
11 February 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Cross-network Embeddings Transfer for Traffic Analysis / Gioacchini, Luca; Mellia, Marco; Vassio, Luca; Drago, Idilio;
Milan, Giulia; Houidi, Zied Ben; Rossi, Dario. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - (2023), pp. 1-13. [10.1109/TNSM.2023.3329442]

Original

Cross-network Embeddings Transfer for Traffic Analysis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2023.3329442

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983651 since: 2023-11-07T15:11:12Z

IEEE

1

Cross-network Embeddings Transfer
for Traffic Analysis

Luca Gioacchini, Marco Mellia, Luca Vassio, Idilio Drago, Giulia Milan, Zied Ben Houidi, Dario Rossi

Abstract—Artificial Intelligence (AI) approaches have emerged
as powerful tools to improve traffic analysis for network
monitoring and management. However, the lack of large labeled
datasets and the ever-changing networking scenarios make a
fundamental difference compared to other domains where AI is
thriving. We believe the ability to transfer the specific knowledge
acquired in one network (or dataset) to a different network
(or dataset) would be fundamental to speed up the adoption
of AI-based solutions for traffic analysis and other networking
applications (e.g., cybersecurity). We here propose and evaluate
different options to transfer the knowledge built from a provider
network, owning data and labels, to a customer network that
desires to label its traffic but lacks labels. We formulate
this problem as a domain adaptation problem that we solve
with embedding alignment techniques and canonical transfer
learning approaches. We present a thorough experimental
analysis to assess the performance considering both supervised
(e.g., classification) and unsupervised (e.g., novelty detection)
downstream tasks related to darknet and honeypot traffic. Our
experiments show the proper transfer techniques to use the
models obtained from a network in a different network. We
believe our contribution opens new opportunities and business
models where network providers can successfully share their
knowledge and AI models with customers.

Index Terms—Darknets, network monitoring, transfer
learning, representation learning, domain adaptation.

I. INTRODUCTION

Artificial Intelligence (AI) and Deep Learning (DL) based
approaches are fundamental to process network traces and
address traffic classification, anomaly detection, cybersecurity,
and other networking problems [1]–[5]. These applications
share a common task: characterize and understand the activity
performed by hosts or other entities in the network, eventually
highlighting relevant phenomena.

While the application of AI in network traffic analysis
and cybersecurity is growing, works typically assume the
availability of both data and labels to train models. However,
the availability of labeled data (i.e., the ground truth) is often
the major bottleneck in the building of AI solutions for traffic
analysis. The extraction of such labels is still a cumbersome
and costly process, generally done in a custom fashion for
each network and task. In addition, the ever-evolving Internet
scenarios require continuous updates of both models and

Luca Gioacchini, Marco Mellia, and Luca Vassio are with Politecnico di
Torino, Italy (email: first.last@polito.it). Idilio Drago is with Università di
Torino, Italy (email: idilio.drago@unito.it). Giulia Milan is with the University
of California, San Diego, USA (email: gimilan@ucsd.edu). Zied Ben Houidi
and Dario Rossi are with Huawei Technologies Co.LTD, France (email:
first.mid.last@huawei.com).

labels. This scenario faced in networking problems is strongly
opposed to what we observe in domains where AI-based
approaches are thriving. For example, problems in computer
vision (CV) and natural language processing (NLP) are more
stable, e.g., with slow changes in the interpretation of images
and the meaning of words.

In fact, the sharing of knowledge distilled in models is
fundamental to scaling the deployment of AI algorithms in
practical traffic analysis scenarios. In a nutshell, the broad
success of AI-based techniques hinges on the ability to transfer
the knowledge built in a system to another system. Two
fundamental questions hence arise: i.e., Do the models built on
a network generalize to other networks? If not, how to transfer
the knowledge acquired in one network to another network?

We here set out to give pragmatic answers to the two
questions, which we formulate as a domain adaptation
problem that we solve by proposing canonical transfer
learning and explicit alignment approaches [6], [7] in the
networking scenario. Transfer learning is the process of
transferring knowledge acquired from one source domain to
another (often data-scarce) target domain. Domain adaptation
is the case in which the tasks are similar, but the domains are
different, such that the source models cannot be applied as-is.
In this work, we consider the case in which a network operator
(provider network) possesses (i) data, and (ii) (some) labels,
and desires to keep both private. A second network (customer
network) has data but no labels and looks for the support of
the provider network to analyze the traffic it observes.

In CV and NLP, the process of learning generic and
intermediate embeddings from complex data has been proven
key to solving final tasks. This trend has been illustrated
in NLP [8], [9] with the availability of Large Language
Models like BERT [10] or GPT [11] empowering powerful
automatic translation or interactive chat tasks. Similarly in CV,
a linear classifier on top of learned embeddings outperforms
state-of-the-art models in few-shot image classification [12].
More recently, the approach has gained popularity in the
context of network traffic analysis [13]–[17].

We here follow the same principle. We use domain
adaptation to solve network monitoring use cases: (i) the
classification of hosts sending traffic to darknets, i.e., portion
of the IP address space that passively observes packets
scanners send,1 and (ii) the transfer of the knowledge acquired
from honeypots to classify hosts scanning darknets. Our results
show that the labels learned from the honeypot successfully

1Darknets (or network telescopes) shall not be confused with the Darkweb.

0000–0000/00$00.00 © 2023 IEEE

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

transfer to the darknet after alignment or transfer is in place.
In fact, the customer can exploit the rich honeypot labels
to discover the activities of bots and scanners that were
previously unknown in the darknet trace. All in all, the
knowledge transfer lets the customer increase its knowledge,
labeling 38% more hosts.

We believe that the ability to transfer knowledge from
provider to customer networks paves the road to the successful
adoption of AI pipelines in networking use cases. Upon
domain adaptation, this enables the possible creation of new
business and collaboration models for network traffic analysis
towards a model-as-a-service approach.

We next discuss related work (Section II), formalize the
problem (Section III) and present our domain adaptation
approaches (Section IV). We then discuss the case studies
and results (Section V– Section VIII), before summarizing the
results and discuss open challenges (Section IX).

II. RELATED WORK

Despite promising recent applications [13], [14], [16], [18],
[19], the use of self-supervised AI to learn embeddings from
network data is still in its infancy. The same applies to
domain adaptation on network-related tasks. To the best of our
knowledge, we are the first to investigate domain adaptation
for cross-network embedding in network traffic analysis.

A. Use of word embeddings in communication networks
Recent efforts have noted the similarities between sequences

of events observed in network data and of words in natural
languages [13], [14], [16]–[19]. Following this intuition, they
leverage a two-step pipeline in which embeddings are first
learned using techniques like Word2Vec [20], then used
in downstream machine learning tasks. Authors of [19]
leverage Word2Vec to learn vector representations of bash
commands observed in honeypot logs. Authors of [18] follow
a similar idea to learn representations for router configuration
commands for the purpose of synthesis, verification, and
translation. Close to our work, IP2Vec [13], DANTE [14]
and DarkVec [16] first learn host embeddings leveraging the
sequence of packets observed in network logs. We build on
our previous work DarkVec [16] and its incremental training
extension i-DarkVec [17], with openly available code, data,
and labels. We introduce novel ideas to the approach, allowing
domain adaptation for downstream ML tasks across networks.

As done in NLP to build language models, we obtain the
embedding representation by formulating a self-supervised
problem where we train a neural network using a masked
model [21], i.e., a model that predicts the hosts appearing in
the sequence by masking part of them. Differently from NLP
where one can build the word embeddings once and then use
them multiple times [22], the evolving nature of the internet
traffic calls for a continuous update of host embeddings.

B. Domain adaptation in communication networks
Domain adaptation has recently attracted the attention

of the network community for various use cases, from

wireless [23]–[27] to traffic classification [28], [29], from
anomaly detection [30], [31] to network management [32].
Here we are the first to explore domain adaptation problems
in network traffic analysis.

As stressed by the authors of [25], existing domain
adaptation techniques, e.g., as developed for computer vision
or natural language processing, often cannot be used as-is
for other types of data. Therefore, several custom domain
adaptation strategies have been devised per use case. Examples
include WiFi-based human activity recognition [23], [27],
localization [24], [25] and signal detection in ambient
backscatter communication [26]. Different from the above, we
define and evaluate a generic domain adaptation pipeline in the
context of traffic analysis.

Some recent efforts focus on system aspects of transfer
learning [33]–[35] that are orthogonal to our work. Chen et
al. present an optimizing task allocation in distributed transfer
learning systems [33]. Cartel [34] is an example of such
distributed transfer learning systems at the edge. Subsequent
work further focused on the operational costs of running a
distributed transfer learning infrastructure [35].

C. Word embeddings adaptation in NLP
From a methodological viewpoint, the closest problem

to ours is language translation, where embeddings learned
in a source language are mapped to their counterparts in
the target language. Mikolov et al. [36] noticed that an
alignment of the source and target Word2Vec [20] embeddings
using a few anchors could help translate across languages
(domains) in a nearly unsupervised manner. They found
that a linear mapping learned on a few source embeddings
and their target counterparts can align the embeddings and
perform word translation. Since Mikolov’s work, several
supervised [37]–[39] and unsupervised [40]–[43] embedding
translation and alignment strategies have been devised.

Casting the above to the network traffic domain, a host
observed in a network shares the behavior with other hosts
observed in other networks. However, they have different IP
addresses, and no common models are available to classify
all hosts. It would therefore be desirable to align the host
embeddings trained on a network so that they can also serve
other (possibly label-scarce) networks. However, although
gathered via NLP techniques, host embeddings learned from
network traffic are different from those learned from natural
language: due to the much more frequent changes in network
traffic, we find that linear-based mapping, like the one
successfully used in NLP [36], does not suffice for the
translation of host embeddings across networks.

III. PROBLEM DEFINITION

A. Processing pipeline
Figure 1 presents the overall processing pipeline. The

ultimate goal is to characterize the behavior of hosts based
on the traffic they generate. Consider first the top part of
the figure, which depicts the pipeline the provider, in yellow,
adopts to solve the AI-based traffic analysis problem. It
consists of three main steps, from left to right:

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

Fig. 1: Processing pipeline. The provider network (on the top) has data and some ground truth (GT) to execute the whole
pipeline. The customer network has only data and needs to perform domain adaptation before facing the downstream tasks.

• A monitoring infrastructure allows the operator to collect
raw data carried by a network. Such data consists of
traces continuously collected over time, which can be
at packet level [13], [14], [16], flow level [44] or any
other sequences of events hosts generate over time. We
do not consider specific solutions for this step, and we
only assume data can be processed in batches every time
interval �T , e.g., every day.

• The provider then builds a representative model of the
hosts sending traffic by building an intermediate compact
representation from the traffic each host sends. This is
achieved by creating an embedding function that projects
hosts with similar behavior into the same region(s).
Here, we assume the host embeddings are updated every
�T . The definition of the intermediate embeddings is
obtained by the so-called Self-Supervised Upstream Task
and requires no domain knowledge or labels.

• The provider uses the host embeddings for the final
downstream task which can be a supervised or an
unsupervised task (e.g., clustering). Supervised tasks
require the availability of ground-truth data (GT), e.g.,
to train a classifier.

Our main question is whether and how the knowledge
extracted from the provider network (e.g., the classifier) can
be used in a different network. The block Domain Adaptation
in Figure 1 is responsible for this step.

We consider a customer network (in green) that collects data
but has no labels to perform downstream tasks – i.e., it has
data and can build the intermediate embeddings. It then uses
the provider classifier to label hosts. A second option for the
customer is to use the provider embeddings to bootstrap the
construction of local embeddings. In this case, the customer
can use the resulting embeddings to cluster hosts and face an
unsupervised downstream task.

B. Learning host embeddings from traffic
We build the intermediate representation through our

previous works DarkVec and i-DarkVec, which rely on
Word2Vec to produce the host embeddings. In [16], [17]
we showed that DarkVec and i-DarkVec outperform other
embedding creation mechanisms specifically designed for
network traffic analysis such as IP2Vec [13] and DANTE [14].

In a nutshell, DarkVec (and i-DarkVec, which introduces
the incremental training) takes the packets as they arrive and
groups them based on the destination TCP or UDP ports,
maintaining the sequence of hosts contacting such ports.
By making an analogy with document processing, hosts are
“words” that appear in a “document”, i.e., a packet trace.
By exploiting the relative position of the packets sent by
hosts, DarkVec uses Word2Vec [9], [20] to learn from a trace
(document) a vector representation for each host (word) in a
self-supervised fashion. It uses a neural network model that is
trained to predict which host (word) will appear in the context
of a trace (document). In our case, given the i-th host in a
sequence of packets, we train the neural network to predict
the probability of occurrence of the (i� cw) and the (i+ cw)
hosts, being cw the context window.

Formally, given a sequence {s1, s2, s3, . . .} of host
observations, we map each entity sj 2 W ! uj 2 Re

where W is the set of hosts and uj is the embedding of sj
in the e dimension space. The function g : W ! Re is the
embedding function, which is a neural network. Given g, let
Y = [g(w)]w2W be the matrix of embeddings for all hosts in
W , i.e., Y 2 R|W |⇥e.

Similarly to the natural language case, Word2Vec learns host
embeddings that encode the co-occurrences of hosts (words),
mapping those hosts performing similar (different) activities
in the same (different) region of the embedding space. The
intuition is that hosts performing similar or coordinated
activities – i.e., contacting the same set of ports nearby in time
– would co-occur in a similar context in the input sequences.

In [16], [17] we demonstrated how the intermediate
representation extracted by DarkVec allows us to solve
both supervised and unsupervised downstream tasks very
efficiently, uncovering novel coordinated attacks in darknets,
or extending the set of hosts being part of a known attack.

C. Downstream tasks
We use the host embeddings as input for supervised or

unsupervised downstream machine-learning tasks.
In the supervised case, some ground truth allows us to

train a classifier to extend the labels to previously unlabelled
hosts or to detect changes or anomalies when a host modifies
its behavior (and embeddings) over time. Let l 2 L be a

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

class label, being L the set of classes. We train a classifier
function z : Re ! L to predict the class label of a host given
its embedding. Note that we use l only for this downstream
classification task.

Now consider two networks, provider p and customer c.
We can build the embeddings of the two networks Yp =
[gp(w)]w2Wp and Yc = [gc(w)]w2Wc . In the scenario of
domain adaptation, the provider owns the labels corresponding
to some hosts in Wp. Thus, it can build the supervised model
zp that maps the embeddings Yp into labels lp = zp(Yp). The
same classifier can be used to label host embeddings of the
customer network using their aligned images.

In the unsupervised case, the identification of clusters of
hosts that have similar embeddings (and thus behavior) allows
the network administrators to gain insights and simplify the
discovery of patterns. The labels of a few hosts can help in
characterizing clusters, identifying new classes, or observing
mutation in the host behavior. Intuitively, we directly leverage
the embeddings to extract clusters of hosts. In fact, two points
shall be close in the embeddings if they co-occur frequently
in the same context. That is, if they send packets to the
same ports, at the same time. Any distance-based clustering
algorithms could thus identify hosts with similar patterns.

IV. DOMAIN ADAPTATION: DEFINITION AND APPROACHES

Given the representation and models obtained from data and
labels at the disposal of a provider, we find the best approach
to leverage this information for solving a downstream task
using data at the disposal of a customer network.

The closest problem to ours is the domain adaptation of
embeddings in natural language translation (see Section II-C).
In its simplest form, a function transforms the embeddings of
a source domain (provider) into embeddings compatible with
the destination domain (customer). We rely on two different
techniques: (i) an alignment function to align the embeddings
of the customer network to those in the provider network; and
(ii) a canonical transfer learning problem where the customer
fine-tunes the provider embeddings. As shown in Figure 1,
the customer then sends the aligned or fine-tuned embeddings
to the provider, which uses them as input to the downstream
task, returning results to the customer in a models-as-a-service
approach. Each strategy implies a different collaboration
model for sharing information among partners.

Without domain adaptation, Yp and Yc are not compatible,
being elements sampled from the two embedding functions
(gp and gc) trained on different data with different random
initial weight assignment. We thus need strategies to transfer
the knowledge from the provider to the customer network, i.e.,
execute the same downstream tasks on both host embeddings.

A. Anchors
We assume the existence of a common subset of senders

active in both networks W ⇤ = Wp \ Wc, where w 2 W ⇤

are called anchors. In fact, it is quite common to observe
large scanners or botnets whose senders target the entire IP
address space [45] and thus multiple darknets in the same
observation period. Next, we introduce our strategies to adapt
the knowledge using such anchors.

(a) Explicit alignment

(b) Canonical transfer

Fig. 2: Domain adaptation strategies.

B. Explicit alignment
We define an aligner ac,p : Re ! Re as a mapping function2

from the embedding space in Re of the customer network c
to the embedding space in Re of the provider network p. Let
Y⇤

p = [gp(w)]w2W⇤ be the embeddings of the anchors in the
provider network and Y⇤

c = [gc(w)]w2W⇤ the embeddings of
the same anchors in the customer network.

An explicit aligner is a function ac,p that when applied
to the embeddings of the customer network, maps them into
embeddings that are compatible with those of the embedding
space of the provider, i.e., Y⇤

p ⇡ [ac,p(y)]y2Y⇤
c
. We consider

both linear and non-linear functions to approximate the aligner
function ac,p using as a metric to minimize the mean square
error between anchors. Once the aligner ac,p is obtained, we
apply it to all host embeddings Yc of the customer, obtaining
the new host embeddings Y0

c = [ac,p(y)]y2Yc that are aligned
to the embeddings in provider’s network.

Figure 2a summarizes the explicit alignment strategy
(hereafter called align for short). In this scenario, the provider
and customer share only the anchor embeddings to build the
aligner function ac,p. The aligned customer host embedding
Y0

c can then be given as input to the downstream classification
task, in a model-as-a-service approach.

Here, both p and c observe the activity of hosts during a
time interval t0, . . . , tn. Both networks autonomously build
their embeddings applying the embedding functions gp or gc
which is updated at every ti.3

To demonstrate the approach, we build the aligner function
through a DNN with 3 hidden layers with 1 024 neurons each.

2Embeddings have the same dimension e. Generalization is however trivial.
3To simplify notation, we refer to the last embedding function at time tn.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

Each layer is activated through either a linear function (linear
aligner)4 or a non-linear Sigmoid function (non-linear aligner).
The input and output layers contain e neurons each and we
add a normalization layer [46] between the input and the first
hidden layer. Given any customer anchor yc 2 Y⇤

c and the
corresponding provider anchor yp 2 Y⇤

p, we train the DNN
to minimize the mean squared error between ac,p(yc) and yp.
We use the standard Adam optimizer [47] training the DNN
for 50 epochs and a batch size of 32 samples.

C. Canonical transfer
A second option to perform the domain adaptation consists

of transferring the provider embedding and letting the
customer update and fine-tune it as shown in Figure 2b.

In this case, the customer incrementally builds the host
embeddings starting from the embeddings of the provider –
i.e., using Yp as initial weights to start the building of gc. To
this end, network p sends its trained embedding function gp
and the host embeddings Yp to network c. Notice that anchors
also play a key role in this step, as their host embeddings are
already initialized in gp. The anchors thus provide context for
Word2Vec, which implicitly creates gc embeddings that are
likely to be aligned with network p too. With this step, the
embedding function gc of the customer network extends gp –
i.e., gc generates an updated embedding space that will also
reflect the data observed by network c.

D. Towards a model-as-a-service approach
Our approaches open the way for new scenarios in which

parties do not exchange raw data, limiting both the amount
of data to exchange and the privacy implications. In both
cases, the amount of information scales with the number of
hosts and not with the number of packets observed in the
networks. Considering privacy, the only shared information is
whether a given host is sending packets (i.e., it is possible
to build its embedding). There is no disclosure of ports,
protocols, payload, transfer rates, and packet timing. This
approach opens new collaboration and business opportunities
for network traffic analysis. Setting up such collaborations will
require (i) new business agreements between operators, and (ii)
systems to support the distribution of embeddings. We leave
these aspects for future work.

V. DARKNET USE CASE: SCENARIO

A. Darknet sensors and traffic
Darknets are networks whose contiguous IP addresses are

announced on the Internet but without hosting any services. All
traffic reaching them is thus unsolicited and hence suspicious.
Darknets represent a valuable source of information for
cybersecurity and threat intelligence [48], [49], allowing
analysts to uncover large-scale Internet scans and attacks.

Darknets observe hundreds of thousands of sources, making
the identification of events very difficult. A large share
of packets arriving at darknets comes from sources that

4Note that a linear activation function will make such network equivalent
to a vanilla network, linearly combining the e inputs.

perform coordinated activities [4], [5], [16], e.g., botnets or
distributed scanners. Multiple groups of such coordinated
sources contact the darknet following similar patterns that
word embedding techniques applied on sequences of observed
hosts can successfully extract to ease the analyst’s job [14],
[16]. Here, we design a use case in which two network
operators host one darknet each. The first acts as a provider
and has labels. The second has no labels and thus would like
to transfer the information from the provider network to gain
insights about its network traffic.

B. Darknet datasets and ground truth

We rely on two datasets to explore domain adaptation in
darknets. Each dataset has been captured in a /24 darknet for
43 days. We use each as the provider and customer networks,
respectively, and they are deployed in different geographical
locations and ASes. Both darknets observe millions of packets
on a daily basis, coming from tens of thousands of remote
hosts. Here we rely on the packet level trace collected from
the 1st of Dec 2022 to the 11th of Jan 2023.

We follow the process as done in [16]: we consider batches
of data collected every �T = 1 day so that at the end of
each day, the processing pipeline sketched in Figure 1 can be
executed. For each day, we consider only hosts that sent at
least 5 packets, i.e., the most active hosts.

Here we formulate a supervised learning use case. Our goal
is to use the knowledge (ground truth labels) obtained in the
provider network to classify the hosts contacting the customer
darknet. We need such ground truth both to train models in
the provider network as well as to assess the performance of
the classifier when applied to customers’ traffic. Naturally, the
full power of transferring knowledge across networks emerges
when uncovering labels that otherwise would not be available
in the customer network – a scenario that we will target in
our second use case (see Section VII).

To build such ground truth, we use public information
and manual analysis to extend as much as possible the set
of hosts for which we can associate a label. We start from
the labels shared by authors of [50]. These lists include
IP addresses of known Internet scanners run by security
companies, research projects, etc. We next use the per-packet
fingerprint of well-known botnets [51] to identify some hosts
and label them as zombies. These are typically bots that
continuously perform large-scale scans of the IP address space
in search of possible victims.

We use the 31 days of Dec 2022 to build the host
embeddings [16]. Then we use each day of Jan 2023 to train
and test the downstream classifier performance. Specifically,
we train it on the provider data and test it on the customer data
with different domain adaptation options. For comparison, we
consider the (unrealistic) case where the customer also owns
the GT data, and thus can train the classifier independently.

We focus our manual effort on building the GT on hosts
active on Jan 1st, 2023. For completeness, Table I details the
number of active hosts for each ground truth class. The last
column reports the number of hosts in common, i.e., possible
anchors. In total, we have 10 ground truth classes that sum

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

TABLE I: Overview of the datasets for the Darknet knowledge
transfer use case. The table reports the number of active hosts
observed on the January 1st, 2023 datasets.

Provider Customer Intersection

1 Zombie [52] 9 127 8 991 7 108
2 Shadowserver [53] 289 289 289
3 Cyber.casa [54] 252 252 252
4 Internetcensus [55] 208 208 208
5 Spammer 25 106 25
6 Onyphe [56] 96 96 96
7 Rapid7 [57] 29 33 5
8 Censys [58] 24 25 24
9 Shodan [59] 30 24 23

10 Securitytrails [60] 18 18 18
– Unknown 4 809 5 124 3 004

Total 14 907 15 166 11 052

up about 10 thousand hosts in both darknets. Classes are
severely unbalanced, with some cases (e.g., Zombie) including
thousands of hosts and others (e.g., Shodan, a security search
engine) accounting for a few dozen hosts. We refer readers
to [50] and to the references in the table for more information
about the classes. We use the unknown class for those hosts
for which we were not able to assign a class. Here we assume
that any unknown host do not belong to any ground truth class
(even if this case is possible).

C. Downstream task for the darknet use case
The authors of [16] use a simple k-nearest neighborhood

classifier which is ill-suited for transfer learning since it
requires the samples to be labeled, i.e., the customer shall
own (or get) the GT. Here instead we consider a DNN
classifier that we train using the provider data and labels. We
consider a simple feed-forward neural network composed of
a first layer that receives the host embeddings in Re as input,
and two hidden layers composed of 512 and 256 neurons,
respectively. At each hidden layer we apply a 30% of dropout
and all the activation functions are ReLU. The output layer
has |C| neurons activated using a Softmax function. Then,
we minimize the categorical cross-entropy function using the
Adam optimizer [47]. We use batches of 128 samples for
training and we select the model with minimum validation
loss over 50 epochs. We perform a coarse grid search. The
DNN is robust to choices in the proposed range.

We run the experiments on a Tesla V100-PCIE-16GB. The
1 epoch training and update of i-DarkVec requires 1.7s for
each day on average. The average training time per fold of
the classifier and the aligners is 24s and 60s respectively.

VI. DARKNET USE CASE: RESULTS

We mimic the scenario in which the provider uses the data
of December 2022 to build reliable host embeddings, then it
trains the supervised downstream classifier on Jan 1st, 2023.
Then, it runs its model on the customer host embeddings after
different domain adaptation options. We focus on the analysis
of this downstream task using the same day (Jan 1st, 2023) as
a test set in the customer network.

To avoid overfitting in the domain adaptation phase, we split
both the provider and customer hosts into 5 folds (stratified

TABLE II: Supervised task macro-average performance on
darknet use case – 100% of the anchors. The provider uses 32
days; the customer only Jan. 1st. The best results are in bold.

Collaborative Independent
No

Adaptation Transfer Linear
Align

Non-linear
Align Reference

Precision 0.00 0.94 0.27 0.72 0.78
Recall 0.00 0.92 0.23 0.63 0.86
F1-Score 0.00 0.92 0.19 0.66 0.81

cross-validation [61]). We take care of having consistent folds
so that hosts that are present in both the provider and customer
data belong to the same fold. For each of the five folds, we
train the aligner and classifier on the 4 folds and validate on
the 5th fold of the provider data. Then we test its performance
on the 5th fold of customer data, after the domain adaptation
step. Finally, we average the performance on the 5 test folds.

The test sets are always the same in the following
cases, hence the results are comparable. We compute the
classic performance metrics for supervised learning, including
per-class precision, recall, and F1-Score. The results are
reported as macro-averages. Considering the unbalanced
classes, the macro average is a suitable conservative metric.

A. Constrained case: The customer has only one day of traffic

We consider the scenario in which the provider executes
the pipeline on a daily basis updating its host embeddings
and training a new classifier using the GT at its disposal. The
customer asks the provider to analyze the data it collected for
one day only (Jan 1st). We compare the following cases:

• Independent (reference): The customer owns the GT and
works independently – it builds host embeddings, trains
the classifier, and tests it on the same day.

• Collaborative: The provider creates its embedding on 32
days (Dec and Jan 1st) then it trains the classifier on the
last day (Jan 1st). In all cases, the provider classifies the
customer host embeddings using the provider classifier.
– No adaptation: customer creates embeddings using 1

day of data (Jan 1st) and sends them to the provider.
– Canonical transfer: provider sends the host

embeddings to the customer. The customer fine-tunes
the embeddings using the last day of data (Jan 1st)
and returns it to the provider.

– Linear and non-linear explicit alignment: customer
creates host embeddings using 1 day of data (Jan 1st)
and sends them to the provider for alignment.

Table II summarizes results, with per-class details in
Table VII in the Appendix. A few considerations hold:
(i) The usage of the classifier model without domain
adaptation is unfeasible, suggesting that the provider and
customer converged to incompatible embedding spaces; (ii)
Linear alignment does not suffice and the complexity of the
embedding space calls for non-linear functions (here obtained
using Sigmoid activation function in the DNN aligner); (iii)
Canonical transfer guarantees excellent performance (F1-Score
= 0.92), outperforming the independent reference.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

TABLE III: Supervised task macro-average performance on
darknet use case – 100% of the anchors. Provider and customer
use 32 days (except for Transfer). The best results are in bold.

Collaborative Independent
No

Adaptation Transfer⇤ Linear
Align

Non-linear
Align Reference

Precision 0.03 0.94 0.75 0.96 0.97
Recall 0.01 0.92 0.68 0.90 0.95
F1-Score 0.00 0.92 0.68 0.92 0.95

⇤This case is the same of Table II.

This last result shows the benefit of doing a fine-tuning step
on an already good representation captured by the provider
host embeddings. In a nutshell, the knowledge captured from
the 32-day-long provider data is successfully transferred to
the customer embeddings. The scarce 1-day long customer
data suffices to fine-tune such a model but fails to provide
enough information to execute the whole pipeline (independent
reference – F1-Score limited to 0.81).

B. Unconstrained case: The customer has more days of traffic
In this case, the customer has been running its darknet for a

long time, 32 days in our case. Hence it can create embeddings
in these 32 days. As in the case of 1-day embeddings, we
compare the following alternatives:

• Independent (reference): The customer owns the GT and
works independently. It builds host embeddings on 32
days, trains the classifier, and tests it on the last day.

• Collaborative: provider creates its embedding on 32 days,
then it trains the classifier on the last day (Jan 1st).
In all cases, the provider classifies the customer host
embeddings using the provider classifier.
– No adaptation: customer creates host embeddings

using 32 days of data and sends them to the provider.
– Canonical transfer: same as before.
– Linear and non-linear explicit alignment: customer

creates host embeddings using 32 days of data and
sends them to the provider for alignment.

Table III summarizes results. Again, domain adaptation is
strongly needed, and simple linear alignment functions do
not suffice. Comparing Table II and Table III, we observe
that the availability of 32-days of data at the customer side
improves the performance of the non-linear alignment case,
which now reaches the performance of the transfer case (0.92
F1-Score for both).5 This benefit is again due to the ability
to extract more expressive host embeddings from the 32-day
data than from 1-day only. The much-improved performance
of the independent reference testifies to this intuition.

C. Impact of the number of anchors
For our domain adaptation strategies, the number of anchors

|W ⇤| plays a crucial role (i) to provide the necessary context
to fine-tune the provider host embeddings with data from

5Here, we consider that the customer runs a fine-tuning step using only the
current day of data. We leave for future work the optimization of the number
of past days of data, for canonical transfer learning.

1 5 1510 2530 40 50 60 70 80 90 100
Anchors [%]

0.0

0.2

0.4

0.6

0.8

1.0

M
ac

ro
av

g.
F
1-

S
co

re

Transfer

Align

Fig. 3: Impact of the number of anchors in common; the full
set corresponds to ⇡ 73% of the anchors.

01/01 03/01 05/01 07/01 09/01 11/01
Time [day]

0.5

0.6

0.7

0.8

0.9

1.0

M
ac

ro
av

g.
F
1-

S
co

re

Transfer

Align

Fig. 4: Classification performance when repeating the whole
processing pipeline over several days (using all anchors).

the customer network in canonical transfer strategies; (ii) to
explicitly train the aligner in the explicit alignment strategies.
Without such a few anchors, none of our methodologies would
work. In practice, different darknets have variable numbers of
hosts in common, potentially impacting the domain adaptation
performance. To assess such impact, we perform experiments
reducing the number of anchors.

Here, we consider the same scenario as in Section VI-B.
Both the provider and customer can leverage 32 days of
data to build the host embeddings. We train the classifier
on the provider side and test it on the Jan. 1st customer
data as usual. Given the set of all possible anchors W ⇤, we
artificially consider only a percentage of them to align the
embeddings. We report results in Figure 3. We select such a
percentage by performing a stratified sampling to obtain the set
Ŵ ⇤. We then either train the non-linear aligner function ac,p
considering only embeddings of anchors in Ŵ ⇤; or transfer
only the portion of the host embeddings Ŷ⇤

p = [gp(w)]w2Ŵ⇤

to perform the fine-tuning of gp at the customer side.6

After this step, we repeat the 5-fold cross-validation
experiments already described. We repeat the stratified
sampling of anchors five times to increase our confidence
in the results. We then present the average among the 5
experiments and 5 folds.7

The transfer strategy (red line in the figure) increases its
performance when we increase the number of anchors. It

6We randomly initialize embeddings for anchors discarded in the transfer.
7Except for the right-most point in which the full set of anchors is used.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

achieves the maximum 0.92 average F1-Score only when we
use 100% of available anchors (11 052 in our case, about 73%
of the total number of active hosts – see Table I).

With a low number of anchors, the fine-tuning of gp at
the customer network is less effective, as Word2Vec has few
known host embeddings to guide the mapping of the new
customer host into the gp embedding space. In other words,
without anchors, this scenario converges to the no alignment
case of Table III – host embeddings seen only on the customer
network are not properly mapped into the gp embedding space.

The explicit align strategy (blue line) is slightly less
sensitive to the number of anchors. Here, the aligner function
ac,p suffers less when reducing the number of samples since
the DNN training is less affected by the amount of data. 30%
of the available anchors (3 300, corresponding to about 22% of
total samples) already suffice to reach 0.8 or higher F1-Score.

D. Robustness over time
Here, we repeat the experiments on different days,

mimicking a live system that receives and processes a new
batch of data each day. For each new day, we update the
embeddings (provider and customer), train a new classifier
(provider), perform the domain adaptation, and finally test the
classifier (customer).

In detail, we consider ten new days (from Jan 2nd, 2023 to
Jan 11th, 2023). The provider keeps updating its embeddings
for each new day (up to 42 days), and each time trains a new
classifier on the new data, using its GT. Then, the customer
receives the provider embedding and classifier. In the canonical
transfer case, the customer fine-tunes the embeddings on its
new data and then tests the provider classifier (5-fold, over
the given day). For the explicit alignment case, the customer
keeps updating their embeddings for each new day (up to 42
days), aligns the received embedding to its own, and then tests
the received classifier (5-fold, over the given day). Results
(Figure 4) show little changes over time, for both the transfer
explicit align approaches.

Takeaway: we conclude that transferring knowledge from
a provider to a customer network is possible with domain
adaptation and anchors play a key role. In the case of
alignment, non-linear aligners are required.

VII. HONEYPOT USE CASE: SCENARIO

We now consider a more challenging scenario for the
application of domain adaptation for traffic analysis: we
transfer knowledge from a provider running honeypots to a
customer running darknets. Honeypots offer a richer view than
darkness: they mimic the functioning of a real system and
engage with the attackers producing rich application logs that
support the security analyst in understanding the attacks. It
is possible then to detect attacks that would be impossible to
classify using darknet traffic alone.

Using the hosts in common between the darknet
and honeypot datasets, we first compare our domain
adaption options by facing a supervised downstream task
(Section VII-C). We then present an unsupervised downstream
task use case (Section VIII), in which the customer leverages

the knowledge from the honeypot to shed light on the activity
of hosts observed in its darknets.

A. Honeypot sensors and traffic
Honeypots are active sensors that collect information about

unsolicited traffic. They engage with attackers by running
software that replicates the basic functions of real systems.
A honeypot mimics a vulnerable system to allow attackers to
progress in their attacks while saving as much information
as possible. Honeypots are thus complementary to darknets.
While a darknet provides a broad but shallow view of
scanning activity only, honeypots allow analysts to obtain
deeper insights into specific attack patterns. On the downside,
honeypots are harder to deploy and maintain. They represent
a risk to the network hosting them, as they attract large
volumes of malicious traffic [62], [63]. Having a few honeypot
providers that share and transfer their knowledge represents an
asset to the whole Internet ecosystem.

B. Honeypot dataset and extended ground truth
We rely on a dataset obtained from a honeypot infrastructure

deployed in a /24 network of our university network. The
infrastructure relies on the TPOT honeypots [64], which
offers a collection of third-party low-interaction honeypots,
i.e., simple scripts built to simulate a vulnerable service
communicating over a given protocol.

Most of the honeypots we deploy simulate services such
as SSH, RDP, POP3, IMAP, and MySQL. We include
Cowrie [65], a sophisticated honeypot that simulates a
vulnerable server accessible via SSH/Telnet. It allows attackers
to go further in their attempts, from discovery, SSH channel
negotiation, brute-force login attempts, and initial shell access,
up to the download and execution of malware binaries and
scripts. This (and other honeypot logs) allow us to observe
the attackers’ intentions and accordingly define new GT
classes, far beyond the simple scanners seen in darknets. In
particular, we define two new classes: (i) Brute-forcers – hosts
performing more than 10 login attempts, regardless of the
target service; (ii) Exploiters – hosts that login and download
files in any honeypots. Note that they would be just classified
as unknown scanners in darknet sensors.

In total, the new GT contains the 11 classes already known,
plus the Brute-forcer and Exploiter classes. Notice that only
a small amount (about 20 and 30 senders, respectively)
contact the darknet too. This is expected since previous works
showed that different hosts are engaged in the different phases
of attacks [51], [66]. We use these two additional classes
to demonstrate how knowledge from the honeypots can be
transferred to tag hosts observed in the darknets – hosts that
otherwise would remain classified as a specific scanner at best.

C. Supervised downstream task: from honeypots to darknets
As a preliminary assessment, we validate that the domain

adaptation techniques work in our cross-domain scenario with
a supervised downstream task. The rationale of this experiment
is to verify whether the embeddings learned in the provider

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

TABLE IV: Supervised task on the honeypot use case – 100%
of the anchors. We report only the case in which both provider
and customer have 32 days of traffic to learn embeddings
(except the customer in the Transfer column), as in Table III.

Collaborative Independent
No

Adaptation Transfer Linear
Align

Non-linear
Align Reference

Precision 0.02 0.88 0.64 0.83 0.81
Recall 0.05 0.88 0.62 0.81 0.84
F1-Score 0.01 0.86 0.60 0.80 0.81

honeypots can be effectively transferred to the customer
darknet. For that, we repeat the validation pipeline used in
the collaborative experiments with darknets in Section VI-B,
however using the honeypot as the provider network.

We collect the honeypot traffic for 42 days in the same
period we collect the darknet traces (see previous sections).
As input, we consider the sequence of TCP-SYN packets sent
by hosts contacting any honeypots. In total, we observe more
than 18 000 active hosts for which we can build an embedding.

The provider creates its embedding on 32 days of honeypot
traffic and trains the classifier on the last day (Jan. 1st) with
the extended GT. Then, the provider and the customer perform
the domain adaptation (either with canonical transfer and Jan.
1st data or with explicit alignment) between the customer and
provider host embeddings. Finally, the provider classifies the
adapted customer embeddings and we extract the performance
as previously (5-fold average over Jan. 1st).

According to the larger amount of packets collected by the
honeypot with respect to the darknet case, the training and
update of i-DarkVec requires on average 23s for each day.
The average training time per fold of the classifier and the
aligners is 24s and 69s, respectively.

Table IV reports results. Trends similar to those observed
in previous experiments emerge, even if numbers cannot be
directly compared since we now consider a different GT. In the
independent customer scenario, average precision, recall, and
F1-score are lower at 0.81–0.84 in this case. Recall that this is
our reference experiment, which assumes that the customer has
the extended GT labels (thus including the two new classes).
However, the host embeddings built independently using only
darknet traffic cannot correctly separate the exploiters and
brute-forcers. For these two classes, the F1-Score drops to
0.29 and 0.04, respectively.

Considering the collaborative cases, domain adaptation
is necessary. Interestingly, the canonical transfer allows
the customer to achieve better performance than in our
hypothetical independent reference – e.g., precision increases
to 0.88. This is due to the ability to transfer the knowledge
about the two new classes of brute-forcers and exploiters: the
host embedding trained on the provider honeypots enables the
transfer of the new knowledge to the customer darknet so that
the classifier can correctly discover hosts of these new classes.

Takeaway: Adapting embeddings from the honeypot to the
darknet allows to transfer labels only present at the provider.
Canonical transfer learning performs slightly better than
non-linear alignment thanks to the ability to transfer the
knowledge about new classes present in providers’ data.

TABLE V: Clusters obtained when applying HDBSCAN on
the customer embeddings (i.e., reference) and on embeddings
adapted through the proposed approaches.

Transfer Align Reference

Clusters 60 154 76
Noise 51% 45% 61%
Homogeneity† 0.53 0.89 0.82

Silhouette‡ µ -0.37 0.18 -0.01
� 0.51 0.6 0.54

† Without ‘unknown’ samples; ‡ Without noisy samples

TABLE VI: Knowledge gained from the transfer.

Reference Transfer Align
Hosts Clusters Hosts Clusters Hosts Clusters

GT11 3 662 24 – – – –
GT13 – – 5 445 16 4 692 84
Extended GT11 461 6 – – – –
Extended GT13 – – 369 7 498 11
New GT 532 9 327 10 606 13
Suspicious 112 10 35 5 803 16

Total 4 767 49 6 176 38 6 599 124
Total [%] 31.43 64.47 40.72 63.33 43.51 80.52

Unknown 10 399 27 8 990 22 8 567 30

VIII. HONEYPOTS USE CASE: RESULTS

A. Methodology

We take as provider the same honeypot infrastructure used
in Section VII-B and as the customer, the darknet. The
provider learns embeddings using the complete 32-day dataset,
and the customer uses them to either transfer or align its
host embeddings. It then performs clustering on such host
embeddings. As a baseline, we consider the case in which the
customer performs clustering directly with its independently
build host embeddings. This allows us to assess the knowledge
gains when using domain adaptation.

We test multiple algorithms, such as k-means,
DBSCAN [67], HDBSCAN [68], and the Louvain-based
approach used in [16], noticing minor differences. We present
results using the HDBSCAN algorithm because it is an
almost parameter-free algorithm and has proven to deliver
good qualitative results. We first characterize the obtained
clustering using generic quality metrics (e.g., the number of
clusters, the silhouette, and the homogeneity). Here we do not
consider the noise cluster – i.e., points for which HDBSCAN
assigns no cluster.

Next, we manually evaluate some clusters trying to explain
the activity of hosts belonging to them. For this explanation,
we take into account (i) the hosts for which the darknet could
autonomously determine a ground truth as before in Section V
– here called GT11,; (ii) the additional ground truth labels
obtained from the provider honeypots as in Section VII – here
called GT13; (iii) external on-line sources of Cyber Threat
Intelligence (CTI) [59], [69], [70]. We consider a cluster to be
explained when at least 50% of the hosts in the cluster have
the same label. We thus ignore cases of clusters where there
is a mix of hosts from multiple classes.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

(a) Cluster of cyber.casa hosts only. (b) Cluster of likely web crawlers only. (c) Cluster of horizontal scanners.

Fig. 5: Examples of activity patterns of hosts in new clusters. Activity period: January 1st 2023.

B. Knowledge gain from domain adaptation

Table V provides an overview of the clusters obtained in
the reference baseline scenario, as well as when adapting the
embeddings with canonical transfer and non-linear alignment.
The number of clusters increases substantially from the
reference (76) to the alignment case (154). Observe also
how the number of hosts remaining in the noisy group is
reduced from 61% in the reference scenario, to 51% with
the canonical transfer, and further to 45% with the alignment.
The homogeneity and silhouette metrics also suggest somehow
better clustering in the alignment case.

To detail the analysis we provide qualitative results in
Table VI. The table compares the number of hosts that
the customer could explain (provide a label) (i) for clusters
built with its own embeddings (reference columns), (ii)
after adapting the embeddings from the provider through
canonical transfer (transfer columns) and (iii) after aligning
the embeddings from the provider (align columns).

First, focus on the GT11 and Extended GT11. Using only
the GT information readily available to a darknet, the customer
could explain the activity of around 3 600 hosts without the
help of the provider (GT11). By applying clustering algorithms
on the autonomously derived host embeddings it could explain
another 6 clusters, which include 461 hosts (Extended GT11).
Manual checks with reverse DNS lookups, ownership of IP
addresses, AS numbers and CTI sources confirm the goodness
of clusters. These groups can be uncovered only thanks to the
clustering that aggregates unknown hosts together with some
hosts present in the ground truth. As such, this experiment
simply reinforces the attractiveness of the NLP-based approach
in the networking scenario.

GT13 and Extended GT13 lines instead support the
knowledge transfer approaches more directly. These lines
report the number of hosts that the darknet can explain thanks
to the labels that only the honeypot allows the provider to get,
i.e., the brute-forcers and exploiters. Overall, the customer can
explain more than 5 000 hosts in total with both the adaptation
approaches and can achieve a finer-grained clustering (95
clusters compared to the 30 of the reference) with the
embeddings alignment. These hosts represent a knowledge
gain thanks to the adaptation approach.

Our manual inspection of clusters also let us uncover new
classes of scanners (New GT in the table) and multiple clusters
containing hosts that are consistently reported in conjunction

by multiple CTI sources (Suspicious in the table) – but for
which we have no confirmation of their class. Here again, the
customer could check these sources autonomously and explain
the activity of some hosts without any help from the provider.
This leads to 532 (new GT) and 112 (suspicious) hosts using
the embeddings in the reference case. Yet, the alignment of
embeddings from the provider allows the customer to expand
the number of explained clusters, increasing the number of
explained hosts to 606 (new GT) and 803 (suspicious).

Takeaway: The transfer of knowledge from the provider
increases the hosts for which the customer can explain the
unsolicited traffic by about 30% (from 4 767 to 6 176 hosts)
with canonical transfer and by about 38% (from 4 767 to 6 599
hosts) with domain adaptation. While the number of unknown
hosts remains high (e.g., 8 567 with alignment), we argue
that the adaptation approaches allow transferring knowledge
across multiple networks, easing the analysts’ tasks.

C. Qualitative analysis of discovered clusters
We investigate some clusters that emerge thanks to the

adaptation of embeddings from the provider. Here we do not
aim to be exhaustive but only exemplify the usefulness of the
information uncovered with the approach. Figure 5 illustrates
the activity of hosts in 3 clusters. The x-axes show the time,
and each point in the figures marks the moment in which a
new flow is observed from a host in the cluster. Figures 5a
to 5c mark in the y-axis (the rank of) contacted TCP ports.

We observe clear temporal patterns, which strongly support
the aggregation of the respective hosts. Manual inspection
confirms that flows depicted in Figure 5a come from 252
hosts from the cyber.casa scanner, which targets 2249 TCP
ports. These hosts synchronously rotate in some predetermined
ports over time. Figure 5b instead shows the activity of 22
hosts that mostly target a few ports associated with web
hosting. CTI suggests them to be crawlers. Finally, Figure 5c
shows the activity of a cluster composed of 27 hosts that very
aggressively contacted a range of ports of the darknet in a
short time interval – here CTI information points to bots that
often are reported for sending spam.

Finally, Figure 6 illustrates how points marked as noise
when clustering the reference customer embeddings are
reassigned to valid clusters after aligning the embeddings.
To visualize the high-dimensional embeddings we rely on
t-SNE [71], which non-linearly projects such data in a

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

A

B

C

E

D

F

(a) Noisy points in customer independently built host embeddings,
which are assigned to some cluster in the adapted host embeddings.
Samples are colored according to the clusters after alignment. Note
multiple clusters may share some colors.

A

B

E

D

C

F

(b) Some new clusters discovered from the aligned host embeddings
thanks to the transfer of honeypot knowledge.

Fig. 6: t-SNE of some clusters explained after the alignment.

bi-dimensional space while preserving the local and global
structure of the original embedding. In Figure 6a we show
a t-SNE plot of the noisy points of the clustering with the
customer embeddings. As is usually the case when exploring
the noisy set of HDBSCAN, we observe a cloud of points
without clear structures. After repeating the clustering with
aligned embeddings almost 4 000 hosts out of the total 9 000
in the noisy group are assigned to valid clusters. We mark
these points with colors in Figure 6a.

In Figure 6b we illustrate examples of clusters emerging
from the noisy points. Here a new t-SNE plot is built using
only hosts belonging to some of the new clusters of aligned
embeddings. These examples can be fully explained with these
clusters. In red we show clusters identified as brute-forcers
(764 hosts), in green spammers (⇡1 000 hosts), and in blue
exploiters (22 hosts). Letters identify the clusters and are also
reported in Figure 6a.

Takeaway: The alignment allows us to characterize harmful
hosts that would otherwise remain uncovered in the noise.

IX. CONCLUSION

This paper studied the problem of transferring knowledge
from a provider network to other potentially label-scarce
networks. We started from a knowledge extraction pipeline that
builds intermediate representations (host embeddings) from

raw packet traces and then uses them in supervised and
unsupervised downstream tasks.

The knowledge transfer from a provider to a customer
calls for domain adaptation, such that models learned on the
former work on the latter. We formulated such a problem
and proposed both canonical transfer and explicit alignment
solutions. We tested and compared both approaches showing
that, without the need to transfer labels, they perform on par
or better than the independent reference. We observed that
(i) adaptation requires non-linear alignment functions (unlike
in classic NLP settings), (ii) adaptation works even with few
anchors, i.e. when networks observe only a few hosts in
common. Then, we successfully showcased the transfer of
knowledge between two heterogeneous domains, namely, from
a honeypot to a darknet. Here, applying the domain adaptation
techniques on the intermediate host embeddings allowed us
to extend the understanding of darknet traffic by identifying
classes of hosts that could only be detected thanks to richer
honeypot information.

With the increasing adoption of word embeddings and
language models to learn features from sequences of network
entities, adaptation between networks will only become more
important. Our work paves the road towards efficiently sharing
learned information between different networks.

ACKNOWLEDGEMENT

The research leading to these results has been partly
funded by the Huawei R&D Center (France), by the
project SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European
Union - NextGenerationEU and the PRIN 2022 Projects
xInternet (eXplainable Internet - 20225CETN9) and ACRE
(AI-Based Causality and Reasoning for Deceptive Assets -
2022EP2L7H).

REFERENCES

[1] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE communications magazine, 2019.

[2] F. Soro, T. Favale, D. Giordano, L. Vassio, Z. Ben Houidi, and
I. Drago, “The New Abnormal: Network Anomalies in the AI Era,”
Communication Networks and Service Management in the Era of
Artificial Intelligence and Machine Learning, 2021.

[3] S. A. Salloum, M. Alshurideh, A. Elnagar, and K. Shaalan, “Machine
learning and deep learning techniques for cybersecurity: a review,” in
The International Conference on Artificial Intelligence and Computer
Vision, 2020.

[4] R. Prajapati, V. Honavar, D. Wu, J. Yen, and M. Kallitsis, “Shedding
Light into the Darknet: Scanning Characterization and Detection of
Temporal Changes,” in Proc. of the 17th CoNEXT, 2021.

[5] M. Kallitsis, V. G. Honavar, R. Prajapati, D. Wu, and J. Yen, “Zooming
Into the Darknet: Characterizing Internet Background Radiation and its
Structural Changes,” arXiv:2108.00079, 2021.

[6] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in 27th International Conference on Artificial
Neural Networks, 2018.

[7] G. Wilson and D. J. Cook, “A Survey of Unsupervised Deep Domain
Adaptation,” ACM Transactions on Intelligent Systems and Technology,
2020.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in neural information processing
systems, 2020.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” 2013.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,”
arXiv:1810.04805, 2018.

[11] “ChatGPT: Optimizing Language Models for Dialogue,” 2022, https:
//openai.com/blog/chatgpt.

[12] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola,
“Rethinking few-shot image classification: a good embedding is all you
need?” in European Conference on Computer Vision, 2020.

[13] M. Ring, A. Dallmann, D. Landes, and A. Hotho, “IP2vec: Learning
similarities between IP addresses,” in 2017 IEEE ICDMW, 2017.

[14] D. Cohen, Y. Mirsky, M. Kamp, T. Martin, Y. Elovici, R. Puzis, and
A. Shabtai, “DANTE: A framework for mining and monitoring darknet
traffic,” in ESORICS 2020, 2020.

[15] Z. B. Houidi, R. Azorin, M. Gallo, A. Finamore, and D. Rossi, “Towards
a systematic multi-modal representation learning for network data,” in
Proc. of the 21st ACM HOTNETS, 2022.

[16] L. Gioacchini, L. Vassio, M. Mellia, I. Drago, Z. B. Houidi, and
D. Rossi, “DarkVec: automatic analysis of darknet traffic with word
embeddings,” in Proc. of the 17th CoNEXT, 2021.

[17] L. Gioacchini, L. Vassio, M. Mellia, I. Drago, and Z. B. Houidi,
“i-DarkVec: Incremental Embeddings for Darknet Traffic Analysis,”
ACM Transactions on Internet Technology, 2023.

[18] Z. B. Houidi and D. Rossi, “Neural language models for
network configuration: Opportunities and reality check,” Computer
Communications, 2022.

[19] M. Boffa, G. Milan, L. Vassio, I. Drago, M. Mellia, and Z. B. Houidi,
“Towards NLP-based Processing of Honeypot Logs,” in 2022 IEEE
EuroS&PW, 2022.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[21] J. K. Tripathy, S. C. Sethuraman, M. V. Cruz, A. Namburu, M. P., N. K.
R., S. I. S, and V. Vijayakumar, “Comprehensive analysis of embeddings
and pre-training in NLP,” Computer Science Review, 2021.

[22] F. A. Acheampong, H. Nunoo-Mensah, and W. Chen, “Transformer
Models for Text-Based Emotion Detection: A Review of BERT-Based
Approaches,” Artificial Intelligence Review, 2021.

[23] Z. Zhou, F. Wang, J. Yu, J. Ren, Z. Wang, and W. Gong, “Target-oriented
Semi-supervised Domain Adaptation for WiFi-based HAR,” in IEEE
INFOCOM, 2022.

[24] X. Chen, H. Li, C. Zhou, X. Liu, D. Wu, and G. Dudek, “Fido:
Ubiquitous fine-grained wifi-based localization for unlabelled users via
domain adaptation,” in Proc. of The Web Conference, 2020.

[25] H. Li, X. Chen, J. Wang, D. Wu, and X. Liu, “DAFI: WiFi-Based
Device-Free Indoor Localization via Domain Adaptation,” Proc. of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
2022.

[26] C. Liu, Z. Wei, D. W. K. Ng, J. Yuan, and Y.-C. Liang, “Deep transfer
learning for signal detection in ambient backscatter communications,”
IEEE Transactions on Wireless Communications, 2020.

[27] S. Arshad, C. Feng, R. Yu, and Y. Liu, “Leveraging transfer learning
in multiple human activity recognition using wifi signal,” in IEEE 20th
WoWMoM, 2019.

[28] G. Sun, L. Liang, T. Chen, F. Xiao, and F. Lang, “Network traffic
classification based on transfer learning,” Computers & electrical
engineering, 2018.

[29] J. Guan, J. Cai, H. Bai, and I. You, “Deep transfer learning-based
network traffic classification for scarce dataset in 5G IoT systems,”
International Journal of Machine Learning and Cybernetics, 2021.

[30] S. Zhang, Z. Zhong, D. Li, Q. Fan, Y. Sun, M. Zhu, Y. Zhang, D. Pei,
J. Sun, Y. Liu et al., “Efficient KPI Anomaly Detection Through Transfer
Learning for Large-Scale Web Services,” IEEE Journal on Selected
Areas in Communications, 2022.

[31] P. Xiong, B. Cui, and Z. Cheng, “Anomaly network traffic detection
based on deep transfer learning,” in International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing, 2020.

[32] Z. Xu, D. Yang, J. Tang, Y. Tang, T. Yuan, Y. Wang, and G. Xue, “An
Actor-Critic-Based Transfer Learning Framework for Experience-Driven
Networking,” IEEE/ACM Transactions on Networking, 2021.

[33] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “Data-driven task
allocation for multi-task transfer learning on the edge,” in IEEE 39th
ICDCS, 2019.

[34] H. Daga, P. K. Nicholson, A. Gavrilovska, and D. Lugones, “Cartel: A
System for Collaborative Transfer Learning at the Edge,” in Proc. of the
ACM Symposium on Cloud Computing, 2019.

[35] Y. Yuan, L. Jiao, K. Zhu, X. Lin, and L. Zhang, “AI in 5G: The Case
of Online Distributed Transfer Learning over Edge Networks,” in IEEE
INFOCOM, 2022.

[36] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among
languages for machine translation,” arXiv:1309.4168, 2013.

[37] M. Artetxe, G. Labaka, and E. Agirre, “Generalizing and improving
bilingual word embedding mappings with a multi-step framework of
linear transformations,” in Proc. of the AAAI Conference on Artificial
Intelligence, 2018.

[38] A. Joulin, P. Bojanowski, T. Mikolov, H. Jégou, and E. Grave, “Loss in
translation: Learning bilingual word mapping with a retrieval criterion,”
arXiv:1804.07745, 2018.

[39] P. Jawanpuria, A. Balgovind, A. Kunchukuttan, and B. Mishra,
“Learning multilingual word embeddings in latent metric space: a
geometric approach,” Transactions of the Association for Computational
Linguistics, 2019.

[40] G. Lample, A. Conneau, L. Denoyer, and M. Ranzato, “Unsupervised
machine translation using monolingual corpora only,” arXiv:1711.00043,
2017.

[41] M. Zhang, Y. Liu, H. Luan, and M. Sun, “Adversarial training for
unsupervised bilingual lexicon induction,” in Proc. of the 55th Annual
Meeting of the Association for Computational Linguistics, 2017.

[42] D. Alvarez-Melis and T. S. Jaakkola, “Gromov-Wasserstein alignment
of word embedding spaces,” arXiv:1809.00013, 2018.

[43] P. Jawanpuria, M. Meghwanshi, and B. Mishra, “Geometry-aware
domain adaptation for unsupervised alignment of word embeddings,”
arXiv:2004.08243, 2020.

[44] R. Gonzalez, C. Soriente, J. M. Carrascosa, A. Garcia-Duran,
C. Iordanou, and M. Niepert, “User Profiling by Network Observers,”
in Proc. of the 17th CoNEXT, 2021.

[45] F. Soro, I. Drago, M. Trevisan, M. Mellia, J. Ceron, and J. J. Santanna,
“Are Darknets All The Same? On Darknet Visibility for Security
Monitoring,” in Proc. of the IEEE International Symposium on Local
and Metropolitan Area Networks, 2019.

[46] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv:1607.06450, 2016.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[48] C. Fachkha, E. Bou-Harb, and M. Debbabi, “Inferring distributed
reflection denial of service attacks from darknet,” Computer
Communications, 2015.

[49] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti,
“Millions of Targets Under Attack: A Macroscopic Characterization of
the DoS Ecosystem,” in Proc. of the ACM IMC, 2017.

[50] “Acknowledged Scanners,” 2023, https://gitlab.com/mcollins at isi/
acknowledged scanners.

[51] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in USENIX Security 17, 2017.

[52] J. Fruhlinger, “The Mirai botnet explained: How teen scammers
and CCTVcameras almost brought down the internet,” 2018,
https://www.csoonline.com/article/3258748/\\the-mirai-botnet-
explained-\\how-teen-scammers-and-cctv-cameras-almost-brought-
down-the\\-internet.html.

[53] “The Shadowserver Foundation,” 2023, https://www.shadowserver.org/.
[54] “CyberCasa,” 2023, https://www.cyber.casa/.
[55] “Internet Census Group,” 2023, https://www.internet-census.org/

home.html.
[56] “Onyphe,” 2023, https://www.onyphe.io/.
[57] “Project Sonar,” 2023, https://www.rapid7.com/research/project-sonar/.
[58] “Censys,” 2023, https://censys.io/.
[59] “Shodan, the search engine,” 2023, https://www.shodan.io/.
[60] “Securitytrails,” 2023, https://securitytrails.com/.
[61] K. P. Murphy, Machine learning: a probabilistic perspective. MIT

press, 2012.
[62] L. Metongnon and R. Sadre, “Beyond Telnet: Prevalence of IoT

Protocols in Telescope and Honeypot Measurements,” in Proc. of the
Workshop on Traffic Measurements for Cybersecurity, 2018.

[63] J. Uitto, S. Rauti, S. Laurén, and V. Leppänen, “A survey on
anti-honeypot and anti-introspection methods,” 2017.

[64] “TPot – The All In One Honeypot Platform,” 2023. [Online]. Available:
https://github.com/telekom-security/tpotce

[65] “SSH/Telnet Honeypot,” 2023. [Online]. Available: https://github.com/
cowrie/cowrie

[66] R. Hiesgen, M. Nawrocki, A. King, A. Dainotti, T. C. Schmidt, and
M. Wählisch, “Spoki: Unveiling a New Wave of Scanners through a
Reactive Network Telescope,” in Usenix Security 22, 2022.

[67] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in KDD, 1996.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

[68] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering.” The Journal of Open Source Software, 2017.

[69] “GreyNoise,” 2023, https://greynoise.io/.
[70] “AbuseIPDB - IP address abuse reports - Making the Internet safer, one

IP at a time,” 2023, https://www.abuseipdb.com/.
[71] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.”

Journal of machine learning research, 2008.

APPENDIX

We now report the full per-class classification F1-Score
complementing Sections VI and VIII.

TABLE VII: F1-Scores (darknet use case – see Table II).

Collaborative Independent
No

Adaptation Transfer Linear
Align

Non-linear
Align Reference

Zombie 0.00 0.99 0.98 0.99 0.98
Shadowserver 0.00 1.00 0.04 0.74 0.99
Cyber.casa 0.00 0.99 0.32 0.95 0.97
Internetcensus 0.00 1.00 0.04 0.80 0.83
Spammer 0.02 0.57 0.07 0.26 0.64
Onyphe 0.00 1.00 0.15 0.50 0.71
Rapid7 0.00 0.92 0.03 0.12 0.72
Censys 0.00 0.92 0.20 0.63 0.54
Shodan 0.00 0.86 0.02 0.66 0.78
Securitytrails 0.00 0.96 0.08 0.97 0.92

Average 0.00 0.92 0.19 0.66 0.81

TABLE VIII: F1-Scores (darknet use case – see Table III).

Collaborative Independent
No

Adaptation Transfer⇤ Linear
Align

Non-linear
Align Reference

Zombie 0.00 0.99 0.99 0.99 0.99
Shadowserver 0.00 1.00 0.99 1.00 1.00
Cyber.casa 0.00 0.99 0.97 0.99 1.00
Internetcensus 0.00 1.00 0.90 0.99 0.99
Spammer 0.02 0.57 0.27 0.46 0.85
Onyphe 0.00 1.00 0.75 1.00 0.98
Rapid7 0.00 0.92 0.55 1.00 1.00
Censys 0.00 0.92 0.69 0.90 0.86
Shodan 0.00 0.86 0.21 0.83 0.81
Securitytrails 0.00 0.96 0.49 1.00 1.00

Average 0.00 0.92 0.68 0.92 0.95
⇤This case is the same of Table VII.

TABLE IX: F1-Scores (honeypot use case – see Table IV).

Collaborative Independent
No

Adaptation Transfer Linear
Align

Non-linear
Align Reference

Zombie 0.06 0.99 0.99 0.99 0.99
Shadowserver 0.00 1.00 1.00 0.99 1.00
Cyber.casa 0.00 1.00 0.97 0.99 0.99
Internetcensus 0.00 0.99 0.95 0.97 0.98
Spammer 0.01 0.87 0.64 0.86 0.70
Onyphe 0.00 0.97 0.89 0.97 0.98
Rapid7 0.00 1.00 0.16 1.00 1.00
Shodan 0.00 0.89 0.26 0.66 0.80
Censys 0.08 0.89 0.59 0.76 0.89
Securitytrails 0.00 1.00 0.52 1.00 1.00
Brute-forcer 0.01 0.32 0.28 0.30 0.04
Exploiter 0.00 0.47 0.00 0.13 0.29

Average 0.01 0.86 0.60 0.80 0.81

BIOGRAPHIES

Luca Gioacchini is a Ph.D. candidate at PoliTO.
He received the B.Sc. in Electronic Engineering at
Università Politecnica delle Marche in 2017 and the
M.Sc. in ICT for Smart Societies at PoliTO in 2021.
His research interests are in the field of machine
learning and data science techniques applied to
networking and cybersecurity. Luca is focusing on
applying deep learning and unsupervised graph
mining techniques to darknet traffic.

Marco Mellia (F’21) is a full professor at PoliTO,
Italy. He coordinates the SmartData@PoliTO centre,
an interdisciplinary lab focusing on Machine
Learning, Data Science and applications to network
management and cybersecurity. He has co-authored
over 250 papers published in international journals
and leading conferences. He won the IRTF ANR
Prize at IETF-88, and many best paper awards. He is
the EiC of the Proceedings of ACM on Networking.

Luca Vassio is an Assistant Professor at PoliTO,
Italy. He received ‘cum laude’ a Ph.D. in
telecommunication engineering and an M.Sc. in
mathematical modeling. His research interests span
from big data analytics to machine learning
and optimization approaches, including GNNs.
He applies them to internet measurements, social
networks, and mobility. He collaborated, among
others, with MIT, Bell Labs, and GE Aviation.

Idilio Drago is an Associate Professor at the
University of Turin, Italy. His research interests
include network security, machine learning, and
Internet measurements. He is particularly interested
in how machine learning can help extract knowledge
from network data, and secure the network. Drago
has a Ph.D. from the University of Twente,
the Netherlands. He was awarded the IETF/IRTF
Applied Networking Research Prize.

Giulia Milan received her master’s degree in
Computer Engineering from PoliTO. She is currently
pursuing a Ph.D. degree at University of California,
San Diego. She worked as a research engineer at
Huawei Technologies in Paris, France and did an
internship at Scripps Research in San Diego. Her
research interests are in the field of data analysis
and machine learning.

Zied Ben Houidi is a Principal AI Researcher in
the Huawei Paris Research Center working on the
intersection of NLP and networks with applications
to network control, data analysis and security. He
received his PhD from Université Pierre et Marie
Curie in France while working at Orange Labs.
He then joined Bell Labs where he led various
research projects on network data valorization
(e.g. human-level behavior analytics) as well as
automated reasoning for standards specification.

Dario Rossi is the Director of Huawei AI4NET
Lab and the DataCom Lab at the Paris Research
Center, France. He held Full Professor positions at
Telecom Paris and Ecole Polytechnique, was the
holder of Cisco’s Chair NewNet@Paris, and has
coauthored 20+ patents and 200+ papers with 7500+
citations. He is a Senior Member of IEEE and
ACM, and the recipient of 9 best paper awards,
the Google Faculty Research Award (2015), and the
IRTF Applied Network Research Prize (2016).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3329442

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

