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Abstract

This paper presents a new thermal empowered multi-task
network (TEMT-Net) to improve facial action unit detection.
Our primary goal is to leverage the situation that the train-
ing set has multi-modality data while the application sce-
nario only has one modality. Thermal images are robust
to illumination and face color. In the proposed multi-task
framework, we utilize both modality data. Action unit detec-
tion and facial landmark detection are correlated tasks. To
utilize the advantage and the correlation of different modal-
ities and different tasks, we propose a novel thermal empow-
ered multi-task deep neural network learning approach for
action unit detection, facial landmark detection and ther-
mal image reconstruction simultaneously. The thermal im-
age generator and facial landmark detection provide regu-
larization on the learned features with shared factors as the
input color images. Extensive experiments are conducted
on the BP4D and MMSE databases, with the comparison to
the state of the art methods. The experiments show that the
multi-modality framework improves the AU detection sig-
nificantly.

1. Introduction
Action units (AUs) are the local muscle movements on

the face. Facial actions convey information about expres-

sion and emotions. Ekman and his collaborators designed

the Facial Action Coding System (FACS) [6]. FACS re-

lies on identifying visible local facial appearance variations

called AUs. Detection and analysis of AUs is a challenging

problem in computer vision. Their detection requires ana-

lyzing subtle appearance changes on the human face. Some

existing work have utilized deep models to study AU detec-

tion and achieved good results [36, 19].

Many large scale datasets have multi-modality data.

Most of the previous works focus on one modality. The

Figure 1: Overview of proposed framework with four com-

ponents: an encoder, a decoder, two content-based detection

(AU detection and landmark detection). Training phase:

AU detection, landmark detection, and thermal image re-

construction. The AU detection task is our main target task.

The landmark detection task is the task to improve the learn-

ing of AU detection. Testing phase (circled in red): AU

detection only.

majority of them target on 2D domain, and there are some

methods targeting on other modalities such as 3D mod-

els and thermal images [9, 14]. Currently, there are few

applications with multiple modalities. The multi-modality

datasets are not utilized in their full capacity. One of the

reason is that in most application cases, only one modality

is available. Multi-modality analysis is an emerging field

[4, 21, 31]. Deep learning has broken the boundaries be-

tween vision and language [7], and different modality im-

ages, such as color image and thermal image [32], color im-

age and map image [39]. Transfer Learning aims to improve

learning on a certain task with knowledge transferred from

related tasks. It allows different data distributions, tasks and
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representations between training and testing, and focuses on

extracting knowledge that are shared between domains [3].

Transfer learning from different tasks could help reduce the

number of training samples while keeping the performance

nearly the same [31]. Inspired by previous work, we build

a new model, which only needs multi-modality data during

training to better represent the facial features. During test-

ing, only visible images are required. Thus, our model can

be easily used in real-world applications.

We propose to use a multi-task deep network to jointly

learn the facial AUs based on the thermal image reconstruc-

tion and landmark detection. Multi-task learning is a ma-

chine learning approach, that learns multiple related prob-

lems simultaneously by using a common representation. In

our multi-task learning deep model, the learnings of AU de-

tection and thermal image reconstruction share a common

color image input but involve different target random vari-

ables. To leverage the success of multi-task learning, we

also integrate landmark detection task in our framework.

The general framework of the proposed method is shown

in Figure 1. The model is composed of four components:

an encoder, a decoder, and two content detector. The en-

coder is used to extract the content feature representation of

the image, which is good for face image understanding. The

decoder is to reconstruct a thermal image. The AU detector

is our main target task. The landmark detector is the task

to improve the learning of AU. The thermal image recon-

struction task is used for regularization the learning of the

color image encoder parameters. We train different tasks

simultaneously using multiple loss functions. This multi-

task learning helps effectively exploit the complementary

information from different tasks. The shared deep model

features get better understanding of faces, which leads to

improvements of the performances.

Comparing to existing AU detection methods, our work

has the following unique contributions:

1. We propose a novel thermal empowered multi-task

Convolution Neural Network (TEMT-Net), in which task

relation is captured by a shared Network, and variability

across different tasks is captured by task specific networks.

This way of multi-task learning helps effectively exploit

the complementary information from different tasks while

maximally preserving the specific information of specific

tasks.

2. We present a training paradigm, which allows learn-

ing from multiple modality data, and only one modality is

required during testing. Thus, our model can be used in

real-world applications.

3. The experiments show that the proposed framework

boosts the performances of AU detection. We demonstrate

the performance improvement over the existing work. The

benefits of the multi-task framework are also discussed.

2. Related Work
Facial action units are elemental components of facial

expressions. Compared with categorical expressions classi-

fication, AU detection problem is more challenging which

requires fine-grained features extracted. Previously, effec-

tive features on AU recognition task are most likely to be the

hand-crafted ones, i.e., appearance LBP features [15] and

the Discrete Cosine Transform (DCT) features [8], where

intuitively human design and interference are needed. With

the increasing of non-linearity and introduction of param-

eter sharing mechanism, deep features [11, 29] gradually

take the place and show superior results.

Big model capacity comes along with a large number of

parameters. Deep learning approaches require a large vari-

eties of training samples to learn features and avoid over-

fitting. However, AU annotation is highly labor intensive

and time consuming which makes supervised methods hard

to generalize. To address this challenge, there are some

semi-supervised and weakly supervised learning methods,

which employ partial supervision by making use of addi-

tional unannotated data [37, 34].

Fusing multiple modalities or tasks has the advantage

of increasing robustness and conveying complementary in-

formation. Transfer learning [31] and joint learning [40]

has shown advantages over methods that tackle individual

ones. The performance of transfer learning is a useful met-

ric as task affinity [31]. To utilize multi-modality data in

single modality application or cross modality application,

there are some works proposed. Wang et al. [28] proposed

a multi-modality training framework which including both

color image and thermal image, while only requires color

image for testing and application. Liu et al. [20] pro-

posed a multi-task deep model, that the encoder learns to

extract features good for face recognition but not useful for

style factor recognition. Wu et al. [30] proposed a con-

strained joint cascade regression framework to learn land-

mark detection and AU detection at the same time. Riggan

et al. [24] proposed using the polarization-state informa-

tion of thermal emissions to enhance the performance of

cross spectrum face recognition. It has been shown that

polarimetric-thermal images capture geometric and textural

details of faces, which are not present in the conventional

thermal facial imagery.

Several deep convolution networks have been proposed

by learning spatial representation with CNNs, temporal

modeling with LSTMs, and frame based spatio-temporal

fusion [5, 18]. Jaiswal et al. [13] presented a novel CNN-

BLSTM based approach, which learns the dynamic appear-

ance and shape of facial regions for AU detection.

To the best of our knowledge, no prior work has at-

tempted to estimate to use multi-modality data to do AU

detection. The proposed TEMT-Net which not only learns

different modalities but also learns action unit and facial
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Figure 2: Framework for simultaneous training facial action unit detection, thermal image reconstruction, and landmark

detection

landmark at the same time.

3. TEMT Network
Due to the availability of training data, most deep learn-

ing face models are designed and trained on color im-

ages. As the cost of 3D and thermal sensor decreases,

there are more and more multi-modality databases such

as BP4D database [33], MAHNOB laughter database [22],

and USTC-NVIE database [27]. Those databases have not

achieved their full potential. To better utilize the multi-

modality databases, We propose a multi-task framework to

detect AUs. The network architecture is shown in Figure

2. The model is composed of four modules: an encoder, a

decoder, two content-based detector (AU detector and land-

mark detector). The first module is the encode. The second

module is a decoder network to reconstruct corresponding

thermal image to improve the shared 2D facial feature learn-

ing. We apply a deconvolution network as the decoder. The

third module is the AU detector. The forth module is the

network that additionally provides facial landmarks loca-

tions to improve the AU detection. Note that the target here

is not to regenerate a thermal image or get better landmark

detection, but to improve the learning of the shared model.

3.1. Architecture

Learning multiple correlated tasks simultaneously can

improve the performance of individual tasks [23, 2]. We

applied the multi-task framework to handle color image and

thermal image in a unified way. The TEMT-Net is trained

on pairs of corresponding color and thermal images that are

from a publicly available MMSE database [35].

We have a color image I and its corresponding thermal

image T, AU labels Y and landmark coordinates P. The

regression function f is given by the following equation:

(Y,T,P) = f(I,Θ) (1)

where Θ is a set of trainable parameters of function f . The

objective is to optimize the parameters in Θ to minimize:

the error between the estimated AU Ŷ and the ground truth

AU Y; the error between the estimated corresponding ther-

mal images T̂ and the ground truth thermal images T; and

the error between the estimated facial landmarks P̂ and the

ground truth facial landmarks P.

The size and the number of the feature maps are given

in the figure. The input is an aligned RGB face image. The

convolution encoder are generated by convolution blocks.

The blocks can be any convolution blocks, eg, VGG 3 lay-

ers 3× 3 convolution block [25], Inception block [26], and

Resnet block [12]. Pooling operations are performed be-

tween convolution blocks. Batch normalization is applied

after each convolution layer. ReLU is used as the activation

function after batch normalization. The output of encoder

is 14 × 14. There are two branches of output. One branch

for thermal image reconstruction. One branch for AU and

landmark detection.

For the AU and landmark detection branch, there is an-
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other 7 × 7 convolution block. At the end, one fully con-

nected layer sized of 4096 is augmented. We add extra two

fully connected layers sized of 512 for AU detector and

landmark detector. Another two fully connected layers fau
and flandmarks, for AU and landmarks detection, respec-

tively.

The decoder of the thermal image is a deconvolution

model. The input of decoder is 14×14 The decoder network

are generated by 3 deconvolution blocks. The 3 deconvolu-

tion blocks are mirrored version of the encoder convolution

network, and has multiple series of unpooling, deconvolu-

tion, and rectification layers. To reduce the size of the de-

convolution model, we reduce the thermal target image to

56 × 56. The deconvolution network enlarges the activa-

tions through the combination of unpooling and deconvolu-

tion operations. The target is an aligned thermal face image.

3.2. Training

We use MMSE [35] dataset for training our network. It

contains face images with full pose, expression, ethnicity,

age, and gender variations. It provides annotations for 49

landmarks per RGB face, and 28 landmarks per thermal

face. Different loss functions are used for training the tasks

of AU detection, thermal image reconstruction, and land-

mark localization.

3.2.1 AU detection

AU detection can be treated as a multi-label classification

problem. The fau layer is extracted as a feature vector for

each image. Let the number of AUs be C. The output layer

was designed as a multi-label sigmoid cross-entropy loss:

�au(y, ŷ) =−
C∑

n=1

(yn × log ŷn

+ (1− yn)× log(1− ŷn)),
(2)

where ŷn is the estimated probability of the nth AU. If the

nth AU is labeled, yn = 1. Otherwise, yn = 0. fau is

the two dimensional probability vector computed from the

network. If ŷn ≥ 0.5, the corresponding AU is estimated as

detected. Otherwise, that AU is estimated as undetected.

3.2.2 Thermal image reconstruction

The thermal image reconstruction network is a deconvolu-

tion network. The model records the locations of maximum

activations selected during pooling operation in switch vari-

ables, which are employed to place each activation back

to its original pooled location. Similar to the convolution

network, a hierarchical structure of deconvolution layers is

used to capture different levels of shape details. The filters

in lower layers tend to capture overall shape of an object

while the task-specific details are encoded in the filters in

higher layers. We construct the normalized pixel-wise grey

thermal image by pixel-wise color image using equation (3),

which is given by

�tr =
1

W ×H
W∑

w=1

H∑
h=1

‖D(E(Iwh))− Twh‖2, (3)

where I, T are the normalized input color image and corre-

sponding thermal image, W ×H is the dimension of the in-

put image, D,E stand for the decoder and encoder network

in Figure 1. We omit their parameters here for simplicity.

3.2.3 Landmarks detection

The face image is labeled by landmarks {cx, cy, w, h},
where cx and cy are the coordinates of the center of the

region, and w and h are the width and height of the face

region, respectively. Each landmark is shifted with respect

to the region center (cx, cy), and normalized by w and h as

given in (4).

(xnormi , ynormi ) =

(
xi − cx
w

,
yi − cy
h

)
, (4)

(xi, yi) and (xnormi , ynormi ) are the original and normal-

ized coordinates of landmark i. Assuming that we have N
landmarks in consideration, the loss is therefore computed

by

�landmark =
1

N

N∑
i=1

‖ψ(E(I))i − Pi‖2, (5)

where P are the ground truth coordinates after normaliza-

tion. ψ(·) is the prediction network which maps encoded

image to landmark coordinates.

3.2.4 Total loss function

As shown in Figure 2, the total loss is a combination of AU

detection loss, facial landmark detection loss, and thermal

image reconstruction loss. We further introduce an regular-

ization term to penalize the complexity of weights.

�total =λau�au + λtr�tr

+ λlandmark�landmark

+ λ‖Θ‖22.
(6)

where λau, λtr, λlandmark, λ, are the factors of each loss

components and L2 regularizer.
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4. Experiment results

4.1. Database

We evaluate our proposed method on two public

databases, BP4D database [33] and MMSE (a.k.a. BP4D+)

database [35]. Our target task is to detect if the AUs are ac-

tive or not, which is a multi-label binary classification prob-

lem. F1-frame is the harmonic mean of precision and recall,

and widely used in AU detection [18, 36]. In our evalua-

tion, we compute F1 scores for 12 AUs. They are AU 1:

Inner Brow Raiser; AU 2: Outer Brow Raiser; AU 4: Brow

Lowerer; AU 6: Cheek Raiser; AU 7: Lid Tightener; AU

10: Upper Lip Raiser; AU 12: Lip Corner Puller; AU 14:

Dimpler Buccinator; AU 15: Lip Corner Depressor; AU 17:

Chin Raiser; AU 23: Lip Tightener; and AU 24: Lip Pres-

sor.

(1) BP4D database: This is a spontaneous 3D dynamic

model database. The database contains 3D video sequences

of 41 subjects with spontaneous head movement and spon-

taneous facial expressions, including happiness, disgust,

pain, surprise, etc. For each subject, there are 8 tasks cor-

responding to 8 authentic emotions. Each task lasts around

1-2 minutes. There are around 140,000 images with AU

labels.

(2) MMSE (a.k.a., BP4D+) database: This is a multi-

modal spontaneous emotion corpus (MMSE), including

synchronized 3D, 2D, thermal, and physiological data se-

quences (e.g., heart rate, blood pressure, skin conductance

(EDA), and respiration rate) from 140 subjects (58 males

and 82 females) with ages ranging from 18 to 66 years old.

Facial expression was annotated for both the occurrence and

intensity of facial action units from 2D video by experts in

the Facial Action Coding System (FACS).

The resolution of texture color image of the BP4D and

MMSE is 1040 × 1392. The color image face region is re-

sized to 224 × 224 for training and testing. The resolution

of thermal image of MMSE is 726 × 480. The face region

size is around 100 × 100 to 150 × 150. The thermal face

region are resized to 56 × 56 in this work. The reasons we

do not regenerate larger thermal image are: First, our target

is AU detection. Thermal image regeneration is only to help

the model learn the 2D features. Second, we want to control

the size of the model and the time for training. Increasing

the size of the regeneration thermal image would increase

the model size, decrease the input batch size and extend the

convergence time. To control the size of the model, here we

apply the 56× 56 gray level thermal image as our regener-

ation target.

BP4D and MMSE databases both have 49 2D landmarks

on the face. Landmark detection is a very challenge prob-

lem. Our model is not design to detect landmark as main tar-

get. If we detect all of landmarks on the face, the �landmark

will occupy the �total and make the loss hard to converge.

In order to balance the benefit of landmark detection on AU

detection and the loss of landmark detection on the multi-

task learning, we only choose some key landmarks in the

training set. The landmarks can be seen on figure 3.

4.2. Implementation

The entire network is trained on a Nvidia GTX 1080

GPU using the Tensorflow framework [1]. We choose

λau = 1 for the AU detection loss, λlandmark = 0.001
for the perceptual loss, λ = 0.001 for L2 regularizer, and

λtr = 0.0001 for the thermal image reconstruction loss.

During training, we use ADAM [16] as the optimization al-

gorithm with learning rate of 1 × 10−3 and batch size of

16 images. We randomly initialize our network by using

Xavier initializer [10].

4.3. Ablation Study

In order to better demonstrate the improvements ob-

tained by different modules in the proposed network, we

perform an ablation study on MMSE database. We divide

the MMSE database for five folder. Three folder are used

for training, one folder is used for validation, and another

one is used for testing. We compare six architectures to

demonstrate the advantages of the proposed network. The

AU detection ablation study involves the following experi-

ments:

(1) VGG-RGB: VGG-16 model trained on RGB color

images. The input color image dimension is 224× 224× 3.

(2) VGG-thermal: VGG-16 model trained on gray color

thermal images. The input thermal image dimension is

224× 224.

(3) VGG-RGB-landmarks: VGG-16 model trained on

AU detection and facial landmark detection at the same time

on RGB color images. The input color image dimension is

224× 224× 3.

(4) VGG and deconvolution network: VGG-16 convolu-

tion model on RGB color image and deconvolution network

reconstruct the gray color thermal images. The input color

image is 224 × 224 × 3. The target thermal reconstruction

image is 56× 56.

(5) TEMT-Net with VGG block: All the hyper-

parameters of the training are the same as section 4.2. The

input color image is 224 × 224 × 3. The target thermal

reconstruction image is 56× 56.

Table 1 shows the results of different architectures. We

can see that each task loss function has a performance im-

provement compared to the baseline VGG-RGB network,

and VGG-thermal network in terms of average F1 score.

We also compare VGG-thermal with VGG-RGB. The re-

sult shows that thermal image input performs worse than

color image on average, but it improve the result of action

unit detection when it works together with color image on

average. It is also shown that training AU detection and
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Figure 3: Examples of image frames with detected facial

landmarks.

facial landmark detection tasks together can improve the re-

sult of action unit detection on average. In sum, the pro-

posed multi-task framework can improve the AU detection.

4.3.1 Evaluation on landmark detection

Facial landmark detection is a challenge task. There are

many models specifically targeting on landmark detection.

Here we only evaluate the benefit of AU detection on the

landmark detection. Because our model is not targeting on

the landmark detection, but using landmarks to enhance the

performance of AU detection, we only use 13 key land-

marks in our model. Figure 3 shows those 13 landmarks.

Those 13 landmarks are not very hard to allocated and can

help the training of AU detection. We don’t want to involve

those landmarks are hard to detect and bring in a lot of er-

rors for the AU detection. In the total loss function, the

weight of the landmark detection task is relatively small.

Figure 3 shows some sample images of our results. Table 2

shows the comparison between the model having only the

landmark detection task and the model having landmark and

AU detection tasks on MMSE database. The loss is calcu-

lated as the total root mean squared error (RMSE) in terms

of pixel. Table 2 shows that AU detection task also has a

positive effect on the performance of landmark detection.

4.3.2 Evaluation on thermal image reconstruction

Figure 4 illustrates several samples of the generated neutral

face image on MMSE database. The left column is the input

color image, the right column is the regenerated thermal im-

age by the deconvolution network, and the middle is the cor-

responding ground-truth thermal face image. Comparing to

color image thermal image are less sensitive to illumination

and irrelevant to the face color. As shown in Figure. 4, a

small weight in the total loss of the deconvolution network

Figure 4: Examples of thermal image reconstruction. The

left column is the input color image, the right column is the

regenerated thermal image by the deconvolution network,

and the middle is the corresponding ground-truth thermal

face image.

could generate good quality thermal images. The average

pixel value difference in the test set is 8.2. By decoding the

corresponding thermal image, the encoder network could

learn the features irrelevant to face color and illuminations.

4.4. Experimental comparison

In this section, we compare our model with two baseline

methods and three state of the art methods. Baseline meth-

ods include AlexNet [17] and RGB and thermal AlexNet

late fusion net. Color and gray level thermal AlexNet late

fusion network is shown in figure 5. The color and ther-

mal AlexNet outputs are fused in the fully connected layer.

Two FC layers are size of 4096. The last FC layer is size of

12. We also compare two state of the art methods: DRML-

Net [38], ResNet-34 [12] and EAC-Net [19] AU detection

deep networks. DRML is an end to end unified architec-
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Table 1: Ablation Study on MMSE considering different tasks.

Method VGG-RGB VGG-thermal VGG-landmarks VGG and deconv TEMT-Net (VGG-block)

AU 1 21.6 23.2 30.6 20.5 41.9

AU 2 13.6 10.2 27.0 15.0 30.9

AU 4 15.7 16.7 10.6 9.2 15.4

AU 6 87.0 72.2 81.7 88.3 82.8

AU 7 87.4 85.7 90.9 88.6 91.0

AU 10 94.1 82.5 93.4 91.2 93.5

AU 12 80.9 76.3 85.9 84.9 86.1

AU 14 74.4 77.1 85.3 81.5 85.1

AU 15 14.0 32.1 32.7 28.1 29.2

AU 17 30.1 22.6 27.3 32.2 28.1

AU 23 45.6 33.5 49.8 49.4 47.0

AU 24 18.5 10.7 30.2 16.5 29.3

Avg. 48.6 45.3 53.8 50.1 55.0

Table 2: root mean squared error comparison of landmark

detection

Model RMSE

VGG landmark detection 2.462

VGG multi-task 2.163

ture for AU detection. In DRML, region learning (RL) and

multi-label learning (ML) interact directly. EAC-Net is a

combination of two nets: an enhancing net (E-Net) to force

the neural network to pay more attention to AU interest re-

gions on face images, and a cropping net (C-Net) to ensure

that the network learns features in “aligned” facial areas.

As shown in Table 3, the second column is the RGB and

thermal AlexNet fusion network. The thermal and color im-

age data AlexNet fusion model gets better results than just

using RGB image on AlexNet on average. Comparing to the

state of the art methods, we get better results than DRML

and Resnet-34 network on average, and we get comparable

results with the EAC-Net. However, EAC-Net has a short-

age that, during testing, EAC-Net needs landmark detection

and must crop the AU related regions on the face. Many

of those landmarks are not general facial landmarks, such

as the landmarks on the forehead, cheek and chin region.

Those landmarks are hard to localize. While our model does

not require these operations.

We also conduct the same testing on the BP4D database.

Since BP4D database only has 2D and 3D data. We use

the MMSE color and thermal image training set and test

the model in BP4D dataset color image. We randomly se-

lect half subjects of BP4D database for testing. The results

reported can approximate the performance on the entire

dataset. The other methods to be compared use the 2D color

Figure 5: Framework of thermal and color image fusion net-

work

image in MMSE database for training and the models are

tested on the same BP4D database test set. Table 4 shows

the comparison results in BP4D dataset. We obtain experi-

mental results similar to MMSE dataset on BP4D dataset.

Table 4 shows that We get better results than DRML on

average, and comparable results with the EAC-Net on av-

erage.

The effectiveness of our method relies on two main char-

acteristics: First, we trained facial landmark detection and

facial action unit detection together. The learning corre-

lated tasks improved the each others’ learning. Second, we

trained color and thermal image together. The learning cor-

related modality improved the training of color features in

the deep model.

5. Conclusion

This paper targets on the situation that the training set

has multi-modality data but the application situation only

has one modality data available. We have proposed a multi-
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Table 3: Comparison experiment on MMSE dataset.

Method AlexNet

[17]

RGB thermal

Fusion

DRML

[38]

Resnet-34

[12]

EAC-Net

[19]

TEMT-Net
(VGG-block)

TEMT-Net
(resnet-block)

AU 1 13.8 22.0 22.6 16.8 35.9 32.4 36.4

AU 2 13.8 19.5 18.9 11.9 30.9 29.4 30.1

AU 4 10.5 12.6 9.3 10.9 32.4 11.9 26.6

AU 6 85.4 79.7 87.5 83.3 82.8 82.9 81.8

AU 7 92.6 89.0 88.5 90.1 91.0 89.4 89.7

AU 10 94.4 92.7 92.5 94.0 93.5 93.5 91.0

AU 12 90.6 86.3 81.8 83.7 86.1 85.9 82.0

AU 14 86.1 83.1 80.2 84.4 85.1 86.3 83.8

AU 15 14.9 29.3 17.8 21.0 35.2 37.8 29.1

AU 17 31.4 26.5 36.0 30.4 34.1 35.0 37.6

AU 23 31.4 42.8 41.6 50.1 47.0 50.6 57.9

AU 24 19.3 23.5 17.7 27.2 35.3 33.2 27.3

Avg. 48.2 50.5 49.9 50.3 58.0 55.0 56.1

Table 4: Comparison experiment on BP4D dataset.

Method AlexNet [17] RGB thermal Fusion DRML [38] EAC-Net [19] TEMT-Net
(VGG block)

AU 1 34.2 28.1 35.4 39.0 41.8

AU 2 22.4 21.9 26.7 35.2 30.4

AU 4 27.5 30.6 26.9 43.6 32.4

AU 6 59.6 61.1 64.9 76.1 71.8

AU 7 60.7 61.5 68.1 72.9 71.6

AU 10 64.1 71.7 75.3 81.9 80.7

AU 12 70.9 70.0 76.9 86.2 83.3

AU 14 57.2 61.1 57.2 58.8 61.6

AU 15 21.9 25.0 30.1 37.5 32.9

AU 17 33.8 38.4 38.3 47.1 41.6

AU 23 33.3 37.8 36.3 35.9 37.9

AU 24 9.7 11.7 11.8 14.8 12.2

Avg. 40.1 43.2 45.7 52.4 49.8

task framework for AU detection, which jointly learns fa-

cial landmark detection and thermal image reconstruction

to enhance the performance of AU detection. This multi-

modality training paradigm can be used in other real world

applications. The proposed approach is evaluated on two

datasets: BP4D and MMSE. The experiments show that

the multi-modality framework could improve the AU detec-

tion significantly. Our future work will be focused on facial

analysis by adding extra modality (e.g., 3D geometric data,

depth maps, and physiological data).
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