0038 20.3208 23.5861

7 11.0864 14.8213 18.2876 21.6415 24.9349

8 12.2251 16.0378 19.5545 22.9452 26.2668

9 13.3543 17.2412 20.8070 24.2339 25.5837

Table 2
Representation λh = j2m,p for h ∈ {1, . . . , 44}.

λ1 = j20,1 λ15 = j20,3 λ30 = j20,4

λ2 = λ3 = j21,1 λ16 = λ17 = j25,1 λ31 = λ32 = j28,1

λ4 = λ5 = j22,1 λ18 = λ19 = j23,2 λ33 = λ34 = j25,2

λ6 = j20,2 λ20 = λ21 = j26,1 λ35 = λ36 = j23,3

λ7 = λ8 = j23,1 λ22 = λ23 = j21,3 λ37 = λ38 = j21,4

λ9 = λ10 = j21,2 λ24 = λ25 = j24,2 λ39 = λ40 = j29,1

λ11 = λ12 = j24,1 λ26 = λ27 = j27,1 λ41 = λ42 = j26,2

λ13 = λ14 = j22,2 λ28 = λ29 = j22,3 λ43 = λ44 = j24,3

where wϕ (and, similarly, wψ) solves
−∆wϕ = λwϕ in D,
wϕ = −ϕ ∂u∂n on ∂D,∫
D uwϕ = 0 .

(3.6)

Then

λ′(D;V ) = l1(V · n) ,(3.7)

λ′′(D;V ) = l2(V · n, V · n) + l1(Z) ,(3.8)

with

Z := (DτnVτ ) · Vτ − 2∇τ (V · n) · Vτ ,(3.9)

where Vτ = V − (V · n)n, ∇τφ = ∇φ− (∂nφ)n, Dτn = Dn− (Dnn)⊗ n.
In case of V = (V1(θ), V2(θ)), since on ∂D we have n = (cos θ, sin θ) and τ =

(− sin θ, cos θ), the function Z defined in (3.9) reads

Z = −(V · τ)2 − 2(V ′ · n)(V · τ) ,
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so that

l1(Z) =
j2
0,p

π

∫ 2π

0

[(V · τ)2 + 2(V ′ · n)(V · τ)] dθ .(3.10)

Note that if we perform a translation with a constant vector field V = (a; b),
we get

l1(V · n) = 0 , l2(V · n, V · n) = −j2
0,p(a

2 + b2) ,

l1(Z) =
j2
0,p

π

∫ 2π

0

(−a sin θ + b cos θ)2dθ = j2
0,p(a

2 + b2) ,

so that the first and second order shape derivatives, as expected, vanish.
Considering more general deformations, we obtain the following.

Proposition 3.2. The disk is a critical shape of λ, for every λ simple, in the
class of constant width sets.

Proof. Let V be an admissible deformation field, namely, such that Ωε =
D + εV (D) has constant width. On the boundary ∂Ωε = (I + εV )(∂D), we have

V (θ) :=

{
φ(θ) cos θ − φ′(θ) sin θ,
φ(θ) sin θ + φ′(θ) cos θ ,

(3.11)

where φ is associated to V as in (3.3).
According to (3.7), since |∇u| is constant on ∂D, V ·n = φ(θ), and by (3.4) φ has

zero average, we infer that λ′(D;V ) = 0, concluding the proof.

Let us now consider the second order shape derivative. According to (3.8), we
need to compute l2(V ·n, V ·n) and l1(Z), with Z defined in (3.9). In this case, system
(3.6) reduces to 

−∆w = λw in D,
w = − ∂u∂nφ on ∂D,∫
D uw = 0 .

(3.12)

By the Fredholm alternative, system (3.12) has a unique solution. Since the func-
tions, defined in polar coordinates (r, θ) by wm := Jm(j0,pr) cos(mθ) or wm =
Jm(j0,pr) sin(mθ)}m, satisfy −∆wm = λwm, we look for a solution w of the form

w(r, θ) =
∑
m≥1

[Am cos(mθ) +Bm sin(mθ)]Jm(j0,pr) .(3.13)

For the moment, the last expression is just formal, but we will make it rigorous with a
suitable choice of coefficients Am and Bm. In view of the generators chosen, the PDE
in (3.12) is readily satisfied by w. Also the third condition of the zero average in (3.12)
follows from the radial symmetry of u(r, θ) = J0(j0,pr)/(

√
π|J ′0(j0,p)|). Imposing the

boundary condition we get

Am =

 −
sign(J ′0(j0,p))j0,p
Jm(j0,p)

√
π

am if m = 2k + 1 , k ≥ 0,

0 else ;

the same equality holds for Bm, with bm in place of am. Notice that, for m large
enough, we have

|AmJm(j0,pr)| ≤
j0,p√
π

|Jm(j0,pr)|
|Jm(j0,p)|

|am| ≤ C|am|
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for some positive constant C independent of m (similarly, we have |BmJm(j0,pr)| ≤
C|bm|). The last inequality follows from the fact that, for m larger than some thresh-
old value depending only on p, the function Jm(j0,pr) is increasing in the interval [0, 1].
Thus, from the convergence of the Fourier series (3.4), we obtain the convergence of
the series (3.6) defining w.

Therefore, the bilinear form (3.5) is given by

l2(V · n, V · n) = j2
0,p

∑
k≥0

(
1 + 2j0,p

J ′2k+1(j0,p)

J2k+1(j0,p)

)
(a2

2k+1 + b22k+1) .(3.14)

Since V ′ · n = 0 and

V · τ = φ′(θ) =
∑
k≥0

(2k + 1)[−a2k+1 sin((2k + 1)θ) + b2k+1 cos((2k + 1)θ)] ,

formula (3.10) reads

l1(Z) = j2
0,p

∑
k≥0

(2k + 1)2(a2
2k+1 + b22k+1) .

We are now in position to write the second order shape derivative of λ: setting

PN (x) := 1 +N2 + 2x
J ′N (x)

JN (x)

we have

λ′′(D;V ) = j2
0,p

∑
k≥0

P2k+1(j0,p)(a
2
2k+1 + b22k+1) .(3.15)

In order to determine the behavior of λ at D we need to investigate the sign of the
coefficients P2k+1(j0,p). To this aim, we recall some well-known properties of the
Bessel functions:

2NJN (x)

x
= JN−1(x) + JN+1(x) ,(3.16)

2J ′N (x) = JN−1(x)− JN+1(x) ,(3.17)

xJ ′N (x) = NJN (x)− xJN+1(x) ,(3.18)

xJ ′N (x) = −NJN (x) + xJN−1(x) .(3.19)

We are now in a position to prove the following.

Theorem 3.3. The disk is not a weak local minimizer for any simple eigenvalue
λ 6= λ1 in the class of constant width sets.

Proof. As we have already seen in Proposition 3.2, the disk is a critical point for
this kind of deformation. Thanks to formula (3.15), it is enough to show that for
every p ≥ 2 there exists n such that P2n+1(j0, p) < 0 (the case p = 1 corresponds
to λ1).

By combining the properties of the Bessel functions (3.16) and (3.17) with N = 1
and x = j0,p, and recalling that J0(j0,p) = 0, we get

P1(j0,p) = 2 + 2j0,p
J ′1(j0,p)

J1(j0,p)
= 0 .

D
ow

nl
oa

de
d 

11
/0

6/
23

 to
 1

31
.1

14
.7

0.
12

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMIZATION OF DIRICHLET–LAPLACE EIGENVALUES 5347

Again exploiting (3.16)–(3.18), it is easy to derive the recursive formula

PN+1(x) = N2 +
4x2

(N + 1)2 − PN (x)
,

which, applied twice, gives

P3(j0,p) =
32

8− j2
0,p

< 0

for every p ≥ 2.

Remark 3.4. Note that, in view of the estimate

x
J ′N
JN
≥ N − 2x2

2N + 1
,(3.20)

which is valid for 0 < x ≤ N + 1/2 (cf. [21, Lemma 11]), we obtain the positivity of
P2n+1(j0,p) for n large enough. In particular, we may find an admissible deformation
V such that λ′′(D;V ) > 0.

4. Double eigenvalues of the disk.

4.1. First order shape derivative. Let now λ := λh = λh+1 = j2
m,p be a

double eigenvalue of the disk for some m, p ≥ 1. It is known (see, e.g., [17, Theorem
2.5.8]) that ε 7→ λ((I + εV )(D)) has a directional derivative at ε = 0, which is given
by one of the eigenvalues of the symmetric matrix M with components

M11 = −
∫
∂D

(
∂uh
∂n

)2

V · n , M12 = −
∫
∂D

(
∂uh
∂n

)(
∂uh+1

∂n

)
V · n ,

M22 = −
∫
∂D

(
∂uh+1

∂n

)2

V · n .

Recalling the expression of the eigenfunctions

uh(r, θ) =

√
2

π

Jm(jm,pr)

|J ′m(jm,p)|
cos(mθ) , uh+1(r, θ) =

√
2

π

Jm(jm,pr)

|J ′m(jm,p)|
sin(mθ) ,

we infer that(
∂uh
∂n

)2

=
2

π
j2
m,p cos2(mθ) ,

(
∂uh+1

∂n

)2

=
2

π
j2
m,p sin2(mθ) ,(

∂uh
∂n

)(
∂uh+1

∂n

)
= ± 2

π
j2
m,p cos(mθ) sin(mθ) on ∂D .

Hence, since V · n = φ(θ) is orthogonal to any cos(2mθ) and sin(2mθ) in [−π, π], we
conclude that the matrix M is identically zero, namely we have the following.

Proposition 4.1. The disk is a critical shape of λ, for every λ double, in the
class of constant width sets.

4.2. Second order shape derivative. Let us now perform the second order
shape derivative. We consider variations Ωε of D with support function

fε(θ) = 1 + εφ(θ) + ε2ψ(θ)(4.1)

D
ow

nl
oa

de
d 

11
/0

6/
23

 to
 1

31
.1

14
.7

0.
12

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5348 B. BOGOSEL, A. HENROT, AND I. LUCARDESI

with φ and ψ such that φ(θ) + φ(θ + π) = ψ(θ) + ψ(θ + π) = 0. In particular, for ε
small, we can parametrize the boundary ∂Ωε as (r(θ, ε), θ) with

r(θ, ε) = 1 + εφ(θ) + ε2
(
ψ(θ)− (φ′(θ))2

2

)
+ o(ε2) .

Adapting the computations done in [5] for λ(Ωε)|Ωε| to our problem, exploiting
the developments

|Ωε| = π + ε2π

(
+∞∑
`=−∞

(1− `2)|c`|2
)

+ o(ε2) and λ(Ωε) = j2
m,p +

ε2

2
λ′′ + o(ε2) ,

we obtain the following equality (note that we are interested in the sign of the second
order shape derivative):

λ′′(D;V )

2j2
m,p

=

+∞∑
`=−∞

(`2 − 1)|c`|2 + 2
∑
|`|6=m

(
1 + jm,p

J ′`(jm,p)

J`(jm,p)

)
|cm−`|2

+ 2q

− +∞∑
`=−∞

1

2
`(2m− `)c`c2m−` +

∑
|`|6=m

(
1

2
+ jm,p

J ′`(jm,p)

J`(jm,p)

)
cm+`cm−`

 ,(4.2)

where c` are the Fourier coefficients of φ in the exponential form (see (3.4)), i.e.,
c` = a` + ib`, so that c−` = c` and c2` = 0. The coefficient q is a complex number
of modulus 1, and its product with the term in square brackets is real. Notice that
the perturbation ψ does not play any role: indeed, the only relevant term in the
development would be the 2mth coefficient of its Fourier series, which is zero.

Remark 4.2. The coefficient q (which depends on the deformation chosen) acts as
a rotation and can always take two values, one opposite to the other. In other words,
the second order shape derivative at D in direction V is of the form λ′′(D;V ) =
L1 ± |L2| for some Li ∈ R. In particular, for λ = λh(D) = λh+1(D), we have

λh,h+1(Ωε) = λ+
ε2

2
(L1 ± |L2|) + o(ε2) .(4.3)

More precisely, since by definition the eigenvalues are ordered, the plus sign is asso-
ciated to λh+1(Ωε) and the minus sign to λh(Ωε).

4.3. Sign of λ′′: The case m = 1. As a first computation, we consider the
case m = 1. Exploiting the fact that c2` = 0 and J−n = (−1)nJn, we get

+∞∑
`=−∞

(`2 − 1)|c`|2 =
∑
k≥0

(8k2 + 8k)|c2k+1|2 ,

∑
|`|6=1

(
1 + j1,p

J ′`(j1,p)

J`(j1,p)

)
|c1−`|2 =

∑
k≥0

(
2 + j1,p

(
J ′2k(j1,p)

J2k(j1,p)
+
J ′2k+2(j1,p)

J2k+2(j1,p)

))
|c2k+1|2 ,

(4.4)

−
+∞∑
`=−∞

1

2
`(2− `)c`c2−` = −1

2
c1c1 +

∑
k≥1

(4k2 − 1)c1+2kc1−2k ,

∑
|`|6=1

(
1

2
+ j1,p

J ′`(j1,p)

J`(j1,p)

)
c1+`c1−` =

1

2
c1c1 +

∑
k≥1

(
1 + 2j1,p

J ′2k(j1,p)

J2k(j1,p)

)
c1+2kc1−2k .
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In particular, we have

λ′′(D;V )

2j2
1,p

=
∑
k≥0

P1,p(k)|c2k+1|2 + 2q
∑
k≥1

Q1,p(k)c1+2kc1−2k ,(4.5)

where

P1,p(k) := 8k2 + 8k + 4 + 2j1,p

(
J ′2k(j1,p)

J2k(j1,p)
+
J ′2k+2(j1,p)

J2k+2(j1,p)

)
,(4.6)

Q1,p(k) := 4k2 + 2j1,p
J ′2k(j1,p)

J2k(j1,p)
.(4.7)

Before stating the result concerning the sign of λ′′ at D, two technical lemmas are
in order.

Lemma 4.3. Let x > 0, N ∈ N. Then

J ′N+2(x)

JN+2(x)
− J ′N (x)

JN (x)
=

2(N + 1)

x

[
J2
N+1(x)

JN+2(x)JN (x)
− 1

]
.

Proof. The statement readily follows from (3.16), (3.18), and (3.19); indeed we
have

J ′N+2(x)

JN+2(x)
− J ′N (x)

JN (x)
= −2(N + 1)

x
+ JN+1(x)

[
1

JN+2(x)
+

1

JN (x)

]
= −2(N + 1)

x
+

JN+1(x)

JN+2(x)JN (x)
[JN+2(x) + JN (x)]

= −2(N + 1)

x
+

2(N + 1)J2
N+1(x)

xJN+2(x)JN (x)
.

Lemma 4.4. Let P1,p(k) and Q1,p(k) be defined in (4.6) and (4.7), respectively,
with p ≥ 1 and k ≥ 0 integers. Then the following facts hold:

(i) for p = 1 we have P1,1(0) = Q1,1(0) = Q1,1(1)=0 and P1,1(k), Q1,1(k+1) > 0
for every k ≥ 1;

(ii) for every p ≥ 1 and k ≥ 0 we have P1,p(k) = Q1,p(k) +Q1,p(k + 1);
(iii) for p ≥ 2 we have P1,p(1) < 0.

Proof. Item (ii) follows by direct computation.
Exploiting the properties (3.18) and (3.19) of the Bessel functions, we get

J ′0(j1,p) = 0 , J ′2(j1,p) = − 2

j1,p
J2(j1,p) ,(4.8)

which imply that P1,1(0) = Q1,1(0) = Q1,1(1) = 0. To conclude the proof of item (i),
thanks to (ii), we show that Q1,1(k) is a nondecreasing function in k: for every k ≥ 1,
we have

Q1,1(k + 1)−Q1,1(k) = 4 + 8k + 2j1,1

[
J ′2k+2(j1,1)

J2k+2(j1,1)
− J ′2k(j1,1)

J2k(j1,1)

]
= 4(2k + 1)

J2
2k+1(j1,1)

J2k+2(j1,1)J2k(j1,1)
> 0 ,
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where in the last equality we have used Lemma 4.3 with x = j1,1 and N = 2k, while
in the last inequality we have used the fact that, for N ≥ 2, all the Bessel functions
JN are positive till their first zero jN,1, which is greater than j1,1.

Let now p ≥ 2. Again in view of the properties of the Bessel functions recalled in
(3.16)–(3.19), we get

J3(j1,p)=
4

j1,p
J2(j1,p) , J4(j1,p) =

24− j2
1,p

j2
1,p

J2(j1,p) , J ′4(j1,p) =
8(j2

1,p−12)

j3
1,p

J2(j1,p).

These equalities, combined with (4.8), give

P1,p(1) = 20 + 2j1,p

(
J ′2(j1,p)

J2(j1,p)
+
J ′4(j1,p)

J4(j1,p)

)
= 16

[
1 +

j2
1,p − 12

24− j2
1,p

]
=

192

24− j2
1,p

.(4.9)

Since j2
1,p > 24 for every p ≥ 2, the proof of (iii) is achieved.

Exploiting these properties on the coefficients P1,p and Q1,p, we conclude the
following.

Theorem 4.5. Let λ be a double eigenvalue of the disk of the form λ = j2
1,p for

some p ≥ 1. If λ = λ2 = λ3, then the D is a weak local minimizer in the class of
constant width sets. In all the other cases, the disk is not a weak local minimizer.

Proof. Let λ = λ2 = λ3 = j2
1,1. In view of Lemma 4.4(ii), the coefficients Q1,1(k)

are nonnegative; thus, by the Young inequality, we have∣∣∣∣∣∣2q1

∑
k≥1

Q1,1(k)c1+2kc1−2k

∣∣∣∣∣∣ ≤
∑
k≥1

Q1,1(k)|c1+2k|2 +
∑
k≥1

Q1,1(k)|c1−2k|2

=
∑
k≥1

Q1,1(k)|c1+2k|2 +
∑
k≥0

Q1,1(k + 1)|c2k+1|2

=
∑
k≥0

(
Q1,1(k) +Q1,1(k + 1)

)
|c2k+1|2 .

Therefore

λ′′(D;V )

2j2
1,p

≥
∑
k≥0

(
P1,1(k)−Q1,1(k)−Q1,1(k + 1)

)
|c2k+1|2 = 0;

indeed Q1,1(k) +Q1,1(k + 1) = P1,1(k) by Lemma 4.4(i).
In all the other cases, namely, when λ = j2

1,p for some p ≥ 2, the deformation V
associated to c3 = 1 and ci = 0 for every i 6= 3, gives a negative second order shape
derivative at D: indeed, in view of (4.5), we get

λ′′(D;V )

2j2
1,p

= P1,p(1) ,

which by Lemma 4.4(iii) is negative for every p ≥ 2.

4.4. Sign of λ′′: The case m ≥ 2. In this subsection, m will always be a
natural number greater than or equal to 2.
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Similarly as above, we may write

λ′′(D;V )

2j2
m,p

=
∑
k≥0

Pm,p(k)|c2k+1|2 + q

+∞∑
`=−∞

Rm,p(`)cm−`cm+` ,(4.10)

where

Pm,p(k) := 8k2 + 8k + 4 + 2jm,p

(
J ′2k+1+m(jm,p)

J2k+1+m(jm,p)
+
J ′2k+1−m(jm,p)

J2k+1−m(jm,p)

)
,(4.11)

Rm,p(`) := `2 −m2 + 1 + 2jm,p
J ′`(jm,p)

J`(jm,p)
for ` 6= ±m.(4.12)

By the Young inequality, the second term in the right-hand side of (4.10) can be
bounded as follows:

q

+∞∑
`=−∞

Rm,p(`)cm−`cm+` ≥ −
1

2

+∞∑
`=−∞

|Rm,p(`)||cm−`|2 −
1

2

+∞∑
`=−∞

|Rm,p(`)||cm+`|2

= −
∑
k≥0

(
|Rm,p(2k + 1 +m)|+ |Rm,p(2k + 1−m)|

)
|c2k+1|2 .

(4.13)

Remark 4.6. We point out that in the second term of the right-hand side of (4.10)
the sole nonmixed term is cmcm, which corresponds to ` = 0. Therefore, if there
was k 6= (m − 1)/2 such that Pm,p(k) < 0, then we would find a width preserving
deformation V for which λ′′(D;V ) < 0. On the other hand, if Pm,p and Rm,p were
always nonnegative, then the second order shape derivative along any width preserving
direction, computed at the disk, would be nonnegative, since

Rm,p(2k + 1 +m) +Rm,p(2k + 1−m) = Pm,p(k) .(4.14)

Unfortunately, in general none of these two conditions is satisfied, and the study
of the sign of λ′′ deserves a more precise investigation, which is the object of Theorem
4.9. Before stating the result, we give two technical lemmas.

Lemma 4.7. For every integer m ≥ 2 set

βm := 4(m− 2)(m− 1) , γm := 4(m+ 2)(m+ 1) .(4.15)

The coefficients Pm,p and Rm,p defined in (4.11) and (4.12), respectively, satisfy
(i) for every m ≥ 2, Pm,p(1) < 0 if and only if j2

m,p < βm or j2
m,p > γm;

(ii) for every m ≥ 9, Pm,p(2) < 0 when βm < j2
m,p < γm;

(iii) for m = 7 and p = 1, P7,1(k) ≥ 0 for every k ≥ 0;
(iv) for m = 7 and p = 2, R7,2(0) < 0 and R7,2(2k) ≥ 0 for every k ≥ 1.

Proof. Throughout the proof, for brevity we will adopt the notation y := jm,p.
Taking k = 1 in (4.11) we obtain

Pm,p(1) = 2

[
10 + y

(
J ′3+m(y)

J3+m(y)
+
J ′m−3(y)

Jm−3(y)

)]
.
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In view of the properties of the Bessel functions (3.16)–(3.19), we get

Jm+2(y) =
2(m+ 1)

y
Jm+1 , Jm−2(y) =

2(m− 1)

y
Jm−1(y) ,

Jm+3(y) =

(
4(m+ 2)(m+ 1)

y2
− 1

)
Jm+1(y) ,

Jm−3(y) =

(
4(m− 2)(m− 1)

y2
− 1

)
Jm−1(y) ,

yJ ′m+3(y) = −(m+ 3)Jm+3(y) + yJm+2(y) ,

yJ ′m−3(y) = y(m− 3)Jm−3(y)− yJm−2(y) ,

so that

y
J ′m+3

Jm+3
(y) = −(m+ 3) + 2(m+ 1)

(
4(m+ 2)(m+ 1)

y2
− 1

)−1

,

y
J ′m−3

Jm−3
(y) = (m− 3)− 2(m− 1)

(
4(m− 2)(m− 1)

y2
− 1

)−1

.

Thus

Pm,p(1) = 64
2(m2 − 4)(m2 − 1)− y2(2m2 + 1)

[4(m+ 2)(m+ 1)− y2] [4(m− 2)(m− 1)− y2]
.

This expression allows us to easily obtain the characterization (i): Pm,p(1) ≥ 0 if and
only if

0 < j2
m,p ≤ 2

(m2 − 4)(m2 − 1)

2m2 + 1
or 4(m− 2)(m− 1) < j2

m,p < 4(m+ 2)(m+ 1) .

As already done at the beginning of the proof, iterating the procedure twice more,
we may express Jm+5(y) and J ′m+5(y) in terms of Jm+1(y), and Jm−5(y) and J ′m−5(y)
in terms of Jm−1(y), to get

y

(
J ′5+m(y)

J5+m(y)
+
J ′m−5(y)

Jm−5(y)

)
= −20 + 8y2

[
N1(y2)

D1(y2)
− N2(y2)

D2(y2)

]
,(4.16)

where Ni and Di are the following polynomials:

N1(y2) = −y2(m+ 2) + 2(m+ 3)(m+ 2)(m+ 1) ,

N2(y2) = −y2(m− 2) + 2(m− 3)(m− 2)(m− 1) ,

D1(y2) = y4 − 12(m+ 3)(m+ 2)y2 + 16(m+ 4)(m+ 3)(m+ 2)(m+ 1) ,

D2(y2) = y4 − 12(m− 3)(m− 2)y2 + 16(m− 4)(m− 3)(m− 2)(m− 1) .

Inserting (4.16) in (4.11) for k = 2, we get

Pm,p(2) = 8

[
4 + y2

(
N1(y2)

D1(y2)
− N2(y2)

D2(y2)

)]
= 8

F (y2)

D1(y2)D2(y2)
(4.17)

with

F (y2) :=− (144m2 + 264)y6 + (912m4 − 3024m2 + 20544)y4

− (1792m6 − 17408m4 − 12032m2 + 211968)y2

+ 1024m8 − 30720m6 + 279552m4 − 839680m2 + 589824 .
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Our goal is to give a sufficient condition on m for the negativity of Pm,p(2). First,
we notice that both D1 and D2 define parabolas with vertical axis, oriented upward.
Therefore, Di are negative in (βm, γm) if and only if Di(βm) and Di(γm) are negative.
A direct computation allows us to conclude that this is true for m greater than or
equal to 9. Finally, it is easy to show that, for m ≥ 9, F and F ′ are negative at βm and
γm, and moreover the derivative F ′ has no critical point inside (βm, γm). Therefore
F is negative in the whole interval (βm, γm). This concludes the proof of (ii).

Let now m = 7 and p = 1. It is easy to prove (e.g., by hand or numerically)
that P7,1(k) is nonnegative for small values of k, say, for k between 0 and 10. For
larger values of k, we show that k 7→ P7,1(k) is increasing: indeed, by combining the
definition (4.12) and Lemma 4.3, we infer that the difference between two subsequent
terms reads

P7,1(k + 1)− P7,1(k) = 16k + 16 + 2y

[
J ′2k+10(y)

J2k+10(y)
−
J ′2k−6(y)

J2k+6(y)

]
= 4

[
(2k + 9)J2

2k+9(y)

J2k+10(y)J2k+8(y)
+

(2k − 5)J2
2k−5(y)

J2k−4(y)J2k−6(y)

]
.(4.18)

We recall that every Bessel function Jh is positive on (0, jh,1) and the sequence of
first zeros {jh,1}h∈N is increasing. In particular, Jh(j7,1) > 0 whenever h > 7, so that
(4.18) is positive. This concludes the proof of (iii).

Finally, let m = 7 and p = 2. As for (iii), by direct computation, it is easy to show
that R7,2(0) < 0 and R7,2(2k) ≥ 0 for k between 1 and 6. For the subsequent terms,
we show that k 7→ R7,2(2k) is increasing: by applying Lemma 4.3 with N = 2k, we
get

R7,2(2(k + 1))−R7,2(2k) = 8k + 4 + 2y

[
J ′2k+2(y)

J2k+2(y)
− J ′2k(y)

J2k(y)

]
=

J2
2k+1(y)

J2k+2(y)J2k(y)
> 0

for every k ≥ 6. As for (4.18), the last inequality follows by the fact that Jh > 0 in
(0, jh,1) for every h ∈ N, and jh,1 > j7,2 for every h ≥ 11. This concludes the proof
of (iv).

Lemma 4.8. Let m = 7 and p = 1 or 2. Then
(i) there exists a deformation V such that the right-hand side of (4.10) is negative

for a suitable choice of q;
(ii) for every V there exists a choice of q that makes the right-hand side of (4.10)

nonnegative.

Proof. In the following, when no ambiguity may arise, we shall omit the subscript
m, p.

Let us prove (i). For p = 1, we take q = 1, and ci ∈ R for every i, ci = 0
∀i 6= ±5,±9. Then the right-hand side of (4.10) reads P (2)|c5|2 + P (4)|c9|2 + 2c5c9
or equivalently, using a matrix formulation,(

P (2) R(2)
R(2) P (4)

)(
c5
c9

)
· (c5 , c9) .

Since the determinant of the above 2 × 2 matrix is negative, it is enough to take as
(c5, c9) an eigenvector corresponding to the negative eigenvalue to conclude the proof.

For p = 2 it is enough to take q = 1, ci = 0 for every i 6= 3, and c3 = 1: in this
case the right-hand side of (4.10) equals P (3) +R(0), which is negative.
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Let us now prove (ii). First, we notice that for every deformation, there exist
only two values of q ∈ C, |q| = 1 that ensure that the right-hand side of (4.10) is
a real number, and they are one opposite to the other, say, q = ±q∗. Let p = 1.
Arguing by contradiction, it is easy to see that the expressions corresponding to q∗

and −q∗ cannot be negative simultaneously: indeed, by adding them we would get
that

∑
k≥0 P (k)|c2k+1|2 is negative too, which is absurd, since all the P7,1(k)s are

nonnegative (see Lemma 4.7(iii)).
For p = 2 we cannot use the same trick, since P7,2(3) < 0. Given a deformation,

we consider the complex unit number q such that the right-hand side of (4.10) reads

∑
k≥0

P (k)|c2k+1|2 +

∣∣∣∣∣
+∞∑
`=−∞

R(`)cm−`cm+`

∣∣∣∣∣ .(4.19)

Using the easy bound |x+ y| ≥ |x| − |y| and the Young inequality (cf. (4.13)), we get∣∣∣∣∣
+∞∑
`=−∞

R(`)cm−`cm+`

∣∣∣∣∣ ≥ |R(0)||c7|2 −

∣∣∣∣∣∣
∑
` 6=0

R(`)cm−`cm+`

∣∣∣∣∣∣
≥ (|R(0)| − |R(14)|)|c7|2 −

∑
k≥0 , k 6=3

(
|R(2k + 1 +m)|+ |R(2k + 1−m)|

)
|c2k+1|2 .

Since all the R(`) are nonnegative except from R(0) (see Lemma 4.7(iv)), we infer
that expression (4.19) can be bounded from below by∑

k≥0

(
P (k)−R(2k + 1 +m)−R(2k + 1−m)

)
|c2k+1|2 = 0 ,

where the last equality follows from (4.14). This concludes the proof.

We are now in a position to state the following.

Theorem 4.9. Let λ be a double eigenvalue of the disk of the form λ = j2
m,p for

some m ≥ 2, p ≥ 1. If

λ = λ4 = λ5 , λ7 = λ8 , λ11 = λ12 , λ16 = λ17 , λ27 , λ33 = λ34 , λ41 = λ42 , λ50 ,

then D is a weak local minimizer in the class of constant width sets. In all the other
cases, the disk in not a weak local minimizer.

Proof. The proof is divided into several steps, in which we distinguish the follow-
ing groups of pairs (m, p):

Case 1. (2, 1), (3, 1), (4, 1), (5, 1), (5, 2), (6, 2);
Case 2. (2, p), (4, p) for p ≥ 2 and (5, p), (6, p), (7, p) for p ≥ 3;
Case 3. (3, p) for p ≥ 2;
Case 4. (6, 1);
Case 5. (8, p) for p ≥ 1;
Case 6. (m, p) for m ≥ 9 and p ≥ 1;
Case 7. (7, 1), (7, 2).

Note that the family of eigenvalues {λ4 = λ5 , λ7 = λ8 , λ11 = λ12 , λ16 = λ17 , λ33 =
λ34 , λ41 = λ42} corresponds to the pairs listed in Case 1, while λ26 = λ27 and
λ49 = λ50 correspond to the pairs of Case 7 (cf. Table 2). Therefore, in Case 1 we will
show the weak local minimality of the disk, in Cases 2 to 6 we will show the non weak
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local minimality of the disk, and in Case 7 we will discuss the different behavior at D
of the associated double eigenvalues.

Case 1. As already pointed out in Remark 4.6, if we prove that Rm,p(2k+ 1±m)
are nonnegative for every k, we readily obtain the weak local minimality of D for such
λ. A numerical computation shows that Rm,p(2k+1±m) ≥ 0 for every k = 1, . . . , 10.
For the subsequent terms, a sufficient condition is the positive monotonicity with
respect to k. In order to investigate such property, we compute the difference of two
subsequent terms: setting for brevity N := 2k + 1±m, we have

Rm,p(2(k + 1) + 1±m)−Rm,p(2k + 1±m)

= 4(N + 1) + 2jm,p

[
J ′N+2(jm,p)

JN+2(jm,p)
− J ′N (jm,p)

JN (jm,p)

]
=

4(N + 1)J2
N+1(jm,p)

JN+2(jm,p)JN (jm,p)
,(4.20)

where for the last equality we have used Lemma 4.3. For k ≥ 10 it is easy to verify
that JN+2 and JN are both positive in jm,p, so that the right-hand side of (4.20) is
positive.

Case 2. A direct computation shows that j2
m,p > γm; therefore Lemma 4.7(i) gives

Pm,p(1) < 0. Hence, since m 6= 2k + 1 when k = 1 (cf. Remark 4.6), the deformation
corresponding to c3 = 1 and ci = 0 for every i 6= 3 gives a negative second order shape
derivative at D in direction V .

Case 3. Taking a deformation V such that c3 = 1 and ci = 0 for every i 6= 3,
we infer (see Remark 4.2) that the second order shape derivative at D in direction V
reads, up to a positive multiplicative constant, P3,p(1)±R3,p(0). A direct computation
gives

P3,p(1)±R3,p(0) =
64
[
80− 19j2

3,p ± (j2
3,p − 80)

]
(j2

3,p − 8)(j2
3,p − 80)

=


−

64 · 18j2
3,p

(j2
3,p − 8)(j2

3,p − 80)
< 0,

− 64 · 20

(j2
3,p − 80)

< 0,

where the last inequalities follow from the estimate j2
3,p > 80 for every p ≥ 2.

Case 4. By direct computation, we get P6,1(2) < 0. Hence, as m 6= 2k + 1
when m = 6 and k = 2 (cf. Remark 4.6), the deformation corresponding to c5 = 1
and ci = 0 for every i 6= 5 gives a negative second order shape derivative at D in
direction V .

Case 5. Since j2
8,1 < 168 = β8 and j2

8,p > 360 = γ8 for every p ≥ 3, by Lemma
4.7(i), we get P8,p(1) < 0 for every p 6= 2. A direct computation shows that P8,3(2) <
0. Thus, the deformation with coefficients ci = δi3 in case p 6= 2 and ci = δi5 in case
p = 2 gives a negative second order derivative at D.

Case 6. Here Lemma 4.7 gives an exhaustive answer: for every p ≥ 1, P9,p(k) < 0
either for k = 1 or for k = 2. Thus, to have a negative second order derivative at the
disk, it is enough to chose the deformation corresponding to ci = 1 if i = 2k + 1 and
0 else.

Case 7. Here m = 7 and p = 1 (resp., p = 2). Recalling Table 2 this corresponds
to the second order shape derivative of λ26 and λ27 (resp., λ49 and λ50). By combining
Lemma 4.8 with formula (4.3), we infer that λ27 (resp., λ50) is a weak local minimizer,
while λ26 (resp., λ49) is not.

Remark 4.10. The positivity of λ′′h is not enough for the optimality of weak local
minimizers, and a necessary condition is the coercivity of the second order shape
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derivative, with respect to the H1/2 norm of the deformation (see [12, 13]). Estab-
lishing the coercivity of λ′′h turns out to be very complicated in general, due to the
presence of the complex number q and of the terms involving Bessel functions (see
(4.2)). Nevertheless, for some eigenvalues it is straightforward. Take, for example,
λ3: according to (4.2) and Remark 4.2, we infer that the term multiplied by q is
nonnegative, thus

λ′′3(D;V ) ≥ 2λ3(D)

∑
`∈Z

(`2 − 1)|c`|2 + 2
∑
|`|6=1

(
2 + j1,1

J ′`(j1,1)

J`(j1,1)

)
|c1−`|2


=2λ3(D)

‖φ‖2H1 +2
∑
k≥1

j1,1

(
J ′2k+2(j1,1)

J2k+2(j1,1)
+
J ′2k(j1,1)

J2k(j1,1)

)
|c2k+1|2

≥2λ3(D)‖φ‖2H1(∂D).

Namely, we have the H1 coercivity (and hence the L∞ one) of λ′′3 at D.

5. Some numerical results.

5.1. Numerical framework and optimization algorithm. We present in
this section a numerical algorithm which can search for the shapes Ω which minimize
λh(Ω) under constant width constraint. In Theorem 3.3 we prove that the disk is not
a weak local minimizer for any of its simple eigenvalues. Moreover, in Theorem 4.9
it is proved that when the eigenvalue of the disk is double, only for a precise finite
set of indices h ≥ 1 the disk is a weak local minimizer for λh(Ω). The computations
presented below allow us to give further evidence that in these cases the disk is
probably a global minimizer. Furthermore, for small enough indices h it is possible
to find shapes of given constant width which have their hth eigenvalue smaller than
the corresponding hth eigenvalue for the disk.

The constant width constraint (or the diameter constraint) is difficult to handle
numerically in optimization algorithms. One of the issues which appears when dealing
with gradient based optimization algorithms is that admissible perturbations of the
boundary which preserve the constant width property are not local. We refer to
[22], [4], and [27] for methods of dealing with constant width constraint related to
convex geometry. In [3] the authors describe how to use the support function and its
decomposition into Fourier series in order to study numerically optimization problems
in the class of two-dimensional shapes of constant width. It is this approach which
inspired the method described below.

As was already noted in previous sections, if f is the support function of a convex
shape of constant width 2, then f ′′(θ) + f(θ) ≥ 0 and f(θ) + f(θ + π) = 2 for all
θ ∈ [0, 2π]. These conditions need to be imposed in the numerical computations and
in the following we show how to implement them in our algorithm. Note that when
writing the Fourier expansion of f

f(θ) = 1 +

∞∑
k=1

(ak cos(kθ) + bk sin(kθ))

the constant width condition simply means that all coefficients with positive and even
index must be equal to zero: a2k = b2k = 0 for k ≥ 1. Even though the constant width
condition is simple to express in terms of the coefficients, we still need to impose the
convexity condition
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f ′′(θ) + f(θ) = 1 +

∞∑
k=1

(
ak(1− k2) cos(kθ) + bk(1− k2) sin(kθ)

)
≥ 0 ∀θ ∈ [0, 2π].

(5.1)

Recall that if the support function f does not verify (5.1), then f is not the support
function of a convex body. In [3] the authors provide an analytic characterization
for the Fourier coefficients which satisfy the inequality (5.1). They show that this
analytic characterization leads to a semidefinite programming problem, which needs to
be handled using specialized optimization software. Moreover, functionals considered
in [3] were always linear or quadratic in terms of the Fourier coefficients. Therefore,
nonlinear functionals related to the Dirichlet–Laplace eigenvalues λh(Ω) cannot be
handled with the methods described in [3].

In order to deal with the convexity constraint, which is a necessary condition
for the shapes involved in our computations, we choose to use a different method,
described in [1]. Instead of searching for a global characterization of the Fourier
coefficients of the support function of a convex set, we only impose the convexity con-
straint on a discretization of [0, 2π]. Indeed, let θ1, . . . , θM be a uniform discretization
of [0, 2π], e.g., θi = 2πi

M ; then condition (5.1) can be replaced by

1 +

∞∑
k=1

(
ak(1− k2) cos(kθi) + bk(1− k2) sin(kθi)

)
≥ 0, i = 1, . . . ,M.(5.2)

This second formulation of the convexity constraint, which is weaker than (5.1), can
be expressed as a set of linear inequality constraints on the Fourier coefficients. This
type of constraint is less restrictive than the analytic characterization of (5.1) used
in [3] and can easily be implemented in many standard constrained optimization
routines, like, for example, fmincon in the MATLAB Optimization Toolbox. The
discretized convexity condition (5.2) is therefore more advantageous from a numerical
point of view than the analytic condition (5.1) used in [3]. Moreover, using (5.2) it is
possible to handle arbitrarily complex functionals, as long as we have information on
the gradient.

In order to have a finite number of variables in our optimization, we only consider
shapes which can be parametrized with Fourier coefficients up to rank N ,

f(θ) = 1 +

N∑
k=1

(ak cos(kθ) + bk sin(kθ)) .(5.3)

We note that limiting the number of Fourier coefficients is not too restrictive, in the
sense that when N is large enough the class of shapes parametrized by support func-
tion given in (5.3) can give a satisfactory approximation of any given shape. Moreover,
one can repeat the optimization procedure for an increasingly higher number of coef-
ficients, until we observe that the optimal shape does not change anymore and that
the optimal value of the cost function does not improve.

In order to have an efficient optimization algorithm, we compute the derivatives
of the eigenvalue in terms of the Fourier coefficients of the support function. To this
aim, we first consider two types of perturbations, a cosine term and a sine term,
namely, two families of deformations {Vk}k and {Wk}k as in Table 3.

If λh(Ω) is simple, recalling the Hadamard formula (2.8) for the first order shape
derivative, and performing a change of variables (see (2.9)), we have

λ′h(Ω;Vk) = −
∫ 2π

0

(∂nuh(x(θ), y(θ)))2 cos(kθ)(f ′′(θ) + f(θ))dθ ,
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Table 3
Transformation of perturbations of the support function into boundary perturbations and their

corresponding normal components.

Type Boundary perturbation Normal component

cos(kθ) Vk = (cos(kθ) cos θ + k sin(kθ) sin(θ),
cos(kθ) sin θ − k sin(kθ) cos(θ))

Vk.n = cos(kθ)

sin(kθ) Wk = (sin(kθ) cos θ − k cos(kθ) sin(θ),
sin(kθ) sin θ + k cos(kθ) cos(θ))

Wk.n = sin(kθ)

λ′h(Ω;Wk) = −
∫ 2π

0

(∂nuh(x(θ), y(θ)))2 sin(kθ)(f ′′(θ) + f(θ))dθ ,

where uh is a normalized eigenfunction associated to λh(Ω).
In the case of double eigenvalues, difficulties may arise in the optimization

(cf. [26]), since λh is not differentiable. However, when using a precise solver in order
to compute the eigenvalues and eigenfunctions, for example, using spectral methods
[2], and a quasi-Newton method is used for optimization, these difficulties may be
averted. We refer to the analysis in [25] for further details.

The effective computation of the eigenvalues and eigenfunctions is done with the
MATLAB package MpsPack [2]. This software uses an accurate spectral method
based on particular solutions. In our algorithm, we use the “ntd” method with 100
basis functions. The computation of the integrals which represent the derivatives with
respect to each Fourier coefficient is done using an order 1 trapezoidal quadrature.

The optimization is done in MATLAB using the fmincon procedure. This rou-
tine can perform the optimization of general functionals under matrix vector product
equality/inequality constraints and nonlinear equality/inequality constraints. As pa-
rameters we choose N = 40, i.e., 80 Fourier coefficients (40 sines and 40 cosines). We
use between 500 and 1000 points on the boundary where we impose the linear in-
equality constraints given by (5.2). The optimization algorithm is interior-point with
lbfgs Hessian approximation. The constant width condition is imposed via a matrix
product equality: all even coefficients of sine and cosine are zero.

In order to avoid possible local minima, we choose a random vector of Fourier
coefficients as initial condition and we project it onto the constraints, using again
fmincon with a fictitious objective function. We perform several optimizations start-
ing each time from different random initializations in order to validate our results.

5.2. Numerical results. As noted in Theorems 3.3 and 4.9 there are only
finitely many cases where the disk is a weak local minimizer. In each of these cases,
the numerical simulations show that the disk is probably the global optimizer, since
our algorithm did not manage to find better candidates.

We run our algorithm for every value h ≤ 20 and we note that the results are
in accordance with the theoretical aspects recalled above. When the disk is not a
weak local minimizer we manage to find shapes of fixed constant width 2 which have
a lower hth eigenvalue than the corresponding one for the unit disk. We summarize
these results in Figure 1.

The numerical simulations allow us to formulate some conjectures regarding the
multiplicity of the optimal eigenvalues. We split the analysis into three cases: indices
corresponding to a simple eigenvalue on the disk and first and second indices in a pair
of double eigenvalues for the disk.
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λ6(Ω) = 30.453 λ9(Ω) = 49.080 λ10(Ω) = 49.084
λ6(D) = 30.4713 λ9(D) = 49.2184 λ10(D) = 49.2184

λ13(Ω) = 70.222 λ14(Ω) = 70.244 λ15(Ω) = 73.589
λ13(D) = 70.8499 λ14(D) = 70.8499 λ15(D) = 74.8868

λ18(Ω) = 93.626 λ19(Ω) = 93.683 λ20(Ω) = 98.254
λ13(D) = 95.2776 λ19(D) = 95.2776 λ20(D) = 98.7263

Fig. 1. Noncircular shapes of constant width 2 which are candidates to be the minimizers of
λh for h = 6, 9, 10, 13, 14, 15, 18, 20.

• λh(D) is simple: the numerical optimizer Ω has a simple hth eigenvalue;
• λh(D) = λh+1(D): the numerical optimizer Ω has a simple hth eigenvalue;
• λh−1(D) = λh(D): the numerical optimizer Ω has a double hth eigenvalue,

i.e., λh−1(Ω) = λh(Ω).
We also remark that the numerical solutions we obtain for problem (1.4) all have

nonzero curvature radius, which means that they do not have singular points in their
boundary, suggesting that they are C2 regular.

In the results presented in Figure 1 it can be noticed that for k ∈
{6, 9, 10, 13, 14, 18, 19} the optimizers seem to be invariant under a rotation of an-
gle 2π/3, while for k = 15 the minimizer is invariant under a rotation of angle 2π/5.
However, for k = 20 the optimal shape found by our algorithm is not invariant under
any rotation. The computations do not allow us to deduce a general conjecture con-
cerning the symmetry of the optimal domains. This is, in general, a difficult problem
when dealing with optimizers of eigenvalue problems.D
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