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Facial Expression Recognition by De-expression Residue Learning

Huiyuan Yang, Umur Ciftci and Lijun Yin
Department of Computer Science

State University of New York at Binghamton, USA
{hyang51, uciftci}@binghamton.edu; lijun@cs.binghamton.edu

Abstract

A facial expression is a combination of an expressive
component and a neutral component of a person. In this
paper, we propose to recognize facial expressions by ex-
tracting information of the expressive component through
a de-expression learning procedure, called De-expression
Residue Learning (DeRL). First, a generative model is
trained by cGAN. This model generates the corresponding
neutral face image for any input face image . We call this
procedure de-expression because the expressive informa-
tion is filtered out by the generative model; however, the
expressive information is still recorded in the intermedi-
ate layers. Given the neutral face image, unlike previous
works using pixel-level or feature-level difference for facial
expression classification, our new method learns the depo-
sition (or residue) that remains in the intermediate layers
of the generative model. Such a residue is essential as it
contains the expressive component deposited in the genera-
tive model from any input facial expression images. Seven
public facial expression databases are employed in our
experiments. With two databases (BU-4DFE and BP4D-
spontaneous) for pre-training, the DeRL method has been
evaluated on five databases, CK+, Oulu-CASIA, MMI, BU-
3DFE, and BP4D+. The experimental results demonstrate
the superior performance of the proposed method.

1. Introduction
Research on facial expression recognition (FER) has

been conducted on both posed and spontaneous facial ex-

pressions under various imaging conditions, including var-

ious head poses, illumination conditions, resolutions, and

occlusions [34] [14] [17] [18] [12]. Although significant

progress has been made towards improving the expression

classification, the current main challenge comes from the

large variations of individuals in attributes such as: age,

gender, ethnic background and personality. Facial expres-

sions may appear different (w.r.t. expressiveness or sub-

tlety, etc.) for people with different personalities and ex-

Figure 1. Illustration of our proposed method - De-expression

Residue Learning (DeRL). A facial expression is the combination

of a neutral face image and the expressive component. Our pro-

posed method recognizes facial expression by learning the residual

expressive component in the generative model.

pressive styles. Only recently have works [21] [13] started

to take aspects of subject’s identity attributes i.e., age, gen-

der, and personal characteristics, into consideration for fa-

cial expression analysis.

Research shows that people are capable of recognizing

facial expressions by comparing a subject’s expression with

a reference expression (i.e., neutral expression) of the same

subject [4] [5] [10]. In other words, a facial expression

can be decomposed to an expressive component and neutral

component [25]. Up until now, several existing works uti-

lized the image-difference or feature-difference of the query

image and neutral face image [2] [30] [15] [13] to recog-

nize facial expressions. However, their assumption is that

the neutral expression must be obtainable. As a matter of

fact, the neutral expression may not be always available for

a given subject. In order to alleviate the problem, it is on de-

mand to develop a neutral expression generator based on the

given expressive input. The Generative Adversarial Model
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Figure 2. Framework of our proposed De-expression Residue Learning (DeRL) method.

(GAN) [8] is able to serve this purpose. To train a generative

model (generator), a GAN framework utilizes another deep

model (discriminator) to play an adversarial game with the

generative model, rather than defining a regular cost func-

tion for the generator. The discriminator is designed to dis-

tinguish between samples from the generator and samples

from the training data; while the generator learns to out-

put samples that can maximally confuse the discriminator.

An extension of the basic GAN is the conditional Genera-

tive Adversarial Networks (cGAN) [22], which is capable

of learning different contextual information through the ex-

tra conditional variations. There are existing work that com-

bine CNN and cGANs for many applications, including face

generation [7], object reconstruction from edge maps [11],

and object attributes manipulation [24].

In this paper, we propose a new approach called De-
exprssion Residue learning (DeRL) to learn facial expres-

sions by extracting the expressive component through a de-

expression procedure. As illustrated in Fig.1, given a facial

image with arbitrary expressions, its corresponding neutral

expression is generated by the trained generative model.

Through the procedure, the identity information of a sub-

ject remains unchanged while the expressive component is

removed. We called this de-expression. Although the input

image with an expression is ”normalized” to the neutral ex-

pression as output, the expressive component that has been

filtered out is still ”deposited” in the generative model. In

other words, the expression information is recorded in the

generator during the de-expression procedure. Such a depo-

sition is the residue of the de-expression, which is exactly

the expressive component that we target to exploit for ex-

pression classification.

In contrast to the previous methods [15] [2] [30] [13],

which used pixel-level difference or feature-level differ-

ence of expression images and neutral images, our proposed

DeRL framework learns the de-expression residue remained

in the generative model, with an attempt to mitigate the in-

fluence of individual identity and improve the performance

of facial expression recognition. The contribution of this

work lies in two-fold:

1. We propose a novel method to learn expressions by de-

expression. We first train a generative model to gener-

ate the corresponding neutral face image for the query

image; and then we learn the residue (i.e., expressive

component) of the generative model, thus alleviating

the identity-related variation issue.
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2. Our proposed method is capable of handling cases of

both spontaneous expressions and posed expressions,

with various styles and ethnic backgrounds. It success-

fully improves performance on individual datasets, as

well as for cross-dataset validation, with better results

compared to the state of the art.

2. Related Work
Previous works suggest that facial expression recogni-

tion could benefit from using a neutral face image[30] [13].

Subtracting a neutral face image from the corresponding fa-

cial expression image in either pixel-level or feature-level

can emphasize the facial expression while reducing the

intra-class variation.

Bazzo et al.[2] achieved good recognition rate by ap-

plying Gabor wavelets to recognize facial expression im-

ages subtracted from an averaged neutral face. Zafeiriou et

al.[30] applied sparse facial expression representations for

the difference images, which were derived from the sub-

traction of the neutral image from the expressive one, and

demonstrated that the use of neutral images tends to empha-

size the moved facial parts. Lee at al.[15] generated several

intra-class variation images (including neutral) from a train-

ing set, which were then subtracted by the query face image

to obtain difference images. The difference images were

used to emphasize the facial expressions in a query face im-

age. Kim et al.[13] employed a contrastive representation in

the networks to extract the feature level difference between

a query face image and a neutral face image.

However, these previous works made the assumption that

the neutral expression is always available given any expres-

sion of the same subject, which is not realistic. It is on

demand to generate a neutral face from any expression in-

put. The recent utility of GAN shows success in such an

application. Gauthier [7] tried to use cGANs to generate

faces with specific attributes. Radford et al. [24] attempted

to scale up GANs using CNNs to model images and intro-

duced the structure of deep convolutional generative adver-

sarial networks (DCGANs). This work showed the capa-

bility to manipulate the generated face samples by vector

arithmetic. Isola et al. [11] utilized conditional adversarial

networks for image-to-image translation and showed many

interesting applications, i.e., generating aerial photograph

from map, reconstructing objects from edge maps, and col-

orizing images. Also, Zhou et al.[36] applied cGANs to

synthesize facial expression images from the neutral faces.

So far, there has been use of image or feature difference

of query images and the generated neutral images, but there

is no exploration for any implicit expressive information

recorded in the generative model. We propose to explore the

expressive information, which is embedded in the generator,

and extract the expression component from the intermediate

layers directly. In fact, such information is ”filtered out” by

the generator during the de-expression process while its rep-

resentation (or residue) is still deposited in the generative

model, thus becoming the key information to represent the

expressive component. Rather than using both query im-

age and generated neutral face image to train a deep model

with a contrastive loss function (e.g., [13]), our proposed

method focuses on learning the residue of the generative

model, leading to effectively capturing the expressive com-

ponent and being more robust to individual variations.

3. Proposed Method - DeRL
The architecture of our proposed method - De-

expression Residue Learning (DeRL), illustrated in Fig. 2,

contains two learning processes: the first is learning the

neutral face generation by cGANs, and the second is learn-

ing from the intermediate layers of the generator. The input

image pairs, e.g. < Iinput, Itarget > , are used to train

the cGANs. Iinput is a face image showing any expres-

sion, and Itarget is a neutral face image of the same subject.

After training, the generator reconstructs the corresponding

neutral face image for any input while keeping the identity

information unchanged. From an expressive facial image to

a neutral face image, the expression-related information is

recorded as expressive component in the intermediate lay-

ers. For the second learning process, the parameters of the

generator are fixed, and the output of the intermediate layers

are combined and input into deep models for facial expres-

sion classification.

3.1. Neutral Face Regeneration

cGAN[22] is exploited to generate a neutral face rep-

resentation from a given expressive face image . A GAN

framework usually contains two different players: a gen-

erator (G) and discriminator (D). The generator is trained

to recover the distribution of the training data by play-

ing a so-called minmax game with the discriminator. Im-

age pairs < Iinput, Itarget > are provided for training

the cGANs. Iinput is first input into the generator to re-

construct Ioutput, and then < Iinput, Itarget, yes > and

< Iinput, Ioutput, no > are given to the discriminator. The

discriminator tries to distinguish the < Iinput, Itarget >
from the < Iinput, Ioutput >, while the generator tries to

not only maximally confuse the discriminator but also gen-

erate an image as close to the target image as possible.

The objective for the discriminator is expressed as:

LcGAN (D) =
1

N

N∑
i=1

{
logD

(
Iinput, Itarget

)
+

log
(
1−D

(
Iinput, G(Iinput)

))}
(1)

, where N is the total number of training image pairs. The

2170

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 31,2023 at 19:35:52 UTC from IEEE Xplore.  Restrictions apply. 



Figure 3. Illustration of De-expression Residue, which are the expressive components for anger, disgust, fear, happiness, sadness, and
surprise, from left and right, respectively. The corresponding expressive component histogram is also shown in the second row.

objective for the generator is described below:

LcGAN (G) = − 1

N

N∑
i=1

{
log

(
D
(
Iinput, G(Iinput)

))
+

θ1 · ||Itarget −G(Iinput)||1
}

(2)

Here, we use L1 loss for the image similarity rather than L2,

because L2 loss is prone to over-blurring the output image

[11]. The final objective is:

G∗ = argmin
G

max
D

LcGAN (D) + θ2 · LcGAN (G) (3)

3.2. Learning Facial Expressive Component

After the neutral face regeneration, the expression in-

formation can be analyzed by comparing the neutral face

and the query expression face at pixel level or feature level.

However, the pixel level difference is unreliable due to the

variation between images i.e., rotation, translation and light-

ing condition changes. This can cause a large pixel-level

difference even without expression changes. Also, the fea-

ture level difference is unstable, as the expression informa-

tion may vary according to the identity information. Since

the difference of the query image and the neutral image is

recorded in the intermediate layers, we exploit the expres-

sive component from the intermediate layers directly to al-

leviate the above problem, .

We denote an image with a facial expression as: Iidexp.

After it is input into the generative model, a neutral expres-

sion image is generated:

Iid=A
exp=neutral = G

(
Iid=A
exp=E

)
(4)

where,G is the generator, E belongs to any of the six basic

prototypic facial expressions. From the Equation (4), we

can see that an image with subject (A) and expression (E)

becomes a neutral face of the same subject (A). It is rea-

sonable to conclude that the unique expression information

(a.k.a. expressive component) of each individual must be

recorded in the intermediate layers of the generator. There-

fore, we propose the second learning strategy, which is to

learn expressions from the intermediate layers of the gen-

erator directly. This unique information is also named as

De-Expression Residue (see Fig. 3 for examples).

As shown in Fig. 2, in order to learn the de-expression

residue from the intermediate layers of the generator, all

the filters of those layers are fixed, and all the layers that

have the same size are concatenated and input into a local

CNN model for facial expression classification. For each

local CNN model, the cost function is noted as lossi, i ∈
[1, 2, 3, 4]. The last fully connected layers of each local

CNN model are further concatenated and combined with the

last encode layer for facial expression classification. Con-

sequently, the total loss function is defined as:

total loss = λ1loss1 + λ2loss2 + λ3loss3+

λ4loss4 + λ5loss5 (5)

4. Experiments
The proposed DeRL approach is evaluated on five pub-

lic facial expression databases, including CK+ [20], Oulu-

CASIA [33], MMI [23] and BU-3DFE [29], and sponta-

neous expression database BP4D+ [32]. Additionally, two

other databases with posed expressions BU-4DFE [28]

and spontaneous expressions BP4D [31] are used for pre-

training.

4.1. Implementation Details

Three landmark points (the centers of eyes, and the chin)

are used to align the face region. For the databases where

landmarks are not provided, we apply the TSM [37] for

face detection and landmark localization. The aligned face

region is then cropped and resized to the size of 70×70. To

avoid over-fitting, we apply a data augmentation method to

generate more training data. First, five 64 × 64 patches are
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cropped-out from five locations of each image (center and
four corners, respectively). Each image patch is rotated

by [−15o,−12o,−9o,−6o,−3o, 0o, 3o, 6o, 9o, 12o, 15o]
respectively. Horizontally flipping is also applied. The

result is an augmented dataset, which is 110 times larger

than the original one. The data augmentation method is

only applied to the training data.

The generative model is first pre-trained on the BU-

4DFE [28], which contains 60,600 images from 101 sub-

jects. Each subject has six sequences, and each sequence

shows one of the six basic facial expressions from neutral

to peak expression, ending with neutral again. To con-

struct the training dataset, the first frame of each sequence

is used as target image, and the rest of the sequence is

used as input images. The pre-trained model is further fine-

tuned on CK+, Oulu-CASIA, MMI, BU-3DFE, and BP4D+

databases.

We use the Adam optimizer with a batch size of 150, mo-

mentum of 0.9, and dropout of 0.5 for the fully connected

layers during training. We use 200 epochs to train the gen-

erative models, and 50 epochs for the facial expression clas-

sification models. We set λ1 = 0.7, λ2 = 0.5, λ3 = 0.3,

λ4 = 0.2 and λ5 = 1.0 for the loss function respectively.

The proposed method is implemented using tensorflow [1]

on the GeForce GTX 1080 platform.

4.2. Visualization of Expressive Component and Re-
generated Neutral Faces

Fig.4 illustrates several samples of the generated neutral

face image on CK+, Oulu-CASIA, BU-4DFE, and BP4D+

databases, respectively. The first column is the input image,

the third column is the ground-truth neutral face image of

the same subject, and the middle is the output of the gener-

ative model. As shown, the expressive component is filtered

out by the generative model while the subject-related infor-

mation is preserved.

Fig.3 illustrates the samples of the de-expression residue

from the CK+ dataset, which are the expressive components

for anger, disgust, fear, happiness, sadness, and surprise,

respectively. The corresponding histogram of each expres-

sive component is also displayed. As we can see, both ex-

pressive components and corresponding histograms are dis-

tinguishable among the six expressions.

4.3. Expression Recognition Results

The Extended Cohn-Kanade database (CK+) [20] is

widely used for evaluating facial expression recognition. It

contains 593 video sequences collected from 123 subjects.

Among them, 327 video sequences with 118 subjects are

labeled as one of seven expressions, i.e. anger, contempt,

disgust, fear, happiness, sadness and surprise, from neutral

to peak expression. Only the last frame of each sequence is

labeled, as a general procedure, we use the last three frames

Figure 4. Illustration of neutral faces generated by the generative

model for the input query images from CK+, Oulu-CASIA, BU-

4DFE and BP4D+ databases, respectively.

of each sequence with the provided label, which results in

981 images. The images are further split into 10 folds based

on the identity in an ascending order, thus the subjects in

any two subsets are mutually exclusive.

The results are reported as the average of the 10 runs.

As shown in Table 1, our proposed DeRL method achieves

over 97% recognition rate, outperforming the compared

state-of-the-art methods. Note that all these methods ex-

cept the IACNN [21], CNN baseline and our DeRL method

exploited temporal information extracted from image se-

quences. DTAGN [12] also utilized the landmark features.

In contrast to all other methods, our proposed DeRL method

performs well on recognizing facial expressions on static

images and achieves around 2% improvement compared to

IACNN [21]. Fig. 5 is the confusion matrix of our method,

where fear expression shows the lowest recognition rate

with 90%.

The Oulu-CASIA database [33] contains data cap-

tured under three different illumination conditions using

two types of cameras. During the experiment, only the data

captured under strong illumination condition with the VIS

camera is used. The Oulu-CASIA VIS has 480 video se-

quences taken from 80 subjects, and each video sequence

2172

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 31,2023 at 19:35:52 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. Average accuracy on the CK+ database for seven expres-

sions classification.

Method Setting Accuracy

LBP-TOP [34] sequence-based 88.99

HOG 3D [14] sequence-based 91.44

3DCNN [17] sequence-based 85.9

STM-Explet [18] sequence-based 94.19

IACNN [21] image-based 95.37

DTAGN [12] sequence-based 97.25

CNN (baseline) image-based 89.50

DeRF (Ours) image-based 97.30

Figure 5. Confusion matrix on CK+

is labeled as one of the six basic expressions. Similar to

the CK+ database, each video sequence starts from a neu-

tral face and ends with a peak facial expression. To include

more data, the last three frames of each sequence are se-

lected. Similar to the experimental setting in CK+, a 10-fold

subject-independent cross validation is performed.

The average accuracy on recognizing six expressions on

Oulu-CASIA over 10 runs is shown in Table.2. Our DeRL

method achieves the highest accuracy compared to those

of state-of-the-art methods, including CNN-based methods

(DTAGN-Joint [12], FN2EN [6], and PPDN [35]) and hand-

crafted features based methods (LBP-TOP [34], HOG 3D

[14] and STM-Explet [18]). Note that only FN2EN [6],

PPDN [35] and our DeRL method use the static image

for facial expression recognition, while others exploited the

temporal information of video sequences. The confusion

matrix is shown in Fig. 6, our method performs very well

in recognizing expressions happiness and surprise, while

anger shows the relatively low recognition rate, which is

mostly confused with disgust.
The MMI database [23] consists of 236 image se-

Table 2. Average accuracy on the Oulu-CASIA database for six

expressions classification.

Method Setting Accuracy

LBP-TOP [34] sequence-based 68.13

HOG 3D [14] sequence-based 70.63

STM-Explet [18] sequence-based 74.59

Atlases [9] sequence-based 75.52

DTAGN-Joint [12] sequence-based 81.46

FN2EN [6] image-based 87.71

PPDN [35] image-based 84.59

CNN (baseline) image-based 72.92

DeRL (Ours) image-based 88.0

Figure 6. Confusion matrix on Oulu-CASIA

quences from 31 subjects. Each sequence is labeled as

one of the six basic facial expressions. We selected 208

sequences captured in frontal view. Each sequence starts

with a neutral expression, reaches peak expression near the

middle of the sequence, and ends with a neutral expres-

sion. Since the label is only given for the whole sequence,

we selected three frames in the middle of each sequence as

peak frames and associated them with the provided labels.

This results a dataset with 624 images. Similar to the CK+

database setting, a 10-fold subject-independent cross vali-

dation is performed.

Table. 3 reports the average accuracy of 10 runs on the

MMI database for recognizing six expressions. Although

STM-Explet [18] shows the highest accuracy of 75.12%, it

employs the temporal information extracted from the video

sequence. Our DeRL method, showing a close result of

73.23%, recognizes facial expressions based only on static

images, which is more suitable for some applications where

video sequences are not available. Compared to the IACNN

[21], which is also an image-based method, our DeRL
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Table 3. Average accuracy on the MMI database for six expres-

sions classification.

Method Setting Accuracy

LBP-TOP [34] sequence-based 59.51

HOG 3D [14] sequence-based 60.89

STM-Explet [18] sequence-based 75.12
DTAGN-Joint [12] sequence-based 70.24

IACNN [21] image-based 71.55

CNN (baseline) image-based 57.00

DeRL (Ours) image-based 73.23

Figure 7. Confusion matrix on MMI

method shows improvement of 1.7%. As shown from the

confusion matrix in Fig. 7, fear is relatively hard for recog-

nition, mostly confused with surprise and disgust. On the

other hand, happiness is relatively easy to classify.

The BU-3DFE database [29] contains 2,500 pairs of

static 3D face models and texture images from 100 subjects

with a variety of ages and races. For each subject, six ba-

sic expressions with four levels of intensity and a neutral

expression, was captured. During the experiment, only the

texture images and the high intensity expressions ( i.e. the

last two levels) are used. A 10-fold cross-validation is per-

formed, and the split is subject independent.

Table 4 summarizes the average result of 10 runs on

the BU-3DFE database. From the data we can find that

our proposed method outperforms the other two image-

based methods significantly. Notice that the multi-modality

based approach (2D+3D) [16] performs better than the sin-

gle modality approaches. However, our single modality

(image-based) DeRL method achieves close performance

compared to the multi-modal fusion approach. As we can

see from the confusion matrix Fig. 8 on BU-3DFE database,

surprise is relatively easy to recognize, showing a 96%

recognition rate, while fear has a relatively low recognition

Table 4. Average accuracy on the BU-3DFE database for six ex-

pressions classification.

Method Setting Accuracy

Wang et al.[26] 3D 61.79

Berretti et al.[3] 3D 77.54

Yang et al.[27] 3D 84.80

Lo et al.[16] 2D image + 3D 86.32
Lopes [19] image-based 72.89

CNN (baseline) image-based 73.2

DeRL (Ours) image-based 84.17

Figure 8. Confusion matrix on BU-3DFE

rate, and mostly confused with disgust and happiness.

The BP4D+ [32] is a multimodal spontaneous emotion

corpus (MMSE), including synchronized 3D, 2D, thermal,

physiological data sequences (e.g., heart rate, blood pres-

sure, skin conductance (EDA), and respiration rate) from

140 subjects (58 males and 82 females) with ages ranging

from 18 to 66 years old. Although the database provides

FACS codes, there is no facial expression label available for

each frame. In order to evaluate the spontaneous expres-

sion database BP4D+, we semi-automatically select 2468

frames from 72 subjects (45 female and 27 male) on four

tasks based on the FACS codes. In the experiment, we only

use the 2D texture images and four kind of expressions (i.e.,
happiness, surprise, pain, and neutral). A 10-fold cross-

validation is performed, and the split is subject independent.

As we can see in Table.5, our proposed method outperforms

the CNN baseline when both training and testing are done

on BP4D+.

To further validate our DeRL approach, we have also

conducted a cross-database validation on recognizing four

expressions (i.e., happiness, surprise, pain, and neutral). We

choose the spontaneous expression database BP4D [31] for
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Table 5. Average accuracy on the BP4D+ database for four expres-

sions classification.

Method Setting Accuracy

CNN (baseline) image-based 76.5

DeRL (ours)
train on BP4D, test on BP4D+

image-based 74.41

DeRL (ours)
train and test on BP4D+

image-based 81.39

Figure 9. Confusion matrix of recognizing four expressions on

BP4D+

training, and BP4D+ for testing. Similar to the labeling pro-

cess on BP4D+, we also labeled 1262 frames from all 41

subjects in the BP4D database based on the AU codes in a

semi-automatic way. The experiment result shows that the

performance on cross-database validation is lower than the

same-database validation, nevertheless, it is still compara-

ble with the CNN baseline.

4.4. Classification from Internal Layers

Internal layers of the generative model have different

contributions to the recognition rate. As we can see in Fig.

10, the local CNN-1 and CNN-2 models show much higher

recognition rates than the CNN-3 and CNN-4 . Thus it jus-

tifies the λ1 and λ2 have bigger weights than λ3 and λ4 for

combination of total loss in Equation (5). Such a combina-

tion achieves the highest recognition rate on the individual

dataset.

5. Conclusion
In this paper, we present a novel approach for facial ex-

pression recognition, which is based on the de-expression

residue learning (a.k.a. DeRL). First, a generative model

is trained by cGANs to regenerate the neutral face image

for any query image. Second, a learning procedure is per-

0.2
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0.4

0.5

0.6

0.7

0.8

0.9

1

CNN-1 CNN-2 CNN-3 CNN-4 Total

CK+

Oulu-CASIA

MMI

BU3DFE

BP4D+

Figure 10. Recognition rates based on individual input parts and

their combination.

formed on the internal layers of the generative model. The

learning procedure is able to capture the expressive com-

ponent of facial expressions that have been recorded in the

generative model.

Our proposed method was evaluated on both posed and

spontaneous expressions datasets. Without exploiting the

temporal information, the DeRL method outperforms the

baseline CNN methods, the state-of-the-art image-based

methods, and even most of the state-of-the-art sequence-

based methods that utilize the spatio-temporal information.

A cross-database validation is also performed to show the

effectiveness of extracting the expressive component from

the intermediate layers of the generative model. Such ex-

pressive components are extendible for facial action units

detection. Our future work will incorporate the expressive

components with temporal information for addressing the

issues of AU detection, as well as 3D face analysis with a

variety of head poses and subtle facial changes.
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