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A vehicle-bridge interaction model considering contact patch size and 
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A B S T R A C T   

This paper presents an improved theoretical damped single-axle vehicle-bridge dynamic interaction model to 
consider the effect of the contact patch size and motor-induced vehicle excitation. The contact patch issue is 
critical as it determines the minimum time step for simulation and maximum identifiable frequency, while the 
inclusion of the motor-induced vehicle excitation benefits the design of autonomous self-driven rather than 
towed vehicles. Estimations of the contact patch size for both the pneumatic tire and solid wheel scenarios are 
discussed. The contact patch responses, which degenerate into contact point responses when the contact patch 
size is assumed to be infinitely small, were derived for the first time both from the vehicle and bridge responses to 
confirm their equivalence. The minimum time step, which determines maximum identifiable frequency but is 
arbitrarily chosen in literature, is proposed to be determined by the vehicle speed and contact patch length. The 
procedures to extract multiple bridge triad information including natural frequencies, mode shapes, and damping 
ratios from the vehicle responses are also presented. Based on extensive parametric analyses, the sinusoidal 
vehicle excitation becomes more prominent as its amplitude and/or frequency increase and may overshadow the 
analysis of bridge frequencies of interest. The vehicle acceleration leads to a more accurate extraction of bridge 
mode shapes and damping ratios than the vehicle displacement since the displacement is dominated by the 
fundamental mode of bridge vibration. The damping ratio extraction shows an average error of 0.28% from the 
instantaneous amplitude of the vehicle acceleration signal.   

1. Introduction 

Vehicle-bridge interaction (VBI) has been widely studied in the past 
two decades. In 2004, Yang et al. [1] proposed a theoretical VBI model 
to extract the fundamental bridge frequency from the vibration response 
of a passing-by vehicle. Since then, both theoretical and experimental 
studies have been conducted to extract the natural frequencies [1-11], 
mode shapes [12-23], and damping properties [24-26] of the bridges 
from the vehicle responses. More recently, bridge dynamic character
istics have also been extracted from the vehicle-bridge contact point 
response [7-9,27,28]. Most of the research results have been summa
rized and reported in several review articles [20,29-34]. Despite 
extensive studies on the VBI topic, determining bridge modal properties 
from vehicle responses remains ineffective and unreliable, especially for 
the high-frequency vibration modes [20,29-33]. In the authors’ opinion, 
the VBI mechanism is yet to be fully understood. In 2021, Shi and Uddin 

[35,36] showed that the low-frequency vehicle functioned like a filter to 
diminish the bridge responses associated with the bridge natural fre
quencies that are higher than the vehicle frequency. This theoretical 
observation was later experimentally confirmed by Yang et al. [9] in 
2022 when they designed and compared a vehicle with polyurethane 
(PU) wheels and pneumatic rubber wheels. During their experiments, 
the vehicle with PU wheels showed no dominant frequencies up to 20 
Hz, which was deemed to be a high-fidelity transmitter for the bridge 
modal attributes analysis. 

The mode shapes of a bridge can also be extracted from vehicle re
sponses as studied both theoretically and experimentally [12-23]. Yang 
et al. [12] extracted the mode shapes of a bridge from a passing-by 
vehicle when both the vehicle and bridge damping were neglected in 
their analytical model. Qi and Au [17] numerically reconstructed the 
mode shapes of girder bridges from the dynamic responses of a moving 
vehicle under impact excitations. The external impact excitation on the 
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vehicle was necessary to ensure a significant robust interaction between 
the vehicle and the bridge. He et al. [18] extracted the fundamental, 
mass-normalized mode shape of an undamped bridge from experimental 
data. Based on Finite Element Model (FEM) and simulations, Nayek et al. 
[19] proposed a mode shape construction procedure using a single pair 
of moving actuator and sensor. Although experimentally extracting the 
eight mode shapes of a bridge with good accuracy, their approach used 
the data collected from the bridge, which lost the advantage of using 
vehicle data to extract bridge characteristics in a potentially more effi
cient way. The viewpoint that robust interaction between a vehicle and a 
bridge is beneficial to constructing the mode shapes of the bridge from 
the vehicle data was confirmed experimentally by Zhang et al. [20]. 
They installed bumps on an undamped beam structure and constructed 
the first two mode shapes of the structure from the dynamic response of 
a moving undamped mass. The bumps were believed to intensify a 
robust interaction between the moving mass and the beam. However, in 
field applications, the presence of bumps on a bridge will prevent a 
vehicle from running at high speed, besides, possible separation of the 
vehicle from the bridge due to the bumps may invalidate most, if not all, 
analytical models in the literature. Installing uniformly distributed 
bumps on a bridge is also costly and potentially affects the fatigue life of 
steel bridges. In another research, Zhang et al [21] constructed the first 
three mode shapes of a beam-like structure from the acceleration 
response of a moving lumped mass, which served as both an exciter and 
a moving sensor. The lumped mass directly rested on the structure 
without any spring and damping unit in between. Although quite 
different from a vehicle running across a highway bridge in practical 
applications, this experiment showed that the wheels play a critical role 
in transmitting the bridge dynamic information. He et, al. [22,23] 
recently used contact residual responses of multiple-connected vehicles 
to detect bridge modal parameters to reduce the effect of pavement ir
regularity. Compared to two-connected vehicle scenario with incom
plete mode shape construction, the first three bridge modes could be 
constructed on a three-connected vehicle scenario. However, their 
models adopted contact point concept and did not consider the contact 
patch effect which affects the vehicle response due to pavement irreg
ularity. The contact patch size determines the minimum time step and 
maximum identifiable frequencies of the VBI system and is believed to 
be playing a key role in the VBI mechanism. 

The response of the contact point between a vehicle and a bridge was 
recently studied to extract the dynamic characteristics of the bridge with 
some advantages. In extraction of natural bridge frequencies, mode 
shapes, and damping ratios, Yang et al. [27] showed that the contact 
point response, due to its independence of the vehicle frequency, was 
advantageous over the undamped vehicle response. Xu et al. [7] 
considered the vehicle damping in their analytical model and identified 
the modal properties of an undamped bridge from the contact point 
response with experimental validations. Yang et al. [8] designed a 
single-axle vehicle with rocking motion to ensure that the contact point 
response was free of disturbance from natural frequencies of the vehicle. 
Yang et al. [28] further demonstrated that the contact point response of 
the rocking vehicle was not influenced by the road roughness. Xu et al. 
[37] recently proposed a closed-form solution for the contact point 
response of a single-axle two-spring-in-series vehicle and bridge inter
action model to consider the effect of suspension. They also concluded 
that the contact point response outperformed the wheel response for the 
extraction of bridge dynamic characteristics. The contact point approach 
essentially preserves more bridge modal characteristics by averting the 
filtering effect of the vehicle’s dynamic properties such as frequency and 
damping. This indicates that a sound interaction between the vehicle 
and bridge is necessary to transmit the bridge modal properties, espe
cially high modes. However, the issue with contact point is that it leads 
to infinite interaction force and there will always be a contact patch 
instead in a physical world. The contact patch affects the vehicle 
response due to road irregularity as it could cancel out its effect if 
carefully designed, it also affects the minimum time step that is currently 

arbitrarily chosen in literature in numerical analysis. The contact patch 
plays a key role in transmitting the bridge modal properties to the 
vehicle response. 

The above review indicates that the contact patch issue under vehicle 
weights hitherto has not been considered in previous VBI studies. In 
addition, the vehicle self-generated excitation due to engine vibration, 
driveshaft vibration, and high-speed vibration associated with unbal
anced tire pressures and different tire wear-offs have not been consid
ered in the formulation of theoretical analysis. These two factors are 
believed to play an important role in the understanding of the VBI 
mechanism. The length of a contact patch due to the deformation of the 
wheel may determine the maximum identifiable frequency of a bridge 
since the contact patch response represents an average of the responses 
of many contact points between the vehicle and the bridge. The response 
of a moving vehicle collected over a short time duration corresponding 
to the contact patch length may not be distinguishable as only overall 
response can be obtained. The vehicle self-generated excitation is 
notable. For instance, a 4-cylinder engine has two shakes (2 pistons on a 
power stroke) per revolution of a crankshaft, and a 6-cylinder (V-6) 
engine has three shakes per revolution of a crankshaft. They both would 
cause vibration on the vehicle. Understanding the effect of the external 
excitation is believed to be beneficial for designing autonomous self- 
driven vehicles compared to towed vehicles. 

In this study, both the contact patch and the vehicle self-generated 
excitation are considered in a damped, single-axle vehicle bridge 
interaction model with multiple modal contributions. Two mathemat
ical expressions for the contact point response are derived for the first 
time, both from the vehicle response and the bridge response, respec
tively, to demonstrate their equivalency. The insights on how to collect 
contact point responses are discussed. In parallel with this, the proced
ures to extract multiple bridge natural frequencies, mode shapes, and 
damping ratios from a vehicle response are presented. Note that due to 
the complexity of the mathematic expression, the heterogeneous irreg
ularity on the bridge surface is not considered in this study, otherwise 
the closed-form solutions would not be obtained. The effect of road ir
regularity is usually tackled by FEM analysis but would not be verified 
by closed-form or explicit solutions, and thus is not the focus of this 
study. As pointed out earlier, the effect of road irregularity on the 
vehicle response will also be affected by the contact patch size. Section 
2.3 discusses how to estimate contact patch length for different wheel 
materials and configurations. This paper is organized as follows. Section 
2 presents the damped VBI model with closed-form solutions, equiva
lency of contact point responses from vehicle and bridge, discussion of 
contact patch length, and mode shape and damping ratio extraction. 
Section 3 compares the theoretical model with representative models in 
the literature and presents a series of parametric studies on the effect of 
excitation force and frequency, the attribute of contact point responses, 
and the extraction of mode shapes and damping ratios. Conclusions are 
drawn in Section 4. 

Fig. 1. An idealized vehicle-bridge interaction model.  
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2. Theoretical formulation 

2.1. VBI model and analytical solution 

Fig. 1 shows a schematic diagram of a damped, single-axle vehicle 
bridge interaction model with a contact patch at the vehicle-bridge 
interface under a vehicle self-generated excitation. The vehicle is rep
resented by a spring-dashpot-mass oscillator with a mass of mv, a 
damping constant of cv, and a spring constant of kv. The bridge is rep
resented by a uniform Bernoulli-Euler beam with a constant mass per 
length of m, a constant damping coefficient per length of c, and a con
stant flexural stiffness of EI. The contact force on the vehicle-bridge 
interface is assumed to be uniformly distributed over a contact patch 
length of Lc due to the deformation of at the contact interface. The 
vehicle excitation over time t is represented by a sinusoidal force with an 
amplitude of F (peak force) and an excitation frequency of ω. Based on 
contact theory [38], the contact size depends on the moduli, Possion’s 
ratios, radii, and the interaction force of the two interacting objects. 
Although the vehicle bridge interaction force consists of vehicle inertial 
force mvÿv, external excitation force Fsinωt, and distributed vehicle 
weight mvg, the contribution of the inertial force and external force is 
negligible which will be demonstrated in section 3.1. Thus, the contact 
length is assumed to be a constant, the estimation of which for both 
pneumatic and solid wheels will be discussed in section 2.3. The 
parameter Lc is critically important as it, together with a bridge length of 
L, determines the maximum sampling points along the bridge and thus 
the minimum time step given a vehicle speed of v, which is otherwise 
chosen arbitrarily in the literature. 

Let the beam be defined along the x-axis of a x-y cartesian coordinate 
system. Consider statically equilibrium positions of both the vehicle and 
the bridge as the origins of their displacements, yv(t) and yb(x, t), 
respectively. Based on the D’Alembert’s Principle [39], the coupled 
differential equations of motion for the VBI model can be expressed into 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mvÿv + cvẏv + kvyv = kvyb|x=vt + cv
∂yb

∂t
|x=vt +Fsinωt

m
∂2yb

∂t2 +c
∂yb

∂t
+EI

∂4yb

∂x4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− mv

(

ÿv +g
)

+Fsinωt

Lc
,x=

[

vt −
Lc

2
,vt+

Lc

2

]

0,x=
[

0,vt −
Lc

2

)

∪

(

vt+
Lc

2
,L
]

(1)  

in which − mvg is included in the bridge equation since yv(t) is originated 
from the statically equilibrium position of the vehicle and thus the 
bridge is subjected to a constant weight of the vehicle. Here, ẏv and ÿv 
(first and second derivatives of the displacement) denote the velocity 
and acceleration of the vehicle, respectively. The mathematical operator 
∂yb/∂(.) represents partial derivative of the bridge displacement with 
respect to variable time t or space x. Let the bridge displacement yb(x, t)
be expressed into a summation of an infinite number of the products of 
normal modes Φn(x) and modal coordinates zn(t) [39]. That is, 

yb(x, t) =
∑

n
Φn(x)zn(t) (2)  

Substituting Eq. (2) into Eq. (1) and integrating the resulting equation 
over x = [0, L] leads to 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ÿv +2ξvωvẏv +ω2
vyv =

F
mv

sinωt+
∑

n

[

ω2
vzn(t)+2ξvωvżn(t)

]

Φn(vt)

z̈n(t)+2ξnωnżn(t)+ω2
nzn(t) =

∫ vt+Lc/2

vt− Lc/2
Φn(x)

[

− mv

(

ÿv +g
)

+Fsinωt
]

dx

mLc

∫ L

0
Φ2

n(x)dx

(3)  

in which 

2ξvωv =
cv

mv
, 2ξnωn =

c
m

(4)  

Note that the normal modes are for the bridge alone without presence of 
the vehicle and Eq. (2) is valid only when an infinite number of modes 
are included in theory. For a simply-supported bridge scenario, the nth 

normal mode can be expressed into 

Φn(x) = sin
nπx
L

(5)  

When ÿv≪g, the bridge equation can be uncoupled approximately. The 
second expression in Eq. (3) then becomes  

in which α−
nω = 1 − ωL

nπv, α
+
nω = 1 + ωL

nπv, and the contact patch factor pn =

[2L/(nπLc)]sin[nπLc/(2L) ]. As Lc/L approaches to zero, the contact patch 
factor approaches to 1. The solution to this second-order non-homoge
neous differential equation (6) can be written as 

zn(t) = e− ξnωnt(Qncosωndt+Rnsinωndt) + Sn1cos
nπv
L

t+ Tn1sin
nπv
L

t  

+ Sn2cosα−
nω

nπv
L

t − Tn2sinα−
nω

nπv
L

t+ Sn3cosα+
nω

nπv
L

t+ Tn3sinα+
nω

nπv
L

t (7)  

in which ωnd = ωn

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√

is the damped frequency of the bridge. Four 
pairs of coefficients (Qn, Rn), (Sn1, Tn1), (Sn2, Tn2), and (Sn3, Tn3) are 
given in Appendix A. They define the transient response and three 
steady-state responses corresponding to the three terms on the right- 
hand side of Eq. (6). Once zn(t) is known, the bridge displacement and 
acceleration responses can be obtained from Eq. (2) as 

yb(x, t) =
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e− ξnωnt[Qncosωndt + Rnsinωndt]

+Sn1cos
nπv
L

t + Tn1sin
nπv
L

t

+Sn2cosα−
nω

nπv
L

t − Tn2sinα−
nω

nπv
L

t

+Sn3cosα+
nω

nπv
L

t + Tn3sinα+
nω

nπv
L

t

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

sin
nπx
L

(8) 

z̈n(t) + 2ξnωnżn(t) +ω2
nzn(t) = pn

(

−
2mvg
mL

sin
nπvt

L
+

F
mL

cosα−
nω

nπv
L

t −
F

mL
cosα+

nω
nπv
L

t
)

(6)   
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Eqs. (8) and (9) show several frequency components included in the 
bridge responses. They are the damped bridge frequency ωnd, vehicle 
driving frequency nπv/L, and two excitation-affected vehicle driving 
frequencies α−

nωnπv/L and α+
nωnπv/L. Substituting the expressions of zn(t)

and Φn(x) into the equation for the vehicle in Eq. (3) yields 

ÿv+2ξvωvẏv+ω2
vyv =

F
mv

sinωt+
1
2
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b*
ne− ξnωntcosβ−

nωnd

nπv
L

t

− b*
ne− ξnωntcosβ+

nωnd

nπv
L

t

+a*
ne− ξnωntsinβ+

nωnd

nπv
L

t

+a*
ne− ξnωntsinβ−

nωnd

nπv
L

t

− d*
ncos

2nπv
L

t+c*
nsin

2nπv
L

t

+
(
h*

n − f *
n

)
cosωt+

(
e*

n − g*
n

)
sinωt

+f *
n cosα−

2nω
2nπv

L
t+e*

nsinα−
2nω

2nπv
L

t

− h*
ncosα+

2nω
2nπv

L
t+g*

nsinα+
2nω

2nπv
L

t

+d*
n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)  

in which α−
2nω = 1 − ωL/2nπv, α+

2nω = 1 + ωL/2nπv, β−
nωnd

=

1 − ωndL/nπv, β+
nωnd

= 1 + ωndL/nπv, and 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a*
n = ω2

vQn − 2ξvωvξnωnQn + 2ξvωvRnωnd

b*
n = ω2

vRn − 2ξvωvξnωnRn − 2ξvωvQnωnd

c*
n = ω2

vSn1 + 2ξvωvTn1
nπv
L

d*
n = ω2

vTn1 − 2ξvωvSn1
nπv
L

e*
n = ω2

vSn2 − 2ξvωvTn2α−
nω

nπv
L

f *
n = ω2

vTn2 + 2ξvωvSn2α−
nω

nπv
L

g*
n = ω2

vSn3 + 2ξvωvTn3α+
nω

nπv
L

h*
n = ω2

vTn3 − 2ξvωvSn3α+
nω

nπv
L

(11)  

The vehicle displacement and acceleration responses can then be 
determined as 

yv = e− ξvωvt
(

U1cosωvdt
+V1sinωvdt

)

+

(
U2cosωt
+V2sinωt

)

+
1
2
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+e− ξnωnt

⎛

⎜
⎜
⎜
⎝

Mn3cosβ−
nωnd

nπv
L

t − Nn3sinβ−
nωnd

nπv
L

t

+Mn4cosβ+
nωnd

nπv
L

t + Nn4sinβ+
nωnd

nπv
L

t

⎞

⎟
⎟
⎟
⎠

+Mn5cos
2nπv

L
t + Nn5sin

2nπv
L

t

+Mn7cosα−
2nω

2nπv
L

t − Nn7sinα−
2nω

2nπv
L

t

+Mn8cosα+
2nω

2nπv
L

t + Nn8sinα+
2nω

2nπv
L

t

+
d*

n

ω2
v

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)  

∂2yb(x, t)
∂t2 =

∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e− ξnωnt

⎡

⎢
⎣

[
(ξnωn)

2Qn − 2ξnωnRnωnd − Qnω2
nd

]
cosωndt

+
[
(ξnωn)

2Rn + 2ξnωnQnωnd − Rnω2
nd

]
sinωndt

⎤

⎥
⎦

− Sn1

(nπv
L

)2
cos

nπv
L

t − Tn1

(nπv
L

)2
sin

nπv
L

t

− Sn2

(
α−

nω
nπv
L

)2
cosα−

nω
nπv
L

t + Tn2

(
α−

nω
nπv
L

)2
sinα−

nω
nπv
L

t

− Sn3

(
α+

nω
nπv
L

)2
cosα+

nω
nπv
L

t − Tn3

(
α+

nω
nπv
L

)2
sinα+

nω
nπv
L

t

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

sin
nπx
L

(9)   
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ÿv(t) = e− ξvωvt

⎧
⎪⎨

⎪⎩

[
(ξvωv)

2U1 − 2ξvωvωvdV1 − U1ω2
vd

]
cosωvdt

[
(ξvωv)

2V1 + 2ξvωvωvdU1 − V1ω2
vd

]
sinωvdt

⎫
⎪⎬

⎪⎭

−

(
U2ω2cosωt
+V2ω2sinωt

)

in which ωvd = ωv

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
v

√

is the damped vehicle frequency. Nine pairs 
of coefficients (U1, V1), (U2, V2), (Mn2, Nn2), (Mn3, Nn3), (Mn4, Nn4), (Mn5, 
Nn5), (Mn6, Nn6), (Mn7, Nn7), and (Mn8, Nn8) are summarized in Appendix 
B. Note that in Eq. (13) for conciseness, (Mn2, Nn2) and (Mn6, Nn6) are 
incorporated in (U1, V1) and (U2, V2), respectively. The frequency 
components that affect the vehicle response include the vehicle self- 
generated excitation frequency ω, damped vehicle frequency ωvd, 
driving frequency affected damped bridge frequencies ωnd ± nπv/L, 
doubled driving frequency 2nπv/L, and excitation-affected doubled 
driving frequencies α−

2nω2nπv/L and α+
2nω2nπv/L. All these frequency 

components ought to be carefully related to their sources during fre
quency analysis. The camel hump phenomenon related to the vehicle 
self-generated excitation frequency is expected from both the vehicle 
responses (α±

2nω
2nπv

L ) and the bridge responses (α±
nω

nπv
L ), while that related 

to the bridge frequencies will only be expected from vehicle responses 
(β±

nωnd
nπv
L ). 

2.2. Contact point response 

The contact point concept was originally proposed by Yang [27] in 

2018 to exclude the effect of vehicle frequency during the extraction of 
the bridge modal characteristics, but the derivations from both the 
vehicle and bridge response have not yet been confirmed equivalent. 
The contact point response is essentially the bridge response at the 
location of the vehicle as it passes on the bridge, which can be derived 

either by letting x = vt in the bridge response in Eq. (8) or by letting 
kv→∞, cv→0 and mv ∕= 0 in the vehicle response in Eq. (12). These two 
approaches have been proven equivalent, leading to the same contact 
point displacement response as shown in Eq. (14). The double derivative 
of the displacement response gives the contact point acceleration 
response as presented in Eq. (15). 

yc(t) =
1
2
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e− ξnωnt

⎡

⎢
⎢
⎣

Rncosβ−
nωnd

nπv
L

t + Qnsinβ−
nωnd

nπv
L

t

− Rncosβ+
nωnd

nπv
L

t + Qnsinβ+
nωnd

nπv
L

t

⎤

⎥
⎥
⎦

− Tn1cos
2nπvt

L
+ Sn1sin

2nπvt
L

+(Tn3 − Tn2)cosωt + (Sn2 − Sn3)sinωt

+Tn2cosα−
2nω

2nπv
L

t + Sn2sinα−
2nω

2nπv
L

t

− Tn3cosα+
2nω

2nπv
L

t + Sn3sinα+
2nω

2nπv
L

t

+Tn1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14) 

+
1
2
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+e− ξnωnt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

(ξnωn)
2Mn3 + 2ξnωnNn3β−

nωnd

nπv
L

− Mn3

(
β−

nωnd

nπv
L

)2
]

cosβ−
nωnd

nπv
L

t

−

[

(ξnωn)
2Nn3 − 2ξnωnMn3β−

nωnd

nπv
L

− Nn3

(
β−

nωnd

nπv
L

)2
]

sinβ−
nωnd

nπv
L

t

+

[

(ξnωn)
2Mn4 − 2ξnωnNn4β+

nωnd

nπv
L

− Mn4

(
β+

nωnd

nπv
L

)2
]

cosβ+
nωnd

nπv
L

t

+

[

(ξnωn)
2Nn4 + 2ξnωnMn4β+

nωnd

nπv
L

− Nn4

(
β+

nωnd

nπv
L

)2
]

sinβ+
nωnd

nπv
L

t

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− Mn5

(
2nπv

L

)2

cos
2nπv

L
t − Nn5

(
2nπv

L

)2

sin
2nπv

L
t

− Mn7

(

α−
2nω

2nπv
L

)2

cosα−
2nω

2nπv
L

t + Nn7

(

α−
2nω

2nπv
L

)2

sinα−
2nω

2nπv
L

t

− Mn8

(

α+
2nω

2nπv
L

)2

cosα+
2nω

2nπv
L

t − Nn8

(

α+
2nω

2nπv
L

)2

sinα+
2nω

2nπv
L

t

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)   
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2.3. Contact patch length 

In a physical VBI system, the contact point turns into a contact patch 
issue due to the deformation at the contact interface between the wheel 
and the bridge surface, otherwise, the interaction force would be 
infinite. This subsection briefly discusses how to estimate the contact 
length for different types of wheels. For pneumatic tire, the contact 
patch size mainly depends on the distributed weight and the pressure 
difference. If designate dv as the tire section width along the wheel axle 
direction (perpendicular to travel direction), p and p0 respectively as the 
inflated tire pressure and atmospheric pressure (101 kPa), and mvg as the 
weight that distributed on the tire. The contact patch length can be 
estimated as 

Lc =
mvg

dv(p − p0)
(16)  

For instance, if using parameters from studies by Behroozinia et al. [40], 
for a pneumatic tire with a section width of 0.265 m, inflated pressure of 
206 kPa, and a distributed vehicle weight of 4000 N, the contact patch 
length can be calculated as 0.144 m, which is only 0.69% of difference 
compared to their FEM result of 0.143 m, and 4.17% of difference 
compared to their estimated length of 0.138 m obtained from circum
ferential acceleration peaks from experiment. However, for a solid 
wheel scenario, the contact length could be roughly approximated based 
on Hertzian contact theory as [38] 

Lc = 4
̅̅̅̅̅̅̅̅̅̅̅̅
mvgR
πdvE*

√

(17)  

in which R is the radius of the wheel, equivalent E* is calculated as 

1
E* =

1 − ν2
1

E1
+

1 − ν2
2

E2
(18)  

in which E1,ν1 and E2,ν2 are the elastic modulus and Possion’s ratio of 
the wheel and the flat surface, respectively. 

Eq. (17) shows that wheel size affects contact patch length. Yang and 
Cao [10], and Yang and Feng [11] proposed multiple-mass VBI models 
to consider the size of the wheel, but their studies still adopted contact 
point concept and did not relate the wheel size to the contact patch size 
that determines the minimum time step (0.001s is commonly used in 
numerical and FEM case studies) which eventually determines the 
maximum identifiable frequencies from the VBI system. Understanding 
of this issue helps design effective VBI system, especially for detecting 
high modal bridge parameters from the vehicle response. 

Since the collected signal from the vehicle represents the average 
effect of many contact points over the contact patch, the minimum time 
step Δt over which the bridge information can be reliably discerned 
depends upon the vehicle speed v and the contact patch length Lc. This 
relationship and its corresponding maximum identifiable frequency fmax 
are presented in Eq. (19). To increase the maximum identifiable fre
quency, one may need to design a special wheel so that the contact patch 
length is reduced as much as possible. In theory, one could also increase 
the vehicle speed. However, a high-speed vehicle introduces significant 
camel hump phenomenon, shortens signal length, and increases the 
signal magnitude that may nullify the assumption ÿv≪g. Table 1 com
pares different contact patch lengths and maximum identifiable 

ÿc(t) =
1
2
∑

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e− ξnωnt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

(ξnωn)
2Rn − 2ξnωnQnβ−

nωnd

nπv
L

− Rn

(
β−

nωnd

nπv
L

)2
]

cosβ−
nωnd

nπv
L

t

+

[

(ξnωn)
2Qn + 2ξnωnRnβ−

nωnd

nπv
L

− Qn

(
β−

nωnd

nπv
L

)2
]

sinβ−
nωnd

nπv
L

t

−

[

(ξnωn)
2Rn + 2ξnωnQnβ+

nωnd

nπv
L

− Rn

(
β+

nωnd

nπv
L

)2
]

cosβ+
nωnd

nπv
L

t

+

[

(ξnωn)
2Qn − 2ξnωnRnβ+

nωnd

nπv
L

− Qn

(
β+

nωnd

nπv
L

)2
]

sinβ+
nωnd

nπv
L

t

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+Tn1

(
2nπv

L

)2

cos
2nπv

L
t − Sn1

(
2nπv

L

)2

sin
2nπv

L
t

− (Tn3 − Tn2)ω2cosωt − (Sn2 − Sn3)ω2sinωt

− Tn2

(

α−
2nω

2nπv
L

)2

cosα−
2nω

2nπv
L

t − Sn2

(

α−
2nω

2nπv
L

)2

sinα−
2nω

2nπv
L

t

+Tn3

(

α+
2nω

2nπv
L

)2

cosα+
2nω

2nπv
L

t − Sn3

(

α+
2nω

2nπv
L

)2

sinα+
2nω

2nπv
L

t

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)   
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frequencies for common wheel materials using parameters of mvg =

4000N, R = 0.3m, dv= 0.265 m, E2 = 3.549 × 1010 N⋅m− 2, ν2= 0.2, and 
vehicle speed of v = 8.941 m⋅s− 1. Compared to solid wheel scenarios, 
pneumatic tire induces larger contact patch length and significant lower 
maximum identifiable frequency. To collect the contact point signal 
with maximum identifiable frequency in physical application, one 
idealized approach is to install sensors on the solid wheel of a specially- 
designed undamped vehicle such that kv→∞ and cv→0. 
⎧
⎪⎪⎨

⎪⎪⎩

fmax =
1

2Δt

Δt =
Lc

v

(19)  

2.4. Mode shape and damping ratio 

A three-step procedure is developed to extract the mode shapes and 
damping ratios of the bridge. In the first step, the vehicle response 
(either displacement or acceleration) or the contact point signal is 
decomposed so that only one mode of the bridge vibration with one 
natural frequency is included. Take the vehicle acceleration response in 
Eq. (13) as an example. The nth decomposed acceleration response of the 
vehicle is (this would also be the case if derived from the contact point 
response)  

Within the speed limit on highways, the vehicle driving frequency is 
typically less than 5% of the fundamental bridge frequency and signif
icantly lesser for higher bridge modes. When nπv/L≪ωnd, Mn3 = − Mn4 
and Nn3 = − Nn4 as can be seen from Appendix B. The above expression 
becomes 

ÿv(t)|bn = e− ξnωnt

⎛

⎜
⎝

kncosβ−
nωnd

nπv
L

t + lnsinβ−
nωnd

nπv
L

t

− kncosβ+
nωnd

nπv
L

t + lnsinβ+
nωnd

nπv
L

t

⎞

⎟
⎠ (21)  

in which 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kn =

[

2Nn4ξn

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√

−
(
2ξ2

n − 1
)
Mn4

]

ω2
n

ln =

[

2Mn4ξn

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
n

√

+
(
2ξ2

n − 1
)
Nn4

]

ω2
n

(22)  

In the second step, Hilbert Transform is introduced to form an analytic 
function of the acceleration response and its instantaneous amplitude 
and phase, which is advantageous in averting aliasing effects in band
pass signal processing. Hilbert Transform can transform a time sequence 
x(t) into its orthogonal counterpart with a 90◦ phase shift as designated 
as x̂(t) = H[x(t)]. An analytic function ψ(t) in a complex plane [41] can 
then be expressed into 

ψ(t) = x(t)+ ix̂(t) = A(t)e− iφ(t) (23)  

in which the instantaneous amplitude A(t) and phase φ(t) are respec
tively defined as 

A(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2(t) + x̂2
(t)

√

,φ(t) = arctan
x̂(t)
x(t)

(24)  

After H(sinωt) = − cosωt and H(cosωt) = sinωt are introduced, the Hil
bert Transform of the decomposed vehicle acceleration response in Eq. 
(21) becomes 

ÿv(t)|b̂n = e− ξnωnt

⎛

⎜
⎝

− knsinβ−
nωnd

nπv
L

t + lncosβ−
nωnd

nπv
L

t

− knsinβ+
nωnd

nπv
L

t − lncosβ+
nωnd

nπv
L

t

⎞

⎟
⎠ (25)  

The instantaneous amplitude of the vehicle acceleration response can 
then be constructed as 

Aÿv (t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[

ÿv(t)|bn

]2

+

[

ÿv(t)|b̂n

]2
√

= 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
n + l2

n

√

e− ξnωnt
⃒
⃒
⃒sin

nπvt
L

⃒
⃒
⃒ (26)  

Similarly, the instantaneous amplitude of the vehicle displacement 

response can be expressed into 

Ayv (t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[
yv(t)|bn

]2
+
[
yv(t)|b̂n

]2
√

= 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

M2
n4 + N2

n4

√

e− ξnωnt
⃒
⃒
⃒sin

nπvt
L

⃒
⃒
⃒ (27)  

In the third step, the instantaneous amplitude is used to determine the 
mode shape and damping ratio of the bridge. Notably from Eq. (26) or 
(27), the instantaneous amplitude contains the magnitude of the mode 
shape |sin(nπvt/L) | and damping ratio ξn of the bridge. By examining the 
relative phases among various locations of the bridge, the mode shape of 
the bridge corresponding to each natural frequency can be constructed 
[42]. To extract the damping ratio, the logarithmic decrement method 
[39] can be applied to two peaks of the instantaneous amplitude. The 
two consecutive peaks A1 and A2 on the instantaneous amplitude are 

ÿv(t)|bn = e− ξnωnt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

(ξnωn)
2Mn3 + 2ξnωnNn3β−

nωnd

nπv
L

− Mn3

(
β−

nωnd

nπv
L

)2
]

cosβ−
nωnd

nπv
L

t

−

[

(ξnωn)
2Nn3 − 2ξnωnMn3β−

nωnd

nπv
L

− Nn3

(
β−

nωnd

nπv
L

)2
]

sinβ−
nωnd

nπv
L

t

+

[

(ξnωn)
2Mn4 − 2ξnωnNn4β+

nωnd

nπv
L

− Mn4

(
β+

nωnd

nπv
L

)2
]

cosβ+
nωnd

nπv
L

t

+

[

(ξnωn)
2Nn4 + 2ξnωnMn4β+

nωnd

nπv
L

− Nn4

(
β+

nωnd

nπv
L

)2
]

sinβ+
nωnd

nπv
L

t

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)   

Table 1 
Contact patch lengths and maximum identifiable frequencies for different wheel 
materials.  

Material E1(N⋅m− 2) Poisson’s ratio ν1 Lc(m) fmax(Hz) 

Steel 2.1 × 1011 0.28 8.51 × 10− 4 5250 
Aluminum 6.9 × 1010 0.33 9.60 × 10− 4 4657 
PU 5.0 × 109 0.4 2.12 × 10− 3 2108 
Rubber 1.0 × 107 0.5 4.16 × 10− 2 107 
Pneumatic N/A N/A 0.144 31 

Note: Contact patch length for pneumatic scenario is calculated based on Eq. 
(16). 
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separated for a period of Δt = L/(nv), the damping ratio can be calcu
lated from the following expression: 

ξn =
1

ωnΔt
ln

A1

A2
(28)  

Even though the first mode does not have two consecutive peaks, the 
damping ratio can still be calculated using the instantaneous amplitude 
at the quarter time point t1/4 and third-quarter time point t3/4 of the 
collected signal: 

ξ1 =
1

ω1
(
t3/4 − t1/4

) ln
A1/4

A3/4
(29)  

in which A1/4 and A3/4 are the instantaneous amplitudes at the quarter 
time point t1/4 and third-quarter time point t3/4, respectively. In theory, 
t1/4 = L/(4v) and t3/4 = 3L/(4v). 

3. Parametric studies 

3.1. Benchmark model parameters 

The vehicle and bridge parameters as summarized in Table 2 are 
mainly adapted from studies by Shi and Uddin [35,36] in which they 
adopted AASHTO HL-93 design tandem load (50 kips in total) as an 
equivalent single axle vehicle example, and a prestressed girder bridge 
as an equivalent simply support bridge example [43]. They studied the 
effect of bridge damping, vehicle damping, frequency, speed, and mass 
for various bridge boundary conditions. One of their major findings is 
that the vehicle frequency should be higher than the bridge frequencies 
of interest to minimize any ‘filtering’ effect on vehicle responses. Vehicle 
with such a frequency design is referred to as frequency-free vehicle by 
Yang et al. [9]. Specifically, they used solid PU tires on a special vehicle 
for bridge modal retrieval. Note that the mathematical model and its 
solutions presented in this paper are not limited to any specific example 
so long as ÿv≪g. For example, special cases with zero excitation force 
and frequency as well as zero vehicle and bridge damping agree well 

with the results reported in the literature using their parameters [3,27] 
or equivalent parameters [37]. 

In addition, the peak force is assumed as 1% of the total weight of a 
typical engine of 500 lbs (226.8 kg), namely F = 22.24 N, and the 
excitation frequency is based on ω = 50 Hz to account for a 3000 
Revolutions-Per-Minute (RPM) of rotation. Notably here, the interaction 
force between the vehicle and the bridge due to inertial force (ÿv≪g) and 
external excitation (22.24 N) is negligible compared to the vehicle 
weight (2.224 × 105 N), thus the assumption of constant contact patch 
length is reasonable. The contact patch length, which could be adjusted 
by changing wheel materials and configurations, is initially chosen as Lc 
= ¼ in (6.35 × 10− 3 m) so that the minimum time step Δt can be set to 
7.1 × 10− 4 s, resulting in a maximum frequency identification of 704 Hz. 
The maximum number of points along the bridge is determined by L/Lc. 
The derived formulas are programmed and implemented on MATLAB 
platform [44]. 

3.2. Effects of peak force and excitation frequency 

The peak force and excitation frequency play a certain role in the 
bridge frequency extraction from the vehicle acceleration signal. The 
vehicle excitation frequency may shed light on why it is difficult to 
identify bridge frequencies from the vehicle acceleration signal. As an 
extreme example, Fig. 2 compares the acceleration signal and corre
sponding frequency analyses of the vehicle without self-excitation and 
those with self-excitation (ω = 50 Hz, F = 2,224 N, 100% of engine 
weight). The acceleration signal strength with excitation (0.2586 m⋅s− 2) 
is approximately 2 times as much as that without excitation (0.1295 
m⋅s− 2). Although multiple bridge frequencies could be identified in both 
scenarios as summarized in Table 3, the vehicle excitation frequency 
overshadows the presence of other frequency components. The 

Fig. 2. Acceleration response and Fourier spectrum of a vehicle: (a) Without self-generated excitation and (b) With self-generated excitation ω.  

Table 3 
Frequency analysis of single-axle vehicles without and with self-generated 
excitations.  

Theoretical frequency 
(Hz) 

Vehicle without self- 
excitation 

Vehicle with self-excitation 

Frequency 
(Hz) 

Error 
(%) 

Frequency 
(Hz) 

Error 
(%) 

8.785 8.798 0.15%  8.798  0.15% 
35.14 35.19 0.15%  35.19  0.15% 
50 (excitation) N/A N/A  49.86  0.28% 
79.06 79.18 0.15%  79.18  0.15% 
140.6 140.5 0.06%  140.5  0.06% 
219.6 219.7 0.02%  219.7  0.02% 

Note: Bridge frequencies are identified at the trough due to camel hump 
phenomenon. 

Table 2 
Vehicle and bridge parameters used in benchmark study.  

Vehicle Property Bridge Property 

kv(N⋅m− 1) 8.058 × 1010 EI(N⋅m2) 5.070 × 1010 

mv(kg) 2.268 × 104 m(kg⋅m− 1) 1.878 × 103 

ξv 0.2 ξb 0.02 
v(m⋅s− 1) 8.941 L(m) 30.48 
fv(Hz) 300 fb(1st- 5th) (Hz) 8.785, 35.14, 79.06, 140.56, 

219.6  
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magnitude at the identified excitation frequency of 49.86 Hz (0.29% 
error) is 0.0636, which is approximately 3.66 times of the highest 
spectral value at the fundamental bridge frequency of 0.0174. There
fore, the vehicle self-generated excitation frequency may dominate the 
frequency spectrum and influence the extraction of bridge frequencies. 

To study the effects of peak force and excitation frequency, two 
scenarios are considered here: (1) the peak force of vehicle excitation is 
set to F = 22.24 N, 222.4 N, 444.8 N, and 889.6 N corresponding to 1%, 
10%, 20%, and 40% of the total engine weight, respectively, while an 
excitation frequency of 50 Hz is used; (2) the frequency of vehicle 
excitation is set to ω = 5 Hz, 50 Hz, 100 Hz, and 200 Hz, while a peak 
force of F = 2,224 N is used. Figs. 3 and 4 present the Fourier transform 
of the vehicle acceleration signals under various peak forces and exci
tation frequencies, respectively. It can be seen from Fig. 3(b) that the 
magnitude at the excitation frequency approximately linearly increases 
from 6.380 × 10− 4 through 6.360 × 10− 3 and 1.272 × 10− 2 to 2.543 ×
10− 2 as the peak force increases. When the peak force is too large, the 
pulse at the excitation frequency could dominate the spectrum and 
complicate the demarcation of the bridge frequencies. In application, a 
test vehicle must be designed to minimize its self-generated excitation. 
Notably in Fig. 4, as the excitation frequency increases from 5 Hz 
through 50 and 100 to 200 Hz, the spectral magnitude increases from 

0.0195 through 0.0636 and 0.1317 to 0.1616, which have all exceeded 
the highest spectral value (0.0174) of the fundamental bridge frequency. 
In this case, the frequency of vehicle self-generated excitation must be 
identified before the bridge frequencies of interest can be reliably 
determined. 

3.3. Contact point response 

The maximum natural frequency that can be accurately identified 
from the bridge depends on the minimum time step that is closely 
related to the vehicle speed and the contact patch length. Fig. 5(a-c) 
presents the contact point responses and Fourier spectra when different 
contact patch lengths are considered. Note that the contact patch lengths 
chosen here are only intended to highlight its effect and shed lights on 
designing special vehicle bridge interaction systems. Different contact 
patch lengths may be achieved by changing wheel materials and/or 
configurations. The maximum frequency identifiable from the contact 
point responses decreases from 704 Hz through 176 Hz to 44 Hz as the 
contact patch length increases from ¼ in. (6.35 × 10− 3 m) through 1 in. 
(0.0254 m) to 4 in. (0.1016 m). The number of distinguishable points 
along the bridge also decreases from 4800 through 1200 to 300. 

An increase of vehicle speed from 20 mph (8.941 m⋅s− 1) in Fig. 5(b) 
to 80 mph (35.76 m⋅s− 1) in Fig. 5(d) does not reduce the maximum 
identifiable frequency 176 Hz but introduces more peak-splitting in the 
Fourier spectrum and thus more uncertain in identifying the natural 
frequencies due to the amplified camel hump phenomenon. At the same 
time, the signal strength increases from 0.1082 m⋅s− 2 in Fig. 5(a) to 
0.6061 m⋅s− 2 in Fig. 5(d) and the signal length in time is shortened from 
3.41 s in Fig. 5(a-c) to 0.85 s in Fig. 5(d). Both increasing the vehicle 
speed and/or decreasing the contact patch length in the form of v/(2Lc)

can increase the maximum identifiable frequency from the contact point 
signals. The increased signal magnitude and prominent camel hump 
phenomenon could challenge the validity of ÿv≪g and the extraction of 
bridge frequencies due to increased noise effects. 

3.4. Mode shape and damping ratio extraction 

The extraction of bridge mode shapes and damping ratios are illus
trated in this subsection. The ratio of nπv/L to ωnd based on the selected 
parameters in Table 1 are 1.67%, 0.83%, 0.56%, 0.42%, and 0.33% for 
the first five modes of bridge vibration, respectively. Therefore, the 
assumption of nπv/L≪ωnd is reasonable. Fig. 6 shows the displacement 
and acceleration signals from the vehicle and their Fourier spectra. 
Although multiple bridge frequencies could be identified, the magnitude 
from the displacement signal is much weaker and significantly drops for 

Fig. 4. Overshadowing effect of excitation frequency on the determination of 
bridge natural frequencies derived from a vehicle response under various 
excitation frequencies. 

Fig. 3. Fourier spectra of vehicle acceleration signals under various excitation forces: (a) 0–500 Hz for multiple natural frequencies and (b) 25–100 Hz for a close-up 
view of the effect of peak force. 
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the second and higher modes. Mode 2 and higher modes contribute 
much less toward the total displacement signal. The magnitude of mode 
2 (1.7723 × 10− 7) is only 3.11% of that of mode 1 (5.6912 × 10− 6). On 
the contrary, the acceleration signal is more suitable for multiple mode 
shapes and damping ratios extraction, as the acceleration magnitude of 
mode 5 (6.114 × 10− 3) is still 35% of that of the mode 1 (1.739 × 10− 2). 

Fig. 7 shows the Hilbert Transform of the decomposed signal for each 

bridge vibration mode, in which both the real and imaginary parts are 
plotted. Fig. 8 presents the instantaneous amplitudes of the Hilbert- 
Transformed signals. The instantaneous amplitude of the transformed 
signal contains the absolute value of bridge mode shape as expressed in 
Eq. (26) and Eq. (27). The overall decreasing peaks are caused by the 
damping effect. Note that this procedure works only after each bridge 
frequency has been identified. For the determination of each mode 

Fig. 5. Maximum frequency identifiable from contact point responses: (a) 704 Hz with a contact patch length of ¼ in (6.35 × 10− 3 m), (b) 176 Hz with a contact 
patch length of 1 in (0.0254 m), (c) 44 Hz with a contact patch length of 4 in (0.1016 m), and (d) 176 Hz when the vehicle speed is increased by four times of the 
benchmark value. 

Fig. 6. Vehicle signal and its Fourier spectrum: (a) Displacement and (b) Acceleration.  
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shape, the other modal responses and the responses associated with 
vehicle frequency and excitation frequency need to be filtered out before 
constructing the bridge mode shape. 

The damping ratios can also be calculated from Eq. (28) and Eq. (29) 
based on the instantaneous acceleration amplitudes as shown in Fig. 8 
(b). Table 4 compares the calculated damping ratios with the theoretical 
values from Eq. (4). Note that the first two peaks with their 

corresponding time instances are picked as two consecutive peaks in the 
calculation of second and higher modal damping ratios. Since there is 
only one peak for the first mode, the damping ratio is calculated using 
the instantaneous amplitude at the quarter and third-quarter time in
stances based on Eq. (29). The overall damping ratio identification 
shows an average error of 0.28%. 

4. Conclusions 

This paper proposes a coupled, single-axle vehicle bridge interaction 
model with the consideration of the wheel-bridge contact patch and the 
motor-induced vehicle excitation which would shed more lights on 
designing effective VBI system. The contact point responses are also 
derived for the first time both from the vehicle and bridge to confirm 
their equivalence. The estimation of the contact patch length essential to 
the maximum identifiable frequency, is then discussed for both 

Fig. 7. Hilbert Transforms of decomposed signals corresponding to the first five natural frequencies of the bridge: (a) Displacement and (b) Acceleration.  

Fig. 8. Instantaneous amplitude from the Hilbert Transform of vehicle signals: (a) Displacement and (b) Acceleration.  

Table 4 
Bridge damping ratio extracted from the vehicle acceleration signal.  

Mode Theoretical Instantaneous Amplitude Error (%) 

1 2.000 × 10− 2 2.008 × 10− 2  0.41% 
2 5.000 × 10− 3 4.991 × 10− 3  0.18% 
3 2.222 × 10− 4 2.230 × 10− 4  0.37% 
4 1.250 × 10− 4 1.255 × 10− 4  0.43% 
5 8.000 × 10− 4 8.001 × 10− 4  0.01%  
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pneumatic tire and solid wheel scenarios. The interaction model ac
counts for multiple modal contributions in damped vibration of the 
bridge and the vehicle. When the vertical vehicle acceleration is 
significantly smaller than the gravitational acceleration constant, the 
equations of bridge and vehicle motions could be uncoupled, and their 
closed-form solutions could be formulated theoretically. The procedure 
to extract multiple mode shapes and damping ratios are also presented. 
Based on the analytical derivations and parametric studies, the 
following conclusions can be drawn:  

1. The vehicle responses represent an average effect of the vehicle- 
bridge interaction over a contact patch length. Therefore, the mini
mum time in which the vehicle passes through the contact patch 
length at certain speed can be logically used to determine the 
maximum identifiable bridge frequency of interest and the maximum 
number of sampling points along the bridge.  

2. In general, the higher elastic modulus of the wheel, the shorter 
contact patch length, and the higher maximum identifiable fre
quency. The contact patch length due to pneumatic tire is signifi
cantly larger than that due to solid wheel, which would significantly 
reduce the maximum identifiable frequency.  

3. The presence of a vehicle excitation likely affects the extractability of 
multiple bridge frequencies from the vehicle responses. The stronger 
the vehicle excitation, the more dominant the excitation frequency 
over other frequency components. Thus, the vehicle self-generated 
excitation should not be overlooked in the VBI system.  

4. The vehicle acceleration response is more effective than the vehicle 
displacement response in extracting the mode shapes and damping 
ratios of a bridge as the acceleration includes more modal contri
butions from higher vibration modes of the bridge.  

5. Multiple damping ratios extracted from the instantaneous amplitude 
of Hilbert Transformed responses show an average error of 0.28% 
and a maximum error of less than 0.5%.  

6. The contact point responses (both displacement and acceleration) 
are derived both from the vehicle and bridge responses and 
confirmed equivalent; they exclude the vehicle frequency component 

which may otherwise overshadow the analysis of the bridge 
frequencies. 
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Appendix A 
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