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Abstract—Deep Convolutional Neural Networks (CNNs) have
become the go-to method for medical imaging classification on
various imaging modalities for binary and multiclass problems.
Deep CNNs extract spatial features from image data hierar-
chically, with deeper layers learning more relevant features
for the classification application. Despite the high predictive
accuracy, usability lags in practical applications due to the black-
box model perception. Model explainability and interpretability
are essential for successfully integrating artificial intelligence
into healthcare practice. This work addresses the challenge of
an explainable deep learning model for the prediction of the
severity of Alzheimer’s disease (AD). AD diagnosis and prognosis
heavily rely on neuroimaging information, particularly magnetic
resonance imaging (MRI). We present a deep learning model
framework that integrates a local data-driven interpretation
method that explains the relationship between the predicted AD
severity from the CNN and the input MR brain image. The deep
explainer uses SHapley Additive exPlanation values to quantify
the contribution of different brain regions utilized by the CNN
to predict outcomes. We conduct a comparative analysis of three
high-performing CNN models: DenseNet121, DenseNet169, and
Inception-ResNet-v2. The framework shows high sensitivity and
specificity in the test sample of subjects with varying levels
of AD severity. We also correlated five key AD neurocognitive
assessment outcome measures and the APOE genotype biomarker
with model misclassifications to facilitate a better understanding
of model performance.

Index Terms—Alzheimer’s Disease, MRI, Deep learning, Ex-
plainability, Prediction models

I. INTRODUCTION

Deep neural networks have demonstrated remarkable suc-
cess in creating predictive models for diverse applications,
including precision medicine [1]. Despite their high predictive
accuracy, usability lags in practical applications due to the per-
ception that they operate as black boxes. Model explainability
and interpretability are essential for successfully integrating
artificial intelligence (AI) into healthcare practices [2]. In this
paper, we adopt the definition of Explainable AI from [2]
as ‘techniques and methods to build AI applications that end
users can understand and interpret.’ These can be categorized
as ante-hoc (i.e., how is the model producing its result?)
or post-hoc (i.e., why is the model producing this result?)
approaches [3]. Four characteristics of explainability have
been recommended for precision medicine: interpretability,
understandability, usability, and usefulness [3]. To build deep

learning prediction models that are useful (i.e. are of prac-
tical worth), we need to promote the understandability and
interpretability of the models. Understandability deals with
how the system is working, while interpretability focuses on
whether the results make sense. To uncover the black-box
model that hides the operations of deep neural networks,
Liang et al. [4] suggest that local interpretable approaches
that analyze individual cases may be more suitable than
global ones, given the advantages of easier implementation
and lower computational complexity. In this work, we address
the challenge of creating an explainable deep learning model
for predicting the severity of Alzheimer’s disease based on
a local interpretation method that focuses on enhancing the
understandability and interpretability of the neural network.

Alzheimer’s disease (AD) is a common neurodegenerative
disorder of aging populations [5]. It is slowly progressive,
leading to the death of brain cells, which results in memory
loss and cognitive decline [6]. Research on AD is a national
priority, with 5.5 million Americans affected at an annual cost
of more than $250 billion and no definitive cure available [5].
Early detection allows for more precise treatment, enhances
patient outcomes, and reduces unnecessary hospitalization.
The diagnosis of AD relies heavily on neuroimaging, espe-
cially magnetic resonance imaging (MRI) [7]. MRI is the pre-
ferred neuroimaging method, providing abundant information
on anatomical structures at high spatial resolution. Dementia is
at the most severe end of the spectrum of cognitive impairment
seen in aging. Cognitive impairment may be minimal as
observed in cognitively normal (CN) aged persons, progress
to more severe cognitive impairment without dementia known
as mild cognitive impairment (MCI), and evolve into the full-
blown dementia of AD [8]. For the accurate diagnosis and
classification of Alzheimer’s patients, a systematic analysis of
multiple types of biological information (including neuroimag-
ing) is needed [9]. This paper is an initial step in that direction
as we attempt to incorporate neurocognitive assessments into
the MRI analysis.

Deep learning models can perform automated detection and
classification of AD severity. Machine learning analysis of ex-
tracted neuroimaging data features for AD has been conducted
extensively with support vector machine models and obtained
high levels of performance (see [5] for a detailed review). Deep

979-8-3503-1017-7/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 C
on

fe
re

nc
e 

on
 C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 in

 B
io

in
fo

rm
at

ic
s a

nd
 C

om
pu

ta
tio

na
l B

io
lo

gy
 (C

IB
C

B
) |

 9
79

-8
-3

50
3-

10
17

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
C

IB
C

B
56

99
0.

20
23

.1
02

64
88

0

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on November 03,2023 at 19:37:51 UTC from IEEE Xplore.  Restrictions apply. 



learning models hold the promise to analyze whole scans, not
just extracted regions. Hence, multiple convolutional neural
networks (CNN) models [6], [10]–[12] have been applied to
entire brain images. The goal of adding interpretability to these
models is to maintain accuracy while enhancing reliability
and understandability. We present a deep learning model
framework that integrates a local data-driven interpretation
method to explain the relationship between the predicted AD
severity from the CNN and the inputted MR brain image.
We conduct a comparative analysis of three CNN models.
The data-driven interpretation model utilizes a deep explainer
based on SHapley Additive exPlanation (SHAP) values [13]
to quantify the contribution of different brain regions utilized
by the CNN to predict outcomes. We correlate five key AD
neurocognitive assessment outcome measures and the APOE
genotype biomarker with model misclassifications to better
understand model performance.

II. BACKGROUND

A. Convolution Neural Network Architectures

This section briefly describes each CNN model utilized in
this work. Dense convolutional network (DenseNet) [14] is
characterized by a dense connectivity pattern in which all
layers are directly connected with each other (see Figure 1).
The intent is to maximize information flow between layers in
the network by combing features using concatenation rather
than summation. The l th layer has l inputs from the feature
maps of all the preceding blocks [14]. In turn, its own feature
maps are passed on to all the L−l subsequent layers, resulting
in L(L+1)

2 connections in an L-layer network. DenseNet
consists of a series of dense blocks of varying filter sizes.
From one dense block to another, a transition layer takes care
of the downsampling via convolution and pooling operations
[14]. Each dense layer implements a composite function of
operations: batch normalization, rectified linear units (ReLU)
and convolution (see Figure 1). DenseNet can have very
narrow layers due to the collective knowledge possessed at
each point in the network, given the dense connectivity. This is
determined by the hyperparameter k, which denotes the growth
rate of the network. It regulates how much new information
each layer contributes to the global state. Variants of DenseNet
can be derived by varying the depth, which is a function of
the number of layers in the dense blocks. In this work, we use
DenseNet121 and DenseNet169.

Inception-residual network (Inception-ResNet) is a hybrid
neural network that leverages the strength of residual connec-
tions with the inception architecture [15]. Residual connections
enable the training of very deep networks as they utilize skip
connections that short-circuit shallow layers to deep layers,
enabling the layer to adjust the input rather than attempting
to learn the entire function from scratch [16]. The inception
architecture utilizes sparse connectivity patterns to decrease
the number of connections without compromising network
efficiency. It consists of multiple stacked inception module
layers with parallel convolutions of various filter sizes and
pooling operations that are concatenated to create a single

output passed to the next layer [17]. Since inception networks
tend to be very deep, Inception-ResNet replaces the filter
concatenation stage with residual connections [15].

The Inception-ResNet, as illustrated in Figure 2, consists of
three main types of modules: stem (initial layer), Inception
ResNet, and reduction blocks [18]. The Inception ResNet
blocks (A, B and C) have identical convolutions but varying
filter sizes. It aids the network in learning robust representa-
tions from the input image. The reduction blocks use pooling
along with convolution paths for feature reduction to improve
computational efficiency. Each of the three blocks (A, B, and
C) differs in the number of max-pooling and convolution paths.
In this work, we utilize the Inception-ResNet-v2 [15] variant,
a costlier hybrid Inception version with significantly improved
recognition performance.

Both DenseNet and Inception-ResNet networks aim to im-
prove accuracy by reducing the number of parameters and
promoting feature reuse. The primary difference lies in how
they connect the layers in their architectures. Inception-ResNet
uses residual connections to add the output of one layer to
another layer deeper in the network, while DenseNet uses
dense connections to concatenate the output of each layer to
the input of all subsequent layers.

B. Neurocognitive Assessments and Genotype Biomarker

To provide context for the clinical relevance discussion
(Sections V and VI), this section provides a brief description
of commonly used AD outcome measures and the APOE
genotype biomarker utilized in this work.

The Mini-Mental State Examination (MMSE) [19] is a cog-
nitive function test that involves a pen-and-paper assessment of
various cognitive abilities such as orientation, concentration,
attention, verbal memory, naming, and visuospatial skills. The
test has a maximum score of 30 points. Although exact cut-
off points for the MMSE have not been established, scores of
28-30 are generally considered normal, 26-27 are indicative of
MCI, and scores below 25 are suggestive of AD. The Clinical
Dementia Rating (CDR) [19] is a global rating scale for
staging patients diagnosed with dementia. The CDR evaluates
cognitive, behavioral, and functional aspects of Alzheimer’s
disease and other dementias. The CDR is based on a scale of
0–3: no dementia (CDR = 0), questionable dementia (CDR =
0.5), MCI (CDR = 1), moderate cognitive impairment (CDR
= 2), and severe impairment (CDR = 3).

The Functional Activities Questionnaire (FAQ) [20] is a
10-item measure of instrumental activities of daily living
functional status. FAQ items are rated on a 3-point ordinal
scale of 0–3 ( 0 = normal or never did but could do now; 1
= has difficulty but does by self or never did but would have
difficulty now; 2 = requires assistance; 3 = dependent). Total
scores range from 0 to 30, with higher scores indicating greater
impairment. Digit Span score [21] includes digits forward and
digits backward. Digits forward require the subject to repeat
numbers in the same order as read aloud by the examiner,
while for digits backward, the subject repeats the numbers in
the reverse order. The Alzheimer Disease Assessment Scale
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Fig. 1. DenseNet architecture. There is a connection between each layer and all subsequent layers. Differences in the variants such as DenseNet121 and
DenseNet169 lies in the varying number of dense layers in the blocks. Conv.: Convolution; Trans.: Transition.

Fig. 2. Inception-ResNet architecture. There is a residual connection between each layer and all subsequent layers.

(ADAS) comprises cognitive and noncognitive sections [22].
Its cognitive section (ADAS-Cog) includes standard tests of
language, comprehension, memory, and orientation, tests of
visual-spatial ability, such as drawing geometric figures, and
physical tasks that reflect ideational praxis, such as folding a
paper into an envelope. Patients obtain scores of 0 to 70, with
higher scores indicating poorer performance.

The apolipoprotein E (APOE) is a gene that provides
instructions for making a protein called apolipoprotein E [23].
There are three versions of the APOE gene, called alleles:
ϵ2, ϵ3, and ϵ4. Each person has two copies of the gene (one
inherited from each parent) so the APOE genotype represents
the combination of inherited alleles. Having two copies of
the APOE ϵ4 allele is strongly linked to an increased risk
of developing AD [24]. Following that, individuals with the
combination of one APOE ϵ3 allele and one APOE ϵ4 allele
(ϵ3/ϵ4) also have an elevated risk compared to those with two
copies of ϵ3. Conversely, individuals with two APOE ϵ2 alleles
(ϵ2/ϵ2) tend to have a lower risk of developing AD.

III. METHODS

A. Data Acquisition and Preprocessing

The patient sample analyzed in this work is drawn from
the Alzheimer’s Disease Neuroimaging Initiative database [8],
a longitudinal multicenter study designed to develop clinical,
imaging, genetic, and biochemical biomarkers for the early
detection and tracking of AD. There are multiple patient
cohorts within ADNI: ADNI-1, ADNI-2, ADNI-3, ADNI-
GO. Each consists of neuroimaging data with diverse imaging
types (3D and 2D) that underwent certain acquisition and
preprocessing phases. We selected a subset of T1-weighted
MR images from the ADNI-1 cohort, as it had the largest
sample of images in 3D format, processed with N3 correction
standard, in the same image acquisition plane (sagittal). The
sample consisted of 325 AD, 595 CN, and 1024 MCI images,
a total of 1944 from 488 unique patients. Some of the images

were scans from obtained at different visit dates for the same
patients. All participants were between the ages of 50 and 80
years. A brief demographic description of the 1944 images by
class used is presented in Table I.

TABLE I
SAMPLE DEMOGRAPHIC AND NEUROCOGNITIVE CHARACTERISTICS.

(n) AD (325) MCI (1024) CN (595)

Male/Female 149/176 588/436 276/316
Age
(mean/std)

72.5± 5.4 72.1± 5.5 74.7± 3.7

Education
(Yrs)

14.2± 3.1 15.6± 3.0 15.9± 2.9

MMSE 21.1± 5.4 25.7± 3.7 29.2± 1.0
CDR Global 17.3± 7.8 7.2± 7.0 0.2± 1.0
FAQ 1.0± 0.5 0.6± 0.3 0± 0.1

MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating
FAQ: Functional Assessment Questionnaire

Certain preprocessing steps were applied to each ADNI-1
image before it could be used in the deep learning model, de-
scribed as follows. Skull stripping was applied to remove non-
brain tissue voxels from images, including skin, fat, muscle,
neck, and eyeballs. We utilized the Functional MRI software
library (FSL) brain extraction tool [25]. Subsequently, spatial
normalization is applied to standardize image orientation and
voxel spacing, as these factors can differ among images even
if they are acquired from the same scanner. It minimizes
variations in image positioning, orientation, shape, and size in
the dataset. We employed the FSL’s linear image registration
tool [26] to linearly align all scans to the T1 MNI 152
template with 2mm isotropy. This yielded 3D images of a
standard size of 91x109x109. Figure 3 illustrates the effect of
skull stripping and spatial normalization on the raw ADNI-1
images. Each 3D image was resliced into three distinct 2D
image sets (sagittal, coronal, and axial orientations) using the
Nibabel image slicer [27]. Note that subsequent analyses were
conducted only on the axial image slices. Visual examples of
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(a) An example of the MR image obtained from ADNI

(b) Brain image after skull stripping and spatial normalization.
Fig. 3. Effect of skull stripping and spatial normalization on MR image.

Fig. 4. Images of center axial slices in order of severity: CN, MCI and AD.

the axial slices obtained from MR images of varying severity
are presented in Figure 4. To ensure that all the pixels in each
image are within a normalized range, we also performed data
intensity (or voxel-based) normalization using the zero-mean
unit-variance method [28].

B. Class Balancing using SMOTE

In medical data collection, a known issue is the skewed
distribution of samples between healthy controls and cases.
Though the unique patient distribution in the entire ADNI-1
cohort is relatively balanced, the 1944 sample of MR images
obtained were highly skewed (30.6% CN, 52.6% MCI, and
16.7% AD). To avoid possible overfitting and bias of the
learning model due to the skewed distribution, we applied the
synthetic minority oversampling technique (SMOTE) sampling
approach [29], [30]. SMOTE generates synthetic examples in
feature space by over-sampling the minority class. Synthetic
examples are derived by introducing examples along the line
segments joining any/all of the k nearest neighbors from
the minority class. Depending on the desired amount of
over-sampling, neighbors from the k nearest neighbors are
randomly selected. A feature vector X0 from the sample under
consideration is chosen from the minority class. One of its k
nearest neighbors X , also belonging to the minority class, is
randomly selected. The difference between X and X0 is then
computed, and new synthetic data is generated on a random
point in the line segment by connecting the feature vector and
the selected neighbor: Z = X0 + w (X −X0), where w is a
uniform random variable in the range [0,1]. Examples of the

Fig. 5. SMOTE outcome images: the first two are AD while the third is CN.

SMOTE generated images for both AD and CN classes are
illustrated in Fig. 5.

C. Construction of CNN Learning Model Framework

The overall explainable deep learning model for prediction
of the severity of AD from MR brain images is illustrated
in Figure 6. It consists of the CNN learning model and
the explainability extension. We compare the performance
of three CNN architectures: DenseNet121 [14], DenseNet169
[14], and Inception-ResNet-v2 [15]. (See Section II-A for a
brief description of each CNN model). A drawback of CNN
models on images is the long training times. As a result
of the readily available varied pre-trained CNN architectures
on Imagenet that is implemented in Keras with Tensorflow
backend [31], researchers can integrate transfer learning to
enhance efficiency of training times. The basis is that models
trained on one problem (Imagenet [32]) can be used as a
starting point for training new models on a related problem.
Transfer learning allows the use of weights from pre-trained
models developed from standard computer vision benchmark
data into new models. Transferring the weights (and network
parameters) from a pre-trained generic network to train on a
specific data set tends to perform better than random weight
initialization of the network [33].

The base model is constructed from the pre-trained net-
work and initialized with the Imagenet training weights. We
unfreeze some of the higher layers to allow the CNN model
to encode more subtle features from the brain MR images
geared towards AD severity distinction. The fine-tuning layers
consist of the global average pooling layer, two dense layers of
varying sizes (256 and 128 neurons), and the fully connected
layer. The dense layer included a ReLU activation function, L1
regularization, and a dropout layer to increase the resilience
of the network and reduce overfitting. The fully connected
layer utilized the softmax activation function for the three
classes. We employed the RMSprop optimizer to minimize
the categorical cross-entropy loss function.

D. Model Explainability using SHAP Deep Explainer

SHAP [13] is implemented as a data-driven local interpre-
tation method to unravel the black box deep learning model
[4]. The SHAP values are computed using the Deep explainer
to identify the contribution of each feature in the image in the
prediction of AD severity. The number of unique prediction
classes determines the number of images SHAP generates
when explaining a prediction. In this three-class AD severity
context, SHAP calculates the feature importance per pixel and
generate 3 explainable images per class (CN, AD, and MCI)
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Fig. 6. Explainable learning framework for prediction of AD severity. FC: Fully connected layer. ReLU: Rectified linear unit activation function

It denotes pixel importance by color. Red indicates a positive
correlation, while blue indicates a negative correlation on the
predicted value. The intensity of the color reflects the level
of impact a specific feature has on the prediction. Both red
and blue are important, but they have opposite effects on the
output. The intensity of the color is crucial as any deeply
colored area represents a feature that contributes to the ‘feature
importance’ in the model’s classification. Therefore, the SHAP
plot can provide valuable insights into how different features
contribute to the neural network’s output and identify the key
regions that seemed to influence the predictions.

In the model interpretation phase, we analyze the correctly
classified and incorrectly classified results of the AD and MCI
predictions to examine what could have hindered the perfor-
mance of the CNN model on those tasks. The key question
is does the image prediction class line up with the other
biological information available? A domain expert assessed the
SHAP plot results and the neurocognitive outcome measures
to determine the clinical relevance of the results.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

All experiments were implemented using Python and Ten-
sorFlow ML API on a NVIDIA GEFORCE GTX 1050 GPU
machine. In Tensorflow, individual operations and modules
in a network are considered as separate layers, including
convolutional blocks and auxiliary layers such as activation,
batch normalization, pooling, and global average pooling.
The DenseNet121, DenseNet169, and Inception-ResNet-v2
architectures have 433, 601, and 785 layers, respectively.
To fine-tune the models, we unfroze the later blocks, with
DenseNet121 at the 313th layer, DenseNet169 at the 369th
layer, and Inception-ResNet-v2 at the 616th layer.

Applying SMOTE on initial skewed distribution of 1944
images yielded a balanced size of 1024 for each severity class,
a total of 3072 images. The sample was split into training
(80%) and testing (20%) subsets. Note that the SMOTE
generated images were all intentionally constrained to the
training data so the test set consisted of only real images.
During training, the data augmentation techniques (horizontal
flipping, height and width shifts within ranges of 0.05 and 0.1,
rotation within a range of 5 degrees, and zoom within a range
of 0.15) were automatically applied to improve the model’s
robustness by increasing variability of data. A stratified 5-fold
cross-validation was applied for training with a batch size of
32, and learning rate of 0.00001. The best performing fold
training model was employed on the test set.

The following metrics were employed to evaluated the
model’s learning performance: classification accuracy, sensi-
tivity/recall, specificity, and the area under the curve receiver
operating characteristic curve (AUC-ROC). Let TP denote
true positive, TN true negative, FP false positive, and FN
false negative. Accuracy (ACC) assesses how well the model
can predict true positives and negatives within the classes.
It is defined as: ACC =

(
TP+TN

(TP+TN+FP+FN

)
. Sensitivity

(SEN), also known as true positive rate, indicates the model’s
ability to locate all positive samples. It is computed as
SEN =

(
TP

TP+FN

)
. Specificity (SPE), also known as false

positive rate, is the complement of sensitivity and represents
the model’s ability to correctly identify all negative samples.
It is given by SPE =

(
TN

TN+FP

)
.

To conduct a comparative analysis of the three CNN models,
we performed multiple experiments by varying the number
of epochs (100, 250, 500, 1000). The training performance
across the 3 models and 4 epoch levels is shown in Figure
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TABLE II
PERFORMANCE OF THE CNN MODELS ON THE AD SEVERITY PREDICTION

OF THE TEST IMAGE SUBSET.

AD MCI CN
Epoch ACC SEN SPE SEN SPE SEN SPE

DenseNet121
100 54.15 15.61 99.76 78.54 49.02 82.44 68.29
250 67.48 30.24 100 92.68 62.2 89.02 79.51
500 77.56 54.63 99.76 89.27 77.32 89.27 88.78
1000 76.91 49.27 100 95.61 72.44 92.93 85.85

DenseNet169
100 52.36 19.02 99.76 98.05 30.49 98.29 40
250 67.15 35.61 99.51 95.61 56.59 94.63 70.24
500 75.93 58.54 99.51 95.12 68.29 96.1 74.15
1000 75.12 55.12 98.54 97.56 64.88 99.27 72.68

Inception-ResNet-v2
100 84.07 78.05 96.83 95.12 80.98 98.29 79.02
250 91.87 89.27 98.05 91.22 93.17 96.59 95.12
500 93.66 92.2 98.78 96.1 92.93 98.78 92.68
1000 92.03 89.76 98.05 96.1 91.22 98.78 90.24

ACC: Testing Accuracy; SEN: Sensitivity SPE: Specificity

7. Table II illustrates the performance of the best performing
model per epoch on the test set not seen during training.
From the comparison of the overall prediction accuracies of
the validation set (training) to that of the test set in Figure
8, we can observe that the DenseNet121 model (blue) appear
to overfit, as the accuracies diverge from each other while the
converge for both the DenseNet169 and the Inception-ResNet-
v2 models. From Table II, we observe that the Inception-
ResNet-v2 is the best performing model. In terms of the
AUC values, Inception-ResNet-v2 has the highest AUC scores
across all three classes (AD: 0.95, MCI: 0.95, and AD 0.96).
The AUC scores for DenseNet121 (AD: 0.75, MCI: 0.84, CN:
0.89) and DenseNet169 (AD: 0.77, MCI: 0.81, CN: 0.86)
are relatively close to each other, with DenseNe121 having
slightly better performance. Overall, Inception-ResNet-v2 is
most effective model for classifying new data accurately, as
it has the highest test prediction accuracy, AUC, and is least
likely to overfit during training.

V. MODEL EXPLANATION AND CLINICAL RELEVANCE

Since the sensitivity and specificity analysis of the 3 models
suggests that the Inception-Resnet-v2-based model outper-
forms the other two models, we focus on explaining only the
Inception-ResNet-v2 model using the SHAP visualization plot.

As Alzheimer’s disease progresses, the interhemispheric
fissure of the brain widens, the cortical sulci of the brain
enlarge, the ventricles enlarge, and the corpus callosum thins
[34]. There may also be subtle changes in the white matter
and grey matter of the parenchyma. Patients with more severe
AD are expected to have larger ventricles and larger cortical
sulci. The distribution of SHAP values (red pixels) around
the ventricles and near the cortical sulci (see Figures 9
and 10), suggests that the neural networks may have relied
on ventricular enlargement and cortical sulci enlargement to
identify subject images with likely Alzheimer’s disease.

TABLE III
CLINICAL RELEVANCE OF INCEPTION-RESNET-V2 MODEL OUTCOMES

FOR CORRECTLY PREDICTED AD VS. AD PREDICTED AS MCI OR CN

Correct AD Incorrect MCI Incorrect CN

N 193 11 1
Gender (Male/Female) 86/107 4/7 1
Age 72.2 ± 5.75 72.1 ± 4.5 79.1
FAQ total (↑) 17.1 ± 7.6 19.2 ± 11.61 0
MMSE (↓) 21.00 ± 5.5 22.9 ± 3.1 26
Digit span total (↓) 22.5 ± 14.72 21.0 ± 14.5 0
CDR Global (↑) 0.97 ± 0.49 1.0 ± 0.81 0.5
ADAS-Cog (↑) 24.3 ± 11.7 21.4 ± 15.8 0
APOE high severity* 79.6% of 49 50% of 6 0% of 1

*APOE high severity: percentage of patients with genotype of (3/4,4/3, or 4/4).
MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating
FAQ: Functional Assessment Questionnaire

A neurology domain expert (D. H.) inspected the SHAP
plots (Figures 9 and 10). As expected, SHAP intensity in
the plots was highest for the class that was selected by the
model. When the model correctly classified an AD as AD
class, SHAP values were highest for the AD class SHAP
plots. The same held true for correctly classified MCI images.
Spatial distribution of SHAP values in the images gives insight
into those areas of the brain that the NN model utilized most
intensively in making the classification. Inspection of Figures
9 and 10 suggests that the NN model depended on examining
the size of the ventricles within the brain and the enlargement
of the cortical sulci over the surface of the brain. Fewer
SHAP intensities were noted over either the white matter
or the grey matter within the brain parenchyma. Tables III
and IV provide some insight into the images misclassified by
the model. In general, cases of AD that were misclassified
as either MCI or controls had milder disease as evidenced
by higher MMSE scores and lower ADAS-cog scores (Table
IV). Even the one case of AD incorrectly classified as control
had a relatively high MMSE of 26 and a low CDR of 0.5
(Table IV). Majority of accurately classified AD images also
had high severity APOE genotype alleles. Interestingly, about
half of the incorrectly classified AD images also demonstrated
less severity, as quantified by the lower APOE alleles. This
suggests that while the model may have misclassified a few
correct samples, some of the misclassified samples might have
been labeled incorrectly, as indicated by the lower severity
of APOE. The same trend applies to both correctly and
incorrectly classified MCI group samples.

VI. CONCLUSION

This paper presents an explainable framework for predic-
tion of AD severity from MR brain images. We present a
comparative analysis of 3 high performing deep CNN models
of which Inception-ResNet-v2 outperformed DenseNet121 and
DenseNet169. Integrating SHAP into the learning framework
provided a better understanding of how the best perform-
ing model derived the results. Examination of the correctly
classified AD severity groups to the incorrectly classified
groups based on neurocognitive outcome measures and APOE
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(a) (b) (c)
Fig. 7. Accuracy of CNN model on the validation set during training for varying epoch levels across the 5-fold cross validation (a) DenseNet121 (b)
DenseNet169 (c) Inception-ResNet-v2.

Fig. 8. Accuracy of models on validation vs. test data.

TABLE IV
CLINICAL RELEVANCE OF INCEPTION-RESNET-V2 MODEL OUTCOMES
FOR CORRECTLY PREDICTED MCI VS. MCI PREDICTED AS AD OR CN

Correct MCI Incorrect AD Incorrect CN

N 196 5 4
Gender (Male/Female) 105/91 3/2 1/3
Age 72.0 ± 5.4 76.3 ± 2.5 67.2 ± 4.7
FAQ total (↑) 7.2 ± 6.8 2 10
MMSE V 25.4 ± 4.1 25.7 ± 1.5 28.3 ± 0.6
Digit span total 36.5 ± 13.9 56.0 33.0
CDR Global (↑) 0.58 ± 0.26 0.5 ± 0.0 0.5 ± 0.0
ADAS-Cog (↑) 14.6 ± 8.2 15.0 12.7
APOE high severity* 52.63% of 38 50% of 2 50% of 2

*APOE high severity: percentage of patients with genotype of (3/4,4/3, or 4/4).
MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating
FAQ: Functional Assessment Questionnaire

genotype further increased confidence in the interpretability
of the model. Limitations of this study includes using only
the center axial slice, which may not have the complete
discriminant information for AD severity as well as a relatively
small and unbalanced dataset which necessitated the use of
SMOTE in estimations of images.
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of the class. For the correctly classified images, note that SHAP values were highest for the correct class in contrast to the misclassified images.

(a) Correctly predicted MCI (b) MCI misclassified as AD
Fig. 10. Predictions for 4 MCI images are shown, 3 outputs per image. Column (a) are those correctly predicted as MCI while (b) were misclassified as
AD. Red pixels represent positive SHAP values that increase the probability of the class, while blue pixels represent negative SHAP values that reduce the
probability of the class. Note that SHAP values are higher for the MCI class for the correctly classified images in contrast to the misclassified images.
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