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Abstract  In recent years, researchers have tried to estimate the
direction-of-arrival (DOA) of wideband sources and several novel
techniques have been proposed. In this paper, we compare six
algorithms for calculating the DOA of broadband signals, namely
coherent subspace signal method (CSSM), two-sided correlation
transformation (TCT), incoherent multiple signal classification
(IMUSIC), test of orthogonality of frequency subspaces (TOFS),
test of orthogonality of projected subspaces (TOPS), and squared
TOPS (S-TOPS). The comparison is made through computer
simulations for different parameters, such as signal-to-noise
ratio (SNR), in order to establish the efficiency and performance
of the discussed methods in noisy environments. CSSM and TCT
require initial values, but the remaining approaches do not need
any preprocessing.

Keywords  coherent, DOA estimation, incoherent, localization,
wideband sources

1. Introduction

Many applications rely on sensor arrays. These include radar
signal processing [1]–[3], sonar, medical imaging, wireless
communication systems [4]–[7], and Internet of Things [8]–
[10]. In the simplest scenario, signals received by the sensors
are scaled and contain delayed replicas of the waveform
emitted by a single source. In a complex case, numerous
sources and multiple propagation pathways from the sources
to the sensors may exist. In the Fourier domain, the most
frequent strategy is to decompose the broadband source into
narrowband elements [11]–[12]. Moreover, localization of
wideband sources is primarily based on figuring out how to
employ numerous covariance matrices at various frequencies
to construct precise DOA estimation [11], [13]. A variety of
approaches have been suggested to fix the problem of the
direction-of-arrival (DOA) estimation of various broadband
signals. These are categorized as incoherent signal subspace
algorithms [14], [15] and coherent signal subspace algorithms
[16], [17].

In this paper, we discuss the capabilities of some algorithms
used for estimating the location of wideband signal sources.
Being one of the fundamental wideband DOA estimation
methods, incoherent methods rely on numerous narrowband
sources that have been incoherently extracted from a broad-

band source [18]. In particular, these techniques apply inde-
pendently narrowband approaches, such as multiple signal
classification (MUSIC) [19], to signal sources. The first ap-
proach is incoherent MUSIC (IMUSIC). Its prediction reso-
lution improves in high signal-to-noise ratio (SNR) zones and
degrades when the SNR of several frequencies is minimal.
Moreover, weak estimations from several bands of frequen-
cies will have an impact on the performance of the overall
estimation. The second approach is the test of orthogonality
of frequency subspaces (TOFS) [20] which generates steering
vectors for each DOA and frequency available. When SNR is
high, the estimation accuracy is quite good, since TOFS is an
incoherent technique [20]. However, when SNR is low, TOFS
is unable to resolve the desired DOAs. Another algorithm,
known as the test of orthogonality of projected subspaces
(TOPS) [21], applies the signal and noise subspaces of vari-
ous frequencies to offer better DOA estimation performance
without the requirement to provide any starting values. Thus,
TOPS fills the gap between coherent and incoherent methods.
This technique offers the following advantages [21]:
– it does not require a beamforming matrix or focusing

angles,
– when SNR is high, it is not biased,
– at low SNR, it merges frequency bands more efficiently

than incoherent approaches.
The drawback of such an approach is that it is challenging to
determine the real DOA of sources, since the spatial spectra
computed using the TOPS method contain several incorrect
lobes. The squared TOPS (S-TOPS) approach [28] employs
the signal subspace and noise subspace twice and achieves
the squared test of orthogonality of both subspaces. S-TOPS
outperforms TOPS at small SNR values, since its resolution
has been enhanced.
The coherent signal subspace method (CSSM) has been
suggested to resolve these drawbacks and to estimate DOA
[16]. The covariance matrix of each frequency band is focused
by transformation arrays and the focusing arrays are averaged
to produce a novel covariance matrix in the coherent signal
subspace approaches. The main point of this approach is
to precisely focus these covariance matrices. The two-sided
correlation transformation (TCT) approach, an alternative of
CSSM, is proposed to improve performance.
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Various approaches for extracting a proper focusing array have
been suggested, e.g. in [23], [24]. Nevertheless, each focusing
algorithm entails starting values which are the predetermined
angles of arriving sources, and the efficiency of coherent
signal subspace methods is related to an initial value [25].
In this paper, we concentrate on the comparison of the tech-
niques mentioned above, with various SNR values, different
snapshots and for various angles of sources, in order to pro-
vide a more accurate comparison in terms of the advantages
and drawbacks of these approaches. The remaining part of this
paper has the following structure. In Section 3, the wideband
model and the problem of localization will be investigated.
The wideband methods are investigated in Section 4, while
the experimental results are discussed in Section 5. Finally,
Section 6 presents the conclusions and future outlooks.

2. Related Works
Many papers focusing on localization and wideband DOA
estimation for incoherent sources are closely related to our
work in this domain. The first is [13] as it proposes a novel ap-
proach to estimating the wideband sources, namely weighted
squared TOPS, and confirms that it outperforms other meth-
ods. Paper [13] does something similar to this specific work.
However, we present a comparative study using IMUSIC,
TOFS, TOPS, S-TOPS, CSSM, and TCT to estimate the wide-
band sources, and to determine which one of them performs
the best. Additionally, the comparative study of three wide-
band DOA estimation algorithms (TCT, TOPS, W-CMSR),
as presented in [11], demonstrates that W-CMSR surpasses
both TCT and TOPS in terms of resolution capability.

3. Problem Formulation
TheM elements of a uniform linear array (ULA) are evenly
spaced, with the distance d between succeeding elements
being no more than half of the wavelength. We assume that
L wideband sources (L < M ) are either known or can be
determined [26] and are impinging on the array elements
from different angles (θ1, θ2, . . . , θL). Figure 1 shows the
ULA geometry for the localization of broadband signals.

1-st 2-nd m-th M-th. . .
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Fig. 1. ULA geometry ofM antennas [11].

Our goal is to estimate the direction of arrival of L wideband
sources using an ULA of M antennas supposing that all
sources are uncorrelated and occur in the bandwidth between
the smallest ωs and the largest ωL source frequency. Thus,
the received data at the m–th antenna are given as follows:

xm(t) =
L∑
l=1

sl(t− vm sin θl) + nm(t) , (1)

where sl(t) is the l–th source, nm(t) is an additive white
Gaussian noise (AWGN) at the m–th component, vm =
(m− 1)d/c, where d is the distance between the components
of ULA, and c is the velocity of light. θl is the angle to
be computed. The received data is split intoK narrowband
signals. Thus, the discrete Fourier transform (DFT) of the
received signals at m–th element is:

xm(ω) =
L∑
l=1

sl(ω)e−jωvm sin θl + nm(ω) . (2)

The DFT output signals can then be represented in vector
form [11]:

x(ωi) = A(ωi, θ)s(ωi) + n(ωi), i = 1, 2, . . . ,K , (3)

where ωS < ωi < ωL for i = 1, 2, . . . ,K ,

A(ωi, θ) = [a(ωi, θ1) a(ωi, θ2) . . . a(ωi, θL)] , (4)

a(ωi, θl) =



1

e−jωiv1 sin θl

...

e−jωivM−1 sin θl


, (5)

where T is the transpose of a given matrix.
The correlation matrix is calculated in the following manner
[11]:

Rxx(ωi) = E[x(ωi)xH(ωi)]

= A(ωi, θ)Rss(ωi)AH(ωi, θ) + σ2nI ,
(6)

where E[.] is the expectation value operator, H is the Her-
mitian operator, Rss(ωi) = E[s(ωi)sH(ωi)], σ2n is the noise
power, and I is the M × M unit matrix. Supposing that
Rss(ωi) has a complete rank, the signal subspace Fs(ωi) and
the noise subspace Fn(ωi) matrices at the frequency ωi can
be generated using the eigen-values decomposition (EVD) or
the singular value decomposition (SVD) of the correlation
array as:

Fs(ωi) = [e1(ωi), e2(ωi), . . . , eL(ωi)] , (7)

Fn(ωi) = [eL+1(ωi), eL+2(ωi), . . . , eM (ωi)] , (8)

where e1(ωi), . . . , eM (ωi) are the perpendicular eigen-
vectors of Rxx(ωi), ranked in decreasing order by their cor-
responding eigen-values as follows:

λ1(ωi) ­ . . . ­ λL(ωi) ­ λL+1(ωi), . . . , λM (ωi) = σ2n . (9)
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4. Wideband Algorithms

In this part, we investigate several techniques for localization
of broadband signals. As described in Section 3, DFT is used
to break down every wideband source into K narrowband
signals.

4.1. Coherent Signal Subspace Method (CSSM)

Many strategies have been proposed to address the drawbacks
of incoherent methods by finding a good way to integrate the
signal subspaces coherently into one general correlation ma-
trix in which narrowband high-resolution methods may be
used. CSSM, proposed by Wang and Kaveh [27], was the first
technique to coherently sum the correlation matrices of differ-
ent frequency bins [27]. It converts the correlation matrices at
many frequency bins into a single general correlation matrix
at a single focusing frequency using a frequency-dependent
transformation matrix (focusing matrix). The focusing ma-
trix F is intended to provide the solution to the following
equation:

FiAi = A0, i = 1, . . . ,K . (10)

To estimate the angles-of-arrival that may be employed to
generate A0, a pre-process is required. The observation vec-
tors at different frequency bins are converted into the focusing
subspace using the focusing matrices. The standard proposed
in [27] is based on the transformation matrices produced from
the constrained minimization problem:{

minFi || A0 − FiAi ||

FHi Fi = I
. (11)

Hung et al. established in [14] that the focusing matrix that
solves the problem given by Eq. (11) is:

FCSSMi = ViW
H
i . (12)

whereViΣiWi is the singular values decomposition ofA0AHi .
Following the determination of the focusing matrix, a high
resolution approach such as MUSIC [19] is employed to
determine the DOAs. The DOAs are calculated by determining
the angular position of peaks in the MUSIC algorithm’s spatial
spectrum.

Algorithm 1. CSSM algorithm.
1: Use an ordinary beamformer to scan the space and find an

initial estimate of the DOAs.
2: Apply a DFT to the array output to sample the spectrum

of data.
3: For i = 1, 2, . . . ,K do
4: Calculate the correlation matrix Rxx of every

frequency ωi.
5: End for
6: For i = 1, 2, . . . ,K do
7: Determine the focusing matrices by using the Eq. (12).
8: End for

9: Apply MUSIC or any other high-resolution spectral
estimation method to find the DOAs.

4.2. TCT Method

Two-sided correlation transformation (TCT) [29] is similar to
CSSM introduced by Hung et al. in that signal subspaces are
transformed using focusing matrices. The TCT transforms the
correlation matrix using a two-sided unitary transformation.
Let us consider the covariance matrix at the i–th frequency
band in a noise-free floor:

Pi = AiRss(ωi)A
H
i , (13)

and P0 is the focusing noise free covariance matrix. The TCT
focusing matrices can be found by solving the minimization
problem: {

minFi || P0 − FiPiFHi ||

FHi Fi = I
. (14)

It is shown in [29] that the optimal solution of the problem
is given by the eigenvectors of the covariance matrix at the
frequencies ω0 and ωk as:

FTCTk = V0V
H
i , (15)

where V0 and Vi are the eigenvector matrices of P0 and Pi,
respectively.

Algorithm 2. TCT algorithm.
1: Use an ordinary beamformer to scan the space and find an

initial estimate of the DOAs.
2: Split the data intoK blocks of the same size.
3: Apply a DFT to the array output to sample the spectrum

of data.
4: For i = 1, 2, . . . ,K do
5: Calculate the correlation matrix Rxx of every

frequency ωi.
6: Form Ai, and Si, using the results of the

preprocessing step and Eq. (14).
7: End for
8: Average the source correlation matrices to obtain S0

as in [30].
9: Find P0 = A0S0AH0 .
10: For i = 1, 2, . . . ,K do
11: Calculate Pi by using Eq. (13).
12: End for
13: Determine the unitary transformation matrices.
14: Multiply these matrices by the sample correlation

matrices, and average the results.
15: Apply MUSIC or any other high-resolution spectral

estimation method to find the DOAs.
16: To improve the performance, iterate steps 3 to 5.

4.3. IMUSIC Approach

Because the narrowband MUSIC technique is used for all fre-
quencies simultaneously, this approach is known as incoherent
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MUSIC (IMUSIC) [13] and is considered to be one of the
most fundamental DOA estimation techniques for wideband
signals. Thus, IMUSIC calculates the DOA of broadband
signals using the following formula:

θ̂ = arg min
θ

K∑
i=1

aH(ωi, θ)Fn(ωi)F
H
n (ωi)a(ωi, θ) , (16)

whereFn(ωi) is the noise subspace at every frequencyωi. The
noise subspace array Fn(ωi) is obtained from the covariance
matrix Rxx(ωi) [21]. As long as the DOAs computed by Eq.
(16), IMUSIC results are the averages of the outcomes of each
range of frequencies. Weak estimations from one frequency
range degrade the overall estimation accuracy.

Algorithm 3. IMUSIC algorithm.
1: Split the data intoK blocks of the same size.
2: Calculate the DFT of theK blocks.
3: For i = 1, 2, . . . ,K do
4: Calculate the correlation matrix Rxx

of every frequency ωi.
5: End for
6: For i = 1, 2, . . . ,K do
7: Calculate the noise subspace Fn(ωi) of each

frequency ωi by EVD/SVD of Rxx.
8: End for
9: Estimate the final DOA θ̂ using the Eq. (16).

IMUSIC is generally effective in noisy environments, and
when the signals are well separated from one to another.
However, when the SNR is low, it suffers from failures and
generates side lobes at erroneous directions, which occurs in
many situations. Additionally, the noise level is expected to
be uniform across the band of frequencies, which is not usual
[21]. The limitations of incoherent approaches encouraged
the development of coherent approaches that are capable of
addressing these drawbacks.

4.4. TOFS Approach

For each frequency, the TOFS approach utilizes the noise
subspace created by the EVD/SVD of the covariance matrix
[20]. To compute the DOA of every arriving broadband signal,
TOFS relies on orthogonality between the steering array
and the noise subspace. Since represents the single DOA of
arriving broadband signals, then θ satisfies the formula [30]:

aH(ωi, θ)Fn(ωi)F
H
n (ωi)a(ωi, θ) = 0 . (17)

The vector Di(θ) is defined as [13]:

Di(θ) =



aH(ω1, θ)Fn(ω1)FHn (ω1)a(ω1, θ)

aH(ω2, θ)Fn(ω2)FHn (ω2)a(ω2, θ)

...

aH(ωK , θ)Fn(ωK)FHn (ωK)a(ωK , θ)



T

. (18)

Since the DOA of arriving broadband sources is θ, all elements
of the vector Di(θ) are zero.

Algorithm 4. TOFS algorithm [20].
1: Split the data intoK blocks of the same size.
2: Calculate the DFT of theK blocks.
3: For i = 1, 2, . . . ,K do
4: Calculate the correlation matrix Rxx

of every frequency ωi.
5: End for
6: For i = 1, 2, . . . ,K do
7: Calculate the noise subspace Fn(ωi)

of each frequency ωi by EVD/SVD of Rxx.
8: Generate Di(θ) by Eq. (18)

for each hypothesized DOA θ.
9: End for
10: Estimate the final DOA θ̂ by:

θ̂ = arg max
θ

1
σmin(θ)

. (19)

where σmin(θ) is the shortest singular value of Di(θ).
By employing the noise subspaces derived from the covari-
ance matrix, TOFS offers better DOA estimation in noisy
environments. However, when the SNR is low TOFS is unable
to resolve closely spaced targets.

4.5. TOPS Approach

TOPS calculates the DOA of arriving broadband sources by
employing the signal subspace and noise subspace of each
frequency range [21]. The first step is to extract the signal
subspace Fs(ωi) and the noise subspace Fn(ωi) from the
EVD/SVD of the covariance array of each range of frequen-
cies. Thus, one range of frequencies ωi should be opted, and
the signal subspace Fs(ωi) of the opted range should be trans-
formed into other bands. A diagonal unitary transformation
array is used by TOPS. The m–th component on the diagonal
of the frequency transform array Ψ(ωi, θ) is defined as:

[Ψ(ωi, θ)](m,m) = e−jωi mdc sin θ . (20)

The signal subspace Fs(ωi) of the band of frequencies ωi
is transformed into the other frequency band ωj by using
Ψ(ωi, θ), where the transformed signal subspace Uij(θ) is
[21]:

Uij(θ) = Ψ(∆ω, θ)Fs(ωi), i ̸= j , (21)
where ∆ω = ωj − ωi.
The Eq. (21) can be written as follows:

Uij(θ) = Ψ(∆ω, θ)A(ωi, θ)Gi

= A(ωj , θ̂)Gi ,
(22)

where θ̂ is the converted θ by using the frequency transform
matrix Ψ(ωi, θ), and Gi is a complete rank square array
that proves Fs(ωi) = A(ωi, θ)Gi. An array manifold at any
frequency and direction can be converted into another array
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manifold at a different frequency by using this transformation
process. Consequently, the transformed matrix has a complete
rank and can be employed in the following orthogonality test
between transformed array and noise subspace, investigated
in detail in [21]. Given that the frequency range of relevance
is ω1, the estimator D′(θ) is given as [30]:

D′i(θ) =



UH12(θ)Fn(ω2)

UH13(θ)Fn(ω3)

...

UH1K(θ)Fn(ωK)



T

. (23)

When θ is one of the arriving wideband signals, the rank of the
matrixD′i(θ) also degrades same as TOFS. The performance
of DOA estimation is dictated by the correctness of generating
the covariance array, that is largely determined by the number
of snapshots and the SNR of the received data. TOPS employs
the subspace projection strategy to decrease leakage of signal
subspace components in the predicted noise subspace. The
projection array Pi(θ) is then computed as [30]:

Pi(θ) = I −
(
aH(ωi, θ)a(ωi, θ)

)−1
a(ωi, θ)a

H(ωi, θ) , (24)

where I is an M × M identity matrix. The noise robust
matrix D′′(θ) is obtained by substituting the component
Uij(θ) of Eq. (23) with a novel transformed signal subspace
array Uij(θ).

U ′ij(θ) = Pj(θ)Uij(θ) , (25)

D′′i (θ) =



U
′H
12 (θ)Fn(ω2)

U
′H
13 (θ)Fn(ω3)

...

U
′H
1K(θ)Fn(ωK)



T

. (26)

Since the projection matrix Pi(θ) eliminates subspace pre-
diction errors, TOPS shows better performance when the Eq.
(26) with D′′i (θ) is used.

Algorithm 5. TOPS algorithm [21].
1: Split the data intoK blocks of the same size.
2: Calculate the DFT of theK blocks.
3: For i = 1, 2, . . . ,K do
4: Select x(ωi) at preselected ωi.
5: Calculate the correlation matrix Rxx

of every frequency ωi.
6: End for
7: For i = 1, 2, . . . ,K do
8: Calculate the signal subspace Fs(ω1).
9: Compute the noise subspace Fn(ωi) by

EVD/SVD of the calculated correlation matrix Rxx.
10: Generate D′′i (θ) using Eqs. (25) and (26) for each

hypothesized DOA θ.

11: End for
12: Estimate the final DOA θ̂ by

θ̂ = arg max
θ

1
σmin(θ)

, (27)

where σmin(θ) is the shortest singular value of D
′′

i (θ).

The output data of a DFT or bandpass filter is not necessarily
an accurate narrowband signal. Moreover, the filtered sig-
nals may degrade DOA prediction performance. The TOPS
approach may minimize these drawbacks by applying a par-
ticular signal subspace generated by the measured covariance
matrix, rather than the steering array of the frequency range.
This signifies that the approach used to select the range of
frequencies from which the signal subspace is converted by
Eq. (21) impacts the localization of wideband sources. On
the other hand, the residual error of the subspaces results in
certain unwanted rank reductions of the matrix D

′′

i (θ). Con-
sequently, TOPS suffers from a considerable limitation when
it comes to generating certain spurious peaks in the spectrum
simulated by Eq. (27).

4.6. S-TOPS Approach

To enhance DOA estimation performance, squared TOPS
(S-TOPS) incorporates two strategies into the TOPS method.
The first is to determine the frequency band from which the
signal subspace will be employed. The other is a strategy
to increase the sensitivity of reduction rank of the estimator
D
′′

i (θ) when θ is the desired DOA of the arriving broadband
signals. The band of frequencies with the maximum SNR
should operate as the reference frequency, which is considered
to be the frequency range in which the signal subspace will be
employed. S-TOPS employs the range of frequencies with the
difference between the lowest signal eigen-value λL(ωi) and
the highest noise eigen-valueλ(L+1)(ωi) is higher than in the
reference frequency [22]. Then, Eq. (21) transforms the signal
subspace of the reference range of frequencies into another
range of frequency. Suppose that the range of frequencies ωi
is chosen, and the signal subspace Fs(ωi) is converted into
another frequency band ωj . We generate the matrix Qi(θ)
for testing the squared orthogonality of projected subspaces
using the converted signal subspace U

′

ij(θ) and the noise
subspace Fn(ωj), as follows:

Qi(θ) =



U
′H
12 Fn(ω2)Fn(ω2)

HU ′12

U
′H
13 Fn(ω3)Fn(ω3)

HU ′13

...

U
′H
1KFn(ωK)Fn(ωK)

HU ′1K



T

. (28)

Algorithm 6. S-TOPS algorithm.
1: Split the data intoK blocks of the same size.
2: Calculate the DFT of theK blocks.
3: For i = 1, 2, . . . ,K do
4: Select x(ωi) at preselected ωi.
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5: Calculate the correlation matrix Rxx
of every frequency ωi.

6: End for
7: For i = 1, 2, . . . ,K do
8: Calculate the signal subspace Fs(ω1).
9: Compute the noise subspace Fn(ωi) by EVD/SVD

of the calculated correlation matrix Rxx.
10: Generate D′′i (θ) using Eqs. (25) and (26)

for each hypothesized DOA θ.
11: Calculate the squared orthogonality

of projected subspaces Qi(θ) using Eq. (28)
for each hypothesized DOA θ.

12: End for
13: Estimate the final DOA θ̂ by:

θ̂ = arg max
θ

1
σmin(θ)

, (29)

where σmin(θ) is the shortest singular value of Qi(θ).

When θ is the DOA of the arriving broadband signal, the row
and column components of the matrixQi(θ) produced by the
squared process should be close to zero. This demonstrates
that the procedure enhances the sensitivity of estimating rank
reduction of the orthogonality evaluation matrix. Hence, it
improves the estimated resolution of S-TOPS. Nevertheless,
the unwanted lobes in the spectra still exist.

5. Simulation Results

In this part, several simulations were run to evaluate the effi-
ciency of these approaches. Matlab 2020a has been employed
to demonstrate the performance of these approaches. The re-
ceived data are split intoK = 256 blocks, with the number
of snapshots in each block equaling 100, using an ULA array
of 10 sensors to show various scenarios. λ is the wavelength
that refers to the center frequency ω0. The signals share iden-
tical frequency bands. Table 1 shows the parameters used in
the simulations.

Tab. 1. Simulation parameters.

Description Symbols Value

Antennas spacing d λ/2

Number of sources L 3

Number of antennas M 10

Smallest frequency ωS 2 MHz
Largest frequency ωL 4 MHz
Center frequency ω0 (ωS + ωL)/2

Nyquist sampling frequency ωNS 10 MHz

5.1. Spatial Spectrum

For each hypothesis, the spectra depict the results achieved
with the use of the DOA estimation methods. The estimated
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Fig. 2. Spatial spectra of the IMUSIC and TOFS algorithms at
M = 10, L = 3 (10◦, 30◦, 38◦), and SNR = 0 dB.

DOAs are indicated by the peaks. For the simulation scenar-
ios, Figs. 2, 3, and 4 depict the spatial spectra of all methods
mentioned in this paper for a ten-sensor ULA. The spatial
spectra are estimated at the angles of θ1 = 10◦, θ2 = 30◦,
and θ3 = 38◦ to illustrate the capabilities of each technique
in a noisy environment with SNR = 0 dB. The sources are
detected by all methods, which results in high peaks of real
DOAs. TOFS, CSSM, and TCT eliminate all false peaks.
The spatial spectra indicate false lobes at erroneous angles
that can be detected as DOAs using the TOPS and S-TOPS
methods, as opposed to smaller peaks at true DOAs. The
IMUSIC and TOFS techniques that can be used for recon-
structing the arriving signals and TCT reach higher power
values than the remaining approaches.

From Fig. 2, when SNR is 0 dB, it is clear that the TOFS
algorithm is incapable of resolving the nearest sources (30◦,
38◦), while the IMUSIC method can detect the two closest
sources. However, it suffers from side fluctuations at approx.
−60◦. Figure 3 indicates that all the estimation approaches
have solved the true DOAs successfully, with some fake peaks
generated between the calculated DOAs. Figure 4 illustrates
the spectra of CSSM and TCT approaches, when SNR is 0 dB.
TCT performs the best when SNR is low, without showing
any false peaks, whereas CSSM cannot detect closely spaced
signal sources (difference of 8◦).

According to simulation results, TCT, TOPS, S-TOPS, and
IMUSIC are capable of detecting two closely separated tar-
gets with a greater degree of precision in mid-to-high SNR
conditions. TOPS and S-TOPS both help us improve average
performance in the entire SNR range, with an advantage over
other methods in low SNR, while S-TOPS shows small fake
peaks compared with the TOPS algorithm.
In terms of simplicity, TOFS is similar to IMUSIC, howev-
er TOPS and S–TOPS still have significant computational
costs due to the complicated calculations required. Note that
CSSM and TCT methods require initial values.
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Fig. 3. Spatial spectra of the TOPS and S-TOPS algorithms at
M = 10, L = 3 (10◦, 30◦, 38◦), and SNR = 0 dB.
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Fig. 4. Spatial spectra of the CSSM and TCT algorithms atM = 10,
L = 3 (10◦, 30◦, 38◦), and SNR = 0 dB.
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5.2. RMSE

For each simulation case, the root mean square error (RMSE)
for the estimated DOAs of all sources is calculated as:
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Fig. 6. RMSE versus SNR for the detected source 38◦.

RMSE =

√√√√ 1
PL

L∑
l=1

P∑
n=1

(
θ̂l(n)− θl

)2
, (30)

where θl is the l-th real DOA and θ̂l(n) is the l-th calculated
DOA at every simulation trial, where the number of trials
is P = 10. An average of the number of arriving signals
is obtained in order to calculate the overall errors for all
predicted DOAs.
Figure 5 shows RMSE plots for IMUSIC, TOFS, TOPS,
S-TOPS, CSSM, and TCT algorithms for different angular
separations, with a changing value of the signal source θ3,
with SNR being fixed – in this case at 0 dB – and the snap-
shot number equaling 100.
In Fig. 6, we examine the performance of IMUSIC, TOFS,
TOPS, S-TOPS, CSSM, and TCT algorithms in terms of
RMSE. Depicted in the Fig. 6 are the RMSE outcomes of the
compared approaches versus SNR, where the average SNR
ranges from 0 dB to 21 dB, and the snapshot number is 100.
The associated DOA is θ = 38◦.
In terms of RMSE, TOPS and S-TOPS performed well across
the entire range, while IMUSIC and TOFS performed simi-
larly and outperformed the other algorithms in mid-to-high
SNR ranges. IMUSIC achieves nearly the same performance
as TOFS under good conditions (SNR ­ 10 dB). TOPS
and S-TOPS provided average performance as the number of
snapshots increased. With a high number of snapshots, IMU-
SIC and TOFS can effectively identify the right DOAs. As
the angular separation varies, we consistently observe simi-
lar outcomes, with improved performance as the separation
increases. Nevertheless, TOPS, S-TOPS, and TCT exhibit
limitations when the angular separation between two signal
sources is small.

6. Conclusion

This paper presents a detailed comparison of six high-
resolution techniques used for calculating the DOA of wide-
band sources. For various SNR values, varied number of
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snapshots and varied number of antennas, a comparison of
six alternative methods for calculating DOA was provided. A
ULA of ten antennas constitutes the receiver system. When
the number of sources is known, computer simulations il-
lustrate how well each algorithm performs. IMUSIC, TOPS,
S-TOPS and TCT are capable of handling two closely spaced
targets with a greater resolution in noisy environments (low
SNR). With mid-to-high SNR values, TOFS, IMUSIC and
CSSM perform best, whereas TOPS, S-TOPS and TCT show
improved average performance in the entire SNR range. In
the future, the authors will focus on deep/machine learning
techniques to enhance the resolution of these approaches.
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