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Continual Learning-based Optimal Output Tracking of Nonlinear
Discrete-time Systems with Constraints: Application to Safe Cargo

Transfer

Behzad Farzanegan1, Student Member, IEEE, and S. Jagannathan1

Abstract— This paper addresses a novel lifelong learning
(LL)-based optimal output tracking control of uncertain non-
linear affine discrete-time systems (DT) with state constraints.
First, to deal with optimal tracking and reduce the steady
state error, a novel augmented system, including tracking error
and its integral value and desired trajectory, is proposed.
To guarantee safety, an asymmetric barrier function (BF) is
incorporated into the utility function to keep the tracking
error in a safe region. Then, an adaptive neural network (NN)
observer is employed to estimate the state vector and the control
input matrix of the uncertain nonlinear system. Next, an NN-
based actor-critic framework is utilized to estimate the optimal
control input and the value function by using the estimated
state vector and control coefficient matrix. To achieve LL for
a multitask environment in order to avoid the catastrophic
forgetting issue, the exponential weight velocity attenuation
(EWVA) scheme is integrated into the critic update law. Finally,
the proposed tracker is applied to a safe cargo/ crew transfer
from a large cargo ship to a lighter surface effect ship (SES)
in severe sea conditions.

Index Terms— Barrier function, Neural networks, Uncertain
nonlinear discrete-time system, Optimal tracking control, State
constraints, Lifelong learning, Surface effect ship.

I. INTRODUCTION

In the past decade, researchers have paid considerable
attention to optimal tracking control for nonlinear discrete-
time (DT) systems [1]–[3]. Conventionally, the objective of
the tracking controller design is to minimize a well-defined
cost function defined in terms of tracking error and control
input in order to achieve an optimal performance. In prac-
tice, external disturbances and dynamic uncertainties impact
the closed-loop system performance [4], [5]. The optimal
adaptive control (OAC) has been studied to obtain the best
performance even in the presence of external disturbances
and unknown dynamics.

While available literature predominantly attempts regula-
tion by using a variety of ADP techniques [6]–[8], a few
have considered optimal tracking for nonlinear DT systems.
To deal with the tracking problem, an additional feedforward
term in the control policy has been provided through dynamic
inversion [9]. In contrast, an augmented formulation has been
proposed to eliminate the necessity for a feedforward control
term by casting tracking into a regulation problem [1]. In

1B. Farzanegan and S. Jagannathan are with the Dept. of Elec. and Comp.
Engg, Missouri University of Science and Technology, Rolla, MO, USA.
b.farzanegan@mst.edu and sarangap@mst.edu .

The project or effort undertaken was or is sponsored by the Office
of Naval Research Grant N00014-21-1-2232 and Army Research Office
Cooperative Agreement W911NF-21-2-0260.

the augmented system, it is assumed the reference trajectory
generator converges to zero to guarantee stability. To relax
this restriction, a discounted tracking problem has been pre-
sented in [1]. However, both the system dynamics inversion
and augmented formulation techniques cannot ensure a zero
steady-state tracking error [2].

On the other hand, safety assurances for a nonlinear
dynamic system is addressed by asserting constraints on the
state, input and outputs through Barrier functions (BF) [10].
The BFs enable designers to evaluate forward invariance
without explicitly estimating the system reachable set [11].
To address safety, a BF has been added to the cost function
for completely known nonlinear systems [12]. However,
these studies [12], [13] cannot be applied to DT systems
and require the state vector to be measurable.

Besides safety and optimality, in multitask scenarios, life-
long learning (LL) is a critical factor in satisfying robustness.
In the case of gradient-based and online learning schemes,
forgetting is a common phenomenon. When the number of
tasks is not fixed in advance, it is important to ensure that
learning new tasks does not result in catastrophic forgetting
of previously learned tasks, in order to maintain robustness.
The LL method has not been adapted for optimal tracking
control problems of nonlinear DT systems to-date [7].

In this paper, a novel optimal tracking scheme is presented
for uncertain nonlinear DT systems in affine form by using
estimated state vector. First, the original system and its cost
function are augmented with the desired trajectory and the
integral value of tracking error to relax the steady state
error of both internal dynamics and the control coefficient
matrix in comparison with [2]. Then, to address the state
constraints, an asymmetric BF is added to the utility function
including the augmented state vector. The constrained HJB
equation is constructed, and two NNs are employed to
estimate the optimal control input and the safe value function.
Next, since the state vector is unavailable, an adaptive NN-
based observer is introduced to identify the nonlinear system
dynamics and estimate the state vector by using the system
outputs.

Then, an NN-based actor-critic framework is utilized to
estimate both the optimal control input and the value function
by using the estimated state vector and control coefficient
matrix. The temporal difference (TD) error is defined as the
difference between the estimated and actual value function by
using the estimated state vector to tune the critic weights. The
actor NN is tuned by using the control input errors. Apart
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from that, in order to improve the LL capabilities of the
critic network, the exponential weight velocity attenuation
(EWVA) term is incorporated into the critic update law. Then,
the stability of the overall closed-loop system is investigated
(not included due to space consideration) by using Lyapunov
theory. Finally, the proposed controller is implemented in
a Surface Effect Ship (SES) to guarantee cargo transfer in
severe sea conditions in a safe and optimal manner.

II. PROBLEM FORMULATION AND BACKGROUND

First, the class of nonlinear DT systems is defined. Sub-
sequently, the safe optimal control problem formulation and
NN observer will be introduced.

A. Class of Nonlinear Discrete-time Systems

Let an affine nonlinear discrete-time system be described
by

ζ(k + 1) = f(ζ(k)) + g(ζ(k))u(k),

y(k) = Cζ(k),
(1)

where ζ(k) ∈ Rn denotes the system state vector, which
is not measurable, u(k) ∈ Rm represents the control input,
and y(k) ∈ Rl is the measured output. The matrix C is
a known output matrix. The smooth functions f(.) ∈ Rn

represents unknown internal dynamics, and g(.) ∈ Rn×m

represents the control coefficient matrix of the system which
is considered uncertain but bounded above on a compact set
such that ||g(ζ(k))||F < gM .

Define a command generator function to obtain the
bounded desired trajectory as

ζd(k + 1) = ψ(ζd(k)), (2)

where ζd(k) ∈ Rn presents the desired trajectory and
ψ(ζd(k)) is a continuously differentiable function with
ψ(0) = 0. We assume that the desired trajectory in (2) is
reachable. Using (1) and (2), one can define the tracking
error as

e(k) = ζ(k)− ζd(k), (3)

with dynamics

e(k + 1) = f(e(k) + ζd(k)) + g(e(k) + ζd(k))u(k)

− ψ(ζd(k)).
(4)

To deal with steady state errors, a new state variable η ∈ Rn,
is introduced as

η(t) =

∫
(ζd(t)− ζ(t))dt. (5)

By employing the Euler’s approximation method, the integral
value of the tracking error in (5) is discretized as

η(k + 1) = η(k)− Te(k), (6)

where η(k) ⊂ Rn and T is the sampling time. Now, by
invoking the tracking error dynamics (4) and the reference
trajectory (2), one can write the augmented system as

ζa(k + 1) = fa(ζa(k)) + ga(ζa(k))u(k), (7)

where ζa(k) = [e(k)⊤, ζd(k)
⊤, η(k)⊤]⊤ ∈ R3n,

fa(ζa) :=

 f(e(k) + ζd(k))− ψ(ζd(k))
ψ(ζd(k))

η(k)− Te(k)

, and ga(ζa) :=[
g(e(k) + ζd(k)), 0, 0

]⊤
.

Remark 1: The defined augmented system which com-
prises the error dynamics, the desired system dynamics, and
the integral error term, expressed in (7) is different from
[2] because the steady state value of the unknown internal
dynamics, i.e., f(∞) is not required. Also, the augmented
system in (7) is not explicitly a function of time since
the reference trajectory is generated by the desired system
dynamics in (2). Therefore, the value function is only a
function of the augmented state, and the stationary condition
still hold.

In the next subsection, a novel formulation for designing
a safe optimal tracking control scheme is presented.

B. Optimal Control Formulation with State Constraints

To find the safe optimal control strategy, a quadratic value
function in the presence of constraints is introduced as

J(ζa(k)) =

∞∑
j=k

γj−kr(ζa(j), u(j)),

s.t. ζa(k) ∈ Cs,

(8)

where r(ζa(k), u(k)) = ζ⊤a (k)Qζa(k) + u⊤(k)Ru(k) is the
utility function. The user-defined matrices, Q ∈ Rn×n and
R ∈ Rm×m, are symmetric positive definite. The parameter
γ denotes a discount factor; Cs is a safe set defined as

Cs = {ζa ∈ X ⊂ R3n|ζi,min < ζa,i < ζi,max, i ∈ {1, . . . , n}}
(9)

where ζi,min < 0 and ζi,max > 0 present the lower
and upper bounds of the constraint, respectively. Next the
following definition is needed.

Definition 1: The function b(.) : R3n → R is a barrier
function which is continuously differentiable, and positive
on the safe set C and converges to infinity at the boundary
∂C.

Next, a logarithmic barrier function (LBF) satisfying the
aforementioned BF characteristic is defined. Then, the BF is
integrated with the cost function (8) to ensure the state con-
straints are met. The designed safe control policy guarantees
optimal performance when the trajectories do not violate the
safe region.

Now define one such LBF candidate as

bi(ζa,i(k);Li, Ui) = ln

(
LiUi

(Ui − ζa,i(k))(Li − ζa,i(k))

)
,

(10)
where Li < 0 and Ui > 0 denote the lower and upper
bounds, respectively. Then, the LBF term is defined as

b(ζa(k);L,U) = µ

n∑
i=1

bi(ζa,i(k);Li, Ui) (11)

where µ is a positive trade-off factor, ζa = [ζa,1, . . . , ζa,3n]
⊤,

L = [L1, . . . , Ln] and U = [U1, . . . , Un]. The utility function
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in (8) can be modified as

rb(ζa(k), u(k)) = ζ⊤a (k)Qζa(k) + u⊤(k)Ru(k)

+ b(ζa(k);L,U)
(12)

Then, the modified value function integrating the constraints
through LBF is given by

Jb(ζa(k)) =

∞∑
j=k

γj−k
(
ζ⊤a (j)Qζa(j) + u⊤(j)Ru(j)

+ b(ζa(j);L,U)
)
.

(13)

Thus, by employing (13), the recursive Bellman equation
is obtained as

Jb(ζa(k)) = rb(ζa(k), u(k)) + γJb(ζa(k + 1)). (14)

Now, the Hamiltonian function by integrating the LBF can
be written as

H(ζa, Jb, u) = γJb
(
fa(ζa(k)) + ga(ζa(k))u(k)

)
− Jb(ζa(k)) + ζa(k)

⊤Qζa(k) + u(k)⊤Ru(k)

+ b(ζa(k);L,U).

(15)

The safe optimal cost function is expressed as

J⋆
b (ζa(k)) = min

u(ζa(k))

( ∞∑
j=k

γj−k
(
ζ⊤a (j)Qζa(j)

+ u⊤(j)Ru(j) + b(ζa(j);L,U)
))
.

(16)

and satisfies

min
u(ζa(k))

H(ζa(k), J
⋆
b , u(k)) = 0. (17)

Solving the stationary condition,
∂H(ζa, Jb, u)/∂u(ζa(k)) = 0, the optimal tracking
control policy is derived as

u⋆(ζa(k)) = −γ
2
R−1g⊤a (ζa(k))

∂J⋆
b (ζa(k + 1))

∂ζa(k + 1)
. (18)

It is worth noting that to generate the optimal control policy
in (18), the future state vector ζa(k+1), which is unavailable,
is required. In addition, the control coefficient matrix is
needed which is also considered unknown and the state
vector is not considered measurable. Therefore, an observer
is designed next to generate the control coefficient matrix
as well as the state vector under the assumption the output
is measured. In the following subsection, the NN observer
development is given.

C. NN-based Observer

By exploiting results in [14], the system dynamics in (1)
can be rewritten as

ζ(k + 1) = Aζ(k) +W⊤
1 Ψ1(ζ(k))ū(k) + ε̄ (19)

where W1 = [wF wg]
⊤, Ψ1(ζ(k)) =

diag([ΨF (ζ(k))Ψg(ζ(k)]), ū = [1 u(k)]⊤, and
ε̄ = [εF εg]ū(k). The matrix A is Schur stable and

the pair (A,C) is observable. The following NN observer
estimates the unknown dynamics and state vector [14] as

ζ̂(k + 1) =Aζ̂(k) + Ŵ1(k)
⊤Ψ1

(
ζ̂(k)

)
ū(k)

+ L
(
y(k)− Cζ̂(k)

)
ŷ(k) = Cζ̂(k)

(20)

where x̂(k), ŷ(k), and Ŵ1(k) are the estimated system state,
output, observer weights, respectively. The matrix L ∈ Rn×l

denotes the designed observer gain. Invoking (19) and (20),
the state estimation error, ζ̃(k) = ζ(k)− ζ̂(k), is obtained as

ζ̃(k + 1) = Acζ̃(k) + W̃1(k)
⊤Ψ1

(
ζ̂(k)

)
ū(k) + ε̄ok, (21)

where W̃1(k) = W1 − Ŵ1(k) presents the NN observer
weight estimation error. ε̄ok = W⊤

1 Ψ̃1

(
ζ(k), ζ̂(k)

)
ū(k) +

ε̄(k) is bounded with Ψ̃1

(
ζ(k), ζ̂(k)

)
= Ψ1 (ζ(k)) −

Ψ1

(
ζ̂(k)

)
. The matrix Ac presents the closed-loop matrix

defined as Ac = A − LC. The observer NN weight matrix
is tuned as

Ŵ1(k + 1) = (1− αI) Ŵ1(k)

+ βIΨ1

(
ζ̂(k)

)
ū(k)ỹ(k + 1)⊤l⊤

(22)

where αI > 0 and βI > 0 are the damping and learning
parameters, respectively. ỹ(k) is the output estimation error
defined as ỹ(k) = y(k) − ŷ(k), and l ∈ Rn×l is a user
designed matrix. Next, by involving (22), the observer weight
estimation error dynamic is obtained as

W̃1(k + 1) = (1− αI) W̃1(k) + αIW1

− βIΨ1(k)ū(k)ỹ(k + 1)⊤l⊤
(23)

where W̃1(k) =W1 − Ŵ1(k).

III. LIFELONG LEARNING-BASED SAFE OPTIMAL
TRACKING

In this section, a safe optimal tracking control policy is
derived for the uncertain nonlinear DT system in (7) with
state constraints by using the estimated state vector from the
NN observer. First, a critic NN is constructed to estimate
the value function. Then, a novel update law integrating
the weight consolidation method is proposed for the critic
NNs to avoid catastrophic forgetting. Next, an actor NN is
employed to approximate the optimal control policy by using
the estimated state vector.

A. Temporal Difference Error using Estimated State

The value function in (8) can be represented as

Jb(ζa(k)) =W⊤
2 Ψ2(ζa(k)) + εj(ζa(k)) (24)

where W2 ∈ RNc presents the critic weights, Ψ2 ∈ RNc de-
notes the critic activation function, and εj(ζa(k)) represents
the NN error. The ideal weight W2 and the NN error εj
are assumed to be upper bounded by ∥W2∥ ⩽ wcM and
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∥εj(k)∥ ⩽ εjM , respectively. Moreover, the safe optimal
control policy in (18) can be approximated by

u(ζa(k)) =W⊤
3 Ψ3(ζa(k)) + εu(ζa(k)), (25)

where Ψ3 ∈ RNa denotes the actor activation function, W3

is the actor NN weights which is assumed upper bounded
∥W3∥ ⩽ waM , and εu(k) is the approximation error and it
is assumed ∥εu(k)∥ ⩽ εuM . One can assume the gradient
of the actor and critic approximation errors are bounded,
i.e., ∥∇εu∥F ⩽ ε

′

uM and ∥∇εj∥F ⩽ ε
′

jM . One can define
the estimated value function Ĵb(ζ̂a(k)) as

Ĵb(ζ̂a(k)) = Ŵ⊤
2 Ψ2(ζ̂a(k)) (26)

where the NN observer state is given by ζ̂a(k) = [(ζ̂(k) −
ζd(k))

⊤, ζd(k)
⊤, η̂(k)⊤]⊤; Ŵ⊤

2 denotes the estimated critic
NN weight. Substituting the estimated value function (26)
into (14) results in estimated TDE using observer state vector
as

TDE = rb(ζ̂a(k − 1), u(ζ̂a(k − 1)))

+ Ŵ⊤
2 ∆Ψ2(ζ̂a(k − 1)),

(27)

where TDE ∈ R is the TDE, and ∆Ψ2(ζ̂a(k − 1)) =
γΨ2(ζ̂a(k)) − Ψ2(ζ̂a(k − 1)). Notice that the TDE is now
a function of the estimated state vector.

To tune the critic NN weights based on TDE, the perfor-
mance measure is defined as

Ec1 =
1

2
TDE(k)

2
. (28)

To avoid catastrophic forgetting in multi-task scenarios, the
performance measure in (28) will be modified by integrating
the continual learning term in the following subsection.

B. Continual Learning and Critic NN Update

The EWC is one of the more widely used regularization
methods among continual learning approaches [15] which
implements the preservation of previously learned informa-
tion in successive learning by incorporating a regularizer to
the loss function as

Ec = Ec1 +
ϱ

2
||Ŵ2 − Ŵ ⋆

2,τi ||
2
F (29)

where F denotes the Fisher information matrix for the
critic NN, ϱ presents the hyperparameter which indicates
the connection of the previous tasks with the current one,
and Ŵ ⋆

2,τi is the NN weight matrix after training to the
task τi, i.e., the ith task. The term ||Ŵ2 − Ŵ ⋆

2,τi ||
2
F de-

notes (Ŵ2 − Ŵ ⋆
2,τi)

⊤F(Ŵ2 − Ŵ ⋆
2,τi). EWC keeps the most

critical weights from deviating far from the consolidated
values throughout the learning of the following tasks. In
the EWC approach, it is necessary to store Ŵ ⋆

2,τi after each
task. However, the Exponential Weight Velocity Attenuation
(EWVA) approach presented in [16] saves only the important
values of the weights. Here, based on the EWVA method, to
tune the critic weights, the overall performance measure is
defined as

Ec = Ec1 +
1

2
(Ŵ2 − Ŵ ⋆

2,τi)
⊤e−ϱΩτi (Ŵ2 − Ŵ ⋆

2,τi) (30)

where Ωτi is the fisher information matrix, however we
define a different value which shows the significance of
connection in a NN. Therefore, we define Ωτi as a diagonal
matrix, where the diagonal elements corresponding to each
task are defined as follows

Ωi =
1

N

∑
k

|ζ̂a,i(k)Ŵ2,i| (31)

where N is the number of samples in the each task. To
minimize significant changes in Ŵ2 within learning a new
task, the regularizer term in (29) is incorporated to the
performance function. Therefore, by using the normalized
gradient-descent method, the critic weight tuning law is
obtained as

Ŵ2(k + 1) = Ŵ2(k)−
αJ∆Ψ2(ζ̂a(k))TDE(k)

∆Ψ⊤
c (ζ̂a(k))∆Ψ2(ζ̂a(k)) + 1

− αJe
−ϱΩτi (Ŵ2(k)− Ŵ ⋆

2,τi),

(32)

where αJ is a designed parameter.
Remark 2: Note that computation of the Fisher informa-

tion matrix, F, is involved in EWC. Instead, EWVA [17]
relies on the total absolute weighted input, ζ̂a,i(k), and a
diagonal Fisher information matrix, Ωτi , processed using an
exponential function. In other words, in the EWVA method,
the regularizer has access to a broad range of previous weight
information.

C. Actor NN Update and Closed-loop Stability

In this subsection, the actor NN weight tuning law is
investigated, and then, the boundedness of the overall closed-
loop system is guaranteed through Lyapunov analysis. A
simple schematic of the proposed controller is depicted in
Fig. 1.

Now, by using (18) and (26), the estimated control input
is constructed as

û(k) = −γ
2
R−1ĝa(ζ̂a(k))

⊤ ∂Ψ2

(
ζ̂a(k + 1)

)⊤

∂ζ̂a(k + 1)
Ŵ2

, (33)

where ĝa(k) = [ŵT
g Ψg(ζ̂(k)) 0 0]

⊤. A feedforward NN is
employed to obtain the estimated optimal control policy as

û(ζ̂a(k)) = Ŵ⊤
3 Ψ3(ζ̂a(k)) (34)

where Ŵ3 is the estimated actor weight. The difference
between the approximated control input in (34) and the real
control input (33) is the control input error presented as

ũ(k) = Ŵ⊤
3 Ψ3

(
ζ̂a(k)

)
+
γ

2
R−1ĝa

(
ζ̂a(k)

)⊤ ∂Ψ2

(
ζ̂a(k + 1)

)⊤

∂ζ̂a(k + 1)
Ŵ2.

(35)

Since the control input error ũ(ζ̂a(k)) is measurable, one can
write the actor update law as

Ŵ3(k + 1) = Ŵ3(k)−
αuΨ3

(
ζ̂a(k)

)
ũ⊤(k)

Ψ⊤
3

(
ζ̂a(k)

)
Ψ3

(
ζ̂a(k)

)
+ 1

, (36)
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Fig. 1: A simple schematic of the proposed controller.

where αu is the designed parameter.
Remark 3: It is worth noticing that this effort relaxes the

control coefficient matrix by using the observer NN and the
need for ζ̂(k+ 1) through an actor NN. By using these two
NNs, the control input error is computed which is utilized to
tune the actor NN weights when the optimal control policy
(34) is applied and the next observer state ζ̂(k+1) becomes
available.

IV. SIMULATION RESULTS

In this section, a safe cargo transfer between a heavy cargo
ship and a small SES is used as an example to demonstrate
the high performance of the proposed controller. The main
goal is to cargo transfer at sea and track the desired ramp
motion between an SES and a large cargo ship in an optimal
and safe fashion. The heave motion of the cargo vessel is
quite negligible compared to that of the SES due to the
cargo ship’s massive structure. Therefore, we only focus
on the heave motion tracking of SES. One can write the
mathematical model of the heave motion as [4]

(m+A33)ζ̈3(t) +B33ζ̇3(t) + C33ζ3(t)−ACP0µ(t) = F e
3

(37)

where ζ3 is the heave, AC represents the cushion area, P0

denotes the equilibrium pressure, and m is the vessel mass.
Besides, A33, B33, and C33 present the hydrodynamic, the
radiation damping coefficient, the hydrostatic term for the
heave, respectively. The air cushion pressure equation is
presented as

µ̇ (t) =
γ(P0 + Pa + µ(t)P0)

P0 Vc(t)

(
Qin(Pu)

−AC ζ̇3(t) + V̇0(t)− cn

√
2(P0 + µ(t)P0)

ρc0
u(t)

)
.

(38)

where µ(t) is the air cushion pressure. Pa denotes the
atmospheric pressure. Vc(t) and ρc(t) present the volume
of the cushion and the equilibrium point of the air density.
Qin is the cushion air inflow volume rate which is a function
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Fig. 2: The system state and reference trajectory.
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Fig. 3: Performance of our scheme in terms of tracking error.

of the excess air cushion pressure inside the cushion Pu(t).
V0(t) denotes the wave volume pumping disturbance. cn =
0.61 denotes the orifice coefficient.

Therefore, the state space form of (37) and (38) can be
written as
ẋ = f(x) + g(x)u+ d(t) = x2

a1x1 + a2x2 + f3 + a3P0x3

γ(P0+Pa+x3P0)
P0 Vc(t)

(Qin(Pu)−ACx2 + V̇0 − cn

√
2(P0+x3P0)

ρc0
u)

 ,

where

x = [x1, x2, x3]
⊤ = [ζ3, ζ̇3, µ]

⊤, C = [0, 1, 0]⊤

a1 =
− C33

(m+A33)
, a2 =

− B33

(m+A33)
, a3 =

AC

(m+A33)
,

f3 =
F e
3

(m+A33)
, Vc(t) = AC(h0 + x1)− V0,

d(t) =
[
0 f3 Vc(t)

]⊤
To apply the proposed method, the continuous

model is discretized by the sample time T = 0.01s
and we use the SES parameters and hydrodynamic
coefficients from [18] for simulation. To better show
the impact of the proposed approach for constrained
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Fig. 4: Cumulative cost and the instantaneous cost compari-
son without and with continual learning term.
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control through LL formulation, we define the reference
trajectory as xd(k) = e(−0.25k)[sin(k), cos(k) −
1/4sin(k),

−a1+
a2
4 − 15

16

a3P0
sin(k) − a2+0.5

a3P0
cos(k)]⊤, 0 <

k ≤ 3000 and xd(k) = e(−0.25k)[sin(0.5k), 0.5cos(2k) −
1/4sin(0.5k),

−a1+
a2
4 − 3

16

a3P0
sin(k) − 0.5a2+0.25

a3P0
cos(k)]⊤,

3000 < k ≤ 6000 and xd(k) = e(−0.25k/)[sin(k), cos(k) −
1/4sin(k),

−a1+
a2
4 − 15

16

a3P0
sin(k) − a2+0.5

a3P0
cos(k)]⊤, 6000 <

k ≤ 10000.
To apply the tracking error constraints on the heave and

the heave rate error, the asymmetric LBF functions in (10)
are chosen as U1 = 0.07, U2 = 0.11, L1 = −0.1, and
L2 = −0.2. The penalty values of the augmented reward
function are selected ad Q = 5I and R = 0.01. The initial
values for the state set as x0 =

[
0 1 0

]T
. To verify

the effectiveness of the proposed technique, we select a NN
with 70 neurons for the critic NN. The output layer with
polynomial activation functions are selected. The designed
parameters are taken as γ = 0.5, αu = 0.04, and αJ = 0.1.
The NN weight initialization is chosen randomly selected.

Fig. 2 illustrates the state and reference trajectories using
the lifelong barrier Lyapunov function (LBLF) based learn-
ing scheme, and Boarding Control System (BCS) in [19].
The case of without controller is also included. As can be
seen, the system state vector and the reference trajectory are
close to each other for the LBLF technique in all three tasks.

Moreover, the tracking errors are shown in Fig. 3 which
shows the convergence of tracking error to near zero. Indeed,
the proposed method helps in generating optimal control
input and enables both faster convergence of tracking error
near zero and NN weights. It is obvious that the tracking
errors remain within the safe region by using the LBLF
method for all three scenarios.

In Fig. 4, the cumulative cost and the instantaneous cost
comparison are given. The cumulative cost plot shows that
the optimal solution is not only attained but also it is lower
than the existing method. The instantaneous cost converges
to near zero. Note the color bar on this plot shows the time
from zero to 100s as the 3D plot does not have the time.

V. CONCLUSIONS

In this paper, a LL-based optimal tracking control was
presented for uncertain nonlinear discrete-time systems with
constraints. Solving the tracking problem through an aug-
mented system with the integral term considerably improved
the tracking performance. Then, a BLF was integrated into
the value function to deal with state constraints. It was shown
that casting constraint problem with adding BLF to the value
function ensures the safe region could not be violated by the
control policy. Besides, adding a quadratic penalty function
to the performance measure improved the LL functionality
of the critic network to avoid catastrophic forgetting in
multitask scenarios. Finally, the proposed method has been
implemented in a safely cargo transfer example to control
the vertical position of an SES in severe sea conditions. The
simulation results have confirmed the validity of the proposed
safe LL-based optimal tracking control.
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