
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

10-1973 

Higher Mathematics Applied to Business Decisions Higher Mathematics Applied to Business Decisions 

John W. Gillet 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 
Gillet, John W., "Higher Mathematics Applied to Business Decisions" (1973). Theses and Dissertations. 
5518. 
https://commons.und.edu/theses/5518 

This Independent Study is brought to you for free and open access by the Theses, Dissertations, and Senior 
Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an 
authorized administrator of UND Scholarly Commons. For more information, please contact 
und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/5518
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F5518&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/5518?utm_source=commons.und.edu%2Ftheses%2F5518&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


HIGHER MATHEMATICS APPLIED TO 

BUSINESS DECISIONS 

by 
John W. Gillett 

Bachelor of Science, University of North Dakota, 1967 

An Independent Study 

Submitted to the Faculty 

of the 

University of North Dakota 

in partial f ulfillment of the requirements 

for the degree of 

Master of Science 

Grand Forks , North Dakota 

October 
1973 



TABLE OF CONTENTS 

INTRODUCTION e • • • • • e • I II I I t I I I I I I I I I • I I I I I iii 

Chapter 
1. ELEMENTARY ALGEBRA AND BREAK-EVEN ANALYSIS ... 

2. INTRODUCTION TO VECTORS AND MATRICES, ALGEBRA OF SQUARE 
MATRICES, AND DETERMINANTS .. 

3. LINEAR PROGRAMMING, EXPONENTS, LOGARITHMS, AND SOME 

1 

4 

IMPORTANT NONLINEAR FUNCTIONS . . . . . ... 15 

4. INTRODUCTION TO DIFFERENTIAL CALCULUS, ADDITIONAL 
DIFFERENTIATION TECHNIQUES , AND MAX-MIN THEORY AND 
APPLICATION 27 

5. INTEGRAL CALCULUS 

6. PROBABILITY 

7. SUMMARY AND CONCLUSIONS 

BIBLIOGRAPHY ......... . 

ii 

•• 47 

. 61 

73 

• 74 



INTRODUCTION 

The use of mathematics in the study of business management, 

economics and accounting is apparently becoming more and more relevant 

to the students of these chosen fields. Although many faculty members 

in these fields learned their mathematics in graduate school and there

fore have seen the need for higher mathematics, students wonder why 

they have to take a course in higher mathematics. 

In most instances the answer is not forthcoming in the math course 

itself. Mathematicians are not economists or accountants. The conse-

quence of these simple facts is that the students conclude that mathe

matics is just an intellectual exercise that they must endure as a sort 

of initiation fee into their major field. 

This paper is designed to be used by students of business manage-

ment, accounting and economics in conjunction with the current tex tbook 

for Mathematics 203 which is Linear Algebra, Calculus, and Probability: 

Fundamental Mathematics for the Social and Management Sciences by Lloyd 

S. Emerson and Laurence R. Paquette. Hopefully, it will provide a medium 

of motivation for them and will kindle their interest in mathematics that 

can be applied in the fields of business management, economics and account-

ing. 

In preparing the problems of each chapter, there has been one goal in 

iii 



mind. It is to illustrate, the application of the particular mathematical 

concepts presented in the 203 textbook to business management, economics 

and accounting. 

The form employed to achieve this goal is to group the 12 chapters 

in the 203 course into 6 major areas in this paper. At the beginning of 

each of the 6 areas the corresponding 203 chapters are revealed with a 

short listing of the math concepts contained in those chapters. The 

problems will follow arranged in order. 

iv 



CHAPTER 1 

CHAPTER 1 ELEMENTARY ALGEBRA AND BREAK-EVEN ANALYSIS 

The Real Number System• Functions · Linear 
Functions . Solution of Systems of Linear 
Equations by Elimination· Subscripts and 
Summation Notation• Cost and Revenue 
Functions . Break-Even Analysis • Inequalities 
Systems of Linear Inequalities 

Example 1. 

The total operating cost, C, of a certain firm is given as a function 

of the production level, x, by the linear function C = 0.72x + 1000. C 

is in dollars and xis in units produced. Discuss the variable cost and 

the fixed cost for this firm. Interpret this situation geometrically. 

Solution: We see from definitions that the fixed cost is $1000. 

Also, the variable cost is 0.72x. The variable cost per unit can be ob-

tained by dividing the variable cost by the number of units produced. 

This involves dividing 0.72x by x, therefore, the variable cost per unit 

is 0.72. We note that the variable cost per unit is a constant in this 

case. 

This cost function is of the form C = mx+b, where m = 0.72 and b = 

1,000. This means that the variable cost per unit can be interpreted 

geometrically as the slope of the straight line and fixed cost can be 

interpreted as its C intercept. 

1 
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Example 2. 

The "break-even point" is defined as the level of sales at which the 

total profit is zero. If costs are considered to consist only of a fixed 

cost which does not vary with the level of production and of a constant 

cost for production of each unit, usually called variable cost, the total 

cost of production may be expressed as 

Total production cost= 

fixed cost+ (variable cost)(number units produced) 

Profit is defined as total revenue minus total production cost where 

total revenue is sales price per unit multiplied by the number of units 

sold. 

Letting FC be the fixed cost, VC the variable cost, p the sales price per 

unit and x the number of units sold, the total cost function C and revenue 

function Rare defined by 

C(x) = FC + (VC)(x) 
R(x) = p • x. 

Since profit is defined as R(x) - C(x) and the break-even point is 

that level of sales at which profit is zero, we find the break-even point 

by letting 

R(x) - C(x) = O. 

That is, 

p , x - (FC + VC , x) = 0, 

X = FC 
p - vc 

The last equation defines x as a function of .E_; that is, 

x = .f (p) = _F_C _ 
p - vc 
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The difference p - VC is called the incremental return per unit of sales. 

Thus the quotient FC h --- states ow many times this increment must be 
p - vc 

earned in order to pay the fixed costs. 

If, rather than computing the sales break-even point, we wish to 

determine the break-even sales price if the production quantity is at 

some fixed level we compute the inverse function J-1. Solving x = __ F_C_ 
p - vc 

for p, we obtain 

p = FC + (VC)(x) 
X 

Thus 

J-1 (x ) = FC + (VC) (x ). l 
X 

lBeuan Yous e , Calculus for Students of Business and Management 
(Scranton, Pa.: International Textbook Company , 1967). 



CHAPTER 2 

CHAPTER 2-4 INTRODUCTION TO VECTORS Al'TD MATRICES 

Example 1 . 

Definition, Equality , and Addi tion of 
Vectors • Multiplication of a Vector by 
a Scalar and by a Vector· Definition, 
Equality and Addition of Matrices • 
Multiplication of a Matrix by a Scalar 
and by a Matrix · Systems of Equations 
as Single Matrix Equations · Business 
Applications of Vector and Matrix Multi
plication· Additional Applications of 
Matrix Multiplication . 

ALGEBRA OF SQUARE MATRICES 

Introduction to the Algebra of Square 
Matrices · Some Algebraic Laws for 
Square Matrices · Failure of the Com
mutative Law for Matrix Multiplication 
The Inverse of a Square Matrix , The 
Application of the Inverse of a Matrix 
to Solve Systems of Equations · An 
Algorithm for Finding the Inverse of a 
Matrix 

DETERMINANTS 

Definition of the Determinant of n X n 
Matrix· Evaluation of Determinants of 
2 X 2 and 3 X 3 Matrices · The Method 
of Cofactors , Cramer's Rule • The Use 
of Determinants for Finding the Inverse 
of a Matrix · Summary of Methods for 
Solving Systems of Equations 

Baker is a hot dog salesman who owns a stand near a baseball stadium. 

Each game he buys Q hot dogs, He makes a profit of 10 cents on each hot dog 

4 
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sold. The unsold hot dogs, if any, are returned to the manufacturer at 

a loss of 2 cents each to Baker. From his past records, Baker estimates 

the following probabilities for selling hot dogs: 

d = number of hot dogs demanded 
p = probability of that demand 

10 20 30 40 50 
.1 .2 .4 .2 .1 

(For simplicity we assume his sales are always a multiple of 10.) How many 

hot dogs should Baker buy to maximize his net profit? 

It is clear that Baker's net profit is 

lOQ if Q < d 

i.e., if the demand is sufficient to sell all hot dogs; and it is 

lOd - 2(Q - d) = 12d - 2Q, if Q-> d 

i.e., if supply exceeds demand, since he makes 10 cents on those he sells 

and loses 2 cents on those he does not sell. If we compute his profit 

in cents for each of the ways he can order from 10 to 50 hot dogs and 

sell from 10 to 50 hot dogs we obtain the matrix M of Figure 11. 

number of hot dogs demanded 

10 20 30 40 so 

number of 10 (00 100 100 100 100) M = hot dogs 20 80 200 200 200 200 
ordered 30 60 180 300 300 300 

40 40 160 280 400 400 
so · 20 140 260 380 500 

Figure 11 

If we let p be the vector 

p {f) 
. 1 
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then we see that Mp is a column vector whose entries are Baker's expected 

profits for each number of hot dogs that he can order. We have 

(

10 
188 

Mp= 252 
268 
260 

The action that we then expect Baker to take is to order 40 hot dogs to 

obtain the maximum profit of 

max Mp= 268.2 

Example 2. 

Suppose that a building contractor has accepted orders from five 

ranch style houses, seven Cape Cod houses, and twelve Colonial style houses. 

We can represent his orders by means of a row vector x = (5, 7, 12). The 

contractor is familiar, of course, with the kinds of "raw materials" that 

go into each type of house . Let us suppose that these raw materials are 

steel, wood, glass, paint, and labor. The numbers in the matrix below 

give the amounts of each raw material going into each type of house, ex-

pressed in convenient units. (The numbers are put in arbitrarily, and are 

not meant to be realistic.) 

Ranch: 
Cape Cod: 
Colonial: 

Steel 

G 
Wood 

20 
18 
25 

Glass 
16 
12 

8 

Paint 
7 
9 
5 

Labor 

17) 
21 
13 

= R 

Observe that each row of the matrix is a five-component row vector which 

gives the amounts of each raw material needed for a given kind of house. 

2John Kemeny, and others, Finite Mathematics with Business Applica
tions (Englewood Cliffs, N.J.: Prentice Hall Inc., 1962), p. 306-307. 
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Similarly, each column of the matrix is a three-component column vector 

which gives the amounts of a given raw material needed for each kind of 

house. Clearly, a matrix is a succinct way of summarizing this informa-

tion. 

Suppose now that the contractor wishes to compute how much of each 

raw material to obtain in order to fulfill his contracts. Let us denote 

the matrix above by R; then he would like to obtain something like the 

product xR, and he would like the product to tell him what orders to make 

out. The product should have the following form: 

xR = (5, 7, 12) (
5; 

20 
18 
25 

16 
12 

8 

7 

9 
5 

17) 21 
13 

= (5·5 + 7.7 + 12·6, 5·20 + 7·18 + 12·25, 
5·16 + 7·12 + 12°8, 5·7 + 7.9 + 12·5, 
5.17 + 7•21 + 12· 13) 

= (146, 526, 260, 158, 388). 

Thus we see that the contractor should order 146 units of steel, 526 units 

of wood, 260 units of glass , 158 units of paint, and 388 units of labor. 

Observe that the answer we get is a five-component row vector and that 

each entry in this vector is obtained by taking the vector product of x 

times the corresponding column of the matrix R. 

The contractor is also interested in the prices that he will have 

to pay for these materials. Suppose that steel costs $15 per unit, wood 

costs $8 per unit, glass costs $5 per unit, paint costs $1 per unit, and 

labor costs $10 per unit. Then we can write the cost as a column vector 

as follows: 
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(

15 

Y" i 
10 

Here the product Ry should give the costs of each type of house, so that 

the multiplication should have the form 

20 
18 
25 

16 
12 

8 

7 

9 
5 

17) 21 
13 CD 

(

5·15 + 20·8 + 16·5 + 7· 1 + 17·10) 
= 7•15 + 18·8 + 12·5 + 9·1 + 21·10 

6·15 + 25,8 + 8·5 + 5·1 + 13·10 

= (~~!) 
465 

Thus the cost of materials for the ranch style house is $492, for the Cape 

Cod house is $528, and for the Colonial house $465. 

The final question which the contractor migh t ask is what is the total 

cost of raw materials for all the houses he will build . It is easy to see 

tha t this is given by the vector xRy . We can find it in two ways as shown 

below. 

15 
8 

xRy = (xR) y = (146, 526 , 260, 158, 388) · 5 = 11, 736 
1 

10 

(92) xRy = x(Ry) = (5, 7, 12) · 528 = 11,736. 
465 

The total cost is then $11,736.3 

3Ibid., p. 240-242. 
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Depreciation Schedules 

Example 3 contains an accounting problem that requires an ordinary 

transformation matrix. Here it is necessary to prepare a depreciation 

lapse schedule, and the elements in the transformation vector measure rates 

of usage (depreciation) for each time period. Input space has been repre-

sented by unit vectors, but the residual values of each asset have been 

subtracted from each unit vector to leave the depreciation base values. 

This type of logical problem arises frequently in accounting. It may be 

referred to as a branching problem, because it involves the segregation 

of input data into two or more groups, each of which requires different 

transformation (or no transformation, as in the residual book values in 

the depreciation illustration). Here the branching is treated by taking 

from 100% (represented by the unit vectors in the identity matrix) the 

residual 20% (represented by a scalar multiplication of the identity 

matrix). Alternatively, the branching problem can be treated without 

involving matrices by separating residual values and depreciable bases. 

Example 3. 

Accounting Problem Employing 
an Ordinary Transformation Matrix 

Accounting area: 

Input data: 

Depreciation lapse schedule preparation. 

Three machines acquired at costs of $75,000, 
$37,500, $112,500, respectively. 

Transformation data: Usage (depreciation) is to be measured 
by the sum-of-the-years'-digits method 
using economic life of 3 years ~nd 20% 
residual value. 

Output data: Usage is to be allocated to yearly time 
periods. 

r 

l 

I 
[ 

I 
t 
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Input Space Transformation Matrix Output Space 
(lapse schedule) 

(I - 20%I) 
0.8 0 0 

0 0.8 0 

0 0 0.8 

~ 

75,000 
r 

37,soo u 12 113 11tJ= 

112,500 
Total Depreciation 

0 
Year 1 Year 2 

30,000 20,000 
15,000 10,000 
45,000 30,000 
90,000 60,000 

I= identity matrix (an ordered collection of unit vectors) 
~=vector containing cost of asset i , where i = 1, 2, 3 

Year 3 

10,000 
5,000 

15,000 
30.000 

r = rate vector containing elements rj, which show the rate of KEY 
depreciation for period j = 1, 2, 3. Usage rates were 
determined according to the sum-of-the-years'-digits 
depreciation method. 

0 = output matrix containing elements Oij> which show the 
depreciation charge for asset i in period j 

Then, the depreciable bases [i.e ., (I - 20 %I)~ are entered directly into 

a vector, thereby reducing the transformation to 

[

60,000] 
30,000 [112 1/3 
_90, 000 

1/~ [

30,000 
= 15 ,000 

45,000 

20,000 
10,000 
30,000 

This is the same result as shown in Example 3. 4 

10,000] 
5,000 

15,000 

Example 4 shows a transformation requiring the use of an inverse 

matrix. Here the elements a_ij in matrix A show the interest of 

expense i in expense J, where i, j = B (loans), F (franchise tax), 

and T (federal income tax). The interests are determined in accord 

with given statutory-contractual rates. 

Example 4. 

Accounting Problem Requiring 
an Inverse Transformation Matrix 

Computing 
Bonuses 

4wayne A, Corconen, Mathematical Applications in Accounting (New 
York and Chicago: Harcourt, Brave and World, Inc., 1968), p . 158-159. 



B = executives' bonus 
F = franchise tax 

11 

T = federal tax on income 
$100,000 = profits before B, F, and T 

Original system of equations: 

B = 0.1 ($100,000 - F - T) 
F = 0.05 ($100 , 000 - B) 

T = 0.50 ($100,000 - B - F) 

Rearranged system: 

10,000 = B + O.lF + o.lT 
5,000 = O.OSB + F + OT 

50,000 = 0.5B + O.SF + T 

Restated system: 
g A 

[10,000] [~.OS 0 . 1 
5,000 = 1 

50,000 0.5 0.5 

KEY 

X 

KEY g = vector of constants in the rearranged system 
A= matrix of coefficients of the rearranged system 
x = solution vector 

Solution Input Space Transformation 'Matrix Output Space 

X A-1 g 

[fl [ 1.05541 -0.05277 -0.10554] [10,000 J 
= -0.05277 1. 00263 0.00528 5,000 

-0.50132 -0.47493 1.05013 50,000 

Example 5. 

Secondary Overhead Allocation 

[ S,Olff 
= 4,749 

45, 119 

In the process of determining overhead rates, the accountant is con-

cerned with, among other matters, 

1. the primary (or direct) allocation of itemized overhead costs to 
various service and production departments, and 

Srbid., p. 159-160. 
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2. the secondary allocation of individual service department 
(or better, service rendering department) primary overhead 
costs to service consuming departments (i.e., other service 
departments and production departments). 

The criterion governing secondary allocation is that of usage . How 

much of a given service will each consuming department use? Here usage 

is meant in two senses: actual usage and potential usage. Given some 

measurement indices, such as number of employees, floor area , man hours, 

and kilowatt hours , actual usage is measured by estimating consuming de

partment responsibility (in terms of a specific index) for increasing 

rendering department variable costs. Potential usage is measured (again 

in terms of a specific index) by calculating consuming department respon-

sibility for bringing about the fixed costs of the rendering departments . 

In either case, consuming department usage may be expressed as a set of 

percentages, each percentage weighted according to rendering department 

proport ions of fixed and variable costs. 

Let us see how matri ces may be applied to secondary overhead alloca-

tion. Following are the data for an example. It is assumed that the per-

centages in the table have been deter~ined by observing the usage criterion . 

KEY Si= service department i 

Pj = production department j 

epartment S1 S2 Pl P2 P3 
Rendering 
de artment 

S1 0 40% 10% 30% 20% 
s 25% 0 45% 20% 10% 
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Primary overhead allocation totals 
(000 omitted) 

$90 

S2 

$180 $377 

P2 

$307 $246 

Standard machine hours 
(estimated, 000 omitted) 

The system of equations requiring solution is 

S .1 = 9 0 + 0 • 2 5 S 2 

S2 = 180 + 0.40S1 

The system may be stated in matrices as follows: 

A X 

C-a.!o -a.~~[:~] 
Total = 270 

The solution is 

A-1 b 

[ 
1/0. 9 

= 0.40/0 . 9 
0.25/0.91 [ 901 

l/0 . 9J 180j 

X 

= [~!~] 

200 50 

The amounts in vector x must be allocated to the production depart-

ments. Accordingly, we form matrix P by transposing the percentages shown 

under Pi and use this matrix to obtain our ultimate amounts for redistribu-

tion (shown in vector r). 

p X 

0.10 0.45 

0. 30 0. 20 [:::] . 
0 . 20 0.10 

Total 

r 
123 

93 

54 

270 

150 

The amounts in vector r must then be added to the primary allocation amounts 

for the production departments (say, vector d) to obtain the total overhead 

costs (vector t). 



r 
123 

93 + 

54 

d 

377 

307 = 

246 

t 

500 

400 

300 

14 

Because matrices may be mul tip l ied and added, it is pos sible to "link 

up" several stages of allocation. In our secondary overhead allocation 

exampl e, for i nstance , we coul d proceed as follows : 

Let us first form PA-1, It would always make sense to do this where 

the departmental interrelationships can be expected to remain stable, as 

they mi ght for planning purposes. 

p A-1 PA- 1 
0 . 10 0.45 0.3111 0.5278 

[ 1/0.9 0. 25/0 .9] 
0.30 0.20 = 0.4222 0. 3055 

0.40/0.9 1/0.9 
0.20 0 . 10 0 . 2667 0.166'i' 

We see that the equation for t holds. 

t d PA-1 b 
500 377 0.311 1 0 . 5278 377 123 

400 = 307 + 0 . 4222 0.3055 [l::J = 307 + 93 

300 246 0.2667 0 . 166 7 246. 54 

The overhead rates are, therefore , 

$500 for P1, $400 for P2, and $300 for p 6 
200 50 150 3 

6Ibid., p . 174-176. 



CHAPTER 3 

CHAPTER 5-6 LINEAR PROGRAMMING 

Example 1. 

Introduction• The Graphical Method • 
Table 1 of the Simplex Method · Simplex 
Method Continued · The Simplex Method-
A Maximization Problem and a Summary 

EXPONENTS, LOGARITHMS, AND SOME IMP0RTA1.1T 
NONLINEAR FUNCTIONS 

Laws of Exponents · Definition and Laws 
of Logarithms • Use of Tables of Logarithms · 
Computations with Logarithms · Log Functions · 
Exponential and Power Functions · Semilog and 
Log-Log Paper 

An automobile manufacturer makes automobiles and trucks in a factory 

that is divided into two shops. Shop 1, which performs the basic assembly 

operation, must work 5 man-days on each truck but only 2 man-days on each 

automobile. Shop 2, which performs finishing operations, must work 3 man-

days for each automobile or truck that it produces. Because of men and 

machine limitations Shop 1 has 180 man-days per week available while Shop 

2 has 135 man-days per week. If the manufacturer makes a profit of $300 

on each truck and $200 on each automobile, how many of each should he pro-

duce to maximize his profit? 

To state the problem mathematically we set up the following notation: 

Let x1 be the number of trucks and xz the number of automobiles to be pro-

duced per week. Then these quantities must satisfy the following restrictions: 

15 



16 

We want to maximize the linear function 300x1 + 200xz, subject to these 

inequality constraints, together with the obviously necessary constraints 

that x1~ 0 and xz> 0. 

To further simplify notation we define the quantities 

A= G b = f180) 
\135 

and c = (300,200). 

Then we can state this linear programming problem as follows. 

Maximum problem: Determine the vector x so that the weekly profit, 

given by the quantity ex, is a maximum subject to the inequality constraints 

Ax S. b and x ::: 0. The inequality cons train ts insure that the weekly number 

of available man-hours is not exceeded and that nonnegative quantitites of 

automobiles and trucks are produced. 

The graph of the convex set of possible x vectors is pic tured in 

Figure 6. Clearly this is a problem of the kind discussed in the previous 

section. 

The extreme points of the convex set Care 

and T4 = G~), 
Following the solution procedure outlined in the previous section we test 

the function ex= 300x1 + 200x2 at each of these extreme points. The 

values taken on a re 0, 10800, 9000, and 12000. Thus the maximum weekly 

profit is $12,000 and is achieved by producing 30 trucks and 15 automobiles 

per week, 7 

7Kemeny, and others, Finite Mathematics, p, 379-380 . 
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Figure 6 

Example 2. 

A mining company owns two different mines that produce a given 

kind of ore. The mines are located in different parts of the country 

and hence have different production capacities. After crushing, the 

ore is graded into three classes: high-grade, medium-grade, and low

grade ores. There is some demand for each grade of ore. The mining 

company has contracted to provide a smelting plant with 12 tons of high

grade, 8 tons of medium-grade, and 24 tons of low-grade ore per week. 

It costs the company $200 per day to run the first mine and $160 per 

day to run the second. However, in a day's operation the first mine 

produces 6 tons of high-grade, 2 tons of medium-grade, and 4 tons of low

grade ore, while the second mine produces daily 2 tons of high-grade, 2 

tons of medium-grade, and 12 tons of low-grade ore. How many days a week 
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should each mine be operated in order to fulfill the company's orders 

most economically? 

Before solving the problem it is convenient to summarize the above 

information as in the tableau of Figure 7. The numbers in the tableau 

form a 2-by-3 matrix, the requirements form a row vector c, and the costs 

form a column vector b. The entries in the matrix indicate the production 

of each kind of ore by the mines, the entires in the requirements vector 

c indicate the quantities that must be produced, and the entries in the 

cost vector b indicate the daily costs of running each mine. 

Mine 1 

Mine 2 

High 
Grade 

Ore 

6 

2 

12 

Medium 
Grade 

Ore 

2 

2 

8 

C 

Figure 7 

Low 
Grade 
Ore 

4 

12 

24 

b $200! 

$160 

Let w = (w1 w2) be the 2-component row vector whose component w1 

gives the number of days per week that mine 1 operates and w2 gives the 

number of days per week that mine 2 operates. If we define the quantities 

A= (~ 2 
2 1~)' C = (12, 8, 24), and b = (200) 

\160 

we can state the above problem as a minimum problem. 
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Minimum problem: Determine the vector w so that the weekly operating 

cost, given by the quantity wb, is a minimum subject to the inequality re

straints wA =! c and w ~ 0. The inequality restraints insure that the 

weekly output requirements are met and the limits on the components of 

ware not exceeded. 

It is clear that this is a minimum problem of the type discussed in 

detail in the preceding section. In Figure 8 we have graphed the convex 

polyhedral set C defined by the inequaliti es wA ?: c. 

(O' 

(1, 

(O' 

wz 

(2, 0) (L1, 0) (6, 0) w1 

T1 

Figure 8 
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The extreme points of the convex set Care 

Tl= (6, O), T2 = (3, 1), T3 = (1, 3), T4 = (0, 6). 

Testing the function wb = 200w1 + l60w2 at each of these extreme points 

we see that it takes on the values 1200, 760, 680, and 960, respectively. 

We see that the minimum operating cost is $680 per week and it is achieved 

at T3, i.e., by operating the , first mine one day per week and the second 

mine three days a week. 

Observe that if the mines are operated as indicated, then the com-

bined weekly production will be 12 tons of high-grade ore, 8 tons of 

medium-grade ore, and 40 tons of low-grade ore. In other words, for this 

solution low-grade ore is overproduced. If the company has no other de-

mand for the low-grade ore, then it must discard 16 tons of it per week 

in this minimum-cost solution of its production problem.8 

Example 3. 

As a variant of Example 2, assume that the cost vector is b = G~~); 
in other words the first mine now has a lower daily cost than the second. 

By the same procedure as above we find that the minimum cost level is 

again $680 and is achieved by operating the first mine three days a week 

and the second mine one day per week. In this solution 20 tons of high

grade ore, instead of the required 12 tons, are produced, while the re

quirements of medium- and low-grade ores are exactly met. Thus eight tons 

of high-grade ore must be discarded per week. 9 

8rbid., p. 380-381. 

9rbid. , p. 382. 
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Example 4. 

As another variant of Example 2, assume that the cost vector is 

b = (200) in other words, both mines have the same production costs. 
200 ' 

Evaluating the cost function wb at the extreme points of the convex set 

we find costs of $1200 on two of the extreme points (T1 and T4) and costs 

of $800 on the other two ex treme points (T2 and T3). Thus the minimum cost 

is attained by operating either one of the mines three days a week and the 

other one day a week. But there are other solutions, since if the minimum 

is taken on at two distinct ex treme points it is a l so taken on at each 

of the points on the line segment between. Thus any vector w where 

1 :s w1 s. 3, 1 S w2 s 3, and w1 + w2 = 4 also gives a minimum-cost solution. 

For example, each mine could operate two days a week.IO 

Example 5. 

With the formula given for the sum of n terms of an arithmetic 

sequence as n/2 [2 t1 + (n-1) d], where t1, is the first term and dis 

the common difference. 

An incentive plan for executives permits individuals to purchase 

100 shares of the company's stock when the executive first becomes 

eligible for participation in the plan. Thereafter, if he has exercised 

the initial option, the participating executive may purchase 110 shares 

at the end of the first year, 120 shares the next year, 130 the next, 

and 140 at the end of the fourth year, etc., until he has accumulated a 

maximum total of 1,000 shares. How many years will be required to reach 

10Ibid. , p. 382. 
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the maximum? 

Solution: Here Sn= 1,000, t1 = 100, d = 10 and 

1,000 = n [2000) + (n 1) 1~ 2 

1,000 = 100n + Sn2 Sn 

sn2 + 95n - 1,000 = 0 

or 

n2 + 19n - 200 = 0. 

Solving by use of the quadratic formula, 

n = -b ± V b2 - 4ac 
2a 

where a= 1, b = 19, and c = -200, 

n = 

Thus 

-19 ± VU61 
2 

substituting 

n :::=. 7 .54 or n ~ -26.54. 

Since a negative or noninteger solution is meaningless for this exam-

ple, the maximum will be reached on the eighth purchase, or at the end of 

the seventh year. To determine how many shares may be purchased on the 

last option we calculate the sum of the first seven purchases: 

S7 = ~ [2 (100) + (6) (lOLJ = 910. 

Thus the last purchase is 1,000 - 910 = 90 shares. 11 

Example 6. 

(a) In an attempt to decrease his inventory a paint manufacturer 

offers to sell the first case for $12. If two cases are ordered, a dis-

11Youse, Calculus for Students, p. 46. 
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count of $0 . 50 i s applied t o th e second case , and an additional $0 . 50 

discount on each succeeding case. What is the total cost of an order 

for 20 cases? 

Solution: For this example n = 20, t1 = 12, d = - 0.50 , and 

s20 = 20 [ 2(12) + (19) ( - 0 . 50 )] = $145, 
2 

the t o t al cos t of 20 cases . The price of the 20th case is 

t 20 = 12 . 00 + (19)(- o.s) = $2.50. 

(b) Obviously, the manufacturer should put an upper bound on the 

number of cases a customer can buy so that the buyer will not be able 

to claim "free cases." To find the limit on purchases that the manufac-

turer should set, we wan t to find the lar gest n such that tn -:::,,. 0. Thus 

tn = 12 . 00 + (n - 1)(- 0,50) > 0 

12 . 00 > (0 . 50) (n - 1) 

1,200 > son - 50 

50n < 1,250 

n <25 . 

A maximum of 24 cases should be sold to a customer. 12 

Example 7. 

Federal laws require banks subject to regulation by the government 

to maintain as a reserve a certain proportion of the bank's current de-

posits. Cash in excess of this reserve may be loaned to the bank's 

borrowers. Assuming the reserve rate is 25 percent and that the bank 

requires its borrowers to deposit the amount loaned , find the total 

12rbid. , p . 46-47. 
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amount made available for loans as a result of a $500 deposit. 

Solution: From the original deposit, the bank may loan (500) 

(0.75) = 375. Assuming unlimited demand for loans, the bank may now 

loan (375)(0.75) = [(500)(0.75)] (0.75) = (500)(0.75)2 = 281.25, and then 

(500)(0.75)3 = 211.31. This is clearly a geometric sequence. Since (500)· 

(0.75)n # 0 for any integer n, there is no upper bound of n. We note 

that the sequence is decreasing and can be made arbitrarily close to zero 

by choosing n large enough; thus, assuming that no loan will be made for 

less than $1, we find the number of loans required to reach this minimum 

by letting 

r n-lt = 1 1 • 

Thus 

(0.75)n-1 (500) = 1 

and taking logarithms of both sides, 

(n - 1) log 0.75 + log 500 = 0 

(n - 1)(9.87506 - 10) = -2.69877 

(n - 1)(-0.12494) = -2.69877 

0.12494n = 2.82371 

n :=:: 22. 6. 

Since E. must be an integer, we find the total amount available for loan 

for the first 22 repetitions of the cycle. The total amount available is 

s
22 

= 500 - 500(0.75) 22 

1 - 0.75 

= 500 [1 - (3/4) 2~ 
1/4 
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= 2,000G - 014)2·~ 

Z 2,000. 

The total amount is just under $2,000. It should be evident that since 

(3/4)n can be made arbitrarily "close" to O for "large" n the total amount 

could not exceed $2,000 even with an unlimited number of loans.13 

Example 8. 

Capital assets, such as a factory, which will be used for several 

years cannot be considered as an expense at the time they are purchased. 

Instead, periodic charges call depreciation are made for the use of such 

assets. Many methods are available for computing depreciation charges, 

the simplest being the straight-line method. If C is the total cost of 

a capital asset and a fixed integer n is the estimated life, in years, of 

the asset, the annual straight-line depreciation charge is C/n. Thus, the 

total depreciation charge at the end of the first year is S_1 = C/n, at the 

end of the second year is S2 = 2C/n, and at the end of the nth year Sn = 

nC/n = C. The total depreciation is directly proportional to time and 

the constant of proportionality is C/n. The po~nts on the graph of this 

arithmetic series (1, C/~), (2, 2C/n), (3, 3C/n), . . . lie on a line through 

the origin with slope C/n. 

As an alternative, one may use a double-declining method. For this 

method, the annual rate of depreciation is taken as twice the straight

line rate on the remaining value of the assets, if certain conditions are 

met . Under this method, depreciation for the first year is C (~); for the 

13Ibid., p. 48. 
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~ - C ~ 
for the third, 

[ C - C (;) - C (;) (1 - ;~ 
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2 = 
C (!) (1 - ~); n 

2 = 
C [ (1 - ;) - ! (1 - ;) J ~ n 

= C 2 
n 

and for the kth year the allowable charge is 

C (1 - !) k-1 ~ 

The series representing the total depreciation allowed for the first k 

years is 

l + ... + C 
n 

a geometric series with common ratio r = (1 - !) and t 1 = C (!). 
(1 - ;)k 

C [1 - (1 ~) J C 2 -cl sk = n n = 
1 - (1 - ;J 

can be used to calculate any year.14 

l4Ibid., p. 49. 

k-1 2 
n 

Thus 



CHAPTER 4 

CHAPTER 7-9 INTRODUCTION TO DIFFERENTIAL CALCULUS 

Example 1. 

The Rate of Change of a Function · The 
Limit Concept · Definition of the Derivative 
Interpretations of the Derivative · The 
Derivative as a New Function· The Power Rule 
and Some Properties of the Derivative. Dif
ferentiation of Exponential and Logarithmic 
Functions · Geometric and Economic Applica
tions of the Deri vative 

ADDITIONAL DIFFERENTIATION TECHNIQUES AND APPLICATIONS 

The Behavior of the Dependent Variable in a 
Differentiable Function · The Chain Rule · 
Some General Differentiation Fonnulas · Surmnary 
of Differentiation Techniques · Applications of 
the Derivative · Definition and Application of 
Differentials 

MAX-MIN THEORY A.i~D APPLICATION 

The First Derivative Test for Maxima and Minima · 
The Second Derivative and Inflection Points · 
The Second Derivative Test for Maxima and Minima 
Summary .of Maxima, Ninima, and Inflection Points 
Applied Max-Min Problems 

Assume, for example, that the regional sales manager of a firm has 

reached the following judgment about assigning salesmen to a given territory: 

Each salesman assigned can exploit one half of the untapped sales potential 

of the territory. This judgment is based on the manager's knowledge of 

the potential customers, their locations throughout the territory, and 

the attractiveness of customers in the territory to his competitors. The 

27 
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expected contribution of each additional salesman is presented in Table 

1. With the assignment of enough salesmen, the regional manager can 

be assured of realizing essentially all the sales potential of the 

territory. But there is a limit to the sales he can expect; he can 

expect no more than 100 percent of the potential. Furthermore he can 

never (quite) attain that level, since each new salesman adds only one 

half the remaining potential. Thus, no matter how many salesmen are 

added, some small percentage of potential cannot be obtained; 100% of 

potential cannot be reached. 15 

Table 1 

Proportion of Sales Potential Contributed by Each Additional 

Salesman 
Number 

1 
2 

3 
4 
5 
6 

7 

n 

Salesman and Cumulative Total (Percent) 

Proportion of 
Total Potential Added 

by the Salesman 

.5000000 

.2500000 

.1250000 

.0625000 

.0312500 

.0156250 

.0078125 

(0.5)n 

Cumulative 
Proportion of 

Potential Salesa 

.5000000 

.7500000 

.8750000 

.9375000 

. 9687500 

.9843750 

.9921875 

n 

_L(O.S)n 
i=l 

l5Alan K. McAdams, Mathematical Analysis for Management Decisions: 
Introduction to Calculus and Linear Algebra (London: The Macmillian 
Company, 1970). 



29 

Example 2. 

In this example a very interesting function is presented. Assume 

that the capacity output of a given machine is 1000 units per month, and 

that each machine costs $500 to purchase. The function that describes 

the machine-costs for different output levels each month is the function 

f with the following rule: 

y 
2000 

1500 

1000 

y = f (x) = 
{

$ 500 for O < X < 1000 
$1000 for 1000 < X ,S: 2000 
$1500 for 2000 < X _'5, 3000 
and so on. 

c;,-----"'I 
I 

~------

SOOn-----~ 

1000 2000 3000 4000 X 

Figure 2 

Cost of Machines for Different Output Levels. 
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Does the function have a limit as x ~ 2000? The function is shown 

graphically in Figure 2. As x--+2000 from the left, the function} 

has a value of $1000 for all values up to and including 2000 units; 

thus the candidate limit of $1000 is established. It meets the re

quirements for a left-hand limit (it is equal to $1000 everywhere in 

the interval 1000 < x :5: 2000); however, there is no value of x to the 

right of x = 2000 for which the valuej(x) = $1000. In fact, for every 

value 2000 < x < 3000, the value off equals $1500, so that has a right

h and limit L' equal to $1500. The results of the limit test would show 

the following. 

1 . ./ has a left-harid limit L = $1000. 

2. J has a right-hand limit L' = $1500. 

3. However, LIL'. 

The function f does not have a limit as x-'? 2000. l6 

Example 3. 

Differentiation by Algebraic Form Only 

The manager studying the growth of demand for a new electronic 

part concludes that its growth is exponential. He hopes to produce 

enough of the parts to meet expected demand, and has developed a procedure 

for doing so which depends on predictions of the rate at which sales are 

changing at key times. The two times that are of most interest to him 

are the second and third years. The rule for the function f that he feels 

is appropriate is y - x2, He needs to find the rule for f' and evaluate 

l6Ibid., p. 48-49. 
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it when x = 2 and x = 3. 

Solution: 

Substituting x +Llx for x gives y +b.y. Then 

1. y_ +~y = (x +6x) 2• 

Subtracting the value of y from y +,6.y gives 

2 . y +Ay· - y = ~ y = (x2 + 2x~x +~-x2) - x2 . 

Dividing both sides of the equation by~x gives 

3. = 2x ilx +6x2 

6.x 
= 2x +~x. 

Taking the limit of both sides as.6.x-+ 0 gives 

4. lim ~y 
6 .. o ~ x 

since the second 

0f f I then is 2x 

and 

= lim (2x +~x) = 2x. 
~ .. a 

term on the right goes 

and 

E.Y. = 2 (2) = 4 
dx 

E.Y. = 2(3) = 6 
dx 

to zero 

at X = 

at X = 

in the limit. 

2 

3. 

The value 

The manager can now go on to make his production decision based on the 

rate of change of sales at the key times.17 

17Ibid., p. 66-67, 
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Example 4. 

Assume that in the absence of advertising for its product a company 

faces a demand function given by 

q = 200 - 4p 

where q = quantity sold and p = price per unit, and additional net 

revenues r can be generated through advertising expenditures A. Assume 

that the (unlikely) equation 

r = (SpA - 3A2 + SOA) 

expresses the net change in revenues resulting from changes in the advertis

ing budget A. The negative term -3A2 reflects the cost implications of 

the advertising expenditures. The cost directly associated with production 

(and sale) of the product exclusive of advertising costs is given by 

C = 300 + 3_q_ 

then 

Total (basic) revenuer= p · q = p(200 - 4 p) 

Total cost c = (300 + 3g)q 

C = 300q + 3q2 . 

Since g_ = 200 - 4p, substituting for q gives 

C = 60,000 - 1200p + 120,000 - 4800p + 48p 2 

C = 180,000 - 6000p + 48p 2 . 

The profits of the firm~ can be stated as the difference between revenues 

and costs, including net revenues associated with advertising; that is, 

?(=revenue - cost+ advertising 

11'· = (200p - 4p2) + (-180,000 + 6000p - 48p2) + SpA - 3A2 + SOA. 



33 

To find the maximum level of?(, the first partial derivatives must be 

taken and set equal to zero: 

a?f = 200 - 8p + 6000 - 96p +SA= 0 
~p 

Simplifying gives 

a7r' = 5~ - 6A + 50 = 0. aA 

6200 - 104p +SA= 0 

50 + Sp - 6A = 0. 

Multiplying the first equation above by 6 and the second equation by 5 

and adding gives 

then 

p = 

p = 

A = 

37,200 
250 + 

624p + 30A = 0 
25p 30A = 0 

37,450 - 599p = 0 

372450 
599 

$62 .50 
50 + 312.50 = 362.50 = 

6 6 
$60.42. 

Thus $62.50 appears to be the profit-maximizing price-when used in 

conjunction with an expenditure of approximately $60 on advertising. The 

two straight second partial derivatives are: 

-104 a2'Jf = -6 
,~ 

and both are negative, therefore, meeting one condition. The second cross-

partial derivative is 
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= 5. 

Therefore, the second condition is also met: 

[o27(l[a27r l > r a21r -J 2 

a?l a;rJ l_ap SA 

(-104)(-6)> (5)2 

624 > 25. 

The second-order conditions show the figures to be a maximum and not a 

minimum or a saddle point . 18 

Example 5. 

The total cost curve of a commodity is y = 2x - 2x2 + x3 , where y 

represents total cost and x represents quantity. Suppose that market 

conditions indicate that between 3 and 10 units should be produced (that 

is, 3 ~ x ~10). For what quantity in this interval is average cost a 

minimum (see Fig. 3)? 

18rbid., p. 129-130. 

1' 
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\ 
\ 

\ 

(0, 2) 

cost = y_ = 
X 

-y 

y = 

I 
I 

X = 3 

2 -

a-
~= -2 
dx 

= 0 

<0 

>O 
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(10, 82) 

y = 2 - 2x + x2 

X = 10 

Figure 3 

2x + x2. 

+ 2x 

if X = 1 

ifx<l} 
so minimum at x = 1 

if X > 1 

But x = 1 is outside the interval 3 ·:S x .< 10. 

If X = 3, y = 5 

if X = 10, y = 82 
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Thus in the interval 3 < x S.10 the least value of y occurs at x = 3 

and the greatest value occurs at x = 10; at neither of these points is 

Ei 
dx 

equal to zero. Thus, for between 3 and 10 units, average cost is 

· · f 3 ·t 19 minimum or uni s. 

Example 6. 

Problems in Inventory Control: Optimal Reorder Quantity 

Assume that a manager wants to select an optimal inventory policy 

for one of the basic items in his product line. Total demand Q for the 

product has been stable over the last several years at about 100,000 units 

per year, and there has been no seasonality in sales. The manager's 

policy has been to order 25,000 units Data time (partly because he hates 

paper work). How many times does he order each year? This can be cal-

culated from: 

Total demand = .Q_ = 100,000 4 times. 
Amount delivered each time D 25,000 

To decide on the number of times he should order each year, the 

manager must know the costs that are influenced by his inventories and 

the magnitudes by which these costs vary. The relevant costs are: the 

costs of carrying the inventory once he has it, and the costs of order-

ing when he runs out. 

1. Carrying costs. If demand for an item is stable, the carrying 

costs can be approximated by the cost per unit multiplied by the average 

number of units held in the inventory. These costs consist of the ware-

l9Jean E. Draper, and Jane S. Klingman, Mathematical Analysis: 
Business and Economic Applications (Harper and Row, 1972), p. 235. 
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If k were equal to $8 per thousand units, then the carrying cost would 

be 

(12.5)($8) = $100. 

2. Order costs. The number of orders currently placed during the 

year is 4 = 100/25. More generally, if Q units are to be sold during 

the year and D units are delivered for each order, the required number 

of deliveries is Q/D. Suppose that the cost of ordering is related to 

the amount delivered by the expression a+ bD, where a= $60 and b = 

$3 per thousand units. Here b may be interpreted as the shipping cost 

per thousand units so that the cost of sending D items is b(D) dollars, 

that is, $3 x 25 = $75; a represents costs such as bookkeeping and long-

distance telephoning for orders-in other words, costs whose magnitude 

is not affected by the amount involved in the shipment. With a= $60 

and b = $3 per thousand, the cost per delivery, a+ bD, would total $135. 

The total annual ordering costs equals the number of deliveries 

(Q/D) multiplied by the cost per delivery a+ bD;l 

Total annual 
ordering cost 

(a+ bDlQ 
D 

= aQ + bQD = ~ 
D D D 

+ bQ. 

The total cost C, which results from the manager's inventory policy 

is the sum of the two costs: the carrying costs and the ordering costs. 

It is equa l to 

C = kD + ~ + bQ.20 
2 D (4 .1) 

20McAdams, Mathematical Analysis, p. 100-101. 
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Example 7. 

Finding the Minimum Cost Inventory Policy 

The only unknown in equation (4 .1) for the total annual cost 

associated with inventory is the value of D, the number of items to be 

delivered per shipment. Once the number of items that leads to the 

minimum cost for the year is determined, al l other factors are deter-

mined, because the corresponding average inventory level D/2 is immediately 

available and the number of shipments per year must be Q/D . 

Equation (4.1) is the rule for the function that specifies the 

total cost for each value of the variable D. For example, given Q = 100 

(thousand), k = 8, a= 60, and b 3, then equation (4. 1) becomes 

C = SD + 60 x 100 + 3 x 100 
2 D 

or 

C = 4D + GOOO + 300. 
D 

( 4 . 2) 

If D were equal to 25 (thousand), then 

C = 100 + 240 + 300 = 640 ( that is, 100 + 540). 

There is no assurance that D = 25 is the minimum cost for the year's 

inventory. However, with equation (4.2), the value of D that minimizes 

costs can be approximated . Thus, de termining the inventory-cost equation 

provides the means for solving the problem. The objective is to minimize 

cost. The function that specifies cost is thus called the objective 

function. It shows how the firm's costs are affected by different values 

of the relevant variables . This is illustrated by several methods; first, 

by a series of trial calculations; second, graphically; and then through 
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the use of the calculus. A formula for the least cost order quantity 

is derived from the calculus solution. 

To find the approximate value of minimum costs one can simply take 

a number of alternative values of D, substitute them in turn into the 

equation, compute the corresponding values of C, and thus find, roughly, 

the value of D that gives the lowest cost. This is done in Table 4.1. 

Table 4.1 

Total Cost as a Function of Amount Ordered 

D 10 20 30 40 50 60 70 80 

C 940 680 620 610 620 640 666 695 

From this table, it can be seen that a value of D of approximately 40 

(thousand) units per delivery minimi zes cos ts. In effect, then, the 

inventory problem has now been solved. However, some additional analysis 

will make it possible to extract a great deal of additional information 

from the equation (and perhaps clarify some of the concepts presented 

in the previous examples). 

The objective function, equation (4.2) and its components, can be 

analyzed graphically as shown in Figure 4.2. The carrying costs are 

represented by the straight line 4D in this diagram. They increase in 

direct proportion to the size of D. The order costs are made up of two 

components: a component that does not vary with D, at $300, and a con-

tinually decreasing total, variable ordering cost, indicated by the 

(hyperbolic) function 6000/D. The total costs from Table 4.1 are also 
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plotted. Note that the minimum total cost falls just slightly to the 

left of the point at which D = 40. 

Cost 

10 

9 

8 = 40 + 6000 + 300 = ( 1) 
7 

D 

6 

5 
6000 (2) 

D 
4 4D 
3 - - ---
2 

300 = (4) 

1 

10 30 so 70 90 Order Size 

(1) Total Inventory Costs 
(2) Total Variable Ordering Costs 
( 3) Total Carrying Costs per Year 
(4) Total Fixed Ordering Costs21 

Figure 4.2 

Cost Components for Inventories: 
(2) Total Variable Ordering Costs. 
(4) Total Fixed Ordering Costs. 

(1) Total Inventory Costs. 
(3) Total Carrying Costs. 

2lrbid., p. 102-103, 

r 
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Example 8. 

Problem of Profit Maximizing: Quantity to Order 

The demand curve DD relates the price of goods to the quantity of 

goods that would be purchased at a given price, as specified in equation 

(4.6) where pis the price of the product and q is the quantity demanded 

Price per 
Unit 

p 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

10 

p = 20 - .9.. 
5 

30 50 70 

Quantity 

Figure 4.3 

D 

90 

Demand Curve DD for a Given Product. 

(4.6) 

q 

The demand curve is the line DD in Figure 4.3. It has the negative 

slope characteristic of a monopolist's demand curve; with a decrease in 

price goes an increase in the quantity demanded. 

Assume that the product costs $2 per unit to produce. Since profit 

is equal to revenue~cost, an equation for the total profit of the firm 

I ; 
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can be written as 

?C=r-c 

where 7( is profit, r is revenue, and c is cost. Since 

but 

therefore 

Profit 
500 

400 

300 

200 

100 

0 
10 

Profits in 

r = p X q and 

p = 20 - .9.. 
5 

1e = ~o - f) q - 2q . 

30 50 70 

Figure 4 . 4 

C = 2q 

90 100 q 

Quantity 

Relation to Total Quantity Sold. 

(4. 7) 
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The total-profit equation (4.7) has been developed in terms of total 

revenue minus total costs, with the quantity sold being a function of 

the price at which the product is sold. It can be simplified further 

to 

and 

= 20q -
? _g_-_ 

5 

? 
= 18q - _g_-. 

5 

2q, 

(4 . 8) 

This profit equation (4.8) can be plotted as shown in Figure 4.4. Its 

relative maxima and minima can be located by finding the rule for the 

first derivative function and setting it equal to zero. It is also 

necessary to check the values of the profit equation at the endpoints 

of any interval corresponding to the quantity of goods that can be pro-

duced. The first of the endpoints, the zero quantity point, results in 

zero profit. In Figure 4 .4 the profit line rises to a height in excess 

of $400 for output (sales) quantities of approximately 40-50 units, a 

level greatly to be preferred to that at the zero output point. Profits 

decrease to the right of the point Mand eventually reach zero again (at 

90 units output), 

The rule for the profit function has been stated in terms of the 

domain variable, quantity sold. The rule for the derivative function is 

d 

dq 

This is set equal to zero: 

(?\') = 

2 

E_ f18q -
dq \ 

..::i_ 18-- q. ns-2) = 2 
5 

18 ?1 = 
q = 

0 
(18) (-2.) = 45. 

2 

(4. 9) 
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There is a single value of q at which the value of the first derivative 

is zero; this value is q = 45. From Figure 4 .4 the function is seen to 

reach a maximum value at q = 45, the point M. This can also be demon-

strated mathematically through the use of the second derivative function. 

The rule for the second derivative function is 

d (18 - ~) = 
dq 5 

2 

5 (4 .10) 

Thus for all values of q, including q = 45, the second derivative is 

negative; that is, the rate of change of the slope of the function is 

everywhere negative. This means that the extreme point at q = 45 is a 

maximum point. The value of the profit equation (4.8) at q = 45 is 

7(= 18(45) - (45)
2 

= 18(Lf5) - 9(45) = 9(45) = 405 . 
5 

Since, from equations (4.9) and (4.10), profit must be everywhere decreasing 

for values of q > 45, then (45, 405) is the (global) maximum profit level. 

Figure 4.5 shows the three functions, the profit function (Figure 

4.5(a)), the first derivative function for profits (Figure 4.5(b)) and the 

second derivative function for profits (Figure 4.5(c)). Figures 4.5(a) 

and 4.5(b) show that the slope of the profit function is positive for 

OS q !::45, becomes zero at q = 45, and then is everywhere negative. 

From Figures 4.5(b) and 4.5(c), the negative slope of the first derivative 

function is verified. Implicit in the foregoing discussion is the econo-

mist's widely known decision rule: produce (and sell) that output for 

which the marginal cost equals the marginal revenue. 
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(a) Profits in Relation to Total Quantity Sold. (b) Rate of Change 
of Profits with Changes in q. (c) Second Derivative Function. 22 

22Ib1·d., 106 109 p. - . 



CHAPTER 10 

Example 1. 

CHAPTER 5 

INTEGRAL CALCULUS 

Definition of the Definite Integral · A 
Geometric Interpretation of the Definite 
Integral · Integrals by Approximation · 
The Fundamental Theorem of Integral Calculus 
Applications of the Definite Integral · 
Areas Under a Nonnal Curve· The Indefinite 
Integral and Applications 

A trucking firm has purchased an automatic loading device with which 

it feels it can substantially reduce costs . It is believed the yearly 

annual savings in thousands of dollars are given by S(t) = 100 - t2, 

where the annual savings decrease due to lower operating speed and in-

creasing damage to shipments as the machine ages . Annual operating ex-

penses, also in thousands of dollars, are expected to be R(t) = 12t. The 

net "earnings" of the machine in year tare 

E(t) = S(t) - R(t) 

= 100 - t 2 - 12t. 

Obviously the company will not retain the machine beyond the time period 

in which S(t) = R(t), and to find the year in which the machine should be 

scrapped, we solve 

100 - t 2 = 12t 

t = 5. 65. 

47 
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For simpl icity we assume the machine is retained for five years, and total 

net savi ngs for t he five-year period are 

1: (100 - t
2 

- 12t) dt = (1oot - t3 -6t2) 

= 308.333. 23 
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(a) Earnings function E(t) and repair costs R(t) for data in 
Example 3 . (b) Total future earnings N(T) and salvage values 
S(T) for data in Example 3 . 

23Youse, Calculus for Students, p . 190 . 
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Example 2. 

The total earnings from the introduction of a new product are ex-

pected to be given by 

~ · (-2x + 5) dx a (-x2 + Sx) 
T 

St - t 2 

0 

To find the time period in which profit is maximum we apply the tech-

niques of derivatives 

d (St - t 2) = 5 - 2t. 
dt 

Setting the derivative equal to zero and solving, t = 5/2. Since the 

second derivative of the function is negativ~ t = 5/2 is the point in 

time at which profit is maximum. 24 

Example 3. 

A firm has purchased a machine which will produce gross earnings 

(revenue less cost of material and labor) at time t of 

E(t) = 120 - l_t2 
5 

where E(t) is in units of $1,000 and tis in years. The repair and 

maintenance cost at time tis 

R(t) = t 2 

again measured in units of $1,000. Suppose the firm can dispose of the 

machine at any time with no cost or salvage value. How long should the 

machi ne be operated? 

The two functions E(t) and R(t) are shown in Figure~. E(t) is a 

decreasing concave function for t > 0 and R( t) is an increasing convex 

24rbid., p. 190-191. 
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function. The value oft at which the curves cross is the solution of 

E(t) = R(t) 

120 - .!.t 2 = t 2 
5 

or t = ±10 

Since after ten years the repair costs exceed the gross earnings, the firm 

will maximize net earnings if the machine is disposed of at the end of ten 

years. The total net earnings are 

1
10 
O [ E(t) - R(t)] dt = 1

10 

O 120 - lt2 - t 2 
5 

dt = ( 120 - lt2] dt J 
10 

0 5 

or $800,000 . 

10 

= [12ot - _§_ .!.
3
] 

5 3 O 

= 1,200 - 6000 = 1,200 - 400 = 800 
15 

Suppose the machine has a salvage value S(t) at time t where 

S(t) = 2,000 
3 + t 

in units of $1,000. When should the firm sell the machine? The firm will 

maximize its total net earnings if it sells the machine at a time T when 

the salvage value just equals the net earnings obtainable after T; i.e., 

when 

S(T) ~ J :O [E(t) - R(t)] dt 

2,000 = 800 - 120T + 2T3 
3 + T 5 

The solution is T = 5. S(T) is a monotonically decreasing function with 

S(O) = 666.67 and S(lO) = 153.84. Similarly, the net earnings from year 

T to year 10; i.e., 



N(T) 

51 

2T3 
= 800 - 120T + ~ 

5 

is a monotonically decreasing function with N(O) = 800 and N(lO) = 0. 

Before five years the salvage value will be less than the potential future 

net earnings and after five years the salvage value will be greater. The 

25 optimum time to sell, therefore, is at the end of five years. 

Example 4. 

Given the functions c with rule c(q) = 4 + (q - 4) 2 for the marginal 

cost and r with rule r(q) = 20 - 2q for the marginal revenue of a firm 

where q is the quantity of product produced, find: 

(a) The profit-maximizing output for the firm. 

(b) The total profit for the firm at that output. 

(c) The profit that would be achieved if output were in-

creased by two units beyond the profit maximizing 

output. 

(d) The rule for the demand function for the firm. 

(e) The rule for the average cost function of the firm. 

(a) Profit maximization requires that r = c, or r - c = O. Because 

profit equals total revenue minus total cost, as derived in Chapter 4 from 

the profit function, then 

r - C = 0 

(20 - 2q) - (4 + (q - 4) 2] = 0 

Solving for q, this gives: 

25Daniel Teichroew, An Introduction to Management Science (New York: 
John Wiley and Sons, Inc., 1964), p. 216-218. 
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20 - 2q - (4 + q2 - 8q + 16) = 0 

6q - q2 = 0 

q(6 - q) = 0 

q = 0, 6. 

The maximum profit output occurs at one (or both) of these points. Equa-

tion (7.22) is the first derivative d?l"/dq of the profit function. The 

second derivative is found by taking its derivative in turn: 

At q = 0, it equals 6 identifying this as a minimum. At q = 6, it equals 

-6; an output of 6 units will provide maximum profit. 

(b) Total revenue is found from the integral of marginal revenue, 

and total cost is found from the integral of marginal cost. Profit is the 

difference between total revenue and total cost. Graphically it is the 

area between the curve for marginal profit and the curve for marginal 

revenue shown in Figure .2. 

Total profit '11'1 is thus given by the integral of (area under) r 

minus the integral of (area under) c for the appropriate limits of inte-

gration, in Figure 2 from a= 0 to b = 6. Thus, 

?r'l 

Since the 

= I>dq -

limits are the same 

~ (20 - 2q) dq - ~:[4 + (q - 4) 2] 

both integrals and both involve the 

dq. 

variable q, the integrals can be combined and simplified before integrating 

as follows: 
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~ Net Revenue 

m Bot h 

~ Net Cost 

2 3 4 5 6 

Limits of • b < 
Integration 

Figure 2 

Marginal Cost 

-r = Marginal Revenue 

7 8 9 10 

>d q = quantity 

The Marginal Revenue (r) and Marginal Cost (c ) Functions 
and the Areas between Them . 
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1f 1 = J : (6q _ q2) dq = &q2 - l)I: 
'71"'1 = [3(36) - %(36) J- [oJ 

1T' l = 36. 

The total profit from the profit maximizing output of 6 units is 36 (thousand 

dollars, perhaps). 

(c) The total profit 1r2 from an output of 2 greater than the profit 

maximizing output is the sum of the two areas shown enclosed between rand 

c in Figure 2. From the point Bon in Figure 2, marginal cost exceeds 

marginal revenue, and profits for output in excess of 6 units are negative. 

From part (b) of this example, total profits in the interval [0;6] are 

known to be 36 (thousand dollars, perhaps). The (negative) profit in the 

interval [ 6;8] is given by 

or 

?( - \d 
2 - l cdq -1: rdq =1: [ 4 + (q - 4)

2
] dq - J: (20 - 2q) dq 

?( 2 = 1: (q2 - 6q) dq = 

= [~(64) - 3(64) J - [&.(36) - 3(368 
3 3 

= [-f (64)] - [-36] 

= c-21l + 36) = 14l 
3 3 

Thus total profit would be 

36 - 14£. = 211. 
3 3 

if output were increased from 6 to 8 units. 

(d) The demand function D for a firm is an average revenue function 



55 

AR. Average revenue is equal to total revenue~r dq divided by quantity 

q; thus the rule for the demand function can be found from 

D • AR ·(Jrdq} q 

[}20 - 2q) dq] • q • (20q - q2) • q 
= 20 - q. 

Observe that the rule for the demand curve is a straight line with the 

same intercept as the rule for .E_, but with slope only 1/2 the slope of the 

rule for r. 

(e) The rule for the average cost function AC is found from the rule 

for the total cost function divided by the quantity produced; thus AC= 

J cdq) + q or 

=U(20 - Sq + q2)dq] + q 

= ~Oq - 4q2 + {3) + q 

2 
= 20 - 4q + Si 3 

Profit could be determined from the average cost and average revenue 

functions which can also be graphed (but have not been here). 

Throughout the preceding discussion the function .f(x) has been assumed 

to be everywhere positive, but this does not imply that it is not possible 

to find the area under a curve for values of the function that are negative. 

The question arises when an area that is positive is bounded by the endpoints 

of an interval, the x axis, and a negative value of the function in the 

interval. From the definition of an integral as the limit of a sum of 
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products, the negative value of.f(x) in each product leads to a negative 

number that would imply a negative area, an illogical result. The usual 

convention for dealing with this problem is also adopted here; for those 

domain intervals over which the function is negative, the integral repre-

senting the area is preceeded by a negative sign, thus reversing the sign 

of the product in that interval. The situation is illustrated in Figure 

3. 

y 

X 

Figure 3 

' 
Area under the Graph of the Functiori/with Rule y = ; ·ex) 
for Values of~that Are Both Positive and Negative. 
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The area under.f (x) in the interval [a;b] is the sum of the two 

shaded areas. By the convention, this area is represented by 

J: (x)dx - J: 26 (x)dx. 

One very important group of applications of the integral and of the 

exponential function is in computing what are called present values and 

future values. These concepts will be encountered very frequently in 

subsequent work, notable in capital budgeting. These examples provide a 

mathematical basis for such applications, and prove some frequently used 

results. 

Example 5. 

Future Value of a Sum 

Suppose that a certain sum of money A i s available today. In each 

future instant of time, this sum will grow at the instantaneous rate of 

(10 = r) percent per year. How much money will have accumulated t years 

later? 

In symbolic terms, the future sum y is a function of t, [ y = f ( tU 

where the function f has the following properties: 

(1) f (0) = A 

(2) ~ = ry. 
dt 

Condition (2) is satisfied by the function y = J(t) = A~rt since (d/dt) 

Aert = rAert = ry. 

Condition (1) is also satisfied since J(O) = Aer,O = A. 

26McAdams, Mathematical Analysis, p. 238-241. 
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Example SA. 

Initial sum is $100. The continuous growth rate is .125 = 12.5 

percent. The future period is eight years. 

y = $100e,125t = lOOe(.125)8 

if t = 8, 

y = $100el = 100(2.718) = $271.80. 27 

Example 6 

Present Value of a Future Sum 

The future value can be computed if a present sum is given, and the 

question asked: How much will it be worth at some future date assuming 

the amount increased at an instantaneous rate of r per period? The in-

verse of this problem occurs if a future sum, say B, is given which will 

~ 

become available at a specified future date. The question then arises, 

at an instantaneous growth rate of r: How large a present sum would be 

needed so that its future value at the specified future date would be 

equal to B? 

In this instance the fact that (dy/dt) = ry and that y(tn) = B_are 

given. Here time tn is the specified future date. The problem is to 

find the value of y at t = 0. Let A be the required present sum. The 

given condition (dy/dt) = ry is satisfied by y = y(t) = Aert since tn, 

y(tn) = Ae:rtn = B. Solving this equation for A, we have A = Be-rtn. A 

lender would like to earn 6 percent on any loan he makes. The borrower 

agrees to pay a lump sum of $1500 ten years from now. How much can the 

27Ibid., p. 2s1. 
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lender lend today and still satisfy his objectives? 

x = ($1,500)e-(.06)(10) 

1 

e . 60 
($1,500) . 

The antilog of -.6 is .549 . The amount that could be lent is ( . 549) 

(1,500) = $824. 28 

Example 7. 

Present Value of an Annuity 

A series of equal future receipts is called an annuity . Suppose 

that a piece of equipment has a useful life of 10 years. It can be rented 

at $10,000 per year (in equal weekly installments), or purchased by an 

outright cash payment of $65,000. The salvage value after 10 years is 

expected to be zero. Is the present value of the rental payments at an 

8 percent interest rate greater or less than the cash outlay? 

The present value of the annuity , the series of rental payments , 

can be approximated by the following integral (since the integral is 

for continuous compounding and the problem calls fo r compounding 52 times 

per year) . 

A = 1: Re-rtn dt where R is the annual payment 

~:(10, 000)e-( . OB)t dt. 

The indefinite integral has the following solution: 

+ c) R. 

28Ibid., p. 251-252 . 
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Appl ying the fundamental theorem fo r r = .08 , t = 8, and R = 10 , 000 we 

have 

J 
10 

( l O,OOO)e-( .03)t dt = (10,000) [-e-· 8 -t~a)l . 08 

Si nce 

e- . 8 = _1_= 
e·8 

the final bracket is equal to: 

1 
2 . 23 

44 . 1 = . 8,-
.08 

100 -- = 
8 

12 . 5 , 

[ - . 448(12.5) + ( 12 . 5)] = (12.5)(1 - .448). 

The refor e 

~ (10,000)e- •OSt dt = ($10,000)( 12 . 5)(.552) = $69,000 . 

The present value of the annuity is $4000 greater than the present value of 

the cash purchase price. 

I n case the annuity has an indefinite life, the greatest value of the 

annui t y has a simple expression: 

J~ e-rt dt = 
-e-rt 

r 

b h . 1 I . . 11 f 1 · · 29 Remem er t 1s resu t. t 1s espec1a y use u 1n economics . 

29r bid ., p. 2s2. 



CHAPTER 6 

CHAPTER 11-12 INTRODUCTION TO PROBABILITY 

Example 1. 

Sets and Subsets · Intersections and Unions · 
Sample Spaces · Assignment of Probabilities 
Events · An Application • Some Counting 
Formulas 

ADDITIONAL TOPICS IN PROBABILITY 

Univariate vs Bivariate Data · Joints and 
Marginal Probabilities · Conditional Pro
babilities · Independence · Tree Diagrams 
Probability Vectors, Mar kov Analysis 

Seven different machining operations are to be performed on a part, 

but they may be performed in any sequence. We may then consider 7! = 

5040 different orders in which the operations may be performed.JO 

Example 2. 

Ten workers are to be assigned to 10 different jobs. In how many 

ways can the assignments be made? The first worker may be assigned in 

10 possible ways, the second in any of the 9 remaining ways, the third 

in 8, and so forth: there are 10! 

the workers to the jobs.31 

3,628,800 possible ways of assigning 

30 Kemeny, and others, Finite Mathematics, p. 99 . 

31Ibid. 
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Example 3. 

A company has n directors. In how many ways can they be seated 

around a circular table at a board meeting if two arrangements are con-

sidered different only if at least one person has a different person 

sitting on his right in the two arrangements. To solve the problem, 

consider one director in a fixed position. There are (n - 1) ! ways in 

which the other people may be seated. We have now counted all the ar-

rangements we wish to consider different. Thus there are also (n - 1)! 

possible seating arrangefuents. 32 

Example 4. 

The number of permutations of n distinct objects is a special case 

of this principle . If we were to list all the possible permutations, 

there would be n possibilities for the first, for each of these n - 1 for 

the second, etc., until we came to the last object, and for which there 

is only one possibility, Thus there are n(n - 1) . 

ities in all. 33 

Example 5. 

1 = n! possibil-

An automobile manufacturer produces 4 different mode ls; models A 

and B can come in any of four body styles~sedan, hardtop, convertible, 

and station wagon~whi le mode ls C and D come only as sedans or hardtops. 

Each car can come in one of 9 colors. Thus models A and Beach have 

32rbid., p. 99. 

33Ibid., p. 100. 

I 
I 
l 
I 
I 
I 
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4 · 9 = 36 distinguishable types, while C and D have 2 · 9 = 18 types, 

so that there are in all 

2 · 36 + 2 · 18 = 108 

different car t ypes produced by the manufacturer. 34 

Example 6. 

Suppose there are n applicants for a certain job. Three inter

viewers are asked independently to rank the applicants according to their 

suitability for the job. It is decided that an applicant will be hired 

if he is ranked first by at least two of the three interviewers. What 

fraction of the possible reports would lead to the acceptance of some 

candidate? We shall solve this problem by finding the fraction of the 

reports which do not lead to an acceptance and subtract this answer 

from 1. Frequently an indirect attack of this k ind on a problem is easier 

than the direct approach. The total number of reports possible is (n!)3 

since each interviewer can rank the men inn! different ways . If a parti-

cular report does not lead to the acceptance of a candidate, it must be 

true that each interviewer has put a different man in first place. This 

can be done in n(n - l)(n - 2) different ways by our general principle. 

For each possible first choice, there are [Cn - 1) !]3 ways in which the 

remaining men can be ranked by the interviewers. Thus the number of re

ports which do not lead to acceptance is 

n(n - l)(n - 2).[(n O 1)!]3, 

Dividing this number by (n!)3 we obtain 

34Ibid., p. 100. 
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(n - 1) (n - 2) 

n 

as the fraction of reports which fail to accept a candidate. The fraction 

which leads to acceptance is found by subtracting this fraction from 1 

which gives 

3n - 2 . 
n2 

7 For the case of three applicants, we see that -g- of the possibilities lead 

to acceptance. Here the procedure might be criticized on the grounds that 

even if the interviewers are completely ineffective and are essentially 

guessing, there is a good chance that a candidate will be accepted on the 

basis of the reports. For n equal to ten, the fraction of acceptances is 

only .28, so that it is possible to attach more significance to the in

terviewers' ratings, if they reach a decision.35 

Example 7. 

"Key sort" cards are cards containing a series of punched holes 

along the upper edge. A card may contain information about an employee, 

an account, a part number, a stockholder, a sales order, etc. A set of 

cards is kept in a box, and each card is classified by assigning it to 

a cell of one or more partitions of the set. To make it easy to find all 

the members of a cell of a particular partition, or of a cross-partition, 

the following mechanical procedure is used. A subset of the set of holes 

along the upper edge of the card is assigned to each partition. The holes 

so assigned are called a "field." The cells of a partition can be dis-

35Ibid., p. 101. 
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tinguished by cutting slots through some of the holes in the field. A 

rod can be inserted through the set of cards at a particular hole loca

tion and then lifted. The cards that are slotted at that location will 

remain in the box and those that are not will be lifted out with the rod. 

The number of hole locations assigned to a field depends on the 

number of cells in the partition that the field represents. We can think 

of each hole location as a bit, letting a slot represent a O and an un

slotted hole a 1. If there are n hole locations in a field, they can be 

made to correspond to as many as 2n cells, since with n bits we can repre

sent the 2n decimal integers O through 2n - 1. Thus a four-bit field can 

represent a 16-cell partition. 

Suppose, for example, we have a card for each worker in a factory. 

The workers are classified by sex, job classification, and department num

ber. A single bit can be arbitrarily assigned to indicate a worker's 

sex; for example, let O represent female, 1 represent male. If there 

are 13 job classifications, we need a four-bit field for them; we may 

assign 0001 for classification 1, up to 1101 for classification 13. Let 

there be 25 departments; then we need a five-bit fie ld for them, assigning 

00001 to department 1 up to 11001 for department 25 . 

Now suppose we want to find all the male workers in job classification 

6 working in department 11. These will be identified by the binary number 

1011001011, the first bit identifying sex , the next four bits the job, 

and the last five bits the department. We first partition the set by 

withdrawing those cards with unslotted holes in hole location 1. These 

are all the male workers in the factory. We withdraw from this subset all 
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cards with unslotted holes in location 2; these correspond to workers in 

job classification 8 and higher, while those that are left represent job 

classifications 7 or lower. Of those which are left, we now withdraw 

those with unslotted holes in locations 3 and 4, and remove from this 

subset the cards with slotted holes in location 5. We now have the 

subset of male workers in job classification 6. The procedure is con

tinued in this fashion to find the subset of this subset which contains 

workers in department 11. 

Observe that the procedure works independently of the original 

order of the cards in the box.36 

Example 8. 

An electronic component is mass-produced and then tested unit by 

unit on an automatic testing machine. According to the electrical char

acteristics of each component, the machine automatically classifies it 

as "good" or "defective." If the same unit is tested twice, the machine 

should, theoretically, classify it in the same way both times. We assume, 

however, that the machine has a certain probability q of mi sclassifying a 

part on any given trial, because of electrical or mechanical failure on 

the part of the testing machine. To improve the accuracy of our classifi

cation we may have the machine test the same unit not just once but r 

times, and finally classify a unit according to the classification which 

a majority of the tests give. To avoid ties we assume that r is odd. 

Let us see how this process decreases the probability of classification error. 

36McAdams, Mathematical Analysis, p. 86-87. 
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Consider r experiments on each unit, where the jth experiment 

results in success if the jth test classifies the unit without error. 

The probability of success is then p = 1 - q. The majority decision 

will classify a unit correctly if we have more than r/2 successes. 

Suppose, for example, that we test each unit five times, and that the 

probability of misclassification on any single test is .1. Then the 

probability for success is .9, and the probability that the majority 

of the test results will correspond with the true state of the unit is 

b(3; 5, .9) + b(4; 5, .9) + b(5; 5, .9) 

which is found to be approximately . 991. 

Thus the above procedure decreases the probability of misclassifi

cation from .1 in the case of one test to .009 in the case of five.3 7 

Example 9. 

A company is applying statistical quality control procedures in an 

attempt to control the costs of its five branches. The branches are the 

same size and are situated in like communities, and the business is not 

characterized by seasonal fluctuations. To obtain estimates of the mean 

of a certain cost, the company has averaged quarterly reports of the cost 

for each branch. Thus, one branch had the following readings f or this 

cost: $20,000; $18 ,200; $18,000; and $21,400. The arithmetic mean for 

this branch was, therefore, 

x = ~~-x~ = $77,600 = $19,400 
n 4 

37 Kemeny, and others, Finite Mathematics, p. 172. 
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Similarly computed averages for the other four branches were $20,800; 

$19,000; $20,200; and $18,600, Consequently, the population mean may 

be determined as follows: 

,v = t'-,= X 
N 

= $98,000 = $19,600 
5 

The standard deviation a"' may be calculated by constructing a table 

similar to 

$19,400 
20,800 
19,000 
20,200 
18,600 

-
X = $98,000 

p. 

$19,600 $ 
19,600 
19,600 
19,600 
19,600 

I 

x. -µ 
1 

-200 
1,200 
-600 

600 
-1,000 

Cxi - t-1-) 2 

$ 40,000 
1,440,000 

360,000 
360,000 

~ 1,000,000 
. (x - , ... l) 2= $3,200,000 

3,200,000 
5 - 1 

= $894.50 

1. One of the important attributes of tS' is that }-1- ± 3 d can be 

shown to include 99.73% of the normally distributed population . 

2. In practice, the values µand <:s are rarely known because most 

populations are infinite; hence, the values of samples are used as 

proxies. · 

Setting Control Limits 

COMMENT 

With these values of i,A and CT at hand, management now wishes to choose 

decision rules in order that acceptable ranges of performance may be deter

mined. In other words, when a branch submits a quarterly report of this 

cost, management wants to have predetermined figures that designate whether 

performance is acceptable or whether it requires further investigation. 
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Two things could happen at any time: 

1. The performance could be in control, but it falls outside the 

acceptable range and is needlessly investigated (this is known as a type 

I or o( error); or 

2. The performance could actually be out of control~in the sense 

that the population mean has shifted~but because it falls in the accept

able range, we fail to detect the change (this is known as a type II or 

/3 error). 

Management must decide what risks of these errors it is willing to 

take. Furthermore, the risks work inversely to one another; if the a( 

risk decreases, the {3 risk increases, and vice versa. It is these deci

sions that determine how tight the standard or budget will be. Let us 

continue our example. 

Management decides that it is willing to risk a type I error (in

vestigating acceptable performance needlessly) 10% of the time (i.e., 5% 

when performance is on the low side and 5% when it is on the high side). 

Management also wants to know what percentage the population mean would 

have to change while retaining the same standard deviation in order that 

it could have 80% confidence that the change would be detected. (Observe 

that 80% is the probability of not making a ~error.) 

The upper and lower control limits corresponding to the o< risk may 

be determined as follows. First turn a normal curve on its side in order 

to understand why the limits are called "upper" and "lower." Any perfor

mance falling within the limits is acceptable, and any performance outside 

the limits requires further investigation. See Figure 11. We consult a 
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Table to find the number of standard deviations corresponding to a 

probability of 0.4500. We see, by interpolation, that 1.645 standard 

deviations is our answer. Therefore, our limits become 

,.... ± 1. 645 

19,600 ± 1.645(894.50) 

UCL= 21,071 

LCL = 18,129 

Upper Control Limit (UCL) - Investigate ----------r--
45% 

-+~~~~~~~~~~---1~1~- Acceptable 

r 

Lower Control Limit (LCL) - l ---------------
Investigate 

Figure 11 

Now, any quarterly cost x such that (18,129 S x !:::. 21,071) is true will be 

considered to be in control, but any x outside these limits would call 

for investigation. 
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To understand what the{?, error is all about, study Figure 12. 

As matters presently stand, (the ''old" curve) ,->- = 19,600, and the 

upper control limit is 21,071. If the quarterly cost x were greater 

than 21,071, we would say that further investigation was necessary. 

But suppose JJ. had actually changed so that the state of affairs found 

us in the "new" curve. Further suppose that x was less than 21,071. 

Now, because of our set limits based on the "old" curve, we would have 

no suspicions that p. had changed, and we would say that performance was 

acceptable and that no further investigation was necessary. But further 

investigation should be made since things have changed; therefore, since 

we do not do anything further, we commit a /3 error. 

The probability of making a /3 error is calculated by assuming that 

the population has shifted to the "new" curve and then finding the prob-

ability to the left of the "old" upper control limit, 21,071. From the 

total probability of the l eft-hand side of the "new" curve [this is 0.5000, 

since the normal curve is symmetrical to the left and right of the mean 

and the total area (or cumulative probability) under the curve is 1] we 

subtract the probability of being between 21,071 and? , the mean of the 

"new" curve. Management requires the /3 error to be a maximum of 20%. 

Old New 

19,600 

21 ,071 
Figure 12 

? 
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0.5000 - p(21,071S x ~ ?) = 0.2000 

p (21,071 ::;;_ X ~ ? ) = 0. 3000 

We wish to find the number (z) of standard deviations from the mean that 

will yield a probability of 0.3000. Actually, we apply the formula 

However, tables tabulate only the right side of th_e normal curve, and 

we are interested in the left. To adjust for this, we can change the 

formula to z = ( f,A, - x) /d' . . We therefore have 

p(z) = P {? - 2 l,O?(''= 0.3000 
\ 894.50 ) 

For the p(z) to equal 0.3000, ~ must be 0.8418. 

? - 21,071 = 0.8418 
894.50 

? = 21,824 

We can now convert this value to a percentage and tell management what 

change (either plus or minus~since symmetry is present and would produce 

the same% change) must take place in order to be 80% .sure of detecting 

the shift in population means. 

"New mean" 

"Old mean 

Change 

21,824 

-19,600 

2 , 224 

2,224 ~ 11.3% 
19,600 

If management were unsatisfied with the necessity of an 11. 3% change 

before it could be detected, it would have to increase the ()( risk. 38 

38corconen, Mathematical Applications, p. 83-86. 
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CHAPTER 7 

SUMHARY AND CONCLUSIONS 

The purpose of this study was to attempt to dispense with the 

business students common conclusions that mathematics is just an in-

tellectual exercise that they must endure as a sort of initiation fee 

into their major field. It was felt that the examples of the appli

cations of the particular mathematical concepts presented in applied 

mathematics textbooks to business situations as present ed here would 

do this . 

A further purpose was to arrive at the author's recommedations 

to the extent of the amount of mathematics that should be required for 

the undergraduate business student. 

The author feels that an applied. mathematics course that actually 

shows the student the business application should be required . The 

author did not find any textbook that had the necessary applications, 

but did find many textbooks that had the proper mathematics . 

The author feels that much of the required mathematics for under

graduates could be incorporated into a two semester course with equal 

emphasis on business and mathematics . 
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