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Adaptive Multimodal Fusion for Facial Action Units Recognition
Huiyuan Yang, Taoyue Wang and Lijun Yin

{hyang51,twang61}@binghamton.edu,lijun@cs.binghamton.edu
Department of Computer Science, State University of New York at Binghamton

Binghamton, NY, USA

ABSTRACT
Multimodal facial action units (AU) recognition aims to build mod-
els that are capable of processing, correlating, and integrating in-
formation from multiple modalities ( i.e., 2D images from a visual
sensor, 3D geometry from 3D imaging, and thermal images from an
infrared sensor). Although the multimodel data can provide rich
information, there are two challenges that have to be addressed
when learning frommultimodal data: 1) the model must capture the
complex cross-modal interactions in order to utilize the additional
and mutual information effectively; 2) the model must be robust
enough in the circumstance of unexpected data corruptions during
testing, in case of a certain modality missing or being noisy. In this
paper, we propose a novel Adaptive Multimodal Fusion method
(AMF) for AU detection, which learns to select the most relevant
feature representations from different modalities by a re-sampling
procedure conditioned on a feature scoring module. The feature
scoring module is designed to allow for evaluating the quality of
features learned from multiple modalities. As a result, AMF is able
to adaptively select more discriminative features, thus increasing
the robustness to missing or corrupted modalities. In addition, to
alleviate the over-fitting problem and make the model generalize
better on the testing data, a cut-switch multimodal data augmen-
tation method is designed, by which a random block is cut and
switched across multiple modalities. We have conducted a thor-
ough investigation on two public multimodal AU datasets, BP4D
and BP4D+, and the results demonstrate the effectiveness of the
proposed method. Ablation studies on various circumstances also
show that our method remains robust to missing or noisy modalities
during tests.

CCS CONCEPTS
• Computing methodologies→Activity recognition and un-
derstanding; Biometrics; Image representations.
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1 INTRODUCTION
Facial action unit (AU) detection has been an essential task for hu-
man emotion analysis. Conventionally, most state-of-the-art AU de-
tection methods exploit images collected from the visible-spectrum
based RGB cameras [50][24][31][29][32][39][3]. However, as AU
analysis relies on the detection of subtle facial muscle movement,
the visual-only detection methods have found to be insufficient
for detecting subtle changes from the single modality. Recent ad-
vancements in multimodal sensor development present a promise
in study of AU detection through multiple modalities. For example,
the public database BP4D+ provides a set of synchronized data with
multiple modalities, i.e., 2D visual, 3D depth and thermal modali-
ties [49], allowing us to investigate various features from different
modalities for AU detection, i.e.„ AU6 (Cheek Raiser), involves the
deformation of Orbicularis oculi and pars orbitalis muscles in the
cheek area, which only show subtle changes in visual images, while
a better geometric changes can usually be observed in depth im-
ages. Similarly, microcirculation and blood flow may vary along the
contraction or relaxation of certain muscles, which results in the
change of skin surface temperature.

Recently, there has been an advancement by extending machine
learning methods to learn additional information presented in the
data from multiple modalities. For example, Li et al. [21][22] com-
bined the 2D and 3D feature for facial expression recognition. Irani
et al. [16] utilized the visual, depth and thermal modalities for pain
study. Lakshminarayana et al. [19] explored physiological signals
in combination with visual images to predict action units. Although
the presence of multiple modalities provides additional valuable
information, challenges still remain when learning features from
multiple modalities [35][28][44], which requires 1) the models must
capture the complex cross-modal interactions in order to utilize the
additional and mutual information effectively; 2) the models must
be robust to unexpected data corruption, such as in the presence
of missing and noisy modalities during testing. In this paper, we
propose a novel Adaptive Multimodal Fusion method (AMF) for
AU detection. First, a feature scoring module is designed for evalu-
ation of the features learned from multiple modalities, and then a
sampling based feature selection process is conditioned on the fea-
ture scores. As a result, our model learns to select the most relevant
feature representations from different modalities, while avoiding
useless or misleading information. More importantly, our model
is able to learn to rely on the most discriminative features from
individual modality adaptively, making it robust to various imaging
conditions, especially in the case of missing or corrupted modal-
ities during testing. Built upon the selective and adaptive feature
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Figure 1: Framework of the proposed adaptive multimodal fusion model (AMF) with three modalities (i.e., visual, depth, and
thermal). AMF learns to select the most relevant feature representations from different modalities by the Gumbel-Softmax
resampling trick conditioned on a feature scoring module. The feature scoring module is designed to allow for evaluating the
quality of features learned frommultiple modalities. As a result, AMF is able to automatically select the more discriminative
features, and robust to missing or corrupted modalities. To alleviate the over-fitting issue and let the model generalize better
on the testing data, a cut-switch multimodal data augmentation method is also applied, in which a random block is cut and
switched across modalities.

fusion strategy, we further propose a cut-switch multimodal data
augmentation method by randomly cutting and switching a block
across modalities. By doing so, we can alleviate the over-fitting
problem to a certain degree, and make the model generalize better
on the testing data. We have conducted a thorough evaluation on
two public datasets (BP4D and BP4D+), and scrutinized the perfor-
mances with respect to various combinations of multiple modalities,
cut-switch strategy, and different levels of noises, demonstrating
the effectiveness and robustness of the proposed AMF method.

The contributions of this work are listed in the following three-
fold:

• We present an adaptive multimodal fusion method for facial
action unit detection, which is able to effectively select fea-
tures from multiple modalities, enabling more accurate and
robust AU detection.

• We propose a cut-switch multimodal data augmentation
method, which has been proved to be an effective way of
improving performance.

• Extensive experiments are conducted to evaluate the per-
formance of multimodal based AU detection, showing the
advantage of the proposed AMF method and its robustness
to missing or corrupted data.

2 RELATEDWORKS
2.1 Action Unit Detection
In recent years, deep features of 2D visible images have been widely
used for AU detection. Deep learning approach developed by Gudi
et al. [11] is one of the pioneer works in AU detection, which
demonstrated impressive performance on both AU occurrence de-
tection and intensity classification tasks. Zhao et al. [50] proposed
a network called DRML which applied a region layer to capture
local structural information on different facial regions. Li [23–25]
defined several regions of interest (RoI) around AU-related facial
landmarks to enhance the feature map intensities at different levels.
Furthermore, those works [23–25] cropped the trained features
maps into 3×3 and learned a separated set of features through fully
connected layers. In order to leverage the temporal information,
Chu et al. [6] and and Li et al. [23] aggregated CNN output into
Long Short-Term Memory (LSTM) for AU predictions, while Yang
et al. [42] proposed to learn the temporal information from static
image. Shao et al. [31, 32] gave insight into the spatial attention
mechanism which applied the multi-scale region learning to extract
the AU related local features. Most recently, Niu et al. [29] tried
to capture the local information and the relationship of individual
local face regions, aiming to improve the AU detection robustness.
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2.2 Multimodal Machine Learning
Multimodal machine learning aims to build models that can process,
correlate, and integrate information from multiple modalities [2].
The success of multimodal machine learning has been demonstrated
in a wide range of applications, e,g, human action analysis [1, 4, 37,
38] , person/object localization and tracking [15, 34, 47] and image
segmentation [14, 51].

In the field of emotion related tasks such as action unit detec-
tion and facial expression recognition, we have seen a trend of
extending machine learning methods to learn additional informa-
tion presented in the multiple modalities. Li et al. [21][22] applied
2D + 3D feature-based approaches for facial expression recognition.
Zhang et al. [46] combined 2D texture images with facial land-
marks for expression recognition. Wu et al. [40] proposed a novel
deep two-view approach to learn features from both texture and
thermal images and adopted the commonality in between for ex-
pression recognition. Irani et al. [16] applied RGB-Thermal-Depth
images for pain estimation. Lakshminarayana et al. [19] conducted
a exploratory work by combining physiological signals with color
images to predict action units. Liu et al. [26] proposed a thermal
empowered multi-task network for facial action unit detection,
which made a good use of the strength and correlation of visual
and thermal modalities and achieved a good performance in AU
detection.

One of the key steps in multimodal machine learning is the
multimodal fusion, with the aim at integrating features of multi-
ple modalities for enabling more accurate and robust performance.
Three types of fusion strategies (i.e., early, late, and hybrid fusion)
are the commonly used techniques for multimodal feature fusion
[2][12][5]. Our proposed adaptive feature fusion strategy is particu-
larly related to late fusion with a focus on the selection mechanism
in order to choose the most relevant feature representations from
different modalities, meanwhile it can avoid useless or mislead-
ing information. Consequently, our model remains fully robust to
missing or corrupted modalities during testing.

3 PROPOSED METHOD
In this section, we describe our approach of the selective feature
fusion across different modalities.

3.1 Problem Formulation and Notation
A multimodal dataset consists of 𝑁 labeled frames defined as X =

(X𝑣,X𝑑 ,X𝑡 ) for visual, depth and thermal modalities respectively.
The dataset is indexed by 𝑁 such that X = (X1,X2, ...,X𝑁 ) where
X𝑖 = (X𝑣

𝑖
,X𝑑

𝑖
,X𝑡

𝑖
), 1 ≤ 𝑖 ≤ 𝑁 . The corresponding labels for these

𝑁 frames are denoted as 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑁 ), 𝑦𝑖 ∈ {0, 1}𝐶 , where C
is the number of AUs.

3.2 Multimodal Fusion
High-level features are extracted by an individual backbone net-
work (i.e. ResNet-18 [13]) f with parameter \ , represented as a =

(a𝑣, a𝑑 , a𝑡 ), a𝑣, a𝑑 , a𝑡 ∈ R𝐷 , where D is the dimension of feature:

a𝑘 = f (X𝑘 ;\𝑘1 );𝑘 ∈ {𝑣, 𝑑, 𝑡} (1)

The straight-forward approach to fuse multimodal data is to com-
bine them at the input or feature level, namely early-fusion or

late-fusion respectively. However, they are not optimal for multi-
modal data. First, the model cannot capture the complex interaction
among modalities. Second, the model is sensitive to missing or
noisy input by considering different modalities equally.

Intuitively, the features from individual modality offer different
strengths for the task of AU recognition; more importantly, collect-
ing data from multiple sensors inevitably increases the chance of
having missing or corrupted modalities. Therefore, it is desirable
to design a mechanism to adaptively fuse the features based on the
condition of modalities.

Feature scoring is designed to evaluate the discriminability
of the extracted features. Similar to the widely applied attention
mechanism [36][41], this function learns to evaluate each feature
conditioned on the extracted features, thus allowing the feature
scoring function to be jointly trained with other modules.

𝛼𝑘 = g(a𝑘 ;\𝑘2 );𝑘 ∈ {𝑣, 𝑑, 𝑡} (2)

where 𝛼𝑘 = [𝜋𝑘1 , 𝜋
𝑘
2 , ..., 𝜋

𝑘
𝐷
], 𝑘 ∈ {𝑣, 𝑑, 𝑡}, and 𝜋𝑘

𝑖
∈ [0, 1] repre-

senting the score for individual feature extracted from different
modalities. Instead of re-weighting each feature by the correspond-
ing score, we apply a stochastic fusion method[5] to select the
feature from different modalities.

Feature Sampling aims to re-sampling a feature index 𝛼∗ based
on the scores across modalities:

𝛼∗ = 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝛼𝑣, 𝛼𝑑 , 𝛼𝑡 )

𝑤ℎ𝑒𝑟𝑒, 𝛼∗ = [𝜋∗1 , 𝜋
∗
2 , ..., 𝜋

∗
𝐷 ], 𝜋

∗
𝑖 ∈ {0, 1}𝑀

(3)

where D is the dimension of feature,𝑀 is the number of modalities,
in our case, 𝑀 = 3 for the visual, depth and thermal modalities.
However, the sampling step with discrete variables are difficult to
train because the back-propagation algorithm cannot be applied
directly to non-differential layers. The reparameterization trick is
proposed in VAE [18] to construct a differential unbiased estimator
of the lower bound in a model with continuous latent variables, but
fails on discrete variables. The Gumbel-Softmax trick [17][27] is a
variation of the reparameterization trick, but capable of handing
discrete variables. The Gumbel-Softmax trick allows us to draw
samples 𝛼∗ from a categorical distribution efficiently, given the
class probabilities 𝛼𝑘 and a random variable 𝜖𝑘 via:

𝛼∗ = 𝑜𝑛𝑒_ℎ𝑜𝑡
(
𝑎𝑟𝑔max

𝑘

(
𝑙𝑜𝑔(𝛼𝑘 ) + 𝜖𝑘

) )
(4)

where 𝑘 ∈ {𝑣, 𝑡, 𝑑} is the index of modality. In practice, the random
variable 𝜖 is sampled from a gumbel distribution, which is a contin-
uous distribution on the simplex that can approximate categorical
samples:

𝜖 = −𝑙𝑜𝑔
(
− 𝑙𝑜𝑔(𝑢)

)
, 𝑢 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) (5)

However, the argmax operation is not differential in Eq.4, hence a
softmax function is used as a continuous, differentiable approxima-
tion to argmax:

ℎ𝑘 =

exp
((

log
(
𝛼𝑘

)
+ 𝜖𝑘

)
/𝜏

)
∑
𝑖∈{𝑣,𝑑,𝑡 } exp

( (
log

(
𝛼𝑖

)
+ 𝜖𝑖

)
/𝜏

) (6)

where 𝜏 > 0 is the temperature that modulates the re-sampling
process: when the temperature 𝜏 approaches 0, samples from the
Gumbel-Softmax distribution become one-hot and Gumbel-Softmax
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distribution becomes identical to the categorical distribution; but
when 𝜏 approaches to +∞, samples will become uniform distribu-
tion [33][17]. Finally, ℎ𝑘 is transformed into index 𝛼∗ through the
one-hot function, which is further used to select features a∗ from
different modalities.

3.3 AU Recognition
First of all, we define a cross-entropy loss function for the ground
truth 𝑦 and the prediction 𝑦:

LCE = −
[
𝑦𝑇 × 𝑙𝑜𝑔(𝑦) + (1 − 𝑦)𝑇 × 𝑙𝑜𝑔(1 − 𝑦)

]
(7)

For the labeled training data (X𝑣
𝑖
,X𝑑

𝑖
,X𝑡

𝑖
, 𝑦𝑖 ), we have three classi-

fiers C𝑣, C𝑑 and C𝑡 to map individual feature into predictions, thus
the supervised loss for each modality is represented as L𝑣,L𝑑 ,L𝑡 :

L𝑘 = − 1
𝑁

𝑁∑
𝑖=1

LCE
(
C𝑘 (X𝑘

𝑖 ), 𝑦𝑖
)
, 𝑘 ∈ {𝑣, 𝑑, 𝑡} (8)

K features are constructed by running the Gumbel-Softmax re-
sampling procedure K times, and those K features are mapped into
prediction by classifier C∗. An average voting strategy is applied
for the final prediction, and the loss function is defined as follow:

L∗ = − 1
𝑁

𝑁∑
𝑖=1

LCE

(
1
K

K∑
𝑗=1

C∗ (a∗𝑖, 𝑗 ), 𝑦𝑖 ) (9)

3.4 Reverse gradient guided feature scoring
Ideally, the feature scoring function 𝑔(.) should be able to automat-
ically learn to evaluate the quality of features (a𝑣, a𝑑 , a𝑡 ) through
training. However, it is not guaranteed to realize it in practice.
Therefore, it is desirable to design an extra constraint that encour-
ages the feature scoring function 𝑔(.) to fulfil its goal. The idea of
gradient reversal layer was first proposed by Ganin et al.[9] for un-
supervised domain adaptation through adversarial training. In our
work, we follow a similar idea but simplify it as a reverse gradient
guidance, which is defined as:

L∗𝑘 =
1
𝑁

𝑁∑
𝑖=1

(
1 − 𝑑𝑖𝑠𝑡

(
𝛼𝑘 ,

������ 𝜕L𝑘

𝜕a𝑘

������)), 𝑘 ∈ {𝑣, 𝑑, 𝑡} (10)

Where 𝜕L𝑘

𝜕a𝑘 is the gradient of loss function L𝑘 regarding to the
latent feature a𝑘 , 𝑑𝑖𝑠𝑡 is a distance function. We use 𝐶𝑜𝑠𝑖𝑛𝑒 as the
𝑑𝑖𝑠𝑡 function in our experiments.

3.5 Cut-Switch for data augmentation
With limited training data, deep model is prone to overfitting, es-
pecially in our case of AU recognition, where the frames were
collected from a small number of subjects with limited variations.
Therefore, an effective data augmentation method is desirable to
alleviate the overfitting issue.

Data augmentation methods, such as CutOut [8], MixUp [45]
and the recent CutMix [43], have been proposed and demonstrated
an effective way of alleviating the overfitting issue. However, a
patch is removed in CutOut method, which leads to information
loss and inefficiency during training. Both MixUp and CutMix rely

on the proportionally mixed ground truth labels and areas, which
make them inapplicable to the multi-label AU recognition task.

We propose a simple but effective cut-switch multimodal data
augmentation method, as shown in Fig.2, where three patches are
cropped and randomly switched among three modalities based on
a randomly sampled box. The benefits of cut-switch is two-fold:
First, as compared to CutOut [8], our method can augment training
data without information loss by cutting and switching blocks at
the aligned face area. Second, without relying on mixed labels, our
cut-switch data augmentation method can be applied to the multi-
label task, while still maintains the benefits of mixing area as used
in MixUp [45] and CutMix [43]. To our knowledge, this is the first
work for multimodal data augmentation, and experimental results
have shown the effectiveness of such a cut-switch strategy.

3.6 Full objective of the networks
Combining the aforementioned objectives, our overall full objective
for training the network corresponding to the visual, depth and
thermal modalities is defined as follows:

L = _∗L∗ +
∑

𝑘∈{𝑣,𝑑,𝑡 }

(
_𝑘L𝑘 + _∗

𝑘
L∗𝑘 ) (11)

where _ are positive regularization parameters.

4 EXPERIMENTS
In this section, we evaluate the proposed method in terms of its
capability to improve multi-modal fusion as well as its robustness
for missing or noisy inputs.

4.1 Datasets
BP4D [48] is a widely used dataset for evaluating AU detection
performance. The dataset contains 328 2D and 3D videos collected
from 41 subjects (23 females and 18 males) under eight different
tasks. As mentioned in the dataset, the most expressive 500 frames
(around 20 seconds) are manually selected and labeled for AU occur-
rence from each one-minute long sequence, resulting in a dataset
of around 140,000 AU-coded frames. For a fair comparison with
the state-of-the-art methods, a three-fold subject-exclusive cross
validation is performed on 12 AUs.

BP4D+ [49] is amultimodal spontaneous emotion dataset, where
high-resolution 3D dynamic models, high-resolution 2D videos,
thermal (infrared) images, and physiological data were acquired
from 140 subjects. There are 58 males and 82 females, with ages
ranging from 18 to 66 years old. Each subject experienced 10 tasks
corresponding to 10 different emotion categories, and the most
facially-expressive 20 seconds from four tasks were AU-coded from
all 140 subjects, resulting in 192,000 AU-coded frames. Following
a similar setting in BP4D dataset, 12 AUs are selected and the
performance of three-fold cross-validation is reported.

4.2 Implementation details and evaluation
metrics

In our experiments, we use two modalities in the BP4D dataset: 2D
visual image and 3D face model; and three modalities in the BP4D+
dataset: 2D visual image, 3D face model and thermal image. Face
areas are cropped from the visual and thermal modalities using a
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Figure 2: Examples of the Cut-Switch data augmentation method. (a) is the original input multi-modal pairs (X𝑣,X𝑡 ,X𝑑 ); (b∼e)
are the potential examples after data augmentation.

tracking algorithm [10] provided in OpenCV. For 3D face model, we
first crop the ROIs of 3D meshes and then project the meshes into
depth maps. All the face images are further aligned and cropped
to the size of 256×256, and then randomly cropped to 224×224 for
training, center-cropping for testing. Random horizontal flip is also
applied during training.

The hyper-parameter _∗ is set to 2, and _𝑘 , _∗𝑘 are set to 1. The
block size for cut-switch is set to 50, and the number of samples K is
set to 100. The temperature 𝜏 is set to 1 at begining, and gradually de-
creased towards 0.5 over each epoch of the training process. We use
an Adam optimizer with learning rate of 0.0001 and mini-batch size
50 with early stopping. Cross-validation is applied to find the best
parameters. We implement our method with the Pytorch[30] frame-
work and perform training and testing on the NVIDIA GeForce
2080Ti GPU.

For the AU recognition task, we use the F1-score for comparison
study with the state of the arts. F1-score is defined as the harmonic
mean of the precision and recall. As the distribution of AU labels
are unbalanced, F1-score is a preferable metric for performance
evaluation.

4.3 Experimental results
4.3.1 Comparisonwith single-modal basedmethods . To prove
that multimodal provides additional valuable information for AU
detection, we first compare our method to the single modality based
methods, including Deep Structure Inference Network (DSIN) [7],
Joint AU Detection and Face Alignment (JAA) [31], Optical Flow

network (OF-Net) [42], Local relationship learning with Person-
specific shape regularization (LP-Net) [29], Semantic Relationships
Embedded Representation Learning ( SRERL) [20], and ResNet18.

The upper part of Table.1 shows the results of different methods
on the BP4D database using visual-only modality, where SRERL
achieves the highest performance, around 3.3% higher than the
corresponding ResNet-18. However, by using both visual and depth
modalities, our method outperforms all the single modality (visual)
based state-of-the-art methods, achieving around 3% improvement
in F1-score than the SRERL method, and 5.5% higher than the
ResNet-18-Depth. As no related results have been reported on the
BP4D+ dataset, we compare our method with the ResNet-18 in
Table 2. A similar finding is also observed that our multimodal based
method outperforms the single-modal based ResNet-18, improving
the F1-score by 4.5%.

In short, the experiments show the superiority of our multimodal
fusion approach over the single-modal based approaches for AU de-
tection on the both datasets.

4.3.2 Comparison with multimodal based methods. As pre-
viously discussed, our method is designed to combine information
from multiple modalities for improving AU detection performance.
In this section, we examine if the proposed method can improve the
performance when using multiple modalities. The early fusion and
late fusion are currently the most common fusion techniques when
facing multimodal data, so we use early and late fusion strategy
with ResNet-18 backbone as baseline. We also compare with the
ResNet-18 with channel attention mechanism (CAM), and the state-
of-the-art multimodal methods: MTUT [1] and TEMT-Net [26].
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Table 1: F1 scores in terms of 12 AUs are reported for the proposed method and the state-of-the-art methods on the BP4D
database. V and D represent visual and depth modality. Bold numbers indicate the best performance; bracketed numbers
indicate the second best. * indicts the result from our own implementation.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.
DSIN [7] Visual 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9
JAA [31] Visual 47.2 44.0 54.9 77.5 74.6. 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0
OF-Net [42] Visual 50.8 45.3 56.6 75.9 75.9 80.9 88.4 63.4 41.6 60.6 39.1 37.8 59.7
LP-Net [29] Visual 43.4 38.0 54.2 77.1 [76.7] 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
SRERL [20] Visual 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 [47.1] [53.3] 62.9
ResNet-18 Visual 48.0 46.7 57.0 77.5 71.6 83.5 85.0 63.8 47.1 58.2 39.4 37.3 59.6
ResNet-18 Depth 44.6 49.3 54.4 77.5 74.8 83.7 88.4 59.0 53.3 60.6 41.9 36.2 60.3
Early fusion {V, D} 44.1 50.0 50.6 75.7 63.8 84.8 [89.3] [65.0] 39.0 62.6 35.7 29.8 57.5
Late fusion {V, D} 51.2 46.8 61.1 80.5 73.8 87.7 88.9 62.4 47.7 61.1 41.2 31.4 61.1
ResNet-18+CAM* {V, D} 55.4 [50.3] 62.9 [81.5] 72.1 [87.6] 88.2 63.1 49.9 65.3 44.5 43.8 [63.7]
MTUT[1]* {V, D} 51.3 50.2 [62.2] 77.2 71.7 83.8 88.2 61.4 54.3 57.9 45.8 42.2 62.2
TEMT-Net[26]* {V, D} 53.7 47.1 60.5 77.6 75.6 84.8 87.4 67.0 [57.2] 61.3 44.7 41.6 63.2
AMF {V, D} [55.1] 58.3 62.0 82.5 75.6 87.2 89.6 60.9 59.1 62.4 45.0 52.0 65.8

Table 2: F1 scores in terms of 12 AUs are reported for the proposedmethod and the state-of-the-artmethods on the BP4D+ data-
base. V, D and T represent the corresponding visual, depth and thermalmodality. Bold numbers indicate the best performance;
bracketed numbers indicate the second best. * indicts the result from our own implementation.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.
ResNet-18 Visual 47.8 [47.0] 24.5 84.3 [88.0] 89.8 87.2 80.6 47.5 36.7 [54.7] 27.4 59.6
ResNet-18 Depth 40.9 39.2 30.4 83.8 86.7 90.9 [90.2] 79.6 38.2 44.0 52.5 39.4 59.6
ResNet-18 Thermal 39.0 34.0 25.0 82.2 84.0 87.6 87.2 79.2 32.1 36.5 43.9 7.9 53.2
Early fusion {V, D, T} 39.0 34.6 26.2 80.1 86.1 89.5 87.7 74.0 41.0 33.5 44.9 15.8 54.4
Late fusion {V, D, T} 38.5 38.9 [38.8] 82.8 84.0 89.5 89.2 78.4 42.6 32.3 52.2 22.1 57.4
MTUT[1]* {V, D, T} [49.9] 49.5 36.8 [85.4] 88.6 90.5 88.0 [81.0] [49.4] [44.6] 54.0 [35.4] [62.7]
TEMT-Net[26]* {V, D, T} - - - - - - - - - - - - -
AMF {V, D, T} 50.1 46.3 44.4 85.8 87.7 [90.6] 90.8 83.8 51.0 47.6 57.5 33.9 64.1

MTUT is designed to improve the testing performance in hand
gesture recognition task by encouraging the networks to learn a
common understanding across different modalities while avoiding
negative transfer. TEMT-Net is a thermal empowered multi-task
deep model which learns the latent representative by transferring
the visual modality to the thermal modality. Since the source code
for both MTUT and TEMT-Net are not released, we implement
the corresponding methods, and report the results in Table.1 and
Table.2. For the BP4D dataset, our model outperforms all the related
methods, and achieves the highest F1-score 65.8%, which is around
8.3%, and 4.7% higher than the early and late fusion methods,2.1%
higher than the ResNet-18 + CAM, and 3.6% and 2.6% higher than
the MTUT and TEMT-Net. The improved performance is also ob-
served in BP4D+ dataset, as shown in Table.2, our model achieves
the highest performance 64.1%, showing 9.7%, 6.7% improvement
over the early and late fusion methods, and 1.4% improvement over
the MTUT. Note that the structure of TEMT-Net is incapable of
being extended to three modalities, so no result reported in the
BP4D+ dataset.

4.4 Ablation study
4.4.1 Results on BP4D+ with fusion of different modalities.
We conduct experiments to examine the effects of fusion of different
modalities, and report the results in Table.3. There are some inter-
esting findings: 1) different modalities are not contributing equally
for AU detection, and they may have their own strength and weakness.
The fusion of {depth, thermal} is almost always achieving the worst
performance than fusion of other modalities in all three methods; 2)
adding more modalities to the model does not always help for increas-
ing the performance unless the model is able to capture the complex
cross-modal interactions. As we can see, the worst performance on
late fusion is observed when using the visual, depth and thermal
modalities. On the contrary, our model achieves the highest perfor-
mance when using all the three modalities than using any two of
them.

4.4.2 Effectiveness of individual part for AU detection. To
answer the question of impact of individual part of proposedmethod,
we conduct experiments on the BP4D dataset under different set-
tings, and report the results in Table.4. A late fusion based ResNet-
18 is trained with and without the cut-switch data augmentation
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Table 3: Ablation study on BP4D+ dataset with fusion of different modalities. Bold numbers indicate the best performance for
individual method.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

Early fusion

{V, D} 35.6 32.7 26.9 80.2 85.8 89.8 88.0 77.0 37.3 34.1 46.9 15.4 54.1
{V, T} 39.1 33.8 30.0 83.7 85.0 90.5 89.2 75.3 43.4 35.8 50.0 17.5 56.1
{D, T} 24.2 24.3 25.0 83.1 82.3 89.0 88.2 81.4 36.4 40.0 49.0 19.9 53.5
{V, D, T} 39.0 34.6 26.2 80.1 86.1 89.5 87.7 74.0 41.0 33.5 44.9 15.8 54.4

Late fusion

{V, D} 43.9 46.1 38.9 83.4 89.0 89.1 88.4 79.3 47.6 42.9 53.0 23.3 60.4
{V, T} 44.4 42.5 34.0 83.0 86.5 89.5 89.3 78.8 46.9 35.7 55.6 15.3 58.5
{D, T} 31.0 34.7 38.8 85.4 87.3 90.1 89.5 81.0 43.2 45.6 55.7 24.3 58.9
{V, D, T} 38.5 38.9 38.8 82.8 84.0 89.5 89.2 78.4 42.6 32.3 52.2 22.1 57.4

AMF

{V, D} 45.3 42.5 34.8 85.9 87.9 89.5 90.4 82.6 50.1 45.5 55.7 42.1 62.7
{V, T} 53.2 50.4 36.0 84.3 86.7 90.4 90.1 82.6 45.7 47.4 56.5 39.4 63.5
{D, T} 39.6 40.7 32.8 84.3 85.3 89.2 89.3 77.6 45.4 44.3 56.3 37.6 60.2
{V, D, T} 50.1 46.3 44.4 85.8 87.7 90.6 90.8 83.8 51.0 47.6 57.5 33.9 64.1

Table 4: Ablation study of effectiveness of individual part of our model on BP4D dataset. Bold numbers indicate the best.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.
Resnet-18 w/o cut-switch {V, D} 51.2 46.8 61.1 80.5 73.8 87.7 88.9 62.4 47.7 61.1 41.2 31.4 61.1
Resnet-18 + cut-switch {V, D} 53.8 51.5 58.6 79.4 73.5 86.2 89.1 59.6 44.8 64.8 45.3 46.6 62.8
AMF w/o cut-switch {V, D} 52.1 51.0 64.5 79.2 73.9 86.4 88.3 60.5 55.3 64.2 47.7 49.2 64.4
AMF + cut-switch {V, D} 55.1 58.3 62.0 82.5 75.6 87.2 89.6 60.9 59.1 62.4 45.0 52.0 65.8

method using the visual and depth modalities. As shown in the ta-
ble.4, the performance is improved from 61.1% to 62.8% by training
with the cut-switch method, which proves the effectiveness of our
proposed cut-switch data augmentation method. 1.4% performance
improvement is also achieved by training AMF with and without
the cut-switch.

Without cut-switch, we compare our method with late fusion
based ResNet-18, as such, any performance improvement can be
attributed to our feature fusionmodule. As shown in Table.4, around
3.3% higher F1-score is achieved by comparing our proposed feature
fusion method (third row) with the directly late fusion method (first
row), which shows the effectiveness of our proposed feature fusion
method.

4.4.3 Robustness for noisy input. To show the performance
when unexpected data corruption occur during testing, for example
in the scenario of missing modality or noisy input, we conduct
further experiments to evaluate the robustness of our model.

To emulate the scenario of missing modality, we replace one of
the designated missing modality with all zero, and report the results
in Fig.4. We can find that the performance of RestNet-18 (late fusion)
w/o CAM decrease dramatically at the absence of one modality. It
is especially true when visual modality is missing, the performance
decreased from 61.1% and 63.7% to 23.6% and 29.8% for ResNet-18
and ResNet-18+CAM respectively. However, another interesting
fact is that the performance of ResNet-18 only decreased from 61.1%
to 48.8%, which indicates the late fusion based ResNet-18 learns to
put more weight on the visual modality than the depth modality
through a biased classifier, even under the condition of missing
visual modality. On the other hand, our proposed method remains
robust to missing modality, achieving 60.7% and 60.6% F1-score

Figure 3: Example images for noisy modality corresponding
to Fig.5 . Gaussian noise 𝜎 = 0.1, 0.2, 0.5, 0.8 are added to the
normalized visual and depth images (range from -1 to 1). Im-
ages from a small area labeled as red box are used to show
the difference.

for missing visual and depth modality respective, which is about
37.1% and 11.8% higher than the corresponding ResNet-18 model.
It is worth noting that, even with missing modality, our model still
outperforms the single modality based ResNet-18 (ResNet-18-Visual
and ResNet-18-Depth).

We further evaluate the performance of our method and the
ResNet-18 under the setting of corrupted modality, and report the
results in Fig.5. As we can see, both our model and ResNet-18
model are robust to Gaussian noise with variance less than 0.2,
and the performance changes as increasing the variance. The red
and blue line in Fig.5 represent our model with Gaussian noise
added to the visual or depth modality respectively, which shows
comparable performance even with the variance increased from
0.2 to 0.8. The example images of corrupted modality is shown in
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Figure 4: Ablation study ofmodel robustness respect tomiss-
ing modality on BP4D.

Fig.3. The worst performance is observed at the point (variance=0.8,
F1-score= 61%), which is close to the performance of ResNet-18 with
clean inputs. We attribute the improved robustness to the feature
scoring and sampling steps in our proposed method, which is able
to evaluate the quality of features learned from individual modality
and sample the feature based on their corresponding scores. On the
other hand, the performance of ResNet-18 decreases dramatically
when the variances (i.e., noise level) increase in the visual modality,
as shown in the green line of Fig.5. The yellow line shows a certain
robustness to the corrupted depth modality, which is consistent
to our finding that the late-fusion based ResNet-18 model relies
heavily on the visual modality (as shown the depth missing in
Fig.4). Such a performance is due to the ResNet-18 being as a biased
classifier.

When Gaussian noise is added to both modalities, as shown in
grey lines, the performances of both our model and ResNet-18 de-
crease dramatically when the variance increases, as both modalities
are corrupted and not enough information available. Note that such
an extremely worst case rarely occurs in real applications though.

5 CONCLUSION
In this paper, we proposed a novel adaptive multimodal fusion
(AMF) framework for AU detection. A feature scoring module is
designed to evaluate the features learned from multiple modalities.
The adaptive feature fusion process is conditioned on the feature
scores with the Gumbel-Softmax resampling tricks to select the
most relevant features from different modalities, while avoiding
useless or misleading information. To alleviate the over-fitting is-
sue, and make the model generalize better on the testing data, a
cut-switch multimodal data augmentation strategy is also proposed.
Extensive experiments demonstrate that our proposed model out-
performs the single modality and both early and late fusion based
multimodal models, as well it shows a better performance than
the state-of-the-art peer approaches. In order to investigate the

Gaussian noise with mean = 0 and different variances

20

30

40

50

60

70

0 0.05 0.1 0.2 0.3 0.5 0.8

Ours + noisy visual

Ours + noisy depth

Ours + noisy (visual & depth)

ResNet-18 + noisy visual

ResNet-18 + noisy depth

ResNet-18 + noisy (visual + depth)

Figure 5: Ablation study of model robustness respect to
noisy input on BP4D.

performance in various data degradation conditions, we conduct
experiments to study the influence of missing or corrupted modal-
ities, and the results show that our models are robust to various
imaging conditions in terms of missing modality and noisy input.

It is worth noting that our proposed AMF framework is expand-
able to any number of modalities. Our future work will investigate
feature fusion schemes from more modalities including audio and
physiological signals, as well as more efficient data augmentation
scheme across multi-dimension and multi-modal data.
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