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Lifelong Learning Control of Nonlinear Systems with Constraints Using
Multilayer Neural Networks with Application to Mobile Robot Tracking

Irfan Ganie1 and S. Jagannathan

Abstract— This paper presents a novel lifelong multilayer
neural network (MNN) tracking approach for an uncertain
nonlinear continuous-time strict feedback system that is subject
to time-varying state constraints. The proposed method uses a
time-varying barrier function to accommodate the constraints
leading to the development of an efficient control scheme.
The unknown dynamics are approximated using a MNN, with
weights tuned using a singular value decomposition (SVD)-
based technique. An online lifelong learning (LL) based elastic
weight consolidation (EWC) scheme is also incorporated to
alleviate the issue of catastrophic forgetting. The stability of the
overall closed-loop system is analyzed using Lyapunov analysis.
The effectiveness of the proposed method is demonstrated by
using a quadratic cost function through a numerical example
of mobile robot control which demonstrates a 38% total cost
reduction when compared to the recent literature and 6% cost
reduction is observed when the proposed method with LL is
compared to the proposed method without LL.

Index Terms— Multilayer neural networks, Singular value
decomposition, Time-varying barrier functions, Lifelong learn-
ing.

I. INTRODUCTION

The backstepping method, as outlined in the literature [1],
has been extensively studied for the control of strict-feedback
nonlinear systems with known and uncertain dynamics. In the
backstepping design, the derivatives of the virtual control
input are computed at each step, utilizing neural networks
(NNs) in order to approximate the uncertain system dy-
namics. In the literature [2], a comprehensive NN control
design by using the backstepping method is presented. In
[3], an application of this method to robotic control is
demonstrated. These methods, as outlined in [2] and [3],
employ a Lyapunov-based control design and stability anal-
ysis utilizing single-layer NN for strict feedback nonlinear
systems.

Approximation of nonlinear systems using single-layer
NN requires either an appropriate selection of basis functions
or the input to the hidden-layer weights selected at random
with a huge number of hidden-layer neurons [4]. Despite
these weaknesses, most control techniques employ single-
layer NNs [2] since it is challenging to develop a multilayer
NN (MNN) weight tuning method [5] though an MNN
can relax the need for the selection of basis functions.
Additionally, MNNs require fewer neurons per layer than
shallow NNs to achieve the same level of accuracy in
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function approximation [6] even though closed-loop stability
analysis becomes more difficult.

The development of online MNN-based adaptive control
for general nonlinear systems has been presented recently in
the literature [7]. In this approach, the inner-layer weights are
trained in an iterative manner using offline techniques during
discrete training periods, whereas the output-layer weights
are updated online. While the stochastic gradient descent
(SGD) approach can be used to tune MNN weights, proving
closed-loop stability is extremely difficult, even when targets
are available. For closed-loop feedback control applications,
targets are unavailable when the nonlinear dynamics are
uncertain, which makes supervised training less appealing.
Due to the lack of online MNN with n-hidden layer weight
tuning and stability analysis methods, control of nonlinear
systems using MNN has not been explored in the literature.

On the other hand, recent literature [8] emphasizes the
importance of incorporating constraints into control design
since safety, which implies adhering to state, output, and in-
put constraints, is crucial for autonomous driving, industrial
robots, and aerospace vehicles. The use of barrier Lyapunov
functions (BLFs) [9] in control design is an acceptable way
to handle constraints. The application of BLFs in controlling
nonlinear systems with constant state constraints is included
in [8] with or without the use of tangent BLFs [10]. The
authors in [9] developed a logarithmic barrier function-
based control scheme for nonlinear systems with an output
constraint. The NN tracking control of a robot manipulator
using tangent BLF with time-varying joint space constraints
is developed in [10] as in reality, many practical systems
have time-varying constraints [11].

Besides safety, in practical applications, learning-based
systems often operate in complex, dynamic, and task-
dependent environments. To adapt to these changing condi-
tions, a NN must be retrained by interleaving data for each
task, as described in [12]. However, when control schemes
use online learning instead of offline training, it is common
for the NN to forget previous tasks, resulting in catastrophic
forgetting [13] or significant model drift. To address this
issue, control schemes should employ lifelong learning (LL)
techniques [13].

Despite the proven effectiveness of LL in mitigating the
problem of catastrophic forgetting in NNs, its implemen-
tation has been limited to offline scenarios [13] and has
yet to be applied to real-time control. The integration of
LL strategies into control design is an unexplored area of
research with the potential to improve system performance.
The incorporation of LL enables a control scheme to adapt
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dynamically to new operating conditions and environments,
thereby increasing its robustness.

Therefore, in this paper, we introduce a new adaptive
MNN with n hidden layer control scheme for nonlinear
systems in the strict feedback form that ensures safety. We
use singular value decomposition (SVD) to derive the weight
tuning for MNN with n hidden layers, which eliminates
the need for basis functions, reduces the vanishing gradient
problem, and guarantees the state vector remains within
the time-varying barriers. Our control scheme employs a
tangent-type BLF (TBLF) to handle both constrained and
unconstrained situations, leading to a more flexible and
efficient control design. Further, the weight tuning is modi-
fied by including elastic weight consolidation (EWC) terms
to prevent catastrophic forgetting. Lyapunov analysis (not
included) shows the boundedness of the closed-loop system.

II. SYSTEM DESCRIPTION AND BACKGROUND

This section provides an introduction to the problem
statement, along with a foundational overview of functional
approximation and TBLF.

A. Class of Nonlinear Systems and Problem Formulation

Let’s contemplate a nonlinear system in a strict feedback
pattern as follows

ẋ1(t) = f1 (x1) + g1(x1)x2 + d1(x1, t),

ẋ2(t) = f2 (x̄2) + g2(x̄2)u+ d2(x2, t),
(1)

where x̄2(t) = [x1(t), x2(t)]
⊤ ∈ R2 is the system state,

u ∈ R is the control input. The functions g1(x̄1), g2(x̄2) are
well-defined smooth functions; f1(x̄1), and f2(x̄2) denote
uncertain smooth nonlinear functions, while d1(x̄1, t), and
d2(x̄2, t) represent unknown bounded disturbances.

The undermentioned mild assumptions and Lemma de-
rived from existing literature are important for the control
design.

The state vector is known and confined to constraints:
Ωx := {xi(t) ∈ R, |xi(t)| < kci(t), i = 1, 2,∀t ≥ 0},
kci(t) ∈ R+ are pre-specified time-dependent continuous
functions that are differentiable up to the nth order.

Moreover, we invoke the following assumptions.
Assumption 1 ([5]): The functions gi(.)(i = 1, 2) are

known and ∃, g0 > 0 such that 0 < g0 ≤ |gi(.)|. Further-
more, it is assumed that gi(.) are all positive.

Assumption 2 ([11]): The system reference trajectory
rd(t) and the time-varying state constraints kci(t) are all
known, bounded, continuous, and differentiable up to the nth
order. There are positive constants dij and Yj(i = 1, 2, j =

0, 1, 2), such that
∣∣∣r(j)d (t)

∣∣∣ ≤ Yj and
∣∣∣k(j)ci (t)

∣∣∣ ≤ dij ,∀t ≥ 0

Assumption 3 ([9]): An unknown constant upper bound-
ary diM exists for the input disturbance di ≤ diM .

Lemma 1 ([9]): Given bounded initial conditions, if there
exists a C1 continuous and positive definite Lyapunov func-
tion V (x) that satisfies γ1(|x|) ≤ V (x) ≤ γ2(|x|) and
V̇ (x) = ∂V

∂x ẋ ≤ −κV (x) + c, where γ1, γ2 : Rn → R
are class ϑ functions and κ, c are positive constants, then the
solution x(t) is uniformly ultimately bounded (UUB).

B. Approximation of Functions

MNNs, due to their inherent universal function approx-
imation properties, can represent nonlinear functions with
adequate accuracy. Given any continuous function h(X)
within a bounded set ΩX , an approximation by MNNs can
be represented as h∗(X) = W ∗⊤σ

(
V ∗⊤X

)
, ensuring that

supX∈ΩX
|h∗(X)− h(X)| ≤ ϵ. Here, X ∈ Rn is the input

vector. The function h(X) can be approximated as

h(X) =W ∗⊤σ
(
V ∗⊤X

)
+ ϵ(X), ∀X ∈ ΩX ⊂ Rm,

where W ∗, V ∗ are the NN weights, σ represents the acti-
vation function, and ϵ denotes the approximation error. As
assumed in [14], the target weights and the reconstruction
error are bound above by unknown constants, represented as
WM , VM , and ϵjM , respectively.

Next, we will introduce background on the TBLF and the
SVD approach for weight tuning.

C. Time-Varying Barrier Lyapunov Function

In this study, we explore the case of full state constraints
and broaden the application of TBLF to encompass all stages
of the backstepping design. This approach enables us to
impose constraints on each error signal ξ1 = x1 − rd, and
ξ2 = x2 − α1 where rd, α1 signifies the reference trajectory
and virtual control input respectively. To deal with the state
constraints, we introduce the TBLF as

V ∗
i =

ϑ2i (t)

π
tan

(
πξ2i (t)

2ϑ2i (t)

)
, |ξi(0)| < ϑi(0), i = 1, 2

(2)
where ξi ∈ Ωe := {ξi ∈ R, |ξi(t)| < ϑi(t), i = 1, 2,
∀t ≥ 0}. The terms ϑ1(t), and ϑi(t) are the constraints
on the error variable ξi, and ξi respectively, with ϑ1(t) =
kc1 − Y0 > 0, and ϑi(t) = kci − ᾱi−1,0 > 0, ᾱi−1,0 is
positive constant i = 1, 2.

Remark 1: Based on the expression of TBLF as shown in
(2), it can be stated that{

limξi→0 V
∗
i = 0, limξi→ki

V ∗
i = ∞ (3)

Remark 2: When there are no constraints on the system
state vector, that is kci → ∞, we have ϑi → ∞, i =
1, 2. Using L’Hospital’s rule, we have

lim
ϑi→∞

ϑ2i
π

tan

(
πξ2i
2ϑ2i

)
=

1

2
ξ2i .

Consequently, if the state vector remains unconstrained, the
TBLF bears similarity to quadratic forms, unlike what’s
suggested in [9], [11]. Given this, for the integration of
constraint analysis into a universal method, the TBLF is
favored over the time-dependent logarithmic-type BLF [11]
employed in previous literature.

Next, the SVD of NN gradients will be presented.

D. Singular Value Decomposition of NN Gradients

In order to overcome the issue of vanishing gradients,
unlike [15], our method utilizes SVD of gradient and in-
cludes an exploration feature. Here, a small random noise
is added to alter the singular values of the gradient to

728

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 25,2023 at 15:20:57 UTC from IEEE Xplore.  Restrictions apply. 



promote exploration, prevent gradient instability and enhance
the learning process.

Define the SVD of the NN activation function gradient
defined as σ̇(ˆ̄x) = Ay = WΣV⊤, where ˆ̄x = V̂ ⊤x,with
V̂ as the estimated hidden-layer NN weight matrix, W,V
are the right and left singular vector respectively and Σ
represents the matrix of singular values. The modified SVD
is denoted by Ȧy and it is obtained as

Ȧy = WΣV⊤ +We0IV
⊤, (4)

where e0 denotes a slight random perturbation introduced to
the singular values while the time-dependent right and left
singular vectors remain same, and I stands for an identity
matrix of equivalent dimension to Σ. The SVD approach
overcomes saddle points and vanishing gradients. Next, the
safe lifelong MNN (SLMNN) controller design is introduced.

III. LIFELONG MULTILAYER NN CONTROL

The goal of the SLMNN control scheme is to achieve
satisfactory tracking and maintain the boundedness of all
closed-loop system signals in the presence of disturbances
while also addressing the issue of catastrophic forgetting.

A. Multiayer NN Backstepping Control Design

A two-layer neural network (NN) controller is devised uti-
lizing the two step backstepping approach. For convenience,
time ’t’ is omitted from here on.

Let the error system be defined as

ξ1 = x1 − rd,

ξ2 = x2 − α1,
(5)

where rd is the desired output, and α1 is the virtual control
input. Differentiating (5) with respect to t to get

ξ̇1 = ẋ1 − ṙd, (6)

Substituting (1) in (6) to obtain

ξ̇1 = f1(x1) + g1(x1)x2 + d1(.)− ṙd. (7)

Define U(X1) = f1(x1)− ṙd. A two-layer NN is used to
approximate U(X1) on a compact set Ω1 as

U1 (X1) =W ∗⊤
1 σ

(
V ∗⊤
1 (X1)

)
+ ϵ1(X1), (8)

where, ϵ1(.) represents the approximation error of the NN,
with W ∗

1 and V ∗
1 as the target weights of the NN. The

activation function is symbolized as σ and X1 = [x1, rd, ṙd]
within Ω1 serves as the NN input. The virtual controller α1

is

α1 =
1

g1
(ϑ̄1ξ1 −

φ1

2
− Ŵ⊤

1 σ
(
V̂ ⊤
1 (X1)

)
−

(
k1ϑ

2
1 sin

(
πξ21
2ϑ2

1

)
cos
(

πξ21
2ϑ2

1

))
πξ1

).

(9)

Upon differentiation of (5) with respect to time, we can
express ξ̇2 as ẋ2 − α̇1. Hence, by following the same
procedure in (6), we acquire

ξ̇2 = f2(x̄2) + g2(x̄2)u+ d2(.)− α̇1. (10)

Let’s define U2(X2) = f2(x̄2) − α̇1. A two-layer NN is
utilized to approximate U2(X2) on a compact set Ω2:

U2 (X2) =W ∗⊤
2 σ

(
V ∗⊤
2 (X2)

)
+ ϵ2 (X2) , (11)

where ϵ2(.) is the approximation error of the NN, and W ∗
2

and V ∗
2 stand for the target weights of the NN, and X2 =

[x2, α1,
∂α1

∂x1
, ω1] ∈ Ω2 is the NN input, ω1 = [∂α1

∂rd
ṙd +

α1

∂Ŵ1

˙̂
W1+

α1

∂V̂1

˙̂
V1]. Hence, the actual control input, denoted by

u, is chosen in accordance with the demonstration provided
in Theorem 1 as

u =
1

g2(.)

(
(ϑ̄2 −

φ1g1(.)

φ2
)ξ2 −

φ2

2
− Ŵ⊤

2 σ
(
V̂ ⊤
2 (X2)

)
−

(
k2ϑ

2
2 sin

(
πξ22
2ϑ2

2

)
cos
(

πξ22
2ϑ2

2

))
πξ2

)
,

(12)

where Ŵ2, and V̂2 are the estimated NN weights,
φj = sec2

(
πξ2j
2ϑ2

j

)
ξj , j = 1, 2, Ẑ2 = diag[Ŵ2, V̂2], k2, ϑ2,

Kc2 and ϑ̄2 are the design constants. Next, the following
theorem is stated.

Theorem 1: Consider a strict feedback system as detailed
in equations (1), and complying with Assumptions 1 to 3.
Let the following proposed weight tuning laws employing
TBLF and SVD based approach be

˙̂
Wj = Γj

(
−φj

(
σ̂j − Ȧy,j V̂

⊤
j (Xj)

)
− γ1,jŴj

)
, (13)

˙̂
Vj = Gj

(
−φjŴ

⊤
j Ȧy,jXj − γ2,j V̂j

)
, (14)

In the equations above, Γj and Gj stand for positive def-
inite design matrices, γ1,j and γ2,j are designer-determined

quantities, Xj symbolizes the NN input, φj = sec2
(

πξ2j
2ϑ2

j

)
ξj ,

Ȧy,j denotes the SVD of gradient inclusive of exploration,
and j signifies the number of backstepping steps.

The tracking errors, ξj(t), and the weight approximation
errors, Z̃j = diag{W̃j , Ṽj}; j = 1, 2, are assured to be
uniformly bounded (UUB), while the state vector xj remains
within a bounded set. The bounding limits are defined as

Ωξ = {ξj : ∥ξj∥

≤ ϑj

√√√√ 2

π
tan−1

(
π

ϑ2j

((
V2(0)−

C

κj

)
e−κjt +

C

κj

)) ,

(15)

Ωz̃ =
{
Z̃j : ∥Z̃j∥

≤
√

2

Ψmin(χ
−1
j )

((
V2(0)−

C

κj

)
e−κjt +

C

κj

)}
,

(16)

In the aforementioned equations, C and κj are the positive
constants, provided kj ≥ 2ϑ̄j , j = 1, 2, χj = diag{Γj , Gj},
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and the initial conditions ensure that ξj(0) ∈ Ωξ :={
ξj ∈ Rj : ∥ξj∥ < ϑj .
Finally, each state xj is retained within the confined set

Ωx, where

Ωx := {xj(t) ∈ R, |xj(t)| < kcj , j = 1, 2,∀t ≥ 0}.

In addition, all closed-loop signals are bound and the full
state constraints are not violated.

Remark 3: The weight tuning laws postulated in Theorem
1 are two-fold, the first component involves time-based
barrier expressions coupled with the SVD of the gradient,
while the latter segment embodies the sigma modification
term, introduced to relax the persistence of excitation (PE)
condition.

Remark 4: The SVD based MNN used in this paper
exhibits superior approximation abilities in contrast to single-
layer NNs, thereby enhancing the control effectiveness and
reducing errors. This improvement is consistently demon-
strated in our simulations.

Next, a LL approach referred to as EWC is introduced.

B. Lifelong Learning for Multilayer NN Controller

Catastrophic forgetting, where learning performance on
previous tasks can degrade with new tasks, is a challenge for
NNs in continual learning. To address this, the method of LL
[13] has been proposed, allowing NNs to learn continuously
without interfering with previously learned tasks. One tech-
nique for LL in NNs is EWC [13], which avoids catastrophic
forgetting by adding a penalty term to the loss function to
keep the network parameters near optimal parameters of prior
tasks, preserving previously learned knowledge.

However, the application of EWC [13] has been limited
to offline scenarios and has not yet been applied to real-
time control systems. Therefore, the MNN weight tuning is
modified to include the EWC terms.

The performance function is given by

L = Lb +
Ψw

2
∥Ŵ − Ŵ ∗

τi∥
2
Fw

+
Ψv

2
∥V̂ − V̂ ∗

τi∥
2
Fv
, (17)

where L is the overall loss function, Lb is the loss just for
task B, ∥Ŵ − Ŵ ∗

τi∥
2
Fw

denotes (Ŵ − Ŵ ∗
τi)

⊤Fw(Ŵ − Ŵ ∗
τi),

∥V̂ − V̂ ∗
τi∥

2
Fv

denotes (V̂ − V̂ ∗
τi)

⊤Fv(V̂ − V̂ ∗
τi), Fw and Fv

are Fisher Information Matrices (FIM) corresponding to the
output and hidden layers respectively, as outlined in [14]. The
vectors Ŵ and V̂ are used to represent the parameters that
need to be optimized. Furthermore, the optimized parameters
that are bounded from the previous task are denoted by Ŵ ∗

τi

and V̂ ∗
τi . The outcome of EWC is a regularization term to

be incorporated with the NN weight tuning to enable LL
without forgetting.

By invoking the gradient of (17), the regularization term
for the weight update laws can be obtained as

− ∂

∂Ŵ
(L) = −µ̄1ΨwFw(Ŵ − Ŵ ∗

τi),

− ∂

∂V̂
(L) = −µ̄2ΨvFv(V̂ − V̂ ∗

τi),

(18)

The FIM, Fw and Fv , help assess the importance of NN
weights Ŵ and V̂ in retaining memory of old tasks. The
parameters Ψv and Ψw control the memory recall, with
greater values retaining more memory but limiting the ability
to learn new tasks. Smaller values decrease memory recall,
putting it closer to simple gradient descent. µ̄1 and µ̄2 are
the learning rates, and these terms in (18) are included in
the previously defined update laws from Theorem 1 for LL
in control. The online LL-based EWC for MNNs in adaptive
control can be summarized as follows:

(1) Initialize a velocity vector for each weight in the NN
controller, which will be used to track the change in weight
values over time. (2) Compute the velocity of each weight by
taking the difference between the current weight value and
the previous weight value and storing it in the corresponding
velocity vector during the learning process. (3) Compute
the importance of each weight for the current task using a
measure such as the diagonal FIM. (4) Incorporate a penalty
term in the control problem that penalizes large changes in
the weights that are important for the current task. (5) Use the
penalty term as a regularization term in the control problem
to minimize the sum of the original objective function and
the penalty term using an optimization algorithm such as
gradient descent. This approach helps to slow down the
changes in the important weights and prevent catastrophic
forgetting. Next, the following theorem is stated.

Theorem 2: Consider the hypothesis outlined in Theorem
1, assuming Assumptions 1 to 3 hold true. The weight update
laws for SLMNN are given by:

˙̂
Wj = Γj(−φj

(
σ̂j − Ȧy,j V̂

⊤
j (Xj)

)
− γ2,jŴj

− µ̄1,jΨw,jFw,j(Ŵj − Ŵ ∗
τi,j)),

(19)

˙̂
Vj = Gj(−φjŴ

⊤
j Ȧy,jXj − γ2,j V̂j

− µ̄2,jΨv,jFv,j(V̂j − V̂ ∗
τi,j)),

(20)

These equations demonstrate an increase in error bounds
while ensuring UUB of the system. The optimal weights
for the previous task are denoted as Ŵ ∗

τ,j and V̂ ∗
τ,j , with

their boundedness proven in Theorem 1. Fw,j and Fv,j

represent the FIM [14], while the weight update is influenced
by the learning rates, µ̄1,j and µ̄2,j , as well as the design
parameters, Ψw,j and Ψv,j . The variable j represents the
backstepping steps.

Remark 5: The NN weight update laws above include the
terms from Theorem 1 and LL-terms.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we validate the theoretical design using a
mobile robot tracking example. The overall representation of
a mobile robot is given by

η̇ = J (η) ν,

Mν̇ = −C (ν) ν −D (ν) ν + τ + τw(t),
(21)

where η = [x, y, ψ]
⊤, where x, y, and ψ are the actual

Cartesian position and orientation of the robot, respectively,
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L is the distance from the rear axle to the front of the robot,
ν = [v, ω]⊤, where v, and ω are linear and angular veloc-
ities, respectively, τ = [τu, τr]

⊤ denotes the control inputs,
whereas τw denotes the external time-varying disturbances.
In the robot dynamics, D (ν) represents damping matrix,
C (ν) is the Coriolis matrix, M is the inertia matrix, and
J (η) is the rotation matrix.

The simulation results are divided into two parts (i)
single task using multilayer SVD based TBLF, (ii) multitask
using multilayer SVD-based TBLF and multitask using a
multilayer safe lifelong learning method.

A. Single Task using Multilayer TBLF
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Fig. 1: (a) Phase plane trajectories and positional tracking
error for single task using TBLF and RVFLNN method
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Fig. 2: (a) Position tracking error ey; (b) Orientation error
eθ for a single task using TBLF and RVFLNN method.

This section presents the performance of the multilayer
NN based TBLF method, without the LL term (TBLF),
on a single task. The task parameters, including p0 =
[60 sin(0.01t), 60 sin(0.02t)]T , m = 10kg, I = 5kg − m2,
R = 0.5m, and the initial position = [−5.1,−2.3, 0.5], as
well as design parameters γ = 1, ϵ0 = 0.2, Ψ = 10, Kc = 1,
kd1 = kθ1 = 4, ku = 3, kr = 3, Γ = diag{8}, G = diag{5},
and barrier constraints ϑd(t) = 0.15 exp(−0.05t) + 0.06,
ϑθ(t) = 0.003 exp(−0.05t)+0.002 are defined. The hidden-
layer had 10 neurons, and initial conditions of weight matri-
ces were randomized within [0,1].

Figures 1 and 2 reveal the proposed method’s superior
trajectory tracking and error containment within barrier con-
straints, compared to the RVFLNN method shown as ’conv
1 layer’ [16]. Figures 3 and 4 further illustrate that both
positional tracking and orientation errors are confined within
barrier limits, highlighting the improved performance of the
proposed method in a single-task scenario.
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Fig. 3: Performance of SLMNN, TBLF, and RVFLNN
methods for multitask system:(a) Phase plane trajectories of
position, (b) Positional tracking error.
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Fig. 4: Performance of SLMNN, TBLF and RVFLNN:(a)
Positional tracking error ey , and (b) Orientation error eθ.
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Fig. 5: Performance of SLMNN and RVFLNN methods: (a)
Input torque 1 and (b) Input torque 2.
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Fig. 6: Cumulative cost using SLMNN, TBLF and RVFLNN
methods:: (a) Single task, (b) Multitask system.

B. Multitask using Multilayer TBLF Lifelong Learning

In this part, the mobile robot tracking results using
SLMNN and safe multilayer NN TBLF without LL (de-
noted as TBLF) are compared for multitask system, with
single-layer random vector functional link NN (RVFLNN)
method [16] without TBLF and LL. The simulation is run
for two different tasks where trajectories are changed for
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each of them. Task one is run for a duration of 0 to 20
secs with trajectories and dynamics parameters as p0(t) =
[t(k), 0]⊤,m = 10kg, I = 5kg − m2, R = 0.5m and
initial position= [−5.1,−2.3, 0.5]. Task two is run for a
duration of 20 to 40 secs with desired trajectory as p0(t) =
[40 − 20cos(t − 20), sin(t − 20)]⊤, after 40 secs, task one
is again run.

The design parameters are given as γ = 1, ϵ0 = 0.2,Ψ =
10,Kc = 1, kd1 = kθ1 = 4, ku = 3, kr = 3, Γ =diag
8, G =diag 5. The constraints of the barrier are articu-
lated as ϑd(t) = 0.15 exp(−0.05t) + 0.06 and ϑθ(t) =
0.01 exp(−0.05t) + 0.05. A sigmoid function is employed
as the activation function. The hidden-layer of the NN
contains ten neurons and the weight matrices were randomly
initialized within the range of 0 to 1.

The phase-plane position trajectories of the mobile robot
in Fig. 3a demonstrate the effectiveness of the proposed
SLMNN learning approach. The robot is able to track the
desired trajectory even when the dynamics and path change
every 20 seconds. Fig. 3b illustrates that the tracking errors
for the multilayer TBLF without LL, and SLMNN, remain
within the barrier limits. The errors for the multilayer TBLF
are lower as compared to RVFLNN, because of the better
approximation capabilities of SVD based MNN and the
utilization of barriers. However the errors are not eliminated
completely during the task changes and within the tasks
because of catastrophic forgetting of NNs, therefore the
addition of LL (SLMNN) makes the errors lower than TBLF
and RVFLNN during the task changes and within the tasks
and when the robot returns to task1. In contrast, the RVFLNN
method results in higher tracking errors that violate the
constraints, as shown in Figs. 4a and 4b. The lower positional
tracking and orientation errors in Fig. 4a and compliance to
constraints further demonstrate the superiority of SLMNN
over RVFLNN. Additionally, figures 5a and 5b depict that
SLMNN requires less torque when compared to RVFLNN.

The cumulative cost is defined as the integral of a
quadratic function of the tracking error and torque in-
puts over time, represented by the equation C(t) =∫∞
t

[
eT (s)Qe(s) + uT (s)Ru(s)

]
ds with Q = 4, R = 0.1,

and u = {τ1, τ2}. It can be observed from 6a that the
cumulative cost is lower when using the SLMNN method
over TBLF using MNN but without LL and RVFLNN. It
is been observed that the overall cost reduction between
RVFLNN and SLMNN is around 38% and between TBLF
and SLMNN the cost reduction is around 6%. Therefore,
it can be concluded that the performance of the SLMNN-
based control technique is superior to that of the single-layer
RVFLNN and TBLF without LL methods.

V. CONCLUSION

A novel SLMNN approach that can effectively handle
time-varying constraints and uncertain dynamics is proposed.
This approach utilizes an SVD of NN gradients with explo-
ration, which improves the stability and robustness of the
learning process while overcoming the vanishing gradient.
The proposed approach incorporates techniques to mitigate

the catastrophic forgetting that arises in multi-task scenarios
when using traditional online control methods. The stability
of the overall closed-loop system is rigorously analyzed
through the use of Lyapunov theory, ensuring that the system
signals remain bounded despite the presence of constraints
and LL. The superior performance of the proposed SLMNN
over the conventional single-layer NN method is demon-
strated through a comprehensive simulation of a mobile robot
control example. Future work will focus on further relaxing
the control coefficient matrix.
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