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Abstract: Since cardiovascular diseases (CVDs) pose a critical global concern, identifying associated

risk factors remains a pivotal research focus. This study aims to propose and optimize a fuzzy

system for cardiovascular risk (CVR) classification using a multiobjective approach, addressing

computational aspects such as the configuration of the fuzzy system, the optimization process, the

selection of a suitable solution from the optimal Pareto front, and the interpretability of the fuzzy

logic system after the optimization process. The proposed system utilizes data, including age, weight,

height, gender, and systolic blood pressure to determine cardiovascular risk. The fuzzy model is

based on preliminary information from the literature; therefore, to adjust the fuzzy logic system using

a multiobjective approach, the body mass index (BMI) is considered as an additional output as data

are available for this index, and body mass index is acknowledged as a proxy for cardiovascular risk

given the propensity for these diseases attributed to surplus adipose tissue, which can elevate blood

pressure, cholesterol, and triglyceride levels, leading to arterial and cardiac damage. By employing a

multiobjective approach, the study aims to obtain a balance between the two outputs corresponding

to cardiovascular risk classification and body mass index. For the multiobjective optimization, a set

of experiments is proposed that render an optimal Pareto front, as a result, to later determine the

appropriate solution. The results show an adequate optimization of the fuzzy logic system, allowing

the interpretability of the fuzzy sets after carrying out the optimization process. In this way, this

paper contributes to the advancement of the use of computational techniques in the medical domain.

Keywords: body mass index; cardiovascular diseases; healthcare; multiobjective optimization; fuzzy

system; overweight; Pareto front

1. Introduction

As reported by the world health organization (WHO), cardiovascular disease remains
a prominent cause of mortality on a global scale, accounting for approximately 17.9 million
deaths on an annual basis. The etiology of heart disease involves various associated risk
factors, such as metabolic disorders, obesity, and hypertension, which are believed to exert
a potential influence on the progression and development of the condition.

Regarding medical studies, a risk classification of scenarios of cardiovascular disease
and metabolic syndrome disease is shown in [1] in cases of obesity with low prevalence. The
researchers used data on Japanese patients from 40 to 74 years of age with no cardiovascular
disease backgrounds from 10 prospective studies in Japan. The authors state that the
metabolic syndrome corresponds to the presence of elevated obesity in the abdominal area,
including overweight and other factors like arterial hypertension, high-density lipoprotein
cholesterol, or elevated levels of triglycerides. The study shows that similar levels of
cardiovascular disease and associated risks in individuals with components of metabolic
syndrome with or without issues of obesity or overweight require a mandatory change in
lifestyle in both groups.

Additionally, a study related to the estimation of transgender and gender-diverse pa-
tients’ cardiovascular disease is shown in [2]. According to the authors, transgender people
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experience noticeably high mortality rates due to cardiovascular issues; consequently, re-
searchers aim to unveil the impact of statin therapy recommendations regarding gender in
the equation of risk estimator. The data used for the equation of disease risk were collected
from October 2020 to June 2022, and the 102 patients averaged 43 years of age, and 79%
of them were taking gender-affirming hormones. From the observations, the researchers
noticed that the scores related to the risk equation predominantly varied depending on the
approach in terms of gender and hormone use, which must be considered in studies of
cardiovascular health.

The relationship between heightened body mass index and an increased propensity
for cardiovascular disease is attributed to surplus adipose tissue; in particular, abdominal
adiposity can elevate blood pressure, cholesterol, and triglyceride levels, leading to arterial
and cardiac damage [1]. This highlights the importance of having a model to determine
the level of risk of cardiovascular disease and the different associated risk factors. Several
recent studies have shed light on this relationship. For instance, the study presented in [3]
found that body mass index is strongly associated with hypertension. Another study [4]
compared the performance of body fat percentage, fat mass index, and body mass index in
detecting cardiometabolic outcomes in Brazilian adults. Additionally, the review article [5]
discusses the past, present, and future of metabolic syndrome, which is a cluster of risk
factors that increase the risk of cardiovascular disease. It is also noteworthy to highlight
studies such as [6–8], where it is stated that BMI is not the best measure of health; therefore,
this index may be controversial for some healthcare providers.

In order to mitigate the aforementioned risk factors and enhance the effective handling
of heart disease, scholars resorted to artificial intelligence (AI) techniques to craft prognostic
models and decision-support systems.

This discourse concerns a distinctive optimization technique, commonly known as
the multiobjective optimization approach, which entails the harmonization of several
objectives. This approach seeks to optimize multiple objectives concurrently by considering
the interdependencies between them and the associated trade-offs. The Pareto front is a
prevalent mechanism in the field of healthcare, particularly in the context of cardiovascular
disease, which serves as a means of visualizing the trade-offs involved in decision-making
and pinpointing the most desirable solutions [9–11]. As an illustration, a metaheuristic
multiobjective optimization approach is utilized in a study to identify Alzheimer’s disease
through the use of multimodal data [9]. The Pareto front was employed to enhance the
sensitivity and specificity of the detection methodology.

For the context of drinking water systems, a sustainable decision support system was
developed using a multiobjective optimization method to improve resistance to cyanide
contamination [12].

In addition, the use of AI and optimization methods have been used in transporta-
tion [13,14] and environmental management [15]. In one study, a genetic algorithm was
used to determine the optimal location for traffic control in a smart city. The authors’ goal
was to reduce city traffic congestion and air pollution [13]. To manage the demands of
intelligent grids, in [16], a renewable energy prediction program was designed based on
artificial intelligence.

The use of artificial intelligence and optimization techniques has shown promising
results in various healthcare applications [17–27], including the management of CVDs and
related risk factors, offering a valuable tool for improving public health. For example,
artificial neural networks (ANNs) have been used to elucidate the connections between
olfaction, eating habits, and metabolic disturbances in the health of overweight patients [17].
Another study examined the prevalence of hypertension and obesity and studied markers
of inflammation and oxidative stress using bioelectrical signal processing [18], while neural
network models have been developed to predict cardiac and cardiovascular health by
processing bioelectrical signals [19].

Artificial intelligence has also been used to improve model outcomes with deep learn-
ing (DL) algorithms by improving the prediction of CVD-related mortality and treatment
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in patients with hypertension [20]. For example, the proposed model in [21] was trained
on a broad dataset from the Korean National Health Information Database and achieved
high accuracy in predicting CVD-related outcomes aiming to determine the relationship
between CVD mortality and patients with hypertension.

Machine learning techniques have also been used for early the prediction and clas-
sification of CVD [22,23], as well as for the explicable detection of COVID-19 using chest
radiographs [24]. In addition, studies have covered cardiovascular risk factors in obesity-
related cardiovascular issues in Romanian children and adolescents using retrospective
data analysis [25] and have examined the associations between multiple trajectories of
BMI and waist circumference with blood pressure and hypertension in Chinese adults in a
prospective study [26].

Similarly, the use of DL and device-assisted enteroscopy for automatic panendoscopy
detection of erosions and ulcers is proposed. The study stakes the potential of deep learning
to aid in the diagnosis of gastrointestinal disorders, including those that may contribute to
the development of CVD [27].

1.1. Multiobjective Optimization

In multiobjective optimization, there are two main approaches, called a priori and
a posteriori. The a priori method involves translating a multiobjective problem into a
single-objective problem before obtaining a single solution. This is mainly performed using
function weights to obtain a unique solution for the weight values. Using the a posteriori
method, the result is obtained that the whole Pareto front (PF) contains a large number
of non-dominated solutions [28,29]. In this way, common approaches to multiobjective
optimization include:

• Goal attainment: decreases the values of a linear or nonlinear vector function with
the mark values in a target vector; a weight vector indicates the objective’s relative
importance.

• Pareto front: based on detecting non-inferior solutions where a refinement in one
objective affects another’s degradation.

Several multiobjective optimization approaches are bio-inspired; a vast number are
based on the Pareto front; therefore, in this a posteriori method, it is important for the
technique to determine the suitable solution, and the most common approach is based on
determining the knee region.

Bio-inspired multiobjective optimization algorithms have become a practical tool
for deciphering situations with various objective functions [30]. The most representative
bio-inspired algorithms are those rooted in particle swarms and evolution. Regarding the
characteristics of the evolutionary scope, an appropriate approach to convey the optimal
Pareto front (OPF) is accomplished by requiring multiple generations; on the contrary,
algorithms based on particle swarms offer a high convergence rate; nevertheless, their main
disadvantage is attaining proper diversity management [30,31].

In a multiobjective optimization problem, a non-dominated front is sought correspond-
ing to the best values between the objectives [32]. A Pareto front is a region “knee” that
has a noticeable convex bulge at the front and is essential for decision-making, and in most
cases, it corresponds to an optimum balance.

Figure 1 displays widely known multiobjective optimization algorithms, an approach
based on genetic algorithms [33–39], which ids the most representative the family of non-
dominated sorting genetic algorithms (NSGA); meanwhile, another approach is based
on particle swarm [31,40–46], which is the most representative the family of algorithms’
multiobjective particle swarm optimization (MOPSO).
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Bio-inspired Multi-objective Optimization

Particle Swarm Optimization Algorithms

MOPSO
Multi-Objective Particle Swarm Optimization

Integrates Pareto dominance and crowding distance. Em-
ploys swarm intelligence and exploration-exploitation balance.

DSMOPSO
Distance Sorting Multi-Objective Particle Swarm Optimization

Uses distance sorting for non-domination. Maintains a di-
verse set of non-dominated solutions using spatial sorting.

QPSO
Quantum-Behaved Particle Swarm Optimization

Incorporates quantum mechanics principles. Enhances exploration
and exploitation capabilities through probabilistic update rules.

CMPSO
Coevolutionary Multiswarm Particle Swarm Optimization
Utilizes multiple swarms in coevolution. Enables the ex-
change of information and cooperation between swarms.

CICMOPSO
Clone Immunity Chaotic Multi-Objective Particle Swarm Optimization

Incorporates cloning and immune mechanisms. Improves diversity
and convergence through cloning and immune-inspired operations.

MOVPSO
Multi-Objective Vortex Particle Swarm Optimization
Inspired by fluid dynamics concepts. Uses vortex-

based operators to enhance exploration and exploitation.

Genetic Algorithms

MOGA
Multi-Objective Genetic Algorithm

Population-based optimization technique.
Selection based on Pareto dominance.

NSGA
Non-Dominated Sorting Genetic Algorithm

Classic multi-objective optimization method. Ef-
ficiently handles non-dominated solutions.

NSGA-II
Non-dominated Sorting Genetic Algorithm II
Enhanced version of NSGA. Utilizes fast non-

dominated sorting and crowding distance.

NSGA-III
Niched-Pareto Genetic Algorithm III

Handles many-objective optimization problems. Main-
tains diversity through the use of reference points.

NPGA
Niched-Pareto Genetic Algorithm

Incorporates niching to handle diversity. Promotes
exploration and maintains a diverse population.

NPGA-II
Niched-Pareto Genetic Algorithm II

Improvement of NPGA with enhanced nich-
ing. Achieves better convergence and diversity.

SPEA
Strength Pareto Evolutionary Algorithm

Focuses on environmental selection. Uses a fitness as-
signment approach to balance convergence and diversity.

SPEA-II
Strength Pareto Evolutionary Algorithm II

Further development of SPEA. Utilizes
an improved fitness assignment strategy.

PAES
Pareto Archived Evolution Strategy

Uses an archive to maintain diverse solutions. Fo-
cuses on improving solutions through local search.

PESA
Pareto Envelope-based Selection Algorithm

Uses envelope-based selection. Balances convergence
and diversity through the concept of Pareto envelopes.

PAPA
Pareto Adaptive Algorithm

Adapts the Pareto dominance concept. Incorpo-
rates adaptive selection pressure to guide the search.

Others

Figure 1. Most well-known multiobjective optimization algorithms.

1.2. Article Approach and Document Organization

The objective of this work is the proposal of a fuzzy logic system that allows the risk
factor of suffering heart disease to be established. In this order, weight, age, gender, height,
and systolic pressure are considered inputs, while the output is the cardiovascular risk
(CVR) classification. Considering preliminary information on the inputs and, according to
the literature, their effect on the CVR, the fuzzy logic system is proposed. As observed, the
CVR output is based on preliminary information from the literature (allowing us to obtain
simulated data). Therefore, to adjust the fuzzy logic system, a multi-objective approach is
proposed, adding another output to the fuzzy logic system from which data are available
and directly related to the CVR. This output corresponds to the BMI; then, to carry out
the optimization process, real data from the BMI and previously simulated data from the
fuzzy logic system are used to optimize the fuzzy model. In this way, when optimizing the
system, the goal is to obtain a balance between the CVR and the BMI outputs. Finally, to
determine the fuzzy system, the most appropriate configuration is chosen from the optimal
Pareto front.

This proposal is made considering that, in objective optimization, if the functions are
the same, the ideal point is reached; however, in the way that the objective functions are in
conflict, they move away from the ideal value.

The article is structured as follows: Section 2 provides an overview of the concepts
related to multiobjective optimization, focusing on the Pareto optimal front. Section 3
introduces the fuzzy system, and Section 4 discusses the implementation of multiobjective
optimization. In Section 5, an analysis is conducted on the data acquired from the Pareto
fronts, considering various aspects. Finally, Sections 6 and 7 present the discussion and
conclusions of the research.
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2. Multiobjective Optimization

Multiobjective design process optimization is applied in engineering, and, when
balanced, it is essential in various objective functions. According to [30], the goal is to find
a decision vector variable to fulfill some conditions and optimize a vector function.

The solution to a multiobjective optimization problem (MOP) consists of establishing
a vector ~x∗ = [x∗1 , x∗2 , . . . , x∗n]

T that optimizes the vector objective formed by the functions
in (1), also satisfying the m inequality constraints described in condition (2) and the p
equality constraints contained in expression (3).

~F(~x) = [ f1(~x), f2(~x), . . . , fk(~x)]
T (1)

gi(~x) ≤ 0 for i = 1, 2, . . . , m (2)

hi(~x) ≤ 0 for i = 1, 2, . . . , p (3)

In Equation (1), the vector of variables ~x∗ ∈ Ω is a feasible solution, where the respective
feasible region Ω is given by the constraints in Equations (2) and (3), which can be seen in
the example shown in Figure 2, where there are two decision variables (with domain Ω)
and two objective functions (with domain Λ) [30,47].

x1

x2

Domain for decision variables

Ω

f1

f2

Domain for objective functions

Λ

Figure 2. Domain of objective functions and decision variables.

2.1. Pareto Optimality Approach

In multiobjective optimization, an increase in a function performance commonly
happens at the same time as a decrease in the remnant objective functions, which can be
seen on the Pareto front.

According to the Pareto principle, if one solution dominates, it must be more effective
in achieving at least one goal and never perform worse than the others [30,47–49]. As
an example, solution R1 in Figure 3 dominates solution R2 since it is better in f1 and f2.
Nonetheless, it is not dominated by solution R3.

According to [30], a vector ~x∗ ∈ Ω is a Pareto optimum if another ~x ∈ Ω is considered;
then, fi(~x

∗) ≤ fi(~x) for all i = 1, ..., k, and f j(~x
∗) < f j(~x) for at least one j. Consequently,

the set of vectors ~x∗ associated with the solutions are non-dominating; in this way, the
collection of fi(~x

∗) conforms to the OPF.
Meanwhile, according to [49], a point that minimizes each objective function corre-

sponds to the ideal point~z ideal ∈ R
m, such as

~z ideal
i = min{ fi(~x)|~x ∈ Ω}, i = 1, . . . , m. (4)

In addition, a utopian point~z utopian ∈ R
m corresponds to an infeasible solution, where

each component is

~z
utopian
i = ~z ideal

i − ǫi, i = 1, . . . , m, ǫi > 0. (5)
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f2

f1

b

b

b

b

b
b

b

b

b

b

R1

R3 R2

R4

Pareto Front

b

Ideal Point

Figure 3. Optimal Pareto front and ideal point representation.

2.2. Multiobjective Performance Metrics

In multiobjective optimization, the performance metrics allow for establishing a com-
parison between different Pareto fronts.

According to [50,51], considering an actual Pareto front, it is mandatory to reduce the
distance with the calculated Pareto front. Additionally, it requires a suitable distribution
(in general uniform) of the vector solution. It is also necessary to extend the obtained
non-dominated Pareto front. In this area, two relevant concepts are

• Diversity: Related to a number of solutions found.
• Convergence: Related to the quality of the solutions.

Regarding [52], for diversity, hypervolume is usually employed, and generational
distance for convergence. This paper considers hypervolume as the performance metric.

2.3. Hypervolume Metric

The metric associated with hypervolume employs the quantity of the non-dominated
volume in the space of objective functions as a diversity indicator. The metric of hypervol-
ume estimates a multidimensional volume given a reference point. In Figure 4, an example
is displayed for two objective functions.

b

f1

f2
Reference Point

b

b

b

b

b

b

b
b

b

b

b

b

b

b

Figure 4. Graphical representation of hypervolume.

The hypervolume indicator obtains diversity and convergence in the multidimensional
volume calculated with a Pareto front considering a reference point, as observed in Figure 4.
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The hypervolume is defined on the Lebesgue measure Leb with a decision space R.
The hypervolume metric IHV(A) for a set of solutions A ⊆ R is calculated using a reference
point~r = (r1, . . . , rk) ∈ R

n such that

IHV(S) = Leb

(

⋃

x∈S

[ f1(x), r1]× [ f2(x), r2] . . . × [ fn(x), rn]

)

(6)

in Equation (6) [ f1(x), r1]× [ f2(x), r2] . . . × [ fn(x), rn] represents the k-dimensional hyper-
cube of all the points dominated by x [53].

2.4. Solution Selection Criterion

Multiobjective optimization encounters multiple sets of viable solutions consider-
ing the restrictions established by the designer. Conversely, for actual implementation,
only one solution is required. Thus, the most suitable solution can be selected in vari-
ous ways [54–56]. For example, in [57] an iterative Pareto fuzzy method is proposed to
determine a suitable balance between all objective functions. Another possible approach
to determine an adequate solution can be based on the Pareto optimal front’s clustering
process, considering the analysis presented in [47].

The most common approach to determining a suitable solution is based on determining
the knee points. In this way, it seeks to have a balance between the objectives to be
optimized. Different approaches are proposed to determine the knee solutions, as observed
in [54–56]. One of the most common is the one based on Euclidean metrics, since it is the
most intuitive possible distance examination between any two points [56]. In conclusion,
by finding a result using the multidimensional Euclidean metrics method, it is possible
that it becomes a compromise between the objective functions [56]. For the analysis of
non-dominated solutions, the Euclidean metrics correspond to the following:

d(R, K) =

√

√

√

√

N

∑
i=1

|Ri − Ki|2 (7)

where R is the reference point, one of the most commonly used as the one ideal point; K
is a solution in the Pareto front; Ri and Ki are the respective components of R and K; and
finally, N is the number of components of K. Figure 5 displays the concept of Euclidean
distance considering the ideal point.

f2

f1

b

b

b

b

b
b

b

b

b

b

Pareto Front

b

Ideal Point

d1

d2

d3

Figure 5. Graphical representation of Euclidean distance considering the ideal point.

3. Proposed Fuzzy System

Mamdani-type fuzzy logic systems are a type of fuzzy inference system used to model
complex and nonlinear systems. These systems use fuzzy sets in both input and output
universes and rely on linguistic rules to perform inference.
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The input of a Mamdani-type fuzzy logic system is usually a numerical value com-
ing, for example, from a sensor. For this value to be processed by the fuzzy system, a
membership is assigned to each of the fuzzy sets that constitute the input universe.

The Mamdani-type fuzzy inference system uses linguistic rules to make inferences and
produce a fuzzy output. Each linguistic rule consists of a premise and a conclusion. The
premise is a linguistic expression describing the conditions in which the rule applies, while
the conclusion is a linguistic expression describing the action to be taken if the premise is
satisfied [58].

Linguistic labels play a crucial role in fuzzy systems, allowing them to handle the
uncertainty and vagueness of data. A linguistic variable is a variable whose values are
words or sentences in a natural or artificial language [59,60]. These words or sentences
are associated with fuzzy sets defined by membership functions that assign degrees of
membership to each element in the universe of discourse. The membership functions can
be defined in various ways, such as triangular, trapezoidal, or Gaussian, depending on
the shape of the fuzzy set. The linguistic labels associated with the fuzzy sets are used to
represent the degree of truth or falsity of a proposition and to make decisions based on
uncertainty or incomplete information.

Approximate reasoning is viewed as a process of approximate solution of a system
of relational assignment equations. This process is formulated as a compositional rule of
inference that includes modus ponens as a special case [60]. The effectiveness of fuzzy
systems depends on the quality of the linguistic labels and the membership functions used
to define the fuzzy sets. Tang and Zheng proposed a new linguistic modeling technique
based on the semantic similarity relation among linguistic labels [61]. This method can be
applied in complex systems that do not directly rely on fuzzy sets to model the meaning of
natural language.

Fuzzy logic can be used as an expert system in the medical diagnosis and treatment
of heart disease by allowing the incorporation of uncertainties and the representation
of imprecise variables, as displayed in [62]. Although the authors do not employ an
optimization process to fit the fuzzy system, this study can be considered as a reference.

For the case under consideration, the expert system for medical diagnosis of cardio-
vascular risk (heart disease) can be designed using fuzzy logic as follows:

1. Identify symptoms and signs of heart disease used as input to an expert system. This
information can include blood pressure, cholesterol levels, heart rate, family history,
and lifestyle.

2. Determine the degree of membership of each symptom or character using fuzzy
membership functions.

3. Define rules of inference that describe how different symptoms and signs combine to
arrive at a diagnosis. These rules can be heuristic or knowledge-based.

4. Use fuzzy reasoning to evaluate each input symptom or sign and determine its
membership in each possible heart disease class.

5. Sum the results of the inference to obtain an estimate of the probability that the patient
meets all possible categories of heart disease.

6. Select the most likely heart disease category and present it to the user as the most
likely diagnosis [62].

It is important to remark that fuzzy logic is not the only approach to the medical
diagnosis of heart disease but can be a valuable tool when combined with other methods
and the expertise of a specialized physician [63].

The fuzzy logic system presented aims to determine an individual’s body mass index
and the risk of cardiovascular disease, using as input several variables related to weight,
age, gender, height, and systolic blood pressure.

The system is defined through a fuzzy inference system (FIS) structure in MATLAB
created with the “newfis” function. The input and output variables are then included with
the “addvar” function, and the membership functions of each variable are specified using
the “addmf ” function.
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3.1. Input Parameters

The proposed system helps determine if a person is at risk for heart problems by
considering the inputs weight, age, gender, height, and systolic pressure. In this way, to
perform the multiobjective optimization process, one output is the cardiovascular risk
classification, and the other corresponds to the body mass index. As can be seen, important
aspects related to health, such as weight, age, height, gender, and blood pressure in
heartbeats, are considered. Weight and height help figure out the BMI, which is very
important to determine health related to weight. Systolic blood pressure is a way to check
heart health. Doctors use it, along with age, sex, and height, to see if a person might have
heart problems in the future. This fuzzy logic system checks many things to see if a person
is healthy.

3.1.1. Weight

Excess weight, particularly excess visceral fat and fat accumulation in lean tissues,
mainly defines the threat of cardiovascular issues in overweight or obese individuals. Main-
taining a healthy weight is essential for preventing cardiovascular disease and improving
overall health [64]. The following ranges were used in the proposed fuzzy logic system:

• Between 15 to 30 kg;
• Between 31 to 45 kg;
• Between 46 to 60 kg;
• Between 61 to 75 kg; and
• Over 76 kg.

3.1.2. Age

Aging is associated with the progressive degeneration of the heart and blood vessels,
making them more vulnerable to stressors, contributing to increased cardiovascular mor-
bidity and mortality in the older population, which are especially prevalent in older adults.
Those over 65 years of age are at a high risk of atrial fibrillation and related stroke, while
approximately 20% of people over 80 years of age are at risk of heart failure [65].

The following ranges were used in the proposed fuzzy logic system:

• Under 20 years old;
• Between 20 to 35 years old;
• Between 36 to 49 years old;
• Between 50 to 60 years old; and
• Over 60 years old.

3.1.3. Gender

Gender is a critical factor determining cardiovascular health, yet it has been largely
neglected. Cardiovascular disease trajectories and outcomes differ by biological sex and, in
turn, define cardiovascular health from conception through early childhood, when health
behaviors and risk factors are established through adolescence until adulthood [66]. In this
order, the gender tag corresponds to:

• Female and
• Male.

3.1.4. Height

Height is important in determining BMI, and, in turn, BMI is a leading risk factor for
cardiovascular disease. It is necessary to consider both the mortality and the morbidity
associated with excess weight in the assessment of disease burden [67]. The following
ranges were used in the proposed fuzzy logic system:

• Between 0.90 to 1.30 m;
• Between 1.31 to 1.50 m;
• Between 1.51 to 1.65 m;
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• Between 1.66 to 1.80 m; and
• Over 1.80 m.

3.1.5. Systolic Pressure

High isolated systolic hypertension or systolic blood pressure prevails in older adults
and represents a significant threat for chronic kidney disease, coronary artery disease, and
stroke. There is a direct relationship between these complications and elevated systolic
BP, independently of sex or ethnicity. However, it worsens, given that individuals grow
old and have comorbidities, as demonstrated in two extensive prospective studies in more
than one million subjects [62,68]. The following ranges were used in the proposed fuzzy
logic system:

• Normal;
• High;
• Hypertension level one;
• Hypertension level two; and
• Hypertension crisis.

3.2. Output Parameters

This system looks at two aspects to see if a person is healthy. BMI helps us know
if individuals have a healthy weight based on height. Cardiovascular disease risk is
how likely someone is to acquire diseases that affect the heart, including high blood
pressure, coronary heart disease, and stroke. This system helps doctors and health workers
make better decisions about patient care by using information about body weight and
heart health.

3.2.1. Body Mass Index

BMI, or body mass index, refers to a measure used to assess obesity and overweight
in adults. If the patient has a high BMI condition, it means that they have a BMI above a
healthy level, which can have negative health consequences. BMI is estimated by dividing
a person’s weight in kilograms by the square of their height in meters. Therefore, it is a
measure that considers both a person’s weight and height to determine if they are in a
healthy range [69]. The following ranges were used in the proposed fuzzy logic system:

• Normal weight;
• Pre-obesity;
• Class 1 obesity;
• Class 2 obesity; and
• Class 3 obesity.

3.2.2. Classification

Risk factors for cardiovascular disease are those aspects that increase the probability of
developing cardiovascular disease, particularly coronary heart disease. Some of the most
common risk factors are as follows:

• Age: CVD risk increases with age.
• Gender: men carry a higher risk than women before menopause. After menopause,

the risk in women is equal to that of men.
• Family history: if a close family member has suffered from cardiovascular disease, the

risk increases.
• Tobacco: smoking is a key factor for cardiovascular disease.
• Hypertension: high blood pressure can damage arteries and raise the risk of coronary

diseases.
• Diabetes: individuals with diabetes have an increased risk of cardiovascular disease.
• High cholesterol: high levels can increase the risk of coronary heart disease.
• Obesity: overweight and obesity increase the risk of cardiovascular disease.
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• Physical inactivity: lack of physical activity is also a booster of cardiovascular
disease risk.

• Stress: if prolonged, stress increases the probability of cardiovascular complications.

It is necessary to point out that many of these risk factors are modifiable and can be
prevented or controlled with lifestyle changes, such as no smoking habits, regular physical
activity, control of cholesterol and blood pressure, reduction in stress levels, and healthy
nutritional habits [70]. The following ranges were used in the proposed fuzzy logic system:

• Very low risk;
• Low risk;
• Moderate;
• High risk; and
• Very high risk.

To design the fuzzy system, various aspects can be considered, as presented in the
literature [71], such as the ranges for input and output variables. Figure 6 displays the
scheme associated with the proposed fuzzy system. The two outputs share the fuzzy sets
of the inputs and the rule set and are independent of the fuzzy sets of the outputs.

Weight (5)

Age (5)

Gender (2)

Height (5)

Systolic Pressure (5)

Risk
Factors

(Mamdani)

54 Rules

BMI (5)

Classificaction (5)

Figure 6. Scheme associated with the proposed fuzzy system.

3.3. Fuzzy Rules

The fuzzy logic system is based on inference rules that allow conclusions to be drawn
from fuzzy premises. The table of inference rules shows the possible combinations of input
values and the corresponding outputs obtained by applying the inference rules. These
rules are designed to work with fuzzy values, i.e., values that are not simply true or false
but may have intermediate degrees of belonging to a given set. The table of inference rules
makes it possible to establish the output corresponding to a particular combination of input
values, which facilitates the decision making and control of complex systems involving
multiple fuzzy variables (see Table A1).

3.4. Dataset

The research used as a source of information for the study was a dataset on medical
care in Colombia in 2018, which includes information on the number of people who received
medical care in different types of health facilities, such as public, private, and mixed. It also
includes data on the number of consultations, procedures, and hospitalizations that took
place that year, including people of different ages, genders, and health conditions.
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This dataset was used to analyze the performance of the health system and to identify
patterns related to cardiovascular disease. The study used a multiobjective approach for the
optimization of a fuzzy system for the classification of cardiovascular risk and body mass
index based on a subset of the dataset. Specifically, the study analyzed 200 records from
the dataset, taking as input data the age, sex, weight, height, and systolic blood pressure of
the patients in the database and as output their body mass index [72].

The database can be used in data analysis or in the creation of predictive models in
health care. To use this database, it was necessary to perform a cleaning and transformation
process to adapt the data to the proposed analysis tool [72].

The following is the total number of columns presented by the dataset for a total of
43 items (columns in the raw data).

1. Document 16. Date born 31. Pharmacological history

2. Age 17. City database 32. Civil state

3. Date 18. External cause 33. Rh

4. Weight 19. Reason for consultation 34. Cronic decripcion

5. Sex 20. Symptom.Resp 35. Chronic

6. Size 21. Planned 36. Diagnosis Dx exit

7. Fcard 22. T.pregnancy 37. User type

8. Diagnosis 23. F.U.R 38. Oximetry

9. Fresp 24. Zone 39. Revision of cytology

10. Description of the diagnosis 25. B.M.I 40. Breast lactation

11. Temp 26. Systemic Tension 41. Tsh

12. Is out 27. Diastolic tension 42. Uterine height

13. Initial service unit 28. TebsMedia 43. Cephalic Perimeter

14. Join. serv. final 29. pregnant

15. Entity 30. Weeks of gestation

4. Multiobjective Optimization Process

The implementation is performed using the respective libraries of MATLAB (2017a) of
fuzzy logic and MOEAS. It employed a PC Lenovo IdeaPad 5 14ITL05 with an 11th Gen
Intel Core i7-1165G7 processor 2.80 GHz, with 16.0 GB of RAM, and Windows 10.

The database employed in the optimization process is taken from [72]. The input data
used are shown in Figure 7 and the output data in Figure 8; 80% of the data are used for
optimization and the remaining 20% are employed for validation.
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Figure 7. Input data used.
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Figure 8. Output data used.

With data displayed in Figures 7 and 8, the two objective functions are established
as follows:

f1 =
1

N

N

∑
i=1

(r1(i)− y1(x(i)))2 (8)

f2 =
1

N

N

∑
i=1

(r2(i)− y2(x(i)))2 (9)

where r1 and r2 are the reference data, y1 and y2 are the output of the fuzzy system for a
input data x(i), and N is the total data employed.

The variables to be optimized correspond to the parameters of the fuzzy sets; it is
worth noting that the set of rules is not modified, since it corresponds to the preliminary
knowledge of the system. In the same way, the fuzzy sets associated with the gender of the
person are not modified since the data only contain male and female gender.

The implementation in MATLAB is conducted with the function “gamultiobj”, which
employs a variation in the NSGA-II, a controlled elitist genetic algorithm. An elitist GA
favors individuals with more suitable fitness values (rank). Furthermore, a controlled elitist
GA chooses individuals to expand the population diversity even when they display a lower
fitness value. The bound constraints lb ≤ x ≤ ub are given by the ranges of the fuzzy sets
in the respective input or output [73].

Considering the stochastic behavior of the optimization algorithm, 20 executions of
the optimization process are performed. According to [74–78], a significant parameter of
NSGA-II is the population size; therefore, for the implementation of the multiobjective
algorithm, a different population size is considered. According to the guidelines of [73],
the population can be taken between 50 and 200. The configurations from the MOEA are
as follows:

• Configuration 1: Population 100.
• Configuration 2: Population 150.
• Configuration 3: Population 200.
• Configuration 4: Population 250.

The rest of the algorithm’s parameters are set according to the suggestion displayed
in [73]. In this order, the value parameters are as follows:

• Iterations: 4000.
• Crossover Fraction: 0.8.
• Elite Count: 0.05× Population Size.

• Function Tolerance: 1 × 10−8.
• Migration Fraction: 0.2.
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• Mutation Function: Mutation Adapt Feasible.

The first result to observe consists of the processing time used to perform the optimiza-
tion (20 executions) of each configuration. A statistical summary of the results obtained
can be seen in Table 1. It can be seen that as the population increases, the processing time
also increases. It should also be noted that the total time used was 323.0122 h, namely
13.4588 days.

Table 1. Statistical summary of the processing time (in hours).

Configuration Conf. 1 Conf. 2 Conf. 3 Conf. 4

Maximum 2.3519 3.5076 4.6794 5.8378

Minimum 2.2796 3.4124 4.5598 5.6504
Average 2.3140 3.4601 4.6119 5.7646
Variance 1.0079 1.8262 3.4650 10.8134

Total 46.2807 69.2019 92.2381 115.2915

The reference point used to calculate the hypervolume is obtained by determining the
maximum values of f1 and f2 obtained for all the Pareto fronts of all the configurations
considered. In this way, a general reference point is achieved for all the results obtained.
Table 2 displays the statistical summary of the hypervolume value for each Pareto front
obtained. The highest value of hypervolume is obtained in configuration 2; however, on
average, the highest value is found in configuration 4. In the same way, for the lowest
value obtained for hypervolume, configuration 4 presents the highest value. In this way, an
adequate solution of the Pareto front can be found in the results of configuration 2 or 4.

Table 2. Statistical summary of the hypervolume value for each Pareto front obtained.

Configuration Conf. 1 Conf. 2 Conf. 3 Conf. 4

Maximum 12.3275 12.4299 12.3041 12.4237
Minimum 8.2692 9.3182 8.6107 9.4830
Average 9.8659 10.5693 10.4517 10.7733
Variance 0.9197 0.7143 1.1097 0.8062

5. Result Analysis

This section displays the results from the multiobjective optimization process. First, it
presents the optimal Pareto front obtained and then the results obtained for the best cases
of f1 and f2; then, an analysis is carried out focusing on having the best balance between f1

and f2.
In order to determine the best Pareto front, the best responses obtained from all the

executions are combined, Figure 9 shows the optimal Pareto front obtained. These figures
show the result using the data for optimization (from 0 to 160) and the validation data
(from 161 to 200).

From the optimal Pareto front obtained, as an interesting result, the best configuration
obtained for f1 and f2 is presented separately. Figure 10 displays the best configuration
for f1, obtaining ~F = [2.0589, 0.3112]; meanwhile, in Figure 11, the best result for f2 is
displayed where ~F = [5.1022, 0.1855]. With these results and figures, it is possible to
observe the best values that can be obtained for each objective function and, therefore, for
each output of the fuzzy logic system.
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Figure 9. Optimal Pareto front obtained.
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Figure 10. Simulation result for the best configuration for f1.
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5.1. Fuzzy System Selection

The configuration that gives the balance between f1 and f2 is obtained considering the
distance from the ideal point and the optimal Pareto front.

In order to select the suitable configuration for the fuzzy system, the shortest distance
is considered between the ideal point and the optimal Pareto front, as is shown in Figure 12.

f2

f1

b

b

b

b

b
b

b

b

b

b

Pareto Front

b

Ideal Point

d1

Figure 12. Shortest distance between the ideal point and the optimal Pareto front.

In this case, ~F = [2.0589, 0.3112] is obtained; Figure 13 displays the simulation
obtained with the configuration that exhibits the shortest distance from the ideal point of
the Pareto optimal front. As can be appreciated in these results, with the selected solution,
it is possible to have a balance between the two objective functions and, therefore, for the
outputs of the fuzzy logic system.
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Figure 13. Simulation result for the best configuration for the knee point of the Pareto optimal front.

5.2. Fuzzy System Interpretability

The interpretability of the configuration of fuzzy sets for input variables is presented
in five figures, each of which represents the fuzzy sets for a different input variable. In this
way, given the location and shape of the fuzzy set, a linguistic label can be assigned.

When analyzing Figure 14, it can be seen that there are five fuzzy sets defined for
weight, and the membership function of each fuzzy set indicates how values are assigned
to each linguistic label. In this way, it can be observed that sets W1 and W5 are located in the
same place with a very similar amplitude that can be related to mean values, while fuzzy
set W2 is associated with low values and set W3 with high values. Intermediate values are
associated with W1, W5, and W4. These labels allow for a linguistic relationship among the
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input variables (risk factors for cardiovascular diseases) and the value of the body mass
index with the risk factor that a person would have for developing cardiovascular disease.

The input of age in Figure 15 can be defined as the linguistic labels for the respective
fuzzy sets; it is evident that sets A1 and A2 coincide in the same place and amplitude (rep-
resenting the same concept). Similarly, set A5 can be associated with low values, in contrast
to set A3, which can represent higher values, and finally, set A4 with intermediate values.

Considering Figure 16 associated with the input of gender, according to the data
available, two linguistic labels corresponding to masculine and feminine genders are
considered. Since these two sets are well established during the optimization process, their
parameters are not modified.

Finally, considering the inputs in Figures 17 and 18, the configurations are displayed
for the inputs of height and systolic blood pressure, respectively. Considering linguistic
labels, it is observed that in height, set H5 presents high values, H2 presents low values, and
intermediate values are presented in H3, H1, and H4. Similarly, in systolic blood pressure,
there is a tendency towards intermediate values with sets P4, P3, and P2, which also share a
similar value and amplitude, and a high-value label for P5 and a medium-high value with
P1 are also observed.
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Figure 14. Configuration of the fuzzy sets for the weight input.
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Figure 15. Configuration of the fuzzy sets for the age input.
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Figure 16. Configuration of the fuzzy sets for the gender input.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Height

0

0.2

0.4

0.6

0.8

1

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

H1H2 H3 H4 H5
H1
H2
H3
H4
H5

Figure 17. Configuration of the fuzzy sets for the height input.
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Figure 18. Configuration of the fuzzy sets for the systolic blood pressure.

Next, the same interpretability is made on the outputs obtained in such a way that the
fuzzy set configurations in Figures 19 and 20, respectively, are obtained. In this order, the
results are analyzed as follows: for y1, the body mass index has the highest value in the I3
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set, as well as in I5, while I4 has an intermediate value, and I2 and I3 have low values but
with a large amplitude.

Similarly, for the configuration of y2 related to the risk factors for cardiovascular
disease, it is observed that C2 shows a low value, while C1 and C5 maintain their high
values, and C4 and C3 display intermediate values and the same amplitude. This way, the
interpretability of these fuzzy sets is obtained considering different linguistic labels.
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Figure 19. Configuration of the optimized fuzzy sets for the output y1.
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Figure 20. Configuration of the optimized fuzzy sets for the output y2.

As can be seen in these results, in most cases, a suitable distribution of the fuzzy sets
is achieved in the respective universes of discourse in such a way that it is possible to
establish a linguistic label for each fuzzy set. This allows adequate interpretability of the
fuzzy logic system.

Regarding fuzzy medical-linguistic results, it is observed that fuzzy sets C1 and C5 are
close and indicate a high risk factor for cardiovascular disease. On the other hand, the sets
C2, C3, and C4 are distributed in the rest of the output discourse universe covering different
sectors, where C3 and C4 can be associated with middle risk and C2 with low risk. A more
thorough study of the gathering of fuzzy linguistic medical outcomes can be made using
clustering algorithms from the data output on the fuzzy system.

6. Discussion

This proposal enables a system adjustment in cases where real data are not available
for one of the outputs of the fuzzy system used for multiobjective optimization. This
process is suitable when there is a direct relationship between the output with real data



Computation 2023, 11, 147 20 of 25

and the output that lacks them. For example, the relationship between elevated BMI and
an increased risk of cardiovascular disease are considered.

It is important to note that the proposal aims to strike a balance between the output
with real data and the one with simulated data. Multiobjective optimization enables the
generation of a wide range of solutions that exhibit different relationships between the two
outputs under consideration.

The proposed strategy seeks to ensure that the two outputs exhibit similar behavior
so that a balance can be achieved between the output with real data and the output with
simulated data during the optimization process. The two outputs share the fuzzy sets
of the inputs and rule sets, and they are independent of the fuzzy sets of the outputs.
This approach allows for the simultaneous adjustment of common parts between the two
outputs and provides flexibility in adjusting these outputs.

Another aspect to consider concerns studies such as [6–8], where it is stated that the
BMI is not the best measure of health. Despite some controversy over BMI as an exclusive
factor in health assessment, in this paper it is employed as a reference to adjust the fuzzy sys-
tem. As an alternative, in future work, another index to carry out the optimization process
can be considered.

It should be noted that although the optimization of the fuzzy logic system spends an
average of 5.7646 h (configuration 4; see Table 1) after the fuzzy system has been optimized,
it can be used to classify the risk of cardiovascular disease. If it is necessary to perform a
new adjustment of the fuzzy system, the best configuration of the multiobjective algorithm
can be used to optimize the fuzzy logic system again.

Finally, to improve the performance of the model and the optimization process, a
clustering process can be incorporated in different instances, such a

1. The preliminary configuration of fuzzy sets and thus a determination of a suitable
number of sets to use. This also can be used to set the constraints and population of
the genetic multiobjective optimization algorithm.

2. Study of the grouping of fuzzy medical-linguistic results on cardiovascular risk. This
can be employed to improve the interpretability of the fuzzy sets and rules of the
CVR system.

7. Conclusions

The fuzzy logic system was fine-tuned using multiobjective optimization, allowing
for the use of real data to fit y1 (body mass index) and simulated data for y2 (risk factor
classification). By proposing this system, the aim is to assist individuals in identifying risk
factors for heart disease while also promoting the awareness of healthy habits to prevent
this condition.

The selection of an appropriate configuration for the fuzzy system is achieved by
minimizing the distance between the utopian point and the Pareto optimal front. However,
after the optimization process, it is crucial to ensure the interpretability of the fuzzy logic
system, as the stochastic nature of the genetic algorithm may result in configurations with
low interpretability.

The use of multiobjective optimization and Pareto dominance allowed us to obtain a
set of optimal solutions that represent the best possible balance between two competing
objectives: the accuracy of the real BMI data and the accuracy of the simulated CVD
risk data. Using a controlled genetic algorithm was a suitable choice for this problem,
as it allowed us to efficiently explore the solution space and obtain consistent results in
different settings.

This study underscores the value of applying multiobjective optimization algorithms
to develop better BMI management strategies and improve overall cardiovascular
health outcomes.

The implementation of the optimized fuzzy logic system can be of great use in the
classification of body mass index and cardiovascular disease risk in the medical field, as it
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allows a better approximation of real and simulated data, which in turn can help to make
more informed decisions about the patient’s health.

The proposed model utilizing fuzzy logic and optimization algorithms presents a
suitable approach to identifying and mitigating risk factors for cardiovascular diseases.
The significance of this work lies in its potential to improve personalized health outcomes
and reduce the incidence of CVD globally.

In future work, rule optimization could be carried out, and data from expert surveys
could be used to evaluate the system’s performance.
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Appendix A. Fuzzy System Rules

In this appendix Table A1 is displayed, which contains the inference rules. This table
displays the combinations of inputs and the corresponding outputs associated with the
inference rules.

Table A1. Inference rules for the proposed system.

Input Output

Weight Age Gender Height Systolic Pressure BMI Risk Classification

From 15 to 30 kg Under 20 years Female - Normal Normal weight Very low risk
From 31 to 45 kg From 20 to 35 years Male - Normal Normal weight Very low risk
From 46 to 60 kg From 36 to 49 years Female From 1.51 to 1.65 m High Pre-obesity Low risk
From 61 to 75 kg From 50 to 60 years Male From 1.66 to 1.80 m Hypertension level one Class 1 obesity Moderate

Over 76 kg Over 60 years Male Over 1.80 m Hypertension level two Class 2 obesity High risk
From 46 to 60 kg From 36 to 49 years Female From 1.51 to 1.65 m Hypertension crisis Class 3 obesity Very high risk
From 31 to 45 kg From 20 to 35 years Female - Hypertension level one Pre-obesity Moderate
From 61 to 75 kg From 50 to 60 years Male - Hypertension level two Class 2 obesity High risk

Over 76 kg Over 60 years Female - Hypertension crisis Class 3 obesity Very high risk
From 15 to 30 kg Under 20 years Female From 1.31 to 1.50 m Normal Normal weight Very low risk
From 15 to 30 kg Under 20 years Female From 1.31 to 1.50 m High Pre-obesity Moderate
From 15 to 30 kg Under 20 years Female From 1.31 to 1.50 m Hypertension level one Pre-obesity Low risk
From 15 to 30 kg Under 20 years Female From 1.31 to 1.50 m Hypertension level two Class 1 obesity High risk
From 15 to 30 kg Under 20 years Female From 1.31 to 1.50 m Hypertension crisis Class 2 obesity Very high risk
From 31 to 45 kg Under 20 years Female From 0.90 to 1.30 m Normal Normal weight Very low risk
From 46 to 60 kg Under 20 years Male From 0.90 to 1.30 m High Pre-obesity Low risk
From 61 to 75 kg Under 20 years Female From 0.90 to 1.30 m High Class 2 obesity Moderate
From 15 to 30 kg Under 20 years Female From 0.90 to 1.30 m Normal Normal weight Very low risk
From 31 to 45 kg From 20 to 35 years Female From 0.90 to 1.30 m High Pre-obesity Low risk
From 31 to 45 kg From 36 to 49 years Male From 1.31 to 1.50 m High Pre-obesity Low risk
From 46 to 60 kg From 36 to 49 years Female From 1.31 to 1.50 m Hypertension level one Class 1 obesity Moderate
From 61 to 75 kg From 36 to 49 years Male From 1.31 to 1.50 m Hypertension level two Class 2 obesity High risk
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Table A1. Cont.

Input Output

Weight Age Gender Height Systolic Pressure BMI Risk Classification

Over 76 kg From 36 to 49 years Female From 1.31 to 1.50 m Hypertension crisis Class 3 obesity Very high risk
From 15 to 30 kg From 50 to 60 years Male From 1.51 to 1.65 m Normal Normal weight Very low risk
From 31 to 45 kg From 50 to 60 years Female From 1.51 to 1.65 m High Pre-obesity Low risk
From 46 to 60 kg From 50 to 60 years Male From 1.51 to 1.65 m Hypertension level one Class 1 obesity Moderate
From 61 to 75 kg From 50 to 60 years Female From 1.51 to 1.65 m Hypertension level two Class 2 obesity High risk
From 31 to 45 kg Over 60 years Female From 1.66 to 1.80 m High Pre-obesity Low risk
From 46 to 60 kg Over 60 years Male From 1.66 to 1.80 m Hypertension level one Class 1 obesity Moderate

From 1.66 to 1.80 m Over 60 years Male From 1.66 to 1.80 m Hypertension level two Class 2 obesity High risk
Over 76 kg Over 60 years Female From 1.66 to 1.80 m Hypertension crisis Class 3 obesity Very high risk

From 15 to 30 kg Over 60 years Male Over 1.80 m Normal Normal weight Very low risk
From 31 to 45 kg Over 60 years Female Over 1.80 m High Pre-obesity Low risk
From 46 to 60 kg Over 60 years Male Over 1.80 m Hypertension level one Class 1 obesity Moderate
From 61 to 75 kg Over 60 years Male Over 1.80 m Hypertension level two Class 2 obesity High risk
From 31 to 45 kg Under 20 years Female From 0.90 to 1.30 m Hypertension level one Class 1 obesity Moderate
From 31 to 45 kg Under 20 years Male From 1.31 to 1.50 m Hypertension level one Class 1 obesity Moderate
From 31 to 45 kg Under 20 years Male From 1.51 to 1.65 m Hypertension level one Class 1 obesity Moderate
From 31 to 45 kg From 20 to 35 years Male From 1.66 to 1.80 m Hypertension level two Class 2 obesity High risk
From 31 to 45 kg From 20 to 35 years Female Over 1.80 m Hypertension level two Class 2 obesity High risk
From 31 to 45 kg Under 20 years Male From 0.90 to 1.30 m Hypertension crisis Class 3 obesity Very high risk
From 31 to 45 kg From 20 to 35 years Male From 1.31 to 1.50 m High Pre-obesity Low risk
From 46 to 60 kg From 20 to 35 years Female From 1.51 to 1.65 m Normal Normal weight Very low risk
From 46 to 60 kg From 20 to 35 years Female From 1.51 to 1.65 m Hypertension level two Class 2 obesity High risk

Over 76 kg From 50 to 60 years Male Over 1.80 m Normal Normal weight Very low risk
From 61 to 75 kg From 36 to 49 years Male From 1.66 to 1.80 m High Class 1 obesity Moderate
From 61 to 75 kg From 20 to 35 years Male Over 1.80 m Hypertension crisis Class 3 obesity Very high risk

Over 76 kg From 50 to 60 years Male From 1.51 to 1.65 m Hypertension level two Pre-obesity Moderate
From 31 to 45 kg From 50 to 60 years Male From 1.66 to 1.80 m Hypertension level one Normal weight Low risk
From 61 to 75 kg From 20 to 35 years Female From 1.51 to 1.65 m High Class 1 obesity Moderate
From 46 to 60 kg From 36 to 49 years Male From 1.51 to 1.65 m Hypertension level two Pre-obesity Moderate
From 61 to 75 kg Over 60 years Male From 1.31 to 1.50 m Hypertension level two Class 3 obesity Very high risk

Over 76 kg From 36 to 49 years Female Over 1.80 m Hypertension level one Class 2 obesity Very high risk
From 61 to 75 kg From 50 to 60 years Female From 1.66 to 1.80 m Hypertension level one Class 1 obesity Moderate
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76. Garbaruk, J.; Logofătu, D. Convergence Behaviour of Population Size and Mutation Rate for NSGA-II in the Context of the

Traveling Thief Problem. Lect. Notes Comput. Sci. 2020, 12496, 164–175. [CrossRef]

77. Hort, M.; Sarro, F. The effect of offspring population size on NSGA-II: A preliminary study. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021; pp. 179–180. [CrossRef]

78. Zheng, W.; Liu, Y.; Doerr, B. A first mathematical runtime analysis of the non-dominated sorting genetic algorithm II (NSGA-II):

(hot-off-the-press track at GECCO 2022). In Proceedings of the Genetic and Evolutionary Computation Conference Companion,

Boston, MA, USA, 9–13 July 2022; pp. 53–54. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/ijerph20020979
http://www.ncbi.nlm.nih.gov/pubmed/36673734
http://dx.doi.org/10.1038/nrcardio.2017.108
http://dx.doi.org/10.1038/s41569-018-0059-z
http://www.ncbi.nlm.nih.gov/pubmed/30042431
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028595
http://www.ncbi.nlm.nih.gov/pubmed/29459471
http://dx.doi.org/10.1001/jamacardio.2018.0022
https://. 
http://dx.doi.org/10.1080/00325481.2018.1433434
http://dx.doi.org/10.3390/nu15081826
http://www.ncbi.nlm.nih.gov/pubmed/37111045
http://dx.doi.org/10.1016/j.cjca.2021.02.009
http://www.ncbi.nlm.nih.gov/pubmed/33610690
http://dx.doi.org/10.1016/j.recesp.2014.03.019
https://www.datos.gov.co/Salud-y-Protecci-n-Social/Atenci-n-m-dica-del-a-o-2018/uerx-z994
https://la.mathworks.com/help/gads/gamultiobj.html
http://dx.doi.org/10.1109/ICSMC.2009.5346628
https://www.thinkmind.org/articles/lifsci_v6_n34_2014_22.pdf
http://dx.doi.org/10.1007/978-3-030-63007-2_13
http://dx.doi.org/10.1145/3449726.3459479
http://dx.doi.org/10.1145/3520304.3534070

	Introduction
	Multiobjective Optimization
	Article Approach and Document Organization

	Multiobjective Optimization
	Pareto Optimality Approach
	Multiobjective Performance Metrics
	Hypervolume Metric
	Solution Selection Criterion

	Proposed Fuzzy System
	Input Parameters
	Weight
	Age
	Gender
	Height
	Systolic Pressure

	Output Parameters
	Body Mass Index
	Classification

	Fuzzy Rules
	Dataset

	Multiobjective Optimization Process
	Result Analysis
	Fuzzy System Selection
	Fuzzy System Interpretability

	Discussion
	Conclusions
	Appendix A
	References

