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Abstract
In this paper, we investigate lifelong learning (LL)-based tracking control for par-
tially uncertain strict feedback nonlinear systems with state constraints, employ-
ing a singular value decomposition (SVD) of the multilayer neural networks
(MNNs) activation function based weight tuning scheme. The novel SVD-based
approach extends the MNN weight tuning to n layers. A unique online LL
method, based on tracking error, is integrated into the MNN weight update laws
to counteract catastrophic forgetting. To adeptly address constraints for safety
assurances, taking into account the effects caused by disturbances, we utilize a
time-varying barrier Lyapunov function (TBLF) that ensures a uniformly ulti-
mately bounded closed-loop system. The effectiveness of the proposed safe LL
MNN approach is demonstrated through a leader-follower formation scenario
involving unknown kinematics and dynamics. Supporting simulation results
of mobile robot formation control are provided, confirming the theoretical
findings.

K E Y W O R D S

adaptive control, formation control, lifelong learning, multilayer neural networks, nonlinear
systems, singular value decomposition

1 INTRODUCTION

Backstepping control1-3 is extensively investigated for the control of strict feedback nonlinear systems with known and
uncertain dynamics. Neural networks (NN), which have gained prominence in online control applications involving non-
linear systems with uncertain dynamics, are employed to approximate unknown functions. In work4, the NN control
design approach based on backstepping is described, whereas in the literature,5,6 robotic control and unmanned vehicle
applications are shown, respectively. In all these works,4,6 Lyapunov-based controller design and stability analysis7 using
single-layer NNs with basis function and a large number of hidden-layer neurons is used for the control of strict feedback
nonlinear systems with uncertain dynamics.8

The selection of basis functions is challenging when its nonlinear dynamics are considered uncertain. The control
techniques employ either single-layer NN9 with radial basis10 or random vector single-layer with sigmoidal4 and tangen-
tial activation functions11 since it is extremely challenging to develop multilayer NN (MNN) or deep NN weight tuning.12

Employing an MNN or deep NN will relax the need for basis functions. Moreover, nonlinear functions, which can be
approximated by an MNN having a polynomial number of nodes with p layers, may need an exponential number of nodes
with p − 1 layers.13

Due to the universal function approximation property of MNN, a two-layer NN-based control scheme for
continuous-time (CT) system and MNN scheme with n-hidden layers for discrete-time (DT) systems are presented
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2 GANIE and JAGANNATHAN

inReference 14 wherein no offline learning phase is needed. Recently, the MNN-based adaptive control of general non-
linear CT systems is presented in work15 where the inner-layer weights are trained in an iterative fashion during discrete
training periods using typical offline techniques, while the output-layer weights are updated online. Because of the
complex nature of MNN, this area is not yet explored for the control of nonlinear CT systems.

Traditionally, the widely acknowledged stochastic gradient descent (SGD) scheme for deep NN weight tuning encoun-
ters vanishing gradients16 in addition to the difficulty of proving stability. The use of the rectified linear unit (ReLU)
activation function has been introduced despite such NNs exhibiting a distinct unique ReLU problem.17 Several solutions
to this problem have been introduced, such as approximate gradient descent18 and artificial derivatives,19 yet a feasi-
ble and efficient solution has not been found. Further, establishing closed-loop stability with deep NNs employing SGD
proves to be exceedingly challenging.

Safety, encompassing state, output, and input constraints, is crucial for applications such as autonomous driving,
industrial robotics, and aerospace vehicles. It takes precedence over other performance criteria and can be achieved
through prescribed performance control (PPC)20 and barrier Lyapunov functions (BLF).21-23 The PPC is primarily con-
cerned with predefined performance bounds, while BLF-based control is focused on ensuring the system stays within
defined safety boundaries. While early research on strict feedback systems5 fails to address constraints, recent studies
have incorporated safety by constraining state and inputs.21

Control of nonlinear systems with state constraints, such as robot systems in work,21,24 has been examined using
logarithmic-BLF,22 tangent BLF,25 and funnel control.26 However, most literature focuses on constant constraints, while
practical systems often have time-varying constraints.27 To tackle this, an adaptive NN control approach for a DC motor
using a logarithmic barrier Lyapunov function was studied in Reference 22, and NN tracking control with time-varying
joint space constraints for a robot manipulator was demonstrated in Reference 25. The funnel control, used in the liter-
ature,26 achieves output tracking with the prescribed transient behavior for systems with relative degree one. However,
for higher-order relative degree systems, funnel controllers become complex and impractical through backstepping.28

In practice, nonlinear systems operate in complex, nonlinear, and constrained dynamic environments that depend on
the specific task. To adapt to these changing conditions, MNNs must be retrained using interleaved data for each task.29

Control schemes often rely on online learning rather than offline training, which can lead to the NNs forgetting previ-
ous tasks a phenomenon known as catastrophic forgetting or significant model drift.30,31 The sigma modification term,
also referred to as the ‘forgetting factor’, is integral to the NN learning methods to relax the persistency of excitation (PE)
condition in control since it is difficult to verify or guarantee PE. This term aims to avert parameter drift, thereby promot-
ing stability in the learning process. However, unexpected changes in dynamics pose unique challenges in multitasking
systems that the DNN weight update laws, along with sigma modification alone, cannot effectively address, as shown
in this study. To mitigate this issue, control schemes should employ online lifelong learning (LL) techniques to enable
nonlinear systems to continuously acquire and retain knowledge over extended periods without catastrophic forgetting.
A LL scheme is different from a switched system32 or multiple model-based adaptive control wherein the former is a
family of physical systems with a switching rule and the latter is to model a nonlinear system over its state space with
a finite number of lower order subsystems needing multiple controllers designed for each one of them. By contrast, in a
LL learning-based control scheme, a single controller is tuned online continuously so that it can handle a nonlinear sys-
tem with changing dynamics. The LL is different from transfer learning33 since transfer learning enhances learning on a
specific target task by leveraging existing information, aiming to expedite the learning process. In contrast, LL focuses on
continuous adaptation over time across diverse tasks, facilitating the accumulation of knowledge from past experiences
while adapting to new tasks.

Although LL schemes have demonstrated their effectiveness in addressing the issue of catastrophic forgetting in
NNs, their implementation has primarily been restricted to offline scenarios30 and has not yet been incorporated into
closed-loop control systems. In online learning phases, the challenge of retaining previously acquired knowledge in
multitask environments becomes even more challenging. Investigating the integration of LL techniques into online
learning-based control systems is essential for real-time control applications. To date, the LL feature has not been
integrated into the controller design.

To address the aforementioned limitations, this paper presents a novel online LL-based MNN adaptive control scheme
for strict feedback nonlinear systems with unknown internal dynamics and known control coefficient matrices, uti-
lizing SVD of MNN action function gradients. The SVD-based approach facilitates the development of novel MNN
weight-tuning laws for control scheme design. Moreover, the tangent type time-varying BLF (TBLF), which accounts for
the effects of disturbances or unmodeled uncertainties, is incorporated into the design to ensure that the state vector
remains within a predefined set. Furthermore, a novel online LL scheme is introduced that leverages tracking errors to
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GANIE and JAGANNATHAN 3

alleviate catastrophic forgetting. Ultimately, the TBLFs, the proposed SVD-based weight tuning, and the online LL feature
are collectively employed to demonstrate the boundedness of the overall closed-loop system.

Thus, the main contributions are listed as follows:

1. The online MNN weight tuning using a novel SVD-based approach relaxes the basis functions selection over the
works34,35 and does not require offline training.15 Furthermore, the SVD-based scheme can be extended to deep NNs
with n hidden layers.

2. A tangent type TBLF with MNNs to handle nonlinear control systems with time-varying constraints is integrated in
contrast to time-varying logarithmic functions in work36 or static constraints in literature,37 since the TBLF not only
facilitates changes in the limits of the desired trajectory but also enables a more flexible and less conservative design.

3. The MNN weight tuning process incorporates a novel online LL feature, which enhances the performance of the con-
troller and mitigates the catastrophic forgetting problem in a multitask domain through the use of a penalty function.
Unlike offline learning-based methods30,31 which employ targets, the significance of weights at each NN layer in this
online LL scheme is obtained using tracking error.

4. Closed-loop stability of the general non-linear systems is demonstrated by using MNN with an online LL feature.

Next, the notations used in this paper are introduced.
Notation: The set of real numbers is given by R = (−∞,∞). The set of nonnegative real numbers is defined as R+ =

[0,∞) and Rn is the n dimensional Euclidean space. The 2-norm of a vector x is denoted by||x||, For a matrix, A ∈ Rn×m,
||A||, represents the Frobenius norm, tr{⋅} is the trace operator of a matrix. The maximum and minimum eigenvalues of
a matrix, A, are denoted by 𝜆max(A) and 𝜆min(A) respectively. For the sake of simplicity, the time variable t will be omitted
unless otherwise mentioned.

2 SYSTEM DESCRIPTION AND BACKGROUND

In this section, the problem formulation and background for functional approximation and TBLF are introduced.

2.1 Class of nonlinear systems and problem formulation

Consider a nonlinear CT system in the strict-feedback form given by

ẋi(t) = fi(xi(t)) + gi(xi(t))xi+1(t) + di(xi, t), 1 ≤ i ≤ n − 1, (1)

ẋn(t) = fn(xn(t)) + gn(xn(t))u(t) + dn(xn, t), (2)

y(t) = x1(t), (3)

where xi = [x1, … , xi]⊤ ∈ Ri
, i = 1, … ,n − 1, xn = [x1 … xn]⊤ is the state vector with initial condition xn(0) =

[x1(0), … , xn(0)]⊤,u ∈ R is the control input, and y ∈ R is the system output. The system nonlinearities fi ∶ Ri → R is an
unknown function and gi ∶ Ri → R, i = 1, … ,n, are locally Lipschitz and di(xi, t), dn(xn, t) denote bounded disturbances.

The state vector is measurable and subject to constraints: Ωx ∶= {xi(t) ∈ Ri
, |xi(t)| < kci (t), i = 1, … ,n,∀t ≥ 0},

kci (t) ∈ R+ are predefined time-varying continuous functions that are differentiable upto nth order.
Further, we need the following assumptions, which are common yet practical, to make the problem more tractable.

Assumption 1 (12). The functions gi(.)(i = 1, … ,n) are known and ∃, g0 > 0 such that 0 < g0 ≤ |gi(.)|. In
addition, gi(.) are all positive.

Assumption 2 (27). The output trajectory yd(t) ∈ Ωd and the time-varying state constraints kci (t) are all
known bounded continuous and differentiable up to the nth order. There exist positive constants dij and Yj(i =
1, … ,n, j = 0, 1, … ,n), such that ||

|
y(j)d (t)

|
|
|
≤ Yj and ||

|
k(j)ci
(t)||
|
≤ dij,∀t ≥ 0.

Assumption 3 (37). There exists an unknown constant upper bound diM for the input disturbance di ≤ diM .

Next, we will introduce the background on the TBLF and the novel SVD approach for weight tuning.
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4 GANIE and JAGANNATHAN

2.2 Time-varying barrier Lyapunov function

In this paper, we investigate the scenario of full state constraints and extend the use of tangent-type TBLF to every step of
the backstepping design. This allows us to constrain each error signal e1 = x1 − yd, ei = xi − 𝛼i−1, where yd, 𝛼i−1 represents
the reference trajectory and virtual control input, respectively. Next, the following lemma is stated.

Lemma 1. Consider the system

�̇� = h(t, 𝜂), (4)

where 𝜂 ∶= [w, e]⊤ ∈ , and h ∶ R+ × → Rl+1 is piecewise continuous in t and locally Lipschitz in 𝜂, uni-
formly in t, on R+ × . Let Ωe ∶=

{
ej ∈ Rj

, |ej(t)| < 𝜅j(t), j = 1, … ,n
}

, where 𝜅j(t) are the constraints on
the error variables ej, with 𝜅1(t) = kc1 − Y0 > 0 and 𝜅j(t) = kcj − 𝛼j−1,0 > 0, 𝛼j−1,0 is a positive constant for j =
1, … ,n. Define the tangent type TBLF as

V∗
j =

𝜅

2
j (t)

𝜋

tan

(
𝜋e2

j (t)

2𝜅2
j (t)

)

, |ej(0)| < 𝜅j(0), j = 1, … n. (5)

Suppose that there exist functions U ∶ Rl ×R+ → R+ and V∗
j ∶ Ωe → R+, continuously differentiable and

positive definite in their respective domains, such that

V∗
j (ej)→ ∞ as |ej| → 𝜅j

𝛾1(||w||) ≤ U(w, t) ≤ 𝛾2(||w||),

where 𝛾1 and 𝛾2 are class K∞ functions. Let V(𝜂) ∶=
∑n

j=1V∗
j (ej) + U(w, t), and ej(0) ∈ Ωe. If the inequality holds:

̇V = 𝜕V
𝜕𝜂

h ≤ −CV + d, (6)

in the set ej ∈ Ωe, where c,d are positive constants, then ej(t) ∈ Ωe ∀t ∈ [0,∞).

Proof. The proof is shown in the Appendix. ▪

Remark 1. According to the formulation of tangent type TBLF (5), we have

{

limej→0 V∗
j = 0, limej→kj V∗

j = ∞ (7)

Remark 2. When there are no constraints on the system state vector, that is kcj → ∞,we have 𝜅j → ∞, j =
1, … ,n. Using L’Hospital’s rule, we have

lim
𝜅j→∞

𝜅

2
j

𝜋

tan

(
𝜋e2

j

2𝜅2
j

)

= 1
2

e2
j .

This means if there are no constraint requirements on the variable ej, the proposed TBLF can be simply
replaced by the Lyapunov function in the quadratic form such that V∗

j =
1
2

e2
j unlike in the literature.27,37 In

this circumstance, the analysis approach that will be presented remains the same as the general case with-
out state constraints. Therefore, the proposed TBLF proposed in this paper is more universal in dealing with
constraint problems.

2.3 Function approximation

The MNNs represent nonlinear functions to a sufficient level of accuracy due to universal function approximation capa-
bilities. Any continuous function h(Z) on a compact set Ωz can be approximated by MNNs as h∗(Z) = W∗⊤

𝜎

(
D∗⊤Z

)
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GANIE and JAGANNATHAN 5

satisfying supZ→Ωz
|h∗(Z) − h(Z)| ≤ 𝛿 with Z ∈ Rn being the input vector. The continuous function h(Z) can be approxi-

mated by h(Z) = W∗⊤
𝜎

(
D∗⊤Z

)
+ 𝛿(Z),∀Z ∈ Ωz ⊂ Rm, where W∗

,D∗ are ideal NN weights, 𝜎 is activation function, and
𝛿 is an approximation error. It is assumed,38 that the target weights and reconstruction error are bounded above on a
compact set by unknown constants ||W∗

j || < WjM , ||D∗
j || < DjM , and ||𝛿j|| < 𝛿jM , respectively.

Next, we will introduce background information on the SVD approach for weight tuning.

2.4 Singular value decomposition of MNN gradients

For MNNs with sigmoidal and tanh activation functions and with gradient-based learning techniques such as backprop-
agation, the value of the gradient may get small as the input layer weights are updated, leading to a vanishing gradient.
A novel SVD-based technique with an exploration feature is proposed wherein the singular values of the gradient are
altered by adding a small random noise to prevent it from becoming unstable, which is in contrast to the work,39 where
a constant value is added to the sigmoid function directly. The proposed SVD-based method is introduced next.

Define the SVD of the NN activation function gradient, which is a function of time, defined as∇𝜎(Z) = Σ⊤ = Ay,
where ∇𝜎 is the activation function gradient,  and are left and right singular vectors and Σ is a matrix of singular
values respectively. The modified SVD, denoted by ̇Ay, is obtained as

̇Ay = Σ⊤ + 𝔢0I⊤

, (8)

where 𝔢0 is a small random noise added to the singular values while keeping right and left time-varying singular vectors
unchanged. If ̇Ay is of size m × n, then is m × k, Σ is k × k, and is n × k respectively, Z is the input to the activation
function, and I is an identity matrix with the same dimension as that of Σ.

Remark 3. By utilizing the gradient of each activation function in each layer, keeping the singular vectors
constant, and adding exploration noise to the singular values of the gradient will prevent the gradient from
decreasing too quickly during the learning. Consequently, this method facilitates a thorough exploration of
the parameter space, overcoming the vanishing gradient, thereby increasing robustness and efficiency and
ultimately leading to enhanced performance. It is worth noting that the use of SVD in the proposed direct
MNN-based error-driven method can facilitate the extension of the current weight tuning development to an
n-layer NN architecture, as shown in the subsequent section.

Next, the LL-based MNN control scheme is stated.

3 LIFELONG LEARNING-BASED MULTILAYER NN CONTROL SCHEME

The goal is to develop an adaptive MNN control scheme that will ensure LL and satisfactory tracking and, in particular,
boundedness of all the closed-loop system signals without violating the time-varying constraints. First, the backstepping
design is undertaken by using MNNs.

3.1 Multiayer NN backstepping control design

First, a two-layer NN controller is designed using the backstepping method, and it is extended to MNN with n hidden
layers. A Lyapunov function Vn is constructed using sub-Lyapunov functions, Vi, corresponding to individual subsystems.
For convenience, time ’t’ is omitted from here on.

Let the error system be defined as

e1 = x1 − yd,

ei = xi − 𝛼i−1, i = 2 … n − 1 (9)
en = xn − 𝛼n−1,
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6 GANIE and JAGANNATHAN

where yd is the desired output, and 𝛼i−1, i = 2 … n − 1 are the virtual control inputs. Differentiating (9) with respect to t
to get

ė1 = ẋ1 − ẏd, (10)

Substituting (1) in (10) to obtain

ė1 = f1(x1) + g1(x1)x2 + d1(⋅) − ẏd. (11)

Define U(Z1) = f1(x1) − ẏd. A two-layer NN is used to approximate U(Z1) on a compact set as

U1(Z1) = W∗⊤
1 𝜎

(
D∗⊤

1 (Z1)
)
+ 𝛿1(Z1), (12)

where 𝛿1(.) is the NN approximation error, W∗
1 , and D∗

1 are the target weights of NN, 𝜎 is the activation function, Z1 =
[x1, yd, ẏd] ∈ Ωe is the NN input. The virtual controller 𝛼1 will be derived as shown in the proof of Theorem 1 (A6). Next,
the second step of backstepping is shown.

From (9), on differentiating with respect to t, we can write ė2 = ẋ2 − �̇�1. Therefore, following the similar procedure as
in (10), we get

ė2 = f2(x2) + g2(x2)u + d2(⋅) − �̇�1. (13)

Define U2(Z2) = f2(x2) − �̇�1, a two layer NN is used to approximate U2(Z2) on a compact set as

U2(Z2) = W∗⊤
2 𝜎

(
D∗⊤

2 (Z2)
)
+ 𝛿2(Z2), (14)

where 𝛿2(⋅) is the approximation error of the NN, W∗
2 and D∗

2 are the target weights of NN, and Z2 = [x2, 𝛼1,
𝜕𝛼1
𝜕x1
, 𝜔1] ∈ Ωx

is the NN input, 𝜔1 = [
𝜕𝛼1
𝜕yd

ẏd +
𝜕𝛼1
𝜕
̂W1

̇
̂W1 +

𝜕𝛼1
𝜕
̂D1

̇
̂D1]. Therefore an actual control input, u, is selected as

u = 1
g2(⋅)

⎛
⎜
⎜
⎜
⎝

(

𝜅2 −
𝛽1g1(⋅)
𝛽2

)

e2 − ̂W⊤

2 𝜎
(
̂D⊤

2 (Z2)
)

−
sec2

(
𝜋e2

2
2𝜅2

2

)

e2

2
−

(

k2𝜅
2
2 sin

(
𝜋e2

2
2𝜅2

2

)

cos
(
𝜋e2

2
2𝜅2

2

))

𝜋e2

⎞
⎟
⎟
⎟
⎠

, (15)

where ̂W2, and ̂D2 are the estimated NN weights, 𝛽j = sec2
(
𝜋e2

j

2𝜅2
j

)

ej, j = 1, 2, ̂B2 = diag[ ̂W2, ̂D2], k2, 𝜅2, and 𝜅2 are the design

constants. Next, the following theorem is stated.

Theorem 1. Consider the strict feedback system described by Equations (1) through (3), and assume that
Assumptions 1 through 3 hold. Let the weight update laws using SVD and TBLF be given by

̇
̂W j = Γj

(

−(�̂�j − ̇Ay,j ̂D
⊤

j
(

Zj
)
)𝛽j − 𝛾1,j ̂Wj

)

, (16)

̇
̂Dj = Gj

(

−Zj ̂W⊤

j
̇Ay,j𝛽j − 𝛾2,j ̂Dj

)

, (17)

where Γj and Gj, are the positive definite design matrices, 𝛾1,j and 𝛾2,j are designer specified variables, Zj is the

NN input, and 𝛽j = sec2
(
𝜋e2

j

2𝜅2
j

)

ej, ̇Ay,j is the SVD of gradient with exploration, with j denotes the number of steps

in backstepping. The tracking errors ej(t), and the weight estimation errors, ̃Bj = diag{ ̃W j, ̃Dj}; where ̃W j = Wj −
̂Wj and ̃Dj = Dj − ̂Dj, j = 1, 2, are uniformly ultimately bounded (UUB) while the state vector xj remains in the

compact set. The bounds are given as

Ωe =
⎧
⎪
⎨
⎪
⎩

ej ∶ ‖‖ej‖‖ ≤ 𝜅j

√
√
√
√ 2
𝜋

tan−1

(

𝜋

𝜅

2
j

((

Vj(0) −
C
𝜌j

)

e−𝜌jt + C
𝜌j

))⎫
⎪
⎬
⎪
⎭

, (18)
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GANIE and JAGANNATHAN 7

Ω ̃B =

{

̃Bj ∶ || ̃Bj|| ≤

√
2

𝜆min(𝜒−1
j )

((

Vj(0) −
C
𝜌j

)

e−𝜌jt + C
𝜌j

)}

, (19)

where C, and 𝜌j are the positive constants shown in the proof (A17), provided kj ≥ 2𝜅 j, j = 1, 2,𝜒j = diag{Γj,Gj},
and the initial conditions are selected such that ej(0) ∈ Ωe ∶=

{
ej ∈ Rj ∶ ‖‖ej‖‖ < 𝜅j . Then every state xj remains

in the compact set Ωx, where

Ωx ∶= {xj(t) ∈ R
j
, |xj(t)| < kcj , j = 1, 2,∀t ≥ 0}.

In addition, all closed-loop signals are bounded, and the output and full state constraints are never violated.

Proof. Refer to Appendix. ▪

Remark 4. The weight update laws defined in Theorem 1 consist of two parts- the first part includes the
time-varying barrier and SVD of the gradient terms, whereas the second part represents the sigma modifica-
tion that is added to relax the persistence of excitation (PE) condition when there are bounded disturbances
and approximation errors. The sigma modification term helps in preventing parameter estimates from diverg-
ing, thereby ensuring that the weight estimation error remains bounded even when PE is not satisfied. Note
that all the quantities used in the above-mentioned weight update laws are measurable.

Remark 5. Because of the presence of disturbance and NN approximation error, the tracking error is bounded
by a small value around the origin. Moreover, the tracking error increases if either the disturbance or the NN
approximation error bounds increase. However, these effects may be offset by adjusting the design parameters
or by increasing the layers and neurons at each layer. The above control scheme is referred to as the SVD-based
MNN TBLF scheme.

Although a development based on SVD-based safe MNN is provided, it is not difficult to see that online learning is
not lifelong. Next, an online LL-based multilayer NN controller design is shown. The sigma modification term does relax
the PE condition, helping with the forgetting process, yet it does not help in multitasking environments to mitigate the
forgetting. Next, a novel online LL approach is introduced for the mitigation of catastrophic forgetting.

3.2 Lifelong learning multilayer NN control

The LL in control systems refers to its ability to continuously learn and adapt to new tasks or environments over time
without forgetting knowledge gained from previously learned tasks. Catastrophic forgetting affects all online NN-based
nonlinear control techniques unless specifically mitigated. One way to achieve LL is through the use of an offline
regularization-based EWC approach,30 in which a regularizing penalty term was added to the loss function. Though EWC
has shown to be effective for offline methods of LL, it cannot be applied to NN-based online techniques. The proposed
technique, which is truly an online LL scheme, utilizes a performance function, which is defined as:

Lj = Lbj +
𝜆wj

2
|| ̂Wj − ̂W∗

𝜏ij
||2Fwj

+
𝜆Dj

2
|| ̂Dj − ̂D∗

𝜏ij ||
2
FDj
, (20)

where j denotes the step in backstepping, Lj is the loss function for step j, Lbj is the loss just for task B in step j, || ̂Wj − ̂W∗
𝜏ij
||2Fwj

denotes ( ̂Wj − ̂W∗
𝜏ij
)⊤Fwj( ̂Wj − ̂W∗

𝜏ij
), || ̂Dj − ̂D∗

𝜏ij ||
2
FDj

denotes tr{( ̂Dj − ̂D∗
𝜏ij)

⊤FDj( ̂Dj − ̂D∗
𝜏ij)}, Fwj, FDj are the Fisher information

matrices (FIM)30,38 for output and hidden layer, respectively in step j, the parameter vector to be optimized are ̂Wj, ̂Dj,
and ̂W∗

𝜏ij
, ̂D∗

𝜏ij represent the optimized parameters from previous task 𝜏i in step j.
Using the gradient descent method, for (20), one can obtain the additional terms in the weight update laws as follows:

− 𝜕

𝜕
̂Wj
(Lj) = −

𝜕Lbj

𝜕
̂Wj
− 𝜇1,j𝜆wj Fwj( ̂Wj − ̂W∗

𝜏ij
), (21)

Similarly,

− 𝜕

𝜕
̂Dj
(Lj) = −

𝜕Lbj

𝜕
̂Dj
− 𝜇2,j𝜆Dj FDj( ̂Dj − ̂D∗

𝜏ij). (22)
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8 GANIE and JAGANNATHAN

The Fisher matrices Fwj,FDj, which are the fundamental aspect in the proposed online LL approach, assess the importance
of each NN weights ̂Wj, ̂Dj in developing memory for older tasks and 𝜇1,j, 𝜇2,j, are learning rates. The parameter’s 𝜆Dj, 𝜆wj
defines how much of the former task’s memory is maintained. A greater 𝜆Dj, 𝜆wj assures the best memory recall of former
tasks but limits the ability to learn new tasks, whereas a smaller 𝜆Dj, 𝜆wj decreases previous task memory, putting the
method closer to a simple SGD. The terms from (22) are included with the previously defined update laws in Theorem 1
for the purpose of LL.

The FIM for each task and at each layer is calculated by defining the log-likelihood function as

𝓁( ̂Wj,Zj, ej) = log p(ej| ̂Wj,Zj), (23)

where ej is the tracking error (9) and p(ej| ̂Wj,Zj) is the probability density function of the tracking error given the input
Zj and the NN weights at each layer. The Jacobian matrix is obtained as follows

J( ̂Wj,Zj, ej) =
𝜕𝓁( ̂Wj,Zj, ej)

𝜕
̂Wj

, (24)

where 𝜕𝓁( ̂Wj,Zj,ej)
𝜕
̂Wj

denotes the partial derivative of the log-likelihood function with respect to the weights. Calculate the
FIM in continuous time as

Fwj =
1

t1 − t0∫

t1

t0

J( ̂Wj,Zj, ej) ⋅ J( ̂Wj,Zj, ej)⊤dt, (25)

where t0, t1 are the task start time and the task end time. In a similar way the FIM obtained for NN weight ̂Dj can be
written as

FDj =
1

t1 − t0∫

t1

t0

J( ̂Dj,Zj, ej) ⋅ J( ̂Dj,Zj, ej)⊤dt, (26)

where Jacobian matrix J( ̂Dj,Zj, ej) =
𝜕𝓁( ̂Dj,Zj,ej)

𝜕
̂Dj

, and 𝜕𝓁( ̂Dj,Zj,ej)
𝜕
̂Dj

denotes the partial derivative of the log-likelihood function

𝓁( ̂Dj,Zj, ej)with respect to the weights. Note that FIM for the current task is obtained using the weights from the previous
task; therefore, for the first task, FIM is zero, and for all other tasks, FIM is bounded because the weights and errors for
the previous task are bounded, as shown in Theorem 1. Next, the following theorem is stated.

Theorem 2. Consider the hypothesis given in Theorem 1 and let Assumptions 1 through 3 holds with the
SLMNN-based weight update laws given by

⎧
⎪
⎨
⎪
⎩

̇
̂W j = Γj

(

−(�̂�j − ̇Ay,j ̂D
⊤

j (Zj))𝛽j − 𝛾1,j ̂Wj − 𝜇1,j𝜆wjFwj( ̂Wj − ̂W∗
𝜏ij
)
)

,

̇
̂Dj = Gj

(

−Zj ̂W⊤

j
̇Ay,j𝛽j − 𝛾2,j ̂Dj − 𝜇2,j𝜆DjFDj( ̂Dj − ̂D∗

𝜏ij)
)

,

(27)

where the optimal weights for the previous task are represented by ̂W∗
𝜏ij

and ̂D∗
𝜏ij are bounded as shown in Theorem

1, Fwj and FDj are FIM,38
𝜆wj, 𝜆Dj, are the learning rates, j denotes the number of steps in the backstepping process.

Then the error bounds will increase while the closed-loop system remains UUB.

Proof. Refer to Appendix. ▪

Remark 6. The weight update laws mentioned in Theorem 2 consist of two parts; the first part is the same
as the weight update laws defined in Theorem 1, and the second part is due to online LL. The proof shows
that the weight estimation errors are UUB. The parameters 𝜆Dj, 𝜆wj define how much of the former task’s
memory is maintained. A higher 𝜆Dj, 𝜆wj value emphasizes the importance of the original task and penalizes
the changes to the weights more heavily. This can result in the model retaining more information from the
original task but potentially under performing on new tasks because it’s less able to adjust its weights to learn
new information.
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GANIE and JAGANNATHAN 9

On the other hand, a lower 𝜆Dj, 𝜆wj value allows more flexibility in adjusting the weights when learning
new tasks though this can lead to catastrophic forgetting, where the model loses its ability to perform well on
the original task because it is changing its weights too freely; if the 𝜆Dj, 𝜆wj is too small it will decrease previous
task memory, putting the method closer to a simple stochastic gradient descent. The values are chosen such
that 𝛾1,j + 𝜇1,j𝜆wjFwj > 0, 𝛾2,j + 𝜇2,j𝜆DjFDj > 0.

Remark 7. The proposed LL method can be extended to n number of tasks. When moving to a third task C,
the proposed method will try to keep the network weights close to the learned weights of the first two tasks.
This can be implemented either as one penalty by noting that the sum of two quadratic penalties is also a
quadratic penalty or with two separate penalties. With LL, the control scheme is called a safe LL MNN-based
(SLMNN) control scheme.

Remark 8. When there’s an overlap between Tasks 1 and 2 in terms of information that is captured by the
weights, knowledge acquired while learning Task 1 will also be useful for Task 2. On the other hand, when the
tasks do not overlap in terms of weight distribution, the proposed online LL might not visibly enhance Task
2 performance due to the absence of shared weights or knowledge between the tasks that the network can
leverage in order to improve its performance. However, it would still help to prevent catastrophic forgetting
of the first task, which could be beneficial if the network needs to perform the first task again in the future.

3.3 Extension of safe LL-based MNN method to n-layer NN

Based on the universal approximation theorem,14 any continuous function defined on a compact set can be approximated
by an MNN or deep neural network (DNN). The DNN, denoted as Φ ∶ Rn ×RQ1×Q2 × … ×RQn−1×Qn → Rn, is given by:

Φ(X ,W1,W2, … ,Wn) ≜
(

W⊤

n 𝜙n◦ … ◦W⊤

2 𝜙2
)(

W⊤

1 X
)
, (28)

where n ∈ N represents the total number of layers and Wk ∈ RQk−1×Qk is the matrix of weights and biases at the k − th
layer, with Qk ∈ N being the number of nodes in the k − th layer for all k ∈ {1, … ,n}. The activation function vector at
the k − th layer is given by 𝜙k ∶ RQk → RQk .

According to the universal approximation theorem, the function space of DNNs as described in Equation (28)
is dense in (O), where (O) represents the space of continuous functions over O. For any f ∈ (O) and 𝜀 ∈ R

>0,
there exists n,Qk ∈ N, and the corresponding ideal weights and biases Wk ∈ RQk−1×Qk for all k ∈ {1, … ,n}, such that
supX∈O |f (X) − Φ(X ,W1,W2, … ,Wn)| < 𝜀.

The unknown function f (X) can be expressed as follows:

f (X) = Φ(X ,W1,W2, … ,Wn) + 𝜀(X), (29)

where 𝜀 ∶ Rn → Rn is the unknown approximation error such that supX∈O ‖𝜀(X)‖ < 𝜀n with 𝜀n as an unknown constant.
The weight update laws derived above can be extended to n-layer NN with ̂Wn as the output layer, ̂W1 as the innermost

hidden layer, and 𝜎 as the activation function as follows:

̇
̂W n = Γn

(
−𝛽
(
�̂�n−1 − ̇An−1 ̂W⊤

n−1�̂�n−2 − ̇An−1 ̂W⊤

n−1
̇An−2 ̂W⊤

n−2�̂�n−3 − · · · − ̇An−1 ̂W⊤

n−1 · · · ̇A1 ̂W⊤

1 Z
)

− 𝛾n ̂Wn − 𝜇n𝜆nFn
(
̂Wn − ̂W∗

n,𝜏i

))
, (30)

̇
̂W n−1 = Γn−1

(
−𝛽 ̂W⊤

n ̇An−1
(
�̂�n−2 − ̇An−2 ̂W⊤

n−2 �̂�n−3 − · · · − ̇An−2 ̂W⊤

n−2 · · · ̇A1 ̂W⊤

1 Z
)

− 𝛾3 ̂Wn−1 − 𝜇n−1𝜆n−1Fn−1
(
̂Wn−1 − ̂W∗

n−1,𝜏i

))

, (31)

̇
̂W 1 = Γ1

(

−𝛽 ̂W⊤

n ̇An−1 ̂W⊤

n−1
̇An−2 … ̇A1Z − 𝛾1 ̂W1 − 𝜇1𝜆1F1

(
̂W1 − ̂W∗

1,𝜏i

))

, (32)

where Wn is the output layer, Wn−1,W1 are the hidden layer and innermost layer weights respectively. ̇An = SVD
(
�̂�

′
n−1
)
+

n−1𝔢n−1In−1, ̇An−1 = SVD
(
�̂�

′
n−2
)
+n−2𝔢n−2In−2, ̇An−2 = SVD

(
�̂�

′
n−3
)
+n−3𝔢n−3In−3, where 𝔢n−i is the exploration

noise added to singular values, Γn,Γn−1, and Γn−2 are the positive definite matrices, 𝛾n, 𝜇n represents design parameters
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10 GANIE and JAGANNATHAN

F I G U R E 1 Block diagram representation of SLMNN scheme.

and learning rate respectively, Fn is the FIM, 𝜎n−1 = 𝜎( ̂W⊤

n−1𝜎( ̂W
⊤

n−2 … 𝜎( ̂W⊤

1 Z))), 𝜎n−2 = 𝜎( ̂W⊤

n−2 … 𝜎( ̂W⊤

1 Z)) and 𝜎1 =
𝜎( ̂W⊤

1 Z) with SVD being the singular value decomposition.
Figure 1 shows the block diagram of the proposed safe LL-based MNN control scheme for strict feedback systems.

Remark 9. The SVD and safe LL-based novel weight update laws for an n-layer NN ensure weight bound-
edness in a similar way as detailed in the Appendix for two-layer MNN. Extending from a two-layer NN to
an n-layer NN with online tunable weight update laws and control input combined with LL offers a promis-
ing direction to enhance system performance for various control problems. Though increasing the layers in
MNN increases computational complexity, influenced by factors such as the size of the state and input space,
state constraints, and multilayer LL method, a two-layer NN is often adequate. Its simplicity, reduced neuron
requirement in the hidden layer, and basis function flexibility make it suitable for all control applications.

Next, the simulation results using MNN-based safe LL of mobile robot leader-follower formation control are presented.

4 SIMULATION RESULTS AND DISCUSSION

Consider a leader-follower formation, which is expressed as a nonlinear system in the strict feedback form, with a leader
moving along a predetermined trajectory followed by followers. The control objective is to design a safe LL-based for-
mation control such that the followers maintain a desired separation and bearing with their leader despite the onboard
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GANIE and JAGANNATHAN 11

sensor’s limited sensing capability. First, the leader-follower dynamics are given, followed by kinematic and dynamic
control design.

4.1 Leader follower formation control

The kinematic and dynamic equation of the jth mobile robot (MR) can be expressed in a strict feedback form as in the
work:40

q̇j = fqj(qj) + gqj(qj)𝜈j,

�̇�j = f
𝜈j(qj, 𝜈j) + gvi(qj, 𝜈j)𝜏j + dj, (33)

where qj =
[
xj, yj, 𝜃j

]
⊤, xj, yj, and 𝜃j are actual Cartesian position and orientation of the physical robot, 𝜈j = [vj, 𝜔j]⊤and

vj, 𝜔j are linear and angular velocities, respectively, 𝜏j =
[

𝜏uj , 𝜏rj

]
⊤

denotes the control inputs, fq(q) = 0n×1, gqj(qj) = Sj(qj),
f
𝜈j(qj, 𝜈j) = −M−1

j C𝜈j-M−1
j Fj, g

𝜈i(qi, 𝜈j) = M−1
j B(qj), dj = −M−1

j 𝜏wj, and 𝜏wj is the external time-varying disturbances.
To begin, let a leader i follow a virtual robot so that the tracking error system is defined as:40

⎡
⎢
⎢
⎢
⎣

ei1

ei2

ei3

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

cos 𝜃i sin 𝜃i 0
− sin 𝜃i cos 𝜃i 0

0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

xr − xi

yr − yi

𝜃r − 𝜃i

⎤
⎥
⎥
⎥
⎦

(34)

The virtual reference position and orientation are given by xr, yr, and 𝜃r. The leader tracks a reference trajectory in various
tasks, obtaining the virtual control input 𝛼i. Velocity tracking error eic = vi − 𝛼i is calculated, and using Lyapunov analysis
and system dynamics (33), the actual control input 𝜏i is determined. For the formation, the error system can be written as:

ej =
⎡
⎢
⎢
⎢
⎣

ej1

ej2

ej3

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

Lijd cos
(
Ψijd + 𝜃ij

)
− Lij cos

(
Ψij + 𝜃ij

)

Lijd sin
(
Ψijd + 𝜃ij

)
− Lij sin

(
Ψij + 𝜃ij

)

𝜃i − 𝜃j

⎤
⎥
⎥
⎥
⎦

(35)

where Lij and Ψij is the actual separation and bearing for follower j with respect to leader i and 𝜃ij = 𝜃i − 𝜃j. The trans-
formed error system is used to obtain a formation tracking controller. Formation control ensures that while the leader
tracks a predefined trajectory, followers maintain a desired separation and bearing from their leader. It aims to maintain a
fixed desired distance Lijd and a desired angle 𝜓ijd relative to the leading robot i while simultaneously achieving the same
orientation as the leader robot. The leader-follower dynamics are expressed as a strict feedback system.

On using the barrier constraints on distance or range error and bearing angle error, we can write: −𝜅di(t) < edi(t) <
𝜅di(t),−𝜅𝜃i (t) < e

𝜓i(t) < 𝜅𝜃i (t), where edi = Lij − Lijd, e
𝜓i = Ψij − Ψijd, ±𝜅d,±𝜅𝜃 are the bounds and are given as 𝜅di(t) =

(𝜅i0 − 𝜅di∞
) exp

(
−kdi(t)

)
+ 𝜅di∞

, where 𝜅di0
= dicon − Lijd,Lijd =

dicol
+dicon

2
, kdi is design specific, where dicol is the safety

distance and dicon denotes the maximum sensing distance. The error dynamics for the formation can be obtained by
taking the derivative of the error system of bearing errors and the LOS range as shown in the work.40 The proposed
backstepping-based approach is used to calculate the virtual control input 𝛼j, which is used in the second step of the back-
stepping design to calculate the error as ecj = vj − 𝛼j and actual controller 𝜏j by using Lyapunov analysis and the dynamics
from (33) as shown in Theorems 1 and 2. Note that for simulation purposes, m is considered as known.

4.2 Results and discussion

A numerical simulation is conducted for a group of N = 5 robots consisting of one leader and four follow-
ers. The leader’s time-varying reference trajectory is defined as follows: for 0 ≤ t < 20 s, [t, 0], for 20 ≤ t <
40 s, p0 = [40 − 20 cos(t − 20), 20 sin(t − 20)]⊤, and for 40 ≤ t ≤ 60 s, [40 + t, 0]. The leader’s initial position is
[−5.1,−2.3, 0.5].The barrier constraints are specified as 𝜅e(t) = 0.15 exp(−0.05t) + 0.06 and 𝜅

𝜓
(t) = 0.01 exp(−0.05t) +
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12 GANIE and JAGANNATHAN

(A) (B)

F I G U R E 2 Leader-follower formation control using SLMNN method.

0.05, 𝜏wi = [sin(0.05t), 1.2 cos(0.05t)], The activation function used is sigmoid. The hidden layer has 10 neurons, and
weight matrices are initialized at random in the interval [0,1].

For task 1, the value of the parameters for leader and followers are given by m1 = 5.8, m2 = 3.8,m3 = m4 =
1.0948,m5 = 2.76. For task 2, the value of the masses is changed to m1 = 8.8, m2 = 7.4,m3 = m4 = 2.1,m5 = 3.4. All other
parameters are kept the same. The sensing range and distance of safety are given as dicon = dcon = 5.5 m, and di,col =
dcol = 4.5 m, i ∈ {1, … , 4}. The desired distance is given by Lijd = 5 m, which satisfies 0 < di,col < Lijd < di,con. The bar-
rier constraints are specified as 𝜅d(t) = (5.5 − 5 − 0.05) exp(−0.08t) + 0.05 and 𝜅

𝜃
(t) = 0.145 exp(−0.05t) + 0.08. The initial

states of the mobile robots are given by 𝜂1(0) = [0, 0, 0.1]⊤, 𝜂2(0) = [−3.8,−1.5, 0.15]⊤, 𝜂3(0) = [−4.4,−2.2, 0.2]⊤, 𝜂4(0) =
[−2.8, 2.5,−0.15]⊤, vi(0) = [0, 0]⊤. The design parameters are given as kui = kri = 2, 𝜀0 = 0.2 rand(t)e−0.008t

, 𝜆w,D =
0.85, 𝛼1,2 = 1,Kc = 1, kd1 = k

𝜃1 = 4, kd2 = k
𝜃2 = 8, kd3 = k

𝜃3 = 5, kd4 = k
𝜃4 = 6, Γ1 = Γ2 = Γ3 = Γ4 = Γ5 = diag{8}, G1 =

G2 = G3 = G4 = G5 = diag{5}.
In this analysis, we compare the proposed MNN-based TBLF driven by SVDs results without LL (denoted as TBLF)

to the proposed safe MNN-based LL method (denoted as SMLNN), as well as with RVFLNN methods.41 We demonstrate
that the proposed MNN-based approach, when integrated with LL, significantly outperforms both the MNN-based TBLF
without LL and the RVFLNN method.

The phase plane trajectories of the leader and followers are depicted in Figure 2A. This figure clearly illustrates that
each follower tracks its leader at a desired distance while maintaining formation. During transitions from task 1 to 2 and
then back to task 1, the RVFLNN method incurs higher errors, and the MNN TBLF-based approach experiences a sub-
stantial error, with minor spikes observed during the task change due to the catastrophic forgetting problem. By contrast,
the LL enables the NN to continually adapt and learn new tasks while retaining knowledge of previous ones, effectively
mitigating the catastrophic forgetting problem during task changes, as illustrated in Figure 3. A minimal increase in error
for the TBLF in the second task, compared to the SLMNN, is attributable to the overlap between tasks 1 and 2. This over-
lap is substantial since only the trajectories are changed; hence the LL-based method leverages the experience from the
preceding task, which proves advantageous for the second task. A marked reduction in error for the SLMNN method is
visible when reverting to task 1 after 40 s, as shown in the plots.

In Figure 4A, the range is shown, and Figure 4B shows the bearing angle tracking errors for the conventional RVFLNN
control method, SVD-based MNN TBLF without LL, and MNN-based safe LL methods. The error is higher and accom-
panied by sudden spikes during the task change in the case of the RVFLNN-based control method. By employing the
proposed MNN-based TBLF method driven by SVDs without LL, these issues are reduced but not entirely resolved. When
employing the MNN-based safe LL method, which incorporates LL, helps to minimize bearing angle errors and mitigate
transients or spikes, keeping the errors within the safe region. This demonstrates the significant benefits of using LL in
conjunction with the MNN TBLF approach.
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(A) (B)

F I G U R E 3 Tracking error performance of RVFLNN,41 proposed SLMNN and TBLF methods.

(A) (B)

F I G U R E 4 Range and bearing angle errors of RVFLNN,41 proposed SLMNN and TBLF methods for one follower.

(A) (B)

F I G U R E 5 Range di(t) and bearing angle errors for multitask system for all followers using safe LL.

The lines in black color at 5.5 and 4.5 represent the collision avoidance and sensing range for the followers. As demon-
strated by the proposed method, the followers remain within these boundaries, thereby preventing unwanted collisions
and loss of contact with the leader. The TBLF maintains the system errors within the constraints from the start, and the
incorporation of LL helps mitigate the forgetting problem during task changes.

Figure 5 displays the range and bearing angle tracking errors for all followers along with the time-varying barrier.
By utilizing the LL approach, the error is minimized during tracking. During task changes, the bearing angle tracking
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14 GANIE and JAGANNATHAN

(A) (B)

F I G U R E 6 Control inputs using safe LL method.

(A) (B)

F I G U R E 7 Norm of NN weight estimates using safe LL and cumulative control cost for single and multitasks using RVFLNN,41

proposed safe LL and TBLF methods.

errors do not violate the barriers, ensuring system safety. Furthermore, LL reduces the error resulting from sudden task
changes.

Figure 6 illustrates that control inputs based on a safe LL method are bounded. Figure 7A depicts the boundedness of
the NN weights. For the sake of showing the performance, cumulative cost is defined as a quadratic function of tracking
error and torque inputs, C(t) = ∫ ∞t

[
e⊤(s)Qe(s) + u⊤(s)Ru(s)

]
ds with Q = 4, R = 0.1, and u = {𝜏1, 𝜏2}. Figure 7B, shows the

cumulative cost using the RVFLNN method, SVD-based TBLF method, and safe LL method for a multitasking system.
The cumulative cost is higher in the case of the RVFLNN method, but it is approximately the same in the first task for the
SVD-based TBLF and safe LL methods. However, as tasks change over time, the cumulative cost is more favorable in the
case of the safe LL method.

5 CONCLUSION

We have introduced a safe LL approach utilizing MNNs to accommodate time-varying constraints and uncertain dynam-
ics. Firstly, the proposed MNN weight tuning, derived from SVD-based NN gradients, ensures satisfactory performance,
while the additional stabilizing term in the update laws guarantees closed-loop stability. The method also mitigates van-
ishing gradient problems by employing exploration noise in SVDs instead of using gradients directly in the case of MNNs.
TBLFs are incorporated at each step of the backstepping design process to ensure that the entire state vector remains
within the constraints’ prescribed limits.

The proposed novel online LL, based on tracking error, addresses the catastrophic forgetting issue, as evidenced by
the tracking errors and cumulative cost, which arises when employing an online learning approach during task changes.
We have also demonstrated the overall stability of the proposed MNN-safe LL scheme using a Lyapunov approach. The
advantages of the proposed safe MNN LL over alternative methods are showcased in a mobile robot formation control
scenario. Future work may involve developing and demonstrating more suitable LL methods.
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APPENDIX A

A.1 Proof of Lemma 1

Proof. We consider the Lyapunov function candidate V(𝜂) =
∑n

i=1V∗
i (ei) + U(w, t). Now, we analyze the time

derivative of V(𝜂):

̇V(𝜂) =
n∑

i=1

𝜕V∗
i

𝜕ei

dei

dt
+ 𝜕U
𝜕w

dw
dt

+ 𝜕U
𝜕t
.

By substituting the system dynamics for ėi and ẇ, we get

̇V(𝜂) =
n∑

i=1

𝜕V∗
i

𝜕ei
ėi +

𝜕U
𝜕w

h(t, 𝜂) + 𝜕U
𝜕t
.

We have ̇V(𝜂) ≤ −Cv + d in the set ei ∈ Ωe. This implies that V(𝜂) is a non-increasing function of time for all
t ∈ [0,∞) when ei(t) is in Ωe.
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Since V(𝜂) is non-increasing and V∗
i (ei) is positive definite, it follows that V∗

i (ei(t)) remains finite for all
t ∈ [0,∞). This implies that for each i = 1, … ,n, ei(t) must remain strictly less than 𝜅i(t) for all t ∈ [0,∞) to
ensure that V∗

i (ei(t)) remains finite. Therefore, the trajectory remains in the set Ωe for all t ∈ [0,∞). ▪

A.2 Proof of Theorem 1

Proof. Step 1: The Lyapunov function for the first subsystem is

V1(t) = tr

{
𝜅

2
1 (t)
𝜋

tan

(
𝜋e2

1(t)
2𝜅2

1 (t)

)

} + 1
2

tr{ ̃W⊤

1 Γ−1
1
̃W1} +

1
2

tr{ ̃D⊤

1 G−1
1
̃D1

}

. (A1)

where 𝜅1(t) = kc1 (t) − |yd(t)| > 0 and 𝜅i(t) = kci(t) − |𝛼i−1| > 0 for i = 2, … ,n, ̃W 1 = W∗
1 − ̂W1, ̃D1 = D∗

1− ̂D1,
where ̂W1 and ̂D1 are the estimated weights, and Γ1 and G1 are the positive definite design matrices. On
differentiating (A21) with respect to t, we get

̇V 1 = tr

{
2𝜅1�̇�1

𝜋

tan

(
𝜋e2

1

2𝜅2
1

)

− sec2

(
𝜋e2

1

2𝜅2
1

)(
�̇�1

𝜅1

)

e2
1 + sec2

(
𝜋e2

1

2𝜅2
1

)

e1ė1 − ̃W⊤

1 Γ−1
1

̇
̂W1 − ̃D⊤

1 G−1
1
̇
̂D1

}

. (A2)

Let 𝛽1 = sec2
(
𝜋e2

1
2𝜅2

1

)

e1, then ̇V 1 simplifies to the following

̇V 1 = tr

{
2𝜅1�̇�1

𝜋

tan

(
𝜋e2

1

2𝜅2
1

)

−
(
�̇�1

𝜅1

)

e1𝛽1 + 𝛽1ė1 − ̃W⊤

1 Γ−1
1

̇
̂W1 − ̃D⊤

1 G−1
1
̇
̂D1

}

. (A3)

On substituting (11), and (12) in (A3), and add and subtract 𝛽1

(
̂W⊤

1 𝜎
(
̂D⊤

1 (Z1)
))

in (A3), applying Taylor
series, and replacing the value of update laws from (16) and (17) yields

̇V 1 ≤ tr

{
2𝜅1�̇�1

𝜋

tan

(
𝜋e2

1

2𝜅2
1

)

−
(
�̇�1

𝜅1

)

e1𝛽1 − 𝛽1

(
̂W⊤

1 ̇Ay1 ̃D
⊤

1 Z1

)

− 𝛽1( ̃W
⊤

1 (�̂�1 − ̇Ay ̂D
⊤

1 Z1))

+ ̃W⊤

1

(

𝛽1(�̂�1 − ̇Ay ̂D
⊤

1 (Z1)
)

+ 𝛾11 ̂W) + ̃D⊤

1
(
𝛽1Z1 ̂W⊤

1
̇Ay + 𝛾12 ̂D

)
+ 𝛽1g1x2

+ 𝛽1 ̂W⊤

1 𝜎1 − 𝛽1w1 + 𝛽1(d1 + 𝛿1)

}

. (A4)

With �̂�1 = 𝜎( ̂D
⊤

1 Z1) and ̇Ay1 being the SVD of the gradient, w1 represents higher-order Taylor terms: ||w1|| ≤

C0 + C1|| ̃B1|| + C2|| ̃B1||e1, where C0,C1, and C2 are constants, while ̃B1 = diag[ ̃W1, ̃D1]. Simplifying (A4),

defining 𝜅1 = sup
√
(
�̇�1
𝜅1

)2
+ 𝜖1, and applying Young’s inequality, we rewrite (A4) as:

̇V 1 ≤ tr

{
2𝜅1𝜅

2
1

𝜋

tan

(
𝜋e2

1

2𝜅2
1

)

−
(
�̇�1

𝜅1

)

e1𝛽1 + 𝛽1g1x2 +
1
2
(d1M + 𝛿1M)2 +

1
2
(𝛽1)2 − 𝛽1w1 + 𝛽1 ̂W⊤

1 𝜎
(
̃D⊤

1 (Z1)
)

− 1
2
𝛾1|| ̃B1||

2 + 1
2
𝛾1||B∗1||

2

}

, (A5)

where ̃B1 = diag[ ̃W1, ̃D1] and 𝛿1M , and d1M are the upper bounds for 𝛿1, and d1 respectively and 𝛾1 =
diag[𝛾11, 𝛾12] > 0. The virtual controller is given by

𝛼1 =
1
g1

⎛
⎜
⎜
⎜
⎝

𝜅1e1 −
𝛽1

2
− ̂W⊤

1 𝜎
(
̂D⊤

1 (Z1)
)

−

(

k1𝜅
2
1 sin

(
𝜋e2

1
2𝜅2

1

)

cos
(
𝜋e2

1
2𝜅2

1

))

𝜋e1

⎞
⎟
⎟
⎟
⎠

, (A6)
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18 GANIE and JAGANNATHAN

where k1 is a positive design parameter to be selected by the designer, and that satisfies k1 > 2𝜅1, and Kc is
the design constant. From (9), one can write e2 = x2 − 𝛼1, Multiply 𝛽1g1 to both sides to get 𝛽1g1e2 = 𝛽1g1x2 −
𝛽1g1𝛼1. Replacing the value of 𝛼1 by (A6), and using the value of 𝛽1g1x2 in (A5) we have

̇V 1 ≤ tr

{

−
(

k1 − 2𝜅1
)
𝜅

2
1

𝜋

tan

(
𝜋e2

1

2𝜅2
1

)

− || ̃B1||
2

2
(𝛾1) +

1
2
(d1M + 𝛿1M)2 − 𝛽1(C01 + C11|| ̃B1|| + C21|| ̃B1||e1)

+𝛾1
||B∗1||

2

2
+ 𝛽1g1e2

}

. (A7)

Using the value of ̃B1 = B∗1 − ̂B1, substituting the value of v1 in (A7), and applying Young’s inequality yields

̇V 1 ≤ tr

{

−
(

k1 − 2𝜅1
)
𝜅

2
1

𝜋

tan

(
𝜋e2

1

2𝜅2
1

)

− || ̃B1||
2

2
(𝛾1) + 𝛽1g1e2 +

1
2
(d1M + 𝛿1M)2 + C31

}

. (A8)

where C31 =
𝛾k
2
(||C01||

2 + ||C11||
2 + ||C21||

2 + ||B∗1||
2).

Step 2: Following the similar procedure as in (10), we get

ė2 = f2(x) + g2u + d2 − �̇�1. (A9)

Define U2(Z2) = f2(x2) − �̇�1, a two layer NN is used to approximate U2(Z2) on a compact set as follows

U2(Z2) = W∗⊤
2 𝜎

(
D∗⊤

2 (Z2)
)
+ 𝛿2(Z2), (A10)

where 𝛿2 is the approximation error of the NN, W∗
2 and D∗

2 are the target weights of NN, and Z2 ∈ Ω2 is the
NN input.

Let the Lyapunov function for step 2 be given by

V2 = tr

{
𝜅

2
2 (t)
𝜋

tan

(
𝜋e2

2(t)
2𝜅2

2 (t)

)}

+ 1
2

tr
{
̃W⊤

2 Γ−1
2
̃W2

}

+ 1
2

tr
{
̃D⊤

2 G−1
2
̃D2
}
+ V1. (A11)

On differentiating (A11), and using 𝛽2 = sec2
(
𝜋e2

2
2𝜅2

2

)

e2, and substituting (A9) yields

̇V 2 = tr

{
2𝜅2�̇�2

𝜋

tan

(
𝜋e2

2

2𝜅2
2

)

−
(
�̇�2

𝜅2

)

e2𝛽2 + 𝛽2(f2(x2) +g2u + d2 − �̇�1) − ̃W⊤

2 Γ−1
2

̇
̂W2 − ̃D⊤

2 G−1
2
̇
̂D2 + ̇V 1

}

. (A12)

Since the virtual controller 𝛼1 is a function associated with x1, ̂W1, ̂D1, and yd, the first order derivative of 𝛼1 is
can be approximated by NN.27 Substituting (A10) in (A12), and add and subtract 𝛽2

(
̂W⊤

2 𝜎
(
̂D⊤

2 (Z2)
))

in (A12)
yields

̇V 2 ≤ tr

{
2𝜅2�̇�2

𝜋

tan

(
𝜋e2

2

2𝜅2
2

)

−
(
�̇�2

𝜅2

)

(e2𝛽1) + 𝛽2
(

W∗⊤
2 𝜎

(
D∗⊤

2 (Z2)
))
− 𝛽2

(
̂W⊤

2 𝜎
(
̂D⊤

2 (Z2)
))

+ 𝛽2

(
̂W⊤

2 𝜎
(
̂D⊤

2 (Z2)
))

− ̃W⊤

2 Γ−1
2

̇
̂W2 − ̃D⊤

2 G−1
2
̇
̂D2 + 𝛽2g2u + 𝛽2(d2 + 𝛿2) + ̇V 1

}

. (A13)

Applying the Taylor series in the third and fourth terms of RHS of (A13), and using 𝜅2 = sup
√
(
�̇�2
𝜅2

)2
+ 𝜀1,

where 𝜀1 is a small positive constant, and select the actual controller as shown in Theorem 1 and using (15)
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GANIE and JAGANNATHAN 19

in (A13), we have

̇V 2 ≤ tr

{

−
(

k2 − 2𝜅2
)
𝜅

2
2

𝜋

tan

(
𝜋e2

2

2𝜅2
2

)

+ 1
2
(𝛿2M + d2M)2 + 𝛾2

||B∗2||
2

2
− 𝛽2w2 + 𝛽2v2 + ̇V 1 − 𝛽1g1e2 −

|| ̃B2||
2

2
(𝛾2)

}

.

(A14)

where B∗2 = diag
[
W∗

2 ,D
∗
2 ] and w2 represent the higher order terms. Substituting the value of w2 in (A14), using

the value of ̃B2 = B∗2 − ̂B2 and applying Young’s inequality in (A14), we get

̇V 2 ≤ tr

{

−
(

k2 − 2𝜅2
)
𝜅

2
2

𝜋

tan

(
𝜋e2

2

2𝜅2
2

)

− || ̃B2||
2

2
(𝛾2) +

1
2
(𝛿2M + d2M)2 + 𝛽2v2 + ̇V 1 − 𝛽1g1e2

+Kc2||𝛽2||
2

2
+ || ̂B2||

2 +
𝛽

2
2 ||e2||

2

2
+ C32

}

, (A15)

where C32 =
𝛾k
2
(||C02||

2 + ||C12||
2 + ||C22||

2 + ||B∗2||
2) and Kc2 is the design constant. Using the value of v2 =

−(Kc2||𝛽2||

2
+ || ̂B2||

2

𝛽2
+ 𝛽2||e2||

2

2
) in (A15), and substituting the value of ̇V 1 from (A7) in (A15), one gets

̇V 2 ≤ −
2∑

j=1

(
kj − 2𝜅 j

)
𝜅

2
j

𝜋

tan

(
𝜋e2

j

2𝜅2
j

)

−
2∑

j=1

|| ̃Bj||
2

2
(𝛾j) +

1
2

2∑

j=1
(𝛿jM + djM)2 +

2∑

j=1
C3j, (A16)

where kj > 2𝜅j, 𝛾j > 0, ̃Bj = diag[ ̃W j, ̃Dj], djM , 𝛿jM , are the upper bounds for disturbance and approximation
error respectively, 𝜅j, kj are positive design parameters. Equation (A16) is of the form

̇V 2 ≤ −𝜌jV2 + C, (A17)

where 𝜌j = min
{

2𝜅j,
(

kj − 2𝜅 j
)
,

𝛾j

𝜆max(𝜒−1
j )

}

, 𝛾j = diag{𝛾1j, 𝛾2j}, 𝜒j = diag{Γj,Gj} and C = 1
2

∑2
j=1(𝛿jM + djM)2 +

∑2
j=1C3j.

Integrating (A17) over [0, t], one can get

V2 ≤

(

V2(0) −
C
𝜌j

)

e−𝜌jt + C
𝜌j
, (A18)

therefore V2 is bounded. Using (A18), we have

e2
j ≤

2𝜅2
j

𝜋

tan−1

(

𝜋

𝜅

2
j

((

V2(0) −
C
𝜌j

)

e−𝜌jt + C
𝜌j

))

(A19)

From (A18) and (A19), the tracking error bounds can be obtained as shown in Theorem 1 statement. In a
similar way the weight estimation error bounds can be obtained from (A15) as

Ω ̃B =
{
̃Bj ∶ || ̃Bj||

≤

√
2

𝜆min(𝜒−1
j )

((

V2(0) −
C
𝜌j

)

e−𝜌jt + C
𝜌j

)}

, (A20)

where ̃Bj = diag[ ̃W j, ̃Dj], and 𝜆min(𝜒−1
j ) is the minimum eigen value of 𝜒−1

j .
From (9), we have e1 = x1 − yd and from Assumption 3, we have |yd| ≤ Y0, we can obtain |x1| ≤ |e1| + yd.

From (A19), it can be written as ||e1|| < 𝜅1. Since the maximum value of tan−1 = 𝜋∕2, the term within the
square root will be one. Hence, |x1| ≤ |e1| + yd < 𝜅1 + Y0. We have 𝜅1 = kc1 − yd from (A21). One can write
𝜅1 = kc1 − Y0. Using the value of 𝜅1, we get |x1| ≤ kc1 .
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20 GANIE and JAGANNATHAN

From 𝛼1 in (A6), we know that 𝛼1 is a continuously differentiable function of x1, yd, ẏd, and ̂B1. Due to
the boundedness of x1, yd, ẏd and ̂B1, the boundedness of 𝛼1 can be inferred that satisfies |𝛼1| ≤ 𝛼1,0. Then
|x2| ≤ |𝛼1| + |e2| ≤ 𝛼1,0 + 𝜅2, we have 𝜅2 = kc2 − 𝛼10 from (A21). This implies |x2| < kc2 . In a similar way, for
n-step backstepping, it can be proven that |xi| < kci for i = 3, … n as long as 𝜅i = kci − 𝛼i,0. Thus, we conclude
that the full-state constraints are not violated.

As 𝛼i for i = 1, … ,n − 1 are continuously differentiable and have bounds, their partial derivatives
are also bounded. The control input is also bounded, as it is a function of bounded variables such as
xi, ei, ̂Bi, yd, ẏd, … ẏ(n)d and the partial derivatives of 𝛼i, as stated in Theorem 1. As a result, all closed-loop signals
can be inferred to be UUB. ▪

A.3 Proof of Theorem 2

Proof. The weight convergence for Task 1 is the same as in Theorem 1. For other tasks, by using the following
Lyapunov function candidate for each task in each step and then combining the overall results, the closed-loop
stability can be shown

V1(t) = tr

{
𝜅

2
1 (t)
𝜋

tan

(
𝜋e2

1(t)
2𝜅2

1 (t)

)}

+ 1
2

tr
{
̃W⊤

1𝜏iΓ−1
1
̃W1𝜏i

}

+ 1
2

tr
{
̃D⊤

1𝜏iG−1
1
̃D1𝜏i

}
. (A21)

The stability can be proven in a similar way as in Theorem 1. However, the derivative of the Lyapunov function
will have additional terms due to LL-based weight update laws as

𝜉reg1 = FDi ̃D
⊤

1𝜏i( ̂D1𝜏i − D∗
i1) + Fwi ̃W

⊤

1𝜏i( ̂W1𝜏i −W∗
i1), (A22)

where W∗
i1,D

∗
i1 represents the first task optimized weights which are bounded as shown in Theorem 1, FDi,Fwi

is the FIM obtained using the weights from the first task and is bounded.

𝜉reg11 ≤ Fwi|| ̃W1𝜏i||||W∗
1i|| − Fwi|| ̃W1𝜏i||

2 + Fwi|| ̃W1𝜏iW∗
i1||. (A23)

Using Young’s inequality in the first and third terms of (A23), and solving (A23) gives

𝜉reg11 ≤ k01
||W∗

1𝜏i||
2

2
+ k02

||W∗
i1||

2

2
. (A24)

where k01, k02 contain the design parameters and bounded FIM, W∗
1𝜏i are the bounded target weights and W∗

i1
are the optimized weights from the previous task which are bounded as shown in theorem 1, therefore 𝜉reg11 is
bounded. In a similar way, one can solve other update laws. Therefore, the addition of this term in the proofs
for the first step of backstepping results only in modifying the error bound by 𝜉reg1 <

||B∗i1||
2

2
+ ||B

𝜏i||
∗2

2
where

B∗i1 = diag[D∗
i1,W

∗
i1], but without affecting the overall stability of the system. Following the similar procedure

for step 2, hence, the contribution to the error bounds can be calculated by adding 𝛾pen = 𝜉reg1 + 𝜉reg2 to (A17).
The following result is the overall error bound

C = 1
2

2∑

j=1
(𝛿jM + djM)2 +

2∑

j=1
C3j + 𝛾pen. (A25)

Therefore, from the above equations, it is clear that the error bounds will increase as the weights move
away from their desired values, but the overall system remains stable. Therefore from Theorems 1 and 2, all
closed-loop signals can be inferred to be UUB. ▪
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